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Abstract

We study the problems of learning and testing junta distributions on {−1, 1}n with respect to the

uniform distribution, where a distribution p is a k-junta if its probability mass function p(x) depends

on a subset of at most k variables. The main contribution is an algorithm for finding relevant

coordinates in a k-junta distribution with subcube conditioning Bhattacharyya and Chakraborty

(2018); Canonne et al. (2019). We give two applications:

• An algorithm for learning k-junta distributions with Õ(k/ε2) log n+O(2k/ε2) subcube conditioning

queries, and

• An algorithm for testing k-junta distributions with Õ((k +
√
n)/ε2) subcube conditioning queries.

All our algorithms are optimal up to poly-logarithmic factors.

Our results show that subcube conditioning, as a natural model for accessing high-dimensional

distributions, enables significant savings in learning and testing junta distributions compared to the

standard sampling model. This addresses an open question posed by Aliakbarpour et al. (2016).

Keywords: List of keywords

1. Introduction

We consider the problems of learning and testing k-junta distributions, as first studied by Aliak-

barpour, Blais, and Rubinfeld (Aliakbarpour et al. (2016)). Given n ∈ N and k ≤ n, a distribution

p supported on {−1, 1}n is a k-junta distribution (with respect to the uniform distribution) if the

probability mass function p(x) = Prz∼p[z = x] is a k-junta.1 The goal of the learning problem

is to design algorithms which, given access to an unknown k-junta distribution p over {−1, 1}n,

output a hypothesis distribution p̂ that satisfies dTV(p, p̂) ≤ ε. In the testing problem, the goal is

1. We say a function f(x) over {−1, 1}n is a k-junta (function) if it depends on a subset of no more than k variables.

More generally, Aliakbarpour et al. (2016) defines k-junta distributions with respect to a fixed distribution q. For

n ∈ N, k ≤ n, and a fixed distribution q supported on {−1, 1}n, a distribution p over {−1, 1}n is a k-junta

distribution with respect to q if there exist k coordinates i1, . . . , ik ∈ [n] such that for every x ∈ {−1, 1}k, the

distributions p and q conditioned on coordinates i1, . . . , ik being set according to x are equal. When q is the uniform

distribution, the above definition is equivalent to the requirement that p(x) is a k-junta function.
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to design algorithms which, given access to an arbitrary distribution p, can distinguish between p
being a k-junta distribution, and being ε-far from a k-junta distribution.2

The study of computational aspects of juntas has spawned a large body of work (for instance,

see Mossel et al. (2003); Fischer et al. (2004); Chockler and Gutfreund (2004); Lipton et al. (2005);

Arpe and Reischuk (2007); Arpe and Mossel (2008); Arvind et al. (2009); Valiant (2015); Blais

(2008, 2009, 2010); Servedio et al. (2015); Bshouty and Costa (2016); Blais et al. (2019a); Chen

et al. (2017); Saglam (2018); Liu et al. (2018); Levi and Waingarten (2019); De et al. (2019);

Pallavoor et al. (2020) and references therein). These problems are motivated by the feature se-

lection problem in machine learning (see e.g. Guyon and Elisseeff (2003); Liu and Motoda (2012);

Chandrashekar and Sahin (2014)), and are classically referred to in theoretical computer science as

“learning in the presence of irrelevant information” Blum (1994); Blum and Langley (1997). The

landmark (open) problem is the “junta problem” Blum (2003); Mossel et al. (2003); Valiant (2015):

given an unknown k-junta f : {−1, 1}n → {−1, 1}, an algorithm receives independent samples

(x, f(x)) where x ∼ {−1, 1}n is uniform, and the task is to learn f (with respect to the uniform

distribution). Aliakbarpour et al. (2016) study the analogous problem for distributions: for an un-

known k-junta distribution p over {−1, 1}n, an algorithm receives independent samples x ∼ p,

and the task is to learn p to within small distance in total variation. They obtain an algorithm with

sample complexity Õ(22k) log n/ε4 and running time Õ(22k)min{nk, 2n}/ε4, and observed that

any algorithm for learning k-junta distributions may be used to solve the “junta problem.” Hence,

running time significantly better than nk (in particular, polynomial upper bounds for k = O(log n))
would constitute a major breakthrough in computational learning theory.

Turning to testing k-junta distributions, Aliakbarpour et al. (2016) give a tight bound of Θ̃(2n/2/ε2)
for the number of samples x ∼ p needed. We note that this “curse of dimensionality” is not unique

to the problem of testing junta distributions, and already appears for the most basic testing task:

testing whether a distribution on {−1, 1}n is uniform Paninski (2008); Valiant and Valiant (2017),

which can be viewed as testing k-junta distributions with k = 0. Works addressing this state-

of-affairs have proceeded by either analyzing restricted classes of high dimensional distributions

Rubinfeld and Servedio (2009); Canonne et al. (2017); Daskalakis and Pan (2017); Daskalakis et al.

(2019); Gheissari et al. (2018); Bezáková et al. (2020); Diakonikolas et al. (2019), or by augmenting

the oracle Batu et al. (2005); Canonne and Rubinfeld (2014); Canonne et al. (2015); Chakraborty

et al. (2016); Acharya et al. (2018); Bhattacharyya and Chakraborty (2018); Onak and Sun (2018).

Membership queries. It has been observed Blum and Langley (1997); Mossel et al. (2003);

Blum (2003) that the classic “junta problem” becomes significantly easier when allowing member-

ship queries.3 In particular, a simple algorithm making O(k log n/ε) queries will find at most k
relevant variables such that the function is ε-close to a junta function over those variables.4 For the

problem of testing junta functions (with membership queries), the state-of-the-art algorithm Blais

(2009) only has query complexity Õ(k/ε) with no dependency on n. This leads to the following

question that motivates our work:

What is an appropriate “membership query” model for learning and testing junta

distributions, and would such query access admit significant complexity savings?

2. Here, two distributions p and q are ε-far if dTV(p, q) ≥ ε, and p is ε-far from being a k-junta distribution if every

k-junta distribution is ε-far from p.

3. In learning theory, a membership query refers to an oracle which returns f(x) upon a query x ∈ {−1, 1}n.

4. The algorithm iteratively builds a set J ⊂ [n] of relevant variables by sampling pairs of points x,y ∼ {−1, 1}n with

xJ = yJ ; when f(x) 6= f(y), the algorithm performs a binary search to find a new relevant variable to add to J .
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Subcube conditioning queries. This paper considers the subcube conditioning model, first

studied by Bhattacharyya and Chakraborty (2018). A subcube conditioning query on a distribution

p over {−1, 1}n is specified by a string (or a restriction as we call in the paper) ρ ∈ {−1, 1, ∗}n.

The oracle returns a sample x ∼ p conditioned on every i ∈ [n] with ρi 6= ∗ having xi = ρi.
Equivalently, ρ encodes a subcube of {−1, 1}n by fixing non-∗ coordinates in ρ; the oracle returns

a sample x ∼ p conditioned on x lying in the subcube.5 When the subcube encoded by ρ is not

supported in p, the oracle under the model of Bhattacharyya and Chakraborty (2018) returns a point

drawn uniformly from the subcube. We remark that this modeling choice is not important for this

paper: our algorithms only make queries ρ that are consistent with a sample x previously drawn

from p (i.e., ρi = xi for every non-∗ coordinate i).6

The subcube conditioning model seems particularly appropriate for computational tasks over

distributions supported on (high-dimensional) product domains, and was suggested in Canonne

et al. (2015) as an open direction for learning and testing distributions over {−1, 1}n. From the

purely theoretical perspective, we find two aspects of subcube conditioning especially compelling.

The first is that restrictions of distributions over product domains are themselves distributions over

product domains, which enable algorithms and their analyses to proceed recursively. The second is

that algorithms may proceed via the method of (random) restrictions, exploiting properties of dis-

tributions apparent only by considering subcubes. See more discussions on random restrictions in

Section 1.2.

From a practical perspective, subcube conditional queries arise in a number of applications. An

important example is sampling from large joins in a relational database. For database joins, subcube

conditioning has a natural interpretation: a sample from a join conditioned on a subcube (defined

by fixing certain attributes in the join) can be represented as a sample from another join, where

conditioning is first applied to each relation individually.7 Thus, subcube conditional sampling from

a join can be implemented in the same time as uniform sampling from a join with a minor overhead.

Moreover, efficiently sampling from joins is an important task in database theory Chaudhuri et al.

(1999); Acharya et al. (1999); Zhao et al. (2018); Chen and Yi (2020), and can often be implemented

substantially faster than the time required to compute the entire query (which may be exponential

in the number of relations given as input to the join).

Other query models. We briefly discuss other proposed access oracles for distributions. The

evaluation oracle Batu et al. (2005); Canonne and Rubinfeld (2014) allows algorithms to query the

probability mass function of an input, in addition to receiving random samples. We note the same

“binary search” strategy prescribed for finding relevant variables in a k-junta function works well

in this setting, making it too strong for learning juntas. Onak and Sun (2018) considers probability-

revealing samples, where the algorithm receives pairs (x, p(x)) with x ∼ p. This model is too

5. We note that while this paper considers distributions supported on {−1, 1}n, Bhattacharyya and Chakraborty (2018)

study subcube conditioning in a general product domain Σn. There, a subcube conditioning query is specified by a

sequence of n subsets A1 × · · · × An where each Ai ⊂ Σ, and a sample x ∼ p conditioned on xi ∈ Ai for all

i ∈ [n]. Extending results from {−1, 1}n to Σn is a direction for future work.

6. This gives our algorithms a flavor of those under the active learning / testing model Dasgupta (2005); Settles (2009);

Balcan et al. (2012), adapted to the setting of distribution testing: an algorithm can only zoom in onto a subcube

using conditioning queries after it is discovered by samples drawn from the distribution. Our lower bounds, on the

other hand, apply to the original subcube conditioning model, which only makes them stronger.

7. For example, a sample from a large multi-way join J = R1 1 · · · 1 Rm of relations R1, . . . , Rm conditioned on

fixing a subset of attributes according to a restriction ρ corresponds to a sample from the join query J ′ = R′
1 1

. . . R′
m, where each R′

i is the restriction of the relation Ri where attributes are fixed according to ρ.
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weak for the learning problem, since the reduction of Aliakbarpour et al. (2016) from the k-junta

problem to the k-junta distribution problem applies to this oracle as well.8 Lastly, and most relevant

to this paper, is the (general) conditional sampling model, introduced in Chakraborty et al. (2013,

2016); Canonne et al. (2014, 2015), where an algorithm is allowed to specify a (arbitrary) subset A
of the domain and receive a sample conditioned on it lying in A. This model is more powerful than

subcube conditioning, yet, looking ahead, our lower bounds for learning k-junta distributions will

apply to this model as well, showing that conditioning on arbitrary sets A ⊆ {−1, 1}n is no more

powerful than that on subcubes for the learning problem.

1.1. Our results

Learning k-junta distributions. Our main algorithmic contribution is a procedure that can, given

subcube conditioning query access to a k-junta distribution p over {−1, 1}n, identify a set J ⊂ [n]
of at most k relevant variables such that p is close to a k-junta over J . The number of queries needed

to identify each relevant variable, on average, is roughly log n/ε2. (We emphasize though that the

main idea behind the algorithm is not based on binary search; see Section 1.2 for an overview of the

algorithm.)

Theorem 1 (Identifying relevant variables) There is a randomized algorithm, which takes sub-

cube conditioning query access to an unknown distribution p over {−1, 1}n, an integer k ∈ N,

and a parameter ε ∈ (0, 1/4]. The algorithm makes Õ(k/ε2) · log n queries, runs in time Õ(k/ε2) ·
n log n and outputs a set J ⊂ [n] with the following guarantee. If p is a k-junta distribution then

|J| ≤ k and p is ε-close to a junta distribution over variables in J with probability at least 2/3.

It is known as folklore that, once such a set J is identified, the unknown k-junta distribution p
can be learnt easily using another batch of O(2k/ε2) samples from p and the same amount of running

time. Together we obtain the following corollary, showing that subcube conditioning queries enable

significant speedup compared to state-of-the-art learning algorithms under the sampling model.

Corollary 2 (Learning junta distributions) Under the subcube conditioning query model, there is

a learning algorithm for k-junta distributions with query complexity Õ(k/ε2) · log n + O(2k/ε2)
and running time Õ(k/ε2) · n log n+O(2k/ε2).

We show that query complexities of both algorithms are almost tight. Indeed they are al-

most tight even under the more powerful general conditioning query model, which was introduced

simultaneously by Chakraborty et al. (2013, 2016) and Canonne et al. (2014, 2015). A general con-

ditioning query to p is specified by an arbitrary subset A of {−1, 1}n (which is not necessarily a

subcube) and the oracle returns a sample x ∼ p conditioned on x ∈ A.

Theorem 3 Let 0 < ε ≤ 1/8, n ∈ N and 0 < k ≤ n− 1. Suppose an algorithm receives as input

conditional query access to an unknown k-junta distribution p supported on {−1, 1}n and outputs

a set J ⊂ [n] with |J| ≤ k such that with probability at least 4/5, p is ε-close to a junta distribution

over J. Then, the algorithm must make Ω(log
(
n
k

)
/ε2) queries.

8. In particular, consider an unknown k-junta function f : {−1, 1}n → {−1, 1}, and notice that with poly(2k) random

samples, we may know exactly how many inputs x ∈ {−1, 1}n have f(x) = 1. Then, the reduction of Aliakbarpour

et al. (2016) constructs the distribution which is uniform over the inputs where f(x) = 1, so knowing the probability

mass function at these points gives no additional information.
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Theorem 4 Let 0 < ε ≤ 1/120, n ∈ N and 0 < k ≤ n − 1. Suppose an algorithm receives as

input conditional query access to an unknown k-junta distribution p over {−1, 1}n and outputs a

distribution p̂ such that with probability at least 4/5, p is ε-close to p̂. Then, the algorithm must

make Ω(log
(
n
k

)
/ε2) + Ω(2k/ε2) queries.

Testing k-junta distributions For the problem of testing junta distributions, we obtain matching

upper and lower bounds for the query complexity under the subcube conditioning query model.

Theorem 5 (Testing junta distributions) There is an algorithm, which takes subcube condition-

ing access to an unknown distribution p over {−1, 1}n, an integer k ∈ N, and ε ∈ (0, 1/4]. It

makes

Õ

(
k +
√
n

ε2

)

queries, runs in time Õ(n(k +
√
n)2/ε4) and achieves the following guarantee: It accepts with

probability at least 2/3 if p is a k-junta distribution, and rejects with probability at least 2/3 if p is

ε-far from a k-junta.

Theorem 6 (Lower bound for junta testing) There exist two absolute constants ε0 > 0 and C0 ∈
N such that for any setting of 0 < ε ≤ ε0, n ≥ C0 and 0 ≤ k ≤ n/2, any algorithm which receives

as input subcube conditioning query access to an unknown distribution p supported on {−1, 1}n
and distinguishes with probability at least 2/3 between the case when p is a k-junta distribution

and the case when p is ε-far from any k-junta distribution must make at least Ω̃(k +
√
n)/ε2 many

queries. Furthermore, the lower bound holds even when p is promised to be a product distribution.

An open problem posed by Aliakbarpour et al. (2016) is whether their exponential lower bound

for testing junta distributions under the sampling oracle can be bypassed using general conditioning

queries. We answer the question positively with subcube conditioning queries.

1.2. Technical overview

We give an overview of our results for learning and testing junta distributions. All our algorithms

heavily use random restrictions drawn using samples from the unknown distribution. We start with

some notation for restrictions and how we apply them on a distribution.

Let p be a distribution over {−1, 1}n and let ρ ∈ {−1, 1, ∗}n be a restriction. We write p|ρ to de-

note the distribution obtained by applying the restriction ρ on p: it is supported on {−1, 1}stars(ρ) where

stars(ρ) is the set of i ∈ [n] with ρi = ∗, and y ∼ p|ρ is drawn by first drawing x ∼ p conditioned

on xi = ρi for all i /∈ stars(ρ) and then setting y = xstars(ρ). There will be mainly two ways we

draw a random restriction ρ. In the first scenario, we fix a set S ⊂ [n] and draw a random restriction

ρ by first drawing x ∼ p and then setting ρi = xi for each i /∈ S and ρi = ∗ otherwise. We

denote this distribution of restrictions by DS(p). The more sophisticated way of drawing a random

restriction ρ, given a parameter σ ∈ (0, 1), is to first draw x ∼ p and a random set S ⊆ [n] by

including each element independently with probability σ. We then set ρi = xi for each i /∈ S and

ρi = ∗ otherwise. We denote this distribution of restrictions by Dσ(p)
Algorithm for identifying relevant variables. Given access to a distribution p, the algorithm

proceeds by maintaining a set J (initially empty) of relevant9 variables found, and iteratively adding

9. Unlike the Boolean function setting, we only know that variables in J are relevant with high probability.
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to J until no more relevant variables are found. Hence, the key challenge is discovering new relevant

variables when p remains ε-far from any k-junta distribution over J . The latter condition implies

Eρ∼D
J
(p)

[
dTV

(
p|ρ,U

)]
≥ ε,

where U denotes the uniform distribution (of the right dimension). Assume, for convenience, that

the algorithm samples a restriction ρ with dTV(p|ρ,U) ≥ ε. The major difficulty is that arbitrary

correlations among (yet unknown) k relevant variables may hide the non-uniform nature of p|ρ.10

For this, we leverage a set of recently-developed tools from Canonne et al. (2019) for analyzing

mean vectors of random restrictions of distributions. Specifically, for an arbitrary distribution p
over {−1, 1}n, we denote µ(p) ∈ [−1, 1]n as the mean vector,

µ(p)
def
= E

x∼p
[x] ∈ [−1, 1]n.

We prove the following structural lemma for distributions which are far-from k-juntas. At a high

level, this lemma allows us to find relevant variables by only considering the marginal distributions

on specific coordinates after applying random restrictions.

Lemma 7 (Main structural lemma) There is a universal constant c > 0 such that the following

holds. Let p be any probability distribution supported over {−1, 1}n for some n ∈ N. Let J ⊂
[n] be a subset of variables such that p is ε-far from being a junta distribution over variables in J
for some ε ∈ (0, 1/4].11 Then for σ = 1/2 we have

dlog2 2ne∑

j=1

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥
2

]]
≥ ε

logc(n/ε)
. (1)

We will apply the main structural lemma to the distribution p projected onto its k relevant

variables (so n in Lemma 7 becomes k), which suggests the following algorithm: for each j =
1, . . . , dlog2 2ke, draw ρ and ν as described above in the hopes that ‖µ((p|ρ)|ν)‖2 ≥ ε/ logc(k/ε).
Once this occurs, since µ((p|ρ)|ν) contains at most k non-zero coordinates, at least one coordinate

i ∈ stars(ν) will have mean at least ε/(
√
k logc(k/ε)) in magnitude. In other words, the i-th

variable is relevant, and the marginal distribution on the i-th coordinate of (p|ρ)|ν is biased by

at least Ω̃(ε/
√
k). Taking Õ(k/ε2) · log n random samples from (p|ρ)|ν is enough to identify all

relevant coordinates whose marginal is at least Ω̃(ε/
√
k) to include into J ; furthermore, (by the

extra (log n)-factor), we never include a non-biased coordinate in J . Notice, however, that all

guarantees are only in expectation, and we need to employ a budget doubling strategy to achieve the

nearly-optimal bound.

10. For example, consider the k-junta distribution p over {−1, 1}n which is parameterized by a subset S ⊂ [n] of size

k (denoting the relevant variables). A sample x ∼ p is uniform over all points y ∈ {−1, 1}n where
∏

i∈S yi = 1.

Notice that dTV(p,U) ≥ 1/2, however, the distribution given by projecting p onto any subset of coordinates which

does not completely include all S variables is exactly uniform. The silver lining (for this specific distribution) will

be that if a restriction ρ fixes all but one variable in S, i.e., S ∩ stars(ρ) = {i}, then every sample x ∼ p|ρ will have

xi always set to the same value.

11. We require ε ≤ 1/4 just so that log(n/ε) ≥ 2 even when n = 1; this helps avoid an extra multiplicative constant

needed on the right hand side of (1).
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Algorithm for testing junta distributions. The testing algorithm first runs the algorithm for

identifying relevant variables, and then tests whether the distribution depends only on the relevant

variables found. In particular, let J be the set of variables it returns, and notice that the algorithm

may immediately reject if |J | > k, since every variable in J found by the algorithm is relevant (with

high probability). The remaining task is distinguishing between the following two cases:

1. If p is ε-far from k-junta distributions, then by definition p is ε-far from any junta

distribution over J . By the main structural lemma, there is some j = 1, . . . , dlog2 2ne
such that ‖µ((p|ρ)|ν)‖2 is large (in expectation) when ρ ∼ DJ(p) and ν ∼ Dσj (p|ρ).

2. If p is a k-junta distribution, then for every j = 1, . . . , dlog2 2ne, (p|ρ)|ν will (trivially)

still be a k-junta distribution and ‖µ((p|ρ)ν)‖2 will tend to be small (in expectation).

The intuition for the latter condition is that otherwise, the algorithm for finding relevant

variables as sketched above would have identified more variables.

To this end, we design a “robust mean tester” for juntas distributions.

Theorem 8 (Robust mean testing for juntas) There is an algorithm which, given sample access to

a distribution p on {−1, 1}n, k ∈ N and a parameter ε ∈ (0, 1), has the following behavior:

1. If p is a k-junta distribution with ‖µ(p)‖2 ≤ ε
√
n/100, the algorithm returns “Is a

k-junta” with probability at least 2/3;

2. If p is a distribution that satisfies ‖µ(p)‖2 ≥ ε
√
n, the algorithm returns “Not a

k-junta” with probability at least 2/3.

Moreover, the algorithms draws

q = O

(
max

{
k +
√
n

ε2n
,
k +
√
n

ε
√
n

})
(2)

samples from p and runs in time O(q2n).

The above theorem improves on a (non-robust) mean tester from Canonne et al. (2019) (which

solves the case when k = 0) in two ways. The first is that since k 6= 0, the case p is a k-junta

may have non-zero mean vector, and our algorithm distinguishes a constant factor gap between the

`2-norm of mean vectors.12 The second is that the algorithm runs in time O(q2n) as opposed to

nO(logn), and gives optimal query complexity (whereas the result in Canonne et al. (2019) lost a

triply-logarithmic factor).

Lower bounds for identifying relevant variables and learning junta distributions. Both

proofs of Theorem 3 and Theorem 4 follow from a reduction to the one-way communication com-

plexity of the indexing problem: Alice receives a uniformly random string y ∼ {−1, 1}m; Bob

receives a uniformly random index i ∼ [m]; Alice needs to send a message to Bob so that Bob

12. This gives the robust mean tester a somewhat tolerant testing flavor. Removing the assumption of p being a k-junta

in the completeness case, and allowing arbitrary distributions with small `2-norms on the mean vector would result

in an Ω(1/ε2) lower bound (which is always much higher than (2)). Proof: for x ∈ {−1, 1}n, let p1 and p2 be

distributions over {x,−x} where p1 is uniform and p2 samples x with probability (1 + ε)/2. These exhibit a gap in

the mean vectors, but are indistinguishable with significantly fewer than 1/ε2 samples.

7
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outputs yi. This problem has a well known Ω(m) lower bound for any public-coin protocol that

succeeds with probability at least 2/3 Miltersen et al. (1995).

We focus on Theorem 3, as the proof of Theorem 4 follows a similar plan. We assume that

there is an algorithmA for identifying relevant variables of any k-junta distribution p over {−1, 1}n
with q general conditioning queries, and similarly to Blais et al. (2019b), we will give a communi-

cation protocol which simulates A to contradict communication complexity lower bounds. Given

an input string y ∈ {−1, 1}m where m = Ω(log
(
n
k

)
), Alice builds a k-junta distribution py over

{−1, 1}n such that Bob can decode y by learning relevant variables of py. By Harsha et al. (2010);

Braverman and Garg (2014) (specifically, Corollary 7.7 in Rao and Yehudayoff (2020)) and the na-

ture of distribution py, we compress the naive one-way communication protocol (where Alice sends

q samples using qn bits) into a public-coin protocol with O(qε2) +O(1) communication bits.

Lower bound for testing junta distributions. Our lower bound instances will always consist

of product distributions, which simplifies the lower bound proof in two ways. The first way is that

subcube conditioning queries may be simulated by random samples, so that it suffices to prove a

sample complexity lower bound. The second is that, even uniformity testing (which is the case of

k = 0), has a lower bound of Ω(
√
n/ε2) samples Canonne et al. (2017, 2019), so that it suffices to

prove a lower bound of Ω̃(k)/ε2. We prove an Ω̃(n)/ε2 sample complexity lower bound for testing

k-junta product distributions with k = n/2, and extend the result to all k ≤ n/2 with a padding

argument.

The two distributions of “hard” instances, Dyes and Dno, are quite delicate, as they must simul-

taneously satisfy the following guarantees. (i) A distribution p ∼ Dyes is an (n/2)-junta product

distribution with probability at least 1− on(1), i.e., µ(p) has at most n/2 non-zero coordinates (in

particular, these are the relevant coordinates). (ii) A distribution p ∼ Dno is ε-far from any (n/2)-
junta product distribution with probability 1 − on(1), i.e., letting µ′ be µ(p) after zeroing out the

top half of coordinates, ‖µ′‖2 ≥ ε. (iii) The joint distributions over significantly fewer than n/ε2

samples from a draw p ∼ Dyes and p ∼ Dno, respectively, are on(1) in total variation distance.

The constructions proceed by randomly and independently setting µ(p)i according to one of two

possible distributions (one forDyes and one forDno) such that the first O(log n/ log log n) moments

of each µ(p)i match when p ∼ Dyes and p ∼ Dno, which we show suffices for condition (iii).13

2. Preliminaries

We use boldface symbols to represent random variables, and non-boldface symbols for fixed values

(potentially realizations of these random variables) — see, e.g., ρ versus ρ. Given n ∈ N, we let Un
denote the uniform distribution over {−1, 1}n. Usually, as the support of Un will be clear from the

context, we will drop the subscript and simply write U . We write f(n) . g(n) if, for some c > 0,

f(n) ≤ c · g(n) for all n ≥ 1 (the & symbol is defined similarly). We use the notation Õ(f(n))
to denote O(f(n) · polylog(f(n))), and Ω̃(f(n)) to denote Ω(f(n)/(1 + |polylog(f(n))|)). The

notation [k] denotes the set of integers {1, . . . , k}.
We introduce two useful operations on a distribution p supported on {−1, 1}n.

13. The method of matching moments for distribution testing tasks is a well-known technique Raskhodnikova et al.

(2009); Valiant (2011), where the core is analyzing the solution of a Vandermonde system to construct hard instances.

While our plan proceeds in a similar fashion, the specific technical details are rather intricate. In particular, seemingly

innocuous changes to the Vandermonde system result in constructions which would not work.
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Definition 9 (Projection) For any set S ⊆ [n], we write S = [n] \ S and define the projected

distribution pS supported on {−1, 1}S by letting y ∼ pS be drawn as y = xS for x ∼ p.

Definition 10 (Restriction) We refer to a string ρ ∈ {−1, 1, ∗}n as a restriction and use stars(ρ) to

denote the set of indices i ∈ [n] with ρi = ∗. We denote by p|ρ the restricted distribution supported

on {−1, 1}stars(ρ) given by xstars(ρ) where x is drawn from p conditioned on every i /∈ stars(ρ)
being set to ρi.

The majority of the results in this work consider restrictions ρ drawn randomly from one of the

distributions that we define next.

Definition 11 Let n ∈ N and p be a distribution supported on {−1, 1}n. Given a set S ⊆ [n] we let

DS(p) be the distribution over restrictions ρ ∈ {−1, 1, ∗}n given by letting ρ ∼ DS(p) be sampled

according to a sample x ∼ p, and setting for all i ∈ [n]: ρi = ∗ if i ∈ S and ρi = xi if i /∈ S.

For any σ ∈ (0, 1) and a ground set T , we let Sσ(T ) be the distribution supported on subsets

S ⊆ T given by letting S ∼ Sσ(T ) be the set which includes each i ∈ T in S independently with

probability σ. We oftentimes write Sσ = Sσ([n]) when n is clear from context. We let Dσ(p) be the

distribution supported on restrictions {−1, 1, ∗}n given by letting ρ ∼ Dσ(p) be sampled by first

sampling S ∼ Sσ and then outputting ρ ∼ DS(p).

3. Finding Relevant Variables

In this section we give our algorithm for identifying relevant variables from junta distributions. We

restate our main structural lemma but delay its proof to Section F.

Lemma 12 (Main structural lemma) There is a universal constant c > 0 such that the following

holds. Let p be any probability distribution supported over {−1, 1}n for some n ∈ N. Let J ⊂
[n] be a subset of variables such that p is ε-far from being a junta distribution over variables in J
for some ε ∈ (0, 1/4].14 Then for σ = 1/2 we have

dlog2 2ne∑

j=1

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥
2

]]
≥ ε

logc(n/ε)
. (1)

We emphasize that the parameter n in our structural lemma will be set to be the junta parameter

k later so we need it to hold for small n such as n = 1, which requires some care in its proof later.

We restate the main theorem of this section:

Theorem 1 (Identifying relevant variables) There is a randomized algorithm, which takes sub-

cube conditioning query access to an unknown distribution p over {−1, 1}n, an integer k ∈ N,

and a parameter ε ∈ (0, 1/4]. The algorithm makes Õ(k/ε2) · log n queries, runs in time Õ(k/ε2) ·
n log n and outputs a set J ⊂ [n] with the following guarantee. If p is a k-junta distribution then

|J| ≤ k and p is ε-close to a junta distribution over variables in J with probability at least 2/3.

Theorem 1 will follow by combining the main algorithmic component, Lemma 13 stated next,

with the main structural lemma (Lemma 7).

14. We require ε ≤ 1/4 just so that log(n/ε) ≥ 2 even when n = 1; this helps avoid an extra multiplicative constant

needed on the right hand side of (1).
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Lemma 13 There exists a randomized algorithm, FindRelevantVariables, which takes

subcube conditional query access to an unknown distribution p supported on {−1, 1}n, an inte-

ger k ∈ N and a parameter ε ∈ (0, 1/4]. The algorithm makes Õ(k/ε2) · log n queries and outputs

a set J ⊂ [n] that satisfies the following guarantees:

1. With probability at least 8/9, for every i ∈ J, there is a restriction ρ ∈ {−1, 1, ∗}n with

i ∈ stars(ρ) such that µ(p|ρ)i 6= 0 (and thus, i is a relevant variable of p);

2. Suppose p is a k-junta distribution and let σ = 1/2. With probability at least 8/9, J satisfies

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ
(
(p|ρ)|ν

)∥∥
2

]]
≤ ε, for every j = 1, . . . , dlog2 2ke. (3)

Proof of Theorem 1 assuming Lemma 13: We execute FindRelevantVariables(p, k, ε̃)
for some parameter ε̃ to be specified shortly, and upon receiving J ⊂ [n] outputs J. We show that

when p is a k-junta distribution, J satisfies the condition of Theorem 1 with probability at least 2/3.

For this purpose it suffices to show that the condition of Theorem 1 follows from the two conditions

of Lemma 13 when ε̃ is set appropriately.

Let J ⊂ [n] be a set of variables for which both conditions of Lemma 13 hold (with ε̃ on

the right hand side in (2) instead of ε). Since p is a k-junta, we let I = {i1, . . . , ik} ⊂ [n] and

g : {−1, 1}k → [0, 1] be such that p(x) = g(xi1 , . . . , xik). By the first condition, we have J ⊆ I
and |J | ≤ k, since a restriction ρ ∈ {−1, 1, ∗}n with i ∈ stars(ρ) and µ(p|ρ)i 6= 0 certifies that

each i ∈ J is a relevant variable in p. Next consider the distribution h = pI supported on {−1, 1}I
and suppose for the sake of contradiction that h is ε-far from being a junta over variables in J . Then

by applying Lemma 7 on h and J with σ = 1/2 (and noting that parameter n in Lemma 7 is set to

k), we have

ε

logc(k/ε)
≤

dlog2 2ke∑

j=1

E
ρ∼D

J
(h)

[
E

ν∼D
σj (h|ρ)

[∥∥µ
(
(h|ρ)|ν

)∥∥
2

]]
, (4)

where c > 0 is the universal constant from Lemma 7.

On the other hand, we claim that the right hand side of the inequality above is the same as

dlog2 2ke∑

j=1

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ
(
(p|ρ)|ν

)∥∥
2

]]
,

after replacing h with p. This is because p is a k-junta over I and thus, the mean vector of (p|ρ)|ν
for any restrictions ρ and ν always has zeros in entries outside of those in I . As a result, we have

ε

logc(k/ε)
≤

dlog2 2ke∑

j=1

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ
(
(p|ρ)|ν

)∥∥
2

]]
≤ dlog2 2ke · ε̃,

where we used the second condition of Lemma 13. Hence, choosing ε̃ = ε/polylog(k/ε) gives us

a contradiction. This shows that h is ε-close to being a junta over variables in J . Since p is a junta

over I and h = pI , p is ε-close to being a junta over variables in J as well.
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Subroutine FindRelevantVariables(p, k, ε)

Input: Subcube conditioning access to a distribution p supported on {−1, 1}n, an integer

k ∈ N and a proximity parameter ε ∈ (0, 1).
Output: A set J ⊂ [n] of variables.

1. Initialize J = ∅ (and B = 0, which is used only in the analysis), and let

ε0 =
ε

100 · log3(k/ε) .

2. Execute the following while |J | ≤ k:

(a) Initialize b = 1.

(b) Repeat the following procedure while b ≤ 2k:

Increase B by b; run VariablesBudget(p, k, ε0, b, J), which outputs

J ′ ⊂ [n] \ J .

A. If |J ′| ≥ b, update J by adding b elements of J ′ to J and go to step 2.

B. If |J ′| < b, update b← 2b and repeat the loop of step 2b.

(c) If b > 2k, output J .

3. Output J .

Figure 1: The FindRelevantVariables subroutine.

To finish the proof we note that the bound on the query complexity follows from the fact that

we executed FindRelevantVariables(p, k, ε̃) with ε̃ picked as above.

We present FindRelevantVariables in Figure 1. It uses a subroutine VariablesBudget

which we describe in Figure 2 and analyze in the lemma below, whose proof deferred to Ap-

pendix A.

Lemma 14 There exists a randomized algorithm, VariablesBudget, which takes subcube

conditional query access to an unknown distribution p over {−1, 1}n, an integer k ∈ N, a pa-

rameter ε ∈ (0, 1/4], an integer b ∈ [k], and a set J ⊂ [n]. It makes

O

(
b

ε2
· log2

(
k

ε

)
· log

(n
ε

))

subcube conditional queries, and outputs a set J′ ⊂ [n] \ J satisfying the following guarantees:

1. With probability at least 1− (ε/n)9, for every coordinate i ∈ J′, there exists a restriction

ρ ∈ {−1, 1, ∗}n with i ∈ stars(ρ) such that µ(pρ)i 6= 0.

11
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Subroutine VariablesBudget(p, k, ε, b, J)

Input: Subcube conditioning access to a distribution p supported on {−1, 1}n, an integer

k ∈ N, a proximity parameter ε ∈ (0, 1/4], a parameter b ∈ [k] and a set J ⊂ [n].
Output: A set J ′ ⊂ [n] \ J which either has size at least b, or is empty.

• Repeat the following for j ∈ [dlog2 2ke] and a ∈ {0, . . . , blog2(
√
b/ε)c} with α = 2−a:

Sample tα many pairs ρ ∼ DJ(p) and ν ∼ Dσj (p|ρ), where

ta = 100 · 2a · log(k/ε) = 100 · log(k/ε)
/
α

(a) For each sampled pair (ρ,ν), take sa samples x1, . . . ,xsa ∼ (p|ρ)|ν with

sa = 100 ·
(
α2b

ε2

)
· log

(n
ε

)
(6)

(noting α2b/ε2 ≥ 1) and let µ̂ ∈ Rstars(ν) be their empirical mean given by

µ̂ =
1

sa

s∑

`=1

x`.

(b) Let J′ be the set of coordinates i ∈ stars(ν) satisfying

|µ̂i| ≥
ε

2α
√
b

and output J′ if |J′| ≥ b.

• If we have not yet produced an output at the end of the main loop, output ∅.

Figure 2: The VariablesBudget subroutine.

2. If there exist j ∈ [dlog2 2ke] and a real number α > 0 such that15

Pr
ρ∼D

J
(p)

ν∼D
σj (p|ρ)

[
µ
(
(p|ρ)|ν

)
contains at least b coordinates of magnitude ≥ ε

α
√
b

]
≥ α (5)

then the set J′ has size at least b with probability at least 1− (ε/k)9.

15. Note that a trivial necessary condition for the inequality to hold is α ≤ 1 and α ≥ ε/
√
b.
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Appendix A. Proof of Lemma 14

We start with the first condition. We observe that, for the output J′ to violate the condition, there

must be an execution of step (a) for some j, a, ρ and ν such that µ((p|ρ)|ν)i = 0 for some i ∈
stars(ν) but the same coordinate in the average of sa samples drawn from (p|ρ)|ν has magnitude

at least ε/(2α
√
b) with α = 2−a. Note that this coordinate in the average is just the average of sa

uniformly random bits.

Via a union bound over coordinates and a Chernoff bound, the probability that one round of step

(a) gives a J′ in step (b) that violates the condition is at most

n · Pr
z1,...,zsa∼{−1,1}

[∣∣∣∣∣
1

s

sa∑

`=1

z`

∣∣∣∣∣ ≥
ε

2α
√
b

]
≤ 2n · exp

(
− saε

2

8α2b

)
≤
( ε
n

)11
. (7)

With a union bound over all rounds of (a), the probability of J′ violating the condition is at most

dlog2 2ke ·




blog2(
√
b/ε)c∑

a=0

100 · 2a · log(k/ε)


 ·

(n
ε

)11
≤ O

(√
b

ε

)
· log2

(
k

ε

)
·
( ε
n

)11
≤
( ε
n

)9
.

We now turn to the second condition. By assumption there are parameters j ∈ [dlog2 ke]
and α∗ > 0 such that (5) holds (which implies that ε/

√
b ≤ α∗ ≤ 1). Let

0 ≤ a = blog(1/α∗)c ≤ blog(
√
b/ε)c and α = 2−a

so that α∗ ≤ α ≤ 2α∗. It suffices to show that during the main loop of VariablesBudget with

j and a, at least one of the ta pairs ρ and ν sampled leads to J′ with |J′| ≥ b with high probability.

For this purpose we say a pair (ρ, ν) of restrictions is good if the mean vector of (p|ρ)|ν has

at least b coordinates of magnitude at least ε/(α∗√b). It follows from (5) that ρ ∈ DJ(p) and

ν ∈ Dσj (p|ρ) are good with probability at least α∗. By virtue of step (a) being repeated

ta = 100 · log(k/ε)
/
α ≥ 50 · log(k/ε)

/
α∗

times, we have that with probability at least 1 − (ε/k)10, at least one of the pairs of restrictions ρ

and ν sampled in the main loop of j and a is good.

On the other hand, fix any such good pair (ρ, ν) and any coordinate i ∈ stars(ν) with

∣∣µ((p|ρ)ν)i
∣∣ ≥ ε

/
(α∗√b) ≥ ε

/
(α
√
b)

since α ≥ α∗. It follows from a Chernoff bound similar to (7) that every such coordinate i is added to

J′ with probability at least 1−(ε/n)10. By a union bound over the two bad events, the main loop with

j and a outputs a set of size at least b with probability at least 1− (ε/n)10 − (ε/k)10 ≥ 1− (ε/k)9.

Finally, the query complexity is bounded by:

dlog2 2ke ·
blog2(

√
b/ε)c∑

a=0

tasa ≤ 1002 · dlog2 2ke
dlog2(

√
b/ε)e∑

a=0

2a · log
(
k

ε

)
· b

22aε2
· log

(n
ε

)

= O

(
b

ε2
· log2

(
k

ε

)
· log

(n
ε

))
.
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as required. This finishes the proof of the lemma.

Finally we use Lemma 14 to analyze FindRelevantVariables and prove Lemma 13:

Proof of Lemma 13: To analyze the query complexity, consider an execution of FindRelevantVariables(p, k, ε).
Given that all queries are made in calls to VariablesBudget, the number of queries made by

the subroutine at any time is captured by

B ·O
(

1

ε20
· log2

(
k

ε0

)
· log

(
n

ε0

))
=

B

ε2
· polylog

(
k

ε

)
· log n.

using ε0 = ε/polylog(k/ε). So it suffices to show that B = O(k) when the algorithm terminates.

To see this is the case we prove by induction that at the end of each loop of (b), we have

B ≤ 2|J |+ b.

This clearly holds at the beginning (before the first loop of (b)) because B = 0, b = 1 and |J | = 0.

For the induction step, note that each iteration of step (b) either (A) increases both B and |J | by b
and resets b to 1; or (B) increases B by b, b gets doubled and |J | remains the same. As a result, it

suffices to bound b and |J | when the algorithm terminates. If the algorithm terminates because of

line (c), then we can bound b by 4k and |J | by k; if the algorithm terminates because of line 3, then

we can bound b by 2k and |J | by k + b ≤ 3k.

In both cases we have B ≤ 2|J |+ b ≤ 8k. This finishes the analysis of the query complexity.

Towards proving the first guarantee, note that the total number of executions of VariablesBudget

is at most the value of B when the algorithm terminates, and we know from the analysis above that it

is bounded by 8k. We take a union bound over all executions of VariablesBudget, and deduce

that with probability at least 8/9, every execution satisfies the first condition in Lemma 14, from

which J also satisfies the first condition in Lemma 13 since J only contains coordinates returned

by calls to VariablesBudget.

To prove the second guarantee, suppose p is a k-junta distribution. We can similarly take a union

bound over all executions of VariablesBudget and deduce that with probability at least 8/9, ev-

ery execution satisfies both conditions in Lemma 14. Let J be the output of FindRelevantVariables.

Then similar to the argument above, the first condition in Lemma 14 implies that J contains only

relevant variables of p and thus, |J | ≤ k. If |J | = k, the inequality (3) is immediate since all relevant

variables of p have been identified in J and hence for every ρ ∈ supp(DJ(p)), p|ρ is uniform.

Suppose then that |J | < k and note from Figure 1 that the algorithm terminates because of

line (c). This implies that for J , step (b) executed VariablesBudget(p, k, ε0, b, J) for every

b ≤ 2k being a power of 2 and |J ′| < b for every execution. It then follows from the second

guarantee of Lemma 14 that, for every j ∈ [dlog2 2ke], b = 2β with β = 0, . . . , blog2 2kc and every

α > 0, (5) does not hold:

Pr
ρ∼D

J
(p)

ν∼D
σj (p|ρ)

[ ∣∣∣µ
(
(p|ρ)|ν

)
i

∣∣∣ ≥ ε0

α
√
b

for at least b coordinates

]
≤ α. (8)

We use (8) to show for each j ∈ [dlog2 2ke] that

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ
(
(p|ρ)|ν

)∥∥
2

]]
≤ ε.
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To this end, we use

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ
(
(p|ρ)|ν

)∥∥
2

]]
≤ ε0 +

∫ √
k

ε0

Pr
ρ,ν

[∥∥µ
(
(p|ρ)|ν

)∥∥
2
≥ γ

]
dγ (9)

and the following claim; the proof is elementary so we delay its proof to the end.

Claim 15 Let x ∈ [−1, 1]k with ‖x‖2 ≥ γ for some γ > 0. Let t = blog2 2kc. Then there must be

a β = 0, 1, . . . , t such that the number of i ∈ [k] with

|xi| ≥
γ

2
√
2βt

is at least 2β .

Letting t = blog2 2kc. Lemma 15 implies that

Pr
ρ,ν

[∥∥µ
(
(p|ρ)|ν

)∥∥
2
≥ γ

]
≤

t∑

β=0

Pr
ρ,ν

[ ∣∣∣µ
(
(p|ρ)|ν

)
i

∣∣∣ ≥ γ

2
√
2βt

for at least 2β coordinates

]
. (10)

Combining (8), (9) and (10), we have that the left hand side of (9) is at most

ε0+

t∑

β=0

∫ √
k

ε0

Pr
ρ,ν

[ ∣∣∣µ
(
(p|ρ)|ν

)
i

∣∣∣ ≥ γ

2
√
2βt

for at least 2β coordinates

]
dγ

≤ ε0 + 2ε0
√
t ·

t∑

β=0

∫ √
k

ε0

1

γ
dγ ≤ ε0

(
1 + 2

√
t(t+ 1) · ln

(√
k

ε0

))
≤ ε,

using our choice of ε0 = ε/(100 · log3(k/ε)). This finishes the proof of the lemma.

Proof of Claim 15: Assume for contradiction that this is not the case for every β = 0, 1, . . . , t. In

particular, it means that no coordinate has |xi| ≥ γ/(2
√
t) using the case with β = 0. Therefore,

γ2 ≤ ‖x‖22 < 2 ·
t∑

β=1

2β · γ2

4 · 2βt + k · γ2

4 · 2tt ≤
γ2

2
+

γ2

4t
< γ2,

a contradiction.

Appendix B. Lower Bounds for Learning

The goal of this section is to prove the following lower bounds for the number of subcube condi-

tioning queries needed by an algorithm to solve the following two tasks (1) to learn a set of relevant

variables of a k-junta distribution and (2) to learn a distribution.

Note that our lower bounds hold for the general conditioning model Chakraborty et al. (2016);

Canonne et al. (2015) which allows the algorithm to condition on arbitrary subsets of the domain

{−1, 1}n, rather that only subcubes.
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Theorem 3 Let 0 < ε ≤ 1/8, n ∈ N and 0 < k ≤ n− 1. Suppose an algorithm receives as input

conditional query access to an unknown k-junta distribution p supported on {−1, 1}n and outputs

a set J ⊂ [n] with |J| ≤ k such that with probability at least 4/5, p is ε-close to a junta distribution

over J. Then, the algorithm must make Ω(log
(
n
k

)
/ε2) queries.

Theorem 4 Let 0 < ε ≤ 1/120, n ∈ N and 0 < k ≤ n − 1. Suppose an algorithm receives as

input conditional query access to an unknown k-junta distribution p over {−1, 1}n and outputs a

distribution p̂ such that with probability at least 4/5, p is ε-close to p̂. Then, the algorithm must

make Ω(log
(
n
k

)
/ε2) + Ω(2k/ε2) queries.

Both proofs of Theorem 3 and Theorem 4 follow from reductions from the communication

complexity lower bound of the following indexing problem:

• Alice receives a uniformly random string y ∼ {−1, 1}m.

• Bob receives a uniformly random index i ∼ [m].

• The task is for Alice to send a message to Bob so that Bob outputs yi.

This problem has a well known Ω(m) lower bound on the one-way communication of any protocol

in order for Bob to succeed with probability at least 2/3 Miltersen et al. (1995).

The plan for proving Theorem 3 is the following. Our main goal is to cast the indexing prob-

lem as the problem of finding relevant variables. Let A be a deterministic algorithm for the task

described in Theorem 3 with q general conditioning queries; it will become clear in the proof later

that this is without loss of generality (so A can be viewed as a depth-q decision tree; see Definition

21). Setting m = Ω(log
(
n
k

)
), we show that Alice can use its input string y ∈ {−1, 1}m to construct

a k-junta distribution py over {−1, 1}n with the following recovery property: any subset J ⊂ [n] of

no more than k variables such that py is ε-close to a junta distribution over J can be used to recover

y. Alice uses private randomness to simulate the execution of A on py and sends a message to Bob

that contains the sequence of q samples x1, . . . ,xq. The recovery property guarantees that when-

ever Bob succeeds in finding relevant variables using x1, . . . ,xq, which happens with probability

at least 4/5, he can use them to recover Alice’s string y and then yi.

However, the naive protocol described above has communication complexity qn and we only get

q ≥ Ω(m/n) which is insufficient for our goal. To compress this protocol, we note that distributions

py constructed from y are in some sense very close to the uniform distribution over {−1, 1}n. More

formally, we give the following definition of ε-almost uniform distributions.

Definition 16 Let p be a probability distribution over {−1, 1}n and ε ∈ (0, 1/2). We say that p is

ε-almost uniform if for every x ∈ {−1, 1}n, |p(x)− 2−n| ≤ ε2−n.

The intuition behind the compression is that a sample from an ε-almost uniform distribution

(even being conditioned on a subset of {−1, 1}n) carries with it very little information (roughly

O(ε2)). One can then use results from Harsha et al. (2010); Braverman and Garg (2014) (also see

Corollary 7.7 in Rao and Yehudayoff (2020)) to show that the naive one-way private-coin proto-

col described above can be compressed into a public-coin protocol with O(qε2) + O(1) one-way

communication bits. Formally we state the following lemma:
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Lemma 17 LetA be a deterministic algorithm on distributions over {−1, 1}n that makes q general

conditioning queries. Then there is a one-way public-coin protocol such that, upon receiving an ε-
almost uniform distribution p over {−1, 1}n, Alice sends a message M of length O(qε2) + O(1)
in the worst case. Bob can use M to compute a sequence of q strings x1, . . . ,xq ∈ {−1, 1}n such

that the distribution of (x1, . . . ,xq) is (1/20)-close to the distribution of the sequence of q samples

A receives when running on p.

We give a self-contained proof of Lemma 17 in Section B.3 since the setting we work on is more

explicit compared to those of Harsha et al. (2010); Braverman and Garg (2014). The flow of the

proof for Theorem 4 is similar. The key differences lie in the construction of py from y for Alice,

and the way Bob recovers yi using the hypothesis p̂ returned by the learning algorithm for k-junta

distributions. We prove Theorem 3 and Theorem 4 in Section B.1 and B.2, respectively.

B.1. Proof of Theorem 3

Suppose that A∗ is a randomized algorithm which, given general conditioning query access to any

unknown k-junta distribution p supported on {−1, 1}n, makes q queries and outputs with probabi-

lity at least 4/5 a subset J ⊂ [n] of at most k variables such that p is ε-close to a junta distribution

over J . So A∗ can be viewed as a distribution of deterministic algorithms A. Let

m =

⌊
log

(
n

k

)⌋
= Ω

(
log

(
n

k

))
. (11)

Alice will interpret her input string x ∈ {−1, 1}m in the indexing problem as a set S ⊂ [n] of size

k and use S to define the following probability distribution pS over {−1, 1}n:

pS(x) =

{
(1 + 4ε)2−n

∏
i∈S xi = 1

(1− 4ε)2−n o.w.
.

It follows directly from the definition that pS is O(ε)-almost uniform. The following claim gives us

the recovery property discussed earlier:

Claim 18 Suppose that S ⊂ [n] is a set of size k and J 6= S ⊂ [n] is a set of size at most k. Then

we have dTV(pS , g) ≥ 2ε for any junta distribution over variables in J .

Proof: Notice that since S is of size k and |J | ≤ k of size at most k, there exists an index i ∈ S
such that i /∈ J . Consider this fixed i ∈ S \ J . We will write the probability mass functions pS
and g as functions {−1, 1}J × {−1, 1}[n]\(J∪{i}) × {−1, 1} → R≥0, where the first |J | indices

correspond to settings of bits in J , the second n− |J | − 1 coordinates correspond to settings of bits

in [n] \ (J ∪ {i}), and the last bit determines i. We notice that since g is a junta over variables in J ,

for any y ∈ {−1, 1}J and any two u1, u2 ∈ {−1, 1}[n]\(J∪{i}) and v1, v2 ∈ {−1, 1}, g(y, u1, v1) =
g(y, u2, v2). Furthermore, by definition of pS , |pS(y, u1, v1) − pS(y, u1, v2)| = 8ε2−n whenever
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v1 6= v2. Hence,

dTV(pS , g) =
1

2

∑

x∈{−1,1}n
|pS(x)− g(x)|

=
1

2

∑

y∈{−1,1}J

∑

u∈{−1,1}[n]\(J∪{i})

(|pS(y, u, 1)− g(y, u, 1)|+ |pS(y, u,−1)− g(y, u,−1)|)

≥ 1

2

∑

y∈{−1,1}J

∑

u∈{−1,1}[n]\(J∪{i})

|pS(y, u, 1)− pS(y, u,−1)| = 2ε.

This finishes the proof of the claim.

As a consequence of Claim 18, we obtain the following corollary.

Corollary 19 Let S ⊂ [n] be any set of size k, and let J be any set of size at most k such that pS
is ε-close to a junta distribution over J . Then we must have J = S.

Proof: Let g be the closest junta over J to pS , and suppose for the sake of contradiction, that J 6= S.

Then, we apply Claim 18 which says that dTV(pS , g) ≥ 2ε, giving the desired contradiction.

We are now ready to prove Theorem 3 by following the plan described earlier.

Proof of Theorem 3: The proof proceeds via a reduction from the two-party one-way communi-

cation problem of indexing. With m chosen in (59) Alice and Bob agree on a fixed injective map

from {−1, 1}m to subsets of [n] of size k. Alice will interpret her input string x ∈ {−1, 1}n as a

subset S ⊂ [n] of size k using this map. Given that A∗ is a distribution of deterministic algorithms,

there exists a q-query deterministic algorithm A such that

Prx∼{−1,1}m
[
A(pS) returns S

]
≥ 4/5, (12)

where x is drawn uniformly at random and S ⊂ [n] is its corresponding subset of size k. Alice and

Bob agree on such a q-query deterministic algorithm A.

Now we describe the protocol. Given x ∈ {−1, 1}m, Alice uses it to construct pS over {−1, 1}m
which is O(ε)-almost uniform. She uses Lemma 17 to send a message M of length O(qε2) +O(1)
to Bob so that Bob can use M to obtain a sequence of q strings x1, . . . ,xq ∈ {−1, 1}n such that

the latter has distribution (1/20)-close to the distribution of the sequence of q samples A receives

when running on pS . It follows from (12) that when x ∼ {−1, 1}m, Bob successfully recovers S

(and thus, x using the map they agreed on) by simulating A on x1, . . . ,xq with probability at least

4/5−1/20 > 2/3. By the Ω(m) lower bound on the indexing problem, we obtain the desired claim

using (59).

B.2. Proof of Theorem 4

The lower bound Ω(log
(
n
k

)
/ε2) follows trivially from Theorem 3. To see this, we can first learn p

to within ε/2 total variation distance. Let p̂ be the hypothesis distribution that the algorithm returns.

Then we can find its closest k-junta distribution p′ and let S be the set of relevant variables of p′

with |S| ≤ k. The algorithm can return S since dTV(p, p
′) ≤ dTV(p, p̂) + dTV(p̂, p

′) ≤ ε.
We focus on the second part of the lower bound Ω(2k/ε2) in the rest of the proof. Note that

we may assume that k is asymptotically large; otherwise the second part is dominated by the first
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part. We follow the same flow. Suppose that A∗ is a randomized algorithm which, given general

conditioning query access to any unknown k-junta distribution p supported on {−1, 1}n, makes q
queries and outputs with probability at least 4/5 a hypothesis distribution p̂ such that dTV(p, p̂) ≤ ε.

We say a Boolean function f : {−1, 1}k → {−1, 1} is good if the number of 1-entries in f
is between 2k/3 and 2k+1/3. Let Gk be the set of good Boolean functions. Then it follows from

Chernoff bound that |Gk| ≥ 22
k
(1− ok(1)). We set m = 2k and Alice interprets her input string

y ∈ {−1, 1}m in the indexing problem as a good Boolean function f : {−1, 1}k → {−1, 1} by

fixing a bijection between [m] and {−1, 1}k and interpreting y as the truth table of f .

Given a string y ∈ {−1, 1}m and its corresponding f : {−1, 1}k → {−1, 1}, letting I(y) be

the number of 1-entries in f , Alice constructs the following k-junta distribution py over {0, 1}n:

py(x) =





2−n
(
1 + 40ε · 2k

I(y)

)
if f(x1, . . . , xk) = 1

2−n
(
1− 40ε · 2k

2k−I(y)

)
if f(x1, . . . , xk) = −1

Note that when f is good, py is an O(ε)-almost uniform k-junta distribution; as it becomes clear

later Alice constructs py only when f is good. The following claim gives us the recovery property:

Claim 20 Given a good y ∈ {−1, 1}m and py defined above, let p̂ be any distribution on {−1, 1}n
which has dTV(py, p̂) ≤ ε. Then,

Pr
x∼{−1,1}n

[
sign

(
p̂(x)− 2−n

)
6= sign

(
py(x)− 2−n

) ]
≤ 1

20
.

Proof: Notice that for every x ∈ {−1, 1}n where sign (p̂(x)− 2−n) 6= sign (py(x)− 2−n), we

have |p̂(x)− py(x)| ≥ 40ε · 2−n. Hence,

ε ≥ dTV(py, p̂) =
1

2

∑

x∈{−1,1}n
|py(x)− p̂(x)| ≥ 20ε · Pr

x∼{−1,1}n

[
sign

(
p̂(x)− 2−n

)
6= sign

(
py(x)− 2−n

) ]
.

This finishes the proof of the claim.

Proof of Theorem 4: Again, the proof proceeds via a reduction from the two-party one-way

communication problem of indexing over {−1, 1}m where m = 2k. Let y ∈ {−1, 1}m be the input

string of Alice. As alluded to earlier, in the case that y is not good, Alice just aborts the protocol and

they fail the task with probability ok(1) because y is drawn uniformly at random from {−1, 1}m.

In the case that y is good, Alice uses it to construct py, a k-junta distribution over {−1, 1}n that is

O(ε)-almost uniform. Given that A∗ is a randomized algorithm for learning k-junta distributions

over {−1, 1}n, there exists a deterministic algorithm with q general conditioning queries such that

Pry
[
A(py) returns a hypothesis that is ε-close to py

]
≥ 4/5,

where y is uniform over good strings. Alice and Bob agree on such an A.

The protocol goes as before. When y is good, Alice uses Lemma 17 to send a message

M of length O(qε2) + O(1) to Bob so that Bob can use M to obtain a sequence of q strings

x1, . . . ,xq ∈ {−1, 1}n such that their distribution is (1/20)-close to the distribution of the sequence

of q samples A receives when running on pS . It follows from (12) that when y ∼ {−1, 1}m, Bob

successfully learns a hypothesis distribution p̂ that is ε-close to py, by simulating A on x1, . . . ,xq,
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with probability at least 4/5−1/20−ok(1). We now apply Claim 20 to conclude that if this occurs,

Bob can output the correct i-th bit of y with probability at least 9/10 given that i is independent and

uniform.. As a result, over the randomness of y and i, Bob outputs the correct yi with probability

at least 4/5 − 1/20 − ok(1) − 1/20 ≥ 2/3. By the Ω(m) = Ω(2k) lower bound on the indexing

problem, we obtain the desired claim.

B.3. Compressing batches of conditional samples

We prove Lemma 17 in the rest of the section. Recall thatA is a deterministic (adaptive) algorithm,

where each query (a subset of {−1, 1}n) depends on all samples received from previous queries.

We use the following definition to capture such a q-query deterministic algorithm:

Definition 21 For n, q ∈ N, we say a q-query tree T is a rooted depth-q tree. Every non-leaf node

v ∈ T contains a subset Av ⊆ {−1, 1}n, as well as a child node vx for every x ∈ Av. Given a

distribution p over {−1, 1}n, an execution of T on p is a random walk (v1, . . . , vq) down the tree,

specifying a sequence of q samples (x1, . . . ,xq): starting at the root node and proceeding down

the tree, for the current node vi, sample xi ∼ p conditioned on xi ∈ Avi , and let vi+1 = (vi)xi
.

Let Ep,T be the distribution supported on ({−1, 1}n)q which outputs the samples (x1, . . . ,xq) of

an execution of T on p.

We consider a protocol, SampleWalk which, without communication, generates an execution

of a given q-query tree T , and Alice decides whether or not to “accept” the samples at the end.

In more detail, SampleWalk takes as input a distribution p over {−1, 1}n, a q-query tree T , and

an error tolerance δ ∈ (0, 1), and using public randomness, will output a root-to-leaf walk of T
specified by nodes (v1, . . . , vq) and (x1, . . . ,xq), or “reject”. The protocol, SampleWalk follows

the “rejection sampling” paradigm. (See Figure 3 for a precise description of the protocol.)
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Protocol SampleWalk(p, T , δ)

Input: A distribution p supported on {−1, 1}n, a q-query tree T , and a parameter δ ∈ (0, 1).
Furthermore, we assume access to a public string of infinite uniformly random bits.

Output: A root-to-leaf walk down the decision tree T specified by nodes (v1, . . . , vq) and

samples (x1, . . . ,xq), or “reject”.16

1. Starting at the root of T and walking down the tree, Alice considers the current node in

v ∈ T , and the query Av ⊂ {−1, 1}n. She uses public randomness to generate a sample

xv ∼ Av drawn uniformly from Av, and considers the child node of T specified by xv.

Notice that this builds a walk (v1, . . . , vq) and (x1, . . . ,xq), and in particular, this step

is completely independent from p, and draws a sample from EU ,T .

2. Alice samples a private bit which is 1 with probability

min

(
1, δ · Ep,T (x1, . . . ,xq)

EU ,T (x1, . . . ,xq)

)

and −1 otherwise. If Alice’s sampled bit is 1, Alice “accepts” the sample (x1, . . . ,xq)
and the nodes (v1, . . . , vq), if it is −1, Alice “rejects”.

Figure 3: The SampleWalk Protocol.

Definition 22 For a q-query tree T , we letD◦
p,T ,δ be a distribution supported on ({−1, 1}n)q∪{⊥}

given by the samples (x1, . . . ,xq) forming the output of one execution of SampleWalk(p, T , δ),
or ⊥ if it outputs “reject”. We let Dp,T ,δ be the distribution D◦

p,T ,δ conditioned on it not outputting

⊥.

Lemma 23 There exists a sufficiently small constant ζ ∈ (0, 1) such that for any ε, δ ∈ (0, 1/2)
and

q ≤
⌊
ζ log(1/δ)

ε2

⌋
,

the following holds. Let T be a q-query tree and p be ε-almost uniform. Then,

dTV(Dp,T ,δ, Ep,T ) ≤ δ and Pr
[
D◦

p,T ,δ outputs ⊥
]
≤ 1− δ/2.

Proof: In particular, notice that in order for an execution of SampleWalk(p, T , δ) to output

“reject”, two events must occur:

• The first event is that the samples (x1, . . . ,xq) sampled in Step 1 satisfy

Ep,T (x1, . . . ,xq) < EU ,T (x1, . . . ,xq) ·
1

δ
. (13)

16. We note that outputting (v1, . . . , vq) is unnecessary, as the samples (x1, . . . ,xq) uniquely determine a root-to-leaf

walk down the tree T . We maintain the notation just for notational simplicity.
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• The second event is that a random bit sampled in Step 2 is set to −1, and the probability that

his occurs is

1− δ · Ep,T (x1, . . . ,xq)

EU ,T (x1, . . . ,xq)
.

We letR ⊂ ({−1, 1}n)q be the set of strings which satisfy (13), i.e.,

R =

{
(x1, . . . , xq) ∈ ({−1, 1}n)q : Ep,T (x1, . . . , xq) <

1

δ
· EU ,T (x1, . . . , xq)

}
,

and notice that

Pr
[
D◦

p,T ,δ outputs ⊥
]
=
∑

x∈R
EU ,T (x)

(
1− δ · Ep,T (x)EU ,T (x)

)
= Pr

x∼EU,T

[x ∈ R]− δ · Pr
x∼Ep,T

[x ∈ R] ,

(14)

so for simplicity in the notation, let

α
def
= Pr

x∼EU,T

[x ∈ R] and β
def
= Pr

x∼Ep,T
[x ∈ R] .

Furthermore, whenever x ∈ R,

Dp,T ,δ(x) =
∞∑

k=1

EU ,T (x) ·
(
δ · Ep,T (x)EU ,T (x)

)
· D◦

p,T ,δ(⊥)k−1 = δ · Ep,T (x)
(

1

1−D◦
p,T ,δ(⊥)

)

=

(
δ

1− α+ δβ

)
Ep,T (x),

and whenever x /∈ R, Step 2 always accepts the sample, so

Dp,T ,δ(x) =

(
1

1− α+ δβ

)
· EU ,T (x).

Thus, we may write

dTV (Dp,T ,δ, Ep,T ) =
1

2

∑

x∈({−1,1}n)q
|Dp,T ,δ(x)− Ep,T (x)|

≤ 1

2

∑

x/∈R
(Dp,T ,δ(x) + Ep,T (x)) +

1

2

∑

x∈R
Ep,T (x)

∣∣∣∣
δ

1− α+ δβ
− 1

∣∣∣∣

=
1

2

(
1− α

1− α+ δβ
+ (1− β)

)
+

1

2
β

∣∣∣∣
δ(1− β)− (1− α)

1− α+ δβ

∣∣∣∣ , (15)

so it suffices to show

1− δ2/2 ≤ α, β ≤ 1
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in order to conclude that (15) is at most δ, and that (14) is at most 1 − δ/2. In order to do so, we

use the fact that p is ε-almost uniform to upper bound 1− α and 1− β. Notice that if x /∈ R, then,

considering the unique path (v1, . . . , vq) in T specified by x, we have

1

δ
≤ Ep,T (x)EU ,T (x)

=

q∏

i=1

(
p(xi)

1
|Avi

|
∑

y∈Avi
p(y)

)
=

q∏

i=1

(
1 +

p(xi)−Ez∼Avi
[p(z)]

Ez∼Avi
[p(z)]

)

≤ exp

(
q∑

i=1

p(xi)−Ez∼Avi
[p(z)]

Ez∼Avi
[p(z)]

)
. (16)

We first upper bound 1− α by considering the random sequence Y1, . . . ,Yq generated by starting

at the root v1 and walking down the tree T , while sampling xi ∼ Avi , setting Yi = (p(xi) −
Ez∼Avi

[p(z)])/Ez∼Avi
[p(z)], and letting vi+1 = (vi)xi

. We upper-bound 1 − α by giving an

upper bound for the probability that
∑q

i=1Yi ≥ ln(1/δ), which in turn upper bounds 1 − α by

(16). Notice that partial sums {∑t
i=1Yi}t∈[q] form a 0-centered martingale, and since p is ε-almost

uniform,

|Yi| ≤ max
v∈T
x∈Av

∣∣∣∣
p(x)−Ez∼Av [p(z)]

Ez∼Av [p(z)]

∣∣∣∣ ≤ max
v∈T
x∈Av

∣∣∣∣
Ez∼Av [p(x)− p(z)]

Ez∼Av [p(z)]

∣∣∣∣ ≤
2ε

1− ε
≤ 4ε.

We may apply Azuma’s inequality to conclude

Pr
x∼EU,T

[
q∑

i=1

Yi ≥ ln(1/δ)

]
≤ exp

(
− ln2(1/δ)

2 · 16ε2 · q

)
≤ δ2/2

by setting of q with ζ being a sufficiently small constant, and hence lower bounds α by 1− δ2/2. In

order to upper bound 1 − β, we consider the sequence of random variables Y′
1, . . . ,Y

′
q generated

by starting at the root v1 and walking down the tree T , but now we sample xi ∼ p conditioned on

xi ∈ Avi , setting Yi = (p(xi)−Ez∼Avi
[p(z)])/Ez∼Avi

[p(z)], and writing

Y′
i = Yi −

Ez′∼p[p(z
′) | z′ ∈ Avi ]−Ez∼Avi

[p(z)]

Ez∼Avi
[p(z)]

,

where the subsequent node vi+1 = (vi)xi
. Notice that now the partial sums {∑t

i=1Y
′
i}t∈[q]

have expectation 0, form a martingale, where Y′
i are obtained by shifting Yi by its expectation,

Ex∼Ep,T [Y]. Furthermore, we may upper bound this shift by importance sampling,

Ez′∼p [p(z
′) | z′ ∈ Avi ]−Ez∼Avi

[p(z)]

Ez∼Avi
[p(z)]

=
Ez∼Avi

[p(z)2]−Ez∼Avi
[p(z)]2

Ez∼Avi
[p(z)]2

=

Ez∼Avi

[(
p(z)−Ez′∼Avi

[p(z′)]
)2]

Ez∼Avi
[p(z)]2

≤ 4ε2

1− ε
≤ 8ε2.

(17)
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so that similarly to the computation above, |Y′
i| ≤ 4ε+ 8ε2 ≤ 12ε. We may again, apply Azuma’s

inequality, where we notice that the expectation of

Pr
x∼Ep,T

[
q∑

i=1

Yi ≥ ln(1/δ)

]
≤ Pr

x∼Ep,T

[
q∑

i=1

Y′
i ≥ ln(1/δ)− 8qε2

]

≤ Pr
x∼Ep,T

[
q∑

i=1

Y′
i ≥ ln(1/δ)/2

]
≤ exp

(
− ln2(1/δ)

2 · 4 · 144ε2q

)
≤ δ2/2,

where we used a small enough constant ζ > 0 so that 8qε2 ≤ ln(1/δ)/2, as well as for the final

inequality to hold.

We now use Lemma 23 to prove Lemma 17:

Proof of Lemma 17: We start with the easy case when q < 1/ε2. In this case, we apply Lemma 23

with δ = 1/(40)1/ζ . Notice that q ≤ bζ log(1/δ)/ε2c, so we let T be A, and Lemma 23 implies

a single call to SampleWalk(p,A, δ) succeeds in outputting a sample (x1, . . . ,xq) from Dp,A,δ

with probability at least δ/2, and if it does succeed, the output distribution is at most δ-far from

the distribution producing a sequence of q samples an execution of A on p. Alice and Bob use

public randomness to execute SampleWalk(p,A, δ) for t = O(1/δ) iterations, and Alice com-

municates the index of the first execution where SampleWalk(p,A, δ) did not output “reject”,

or the final index if all executions outputted “reject”. Notice that the distribution of the first time

SampleWalk(pS , T , δ) accepts is exactly DpS ,T ,δ. Furthermore, this uses O(log(1/δ)) = O(1)
bits of communication, and that the total variation distance between the samples (x1, . . . ,xq) from

this protocol and an execution ofA on p is at most δ+(1−δ/2)t ≤ 1/20, where the first δ captures

the case when some SampleWalk(p,A, δ) does not reject, and (1 − δ/2)t is the probability that

all SampleWalk(p,A, δ) output “reject”.

When q ≥ 1/ε2, we apply Lemma 23 with

δ =
1

ε2q · 1001/ζ .

As per setting of (what we refer to as q′) from Lemma 23, where q′ = bζ log(1/δ)/ε2c ≥ 2 and

hence q′ ≥ ζ log(1/δ)/(2ε2). Alice and Bob break up the q-query algorithmA into dq/q′emany q′-
query trees. The trees are adaptively chosen so as to simulate an execution of A. For each q′-query

tree T , Alice and Bob use public randomness to execute SampleWalk(pS , T , δ) for O(1/δ) it-

erations such that with probability at least 1/2, at least one accepts. Alice then communicates

O(log(1/δ)) bits to Bob, indicating the first index where SampleWalk(pS , T , δ) accepts, or a spe-

cial message indicating none accepted. If some execution accepts, then Bob re-constructs the sam-

ples x1, . . . ,xq′ utilizes those samples to simulate the walk down T . If SampleWalk(pS , T , δ)
never accepts, Alice and Bob try again on the same tree.

Notice that by Lemma 23, since the distribution over the leaves of T is δ-close in total variation

distance from that of a true execution of T on p, after dq/q′e successive executions of Lemma 23,

the distribution over the leaves of A is at most δdq/q′e-close to that of a true execution of A on p,

where we have

δ

⌈
q

q′

⌉
≤ 1

ε2q · 1001/ζ
(

q · 2ε2
ζ log(1/δ)

+ 1

)
≤ 3

100
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In order to upper bound the communication complexity, notice that each round of dq/q′e sends

O(log(1/δ)) bits and succeeds with probability at least 1/2; which means that the expected com-

munication complexity of a round is O(log(1/δ)). Hence, the expected communication complexity

of the whole protocol is therefore

O

(⌈
q

q′

⌉
log(1/δ)

)
≤ O

(
q log(1/δ)

q′
+ log(1/δ)

)
= O

(
qε2 + log(qε2)

)
≤ O(qε2).

In order to bound the worst-case communication complexity, we use Markov’s inequality. Specifi-

cally, by losing another constant factor, we may assume the protocol sends O(qε2) bits except with

probability at most 1/100; in this case, Alice sends an arbitrary bits. Then, the distribution over the

samples that Bob may reconstruct is (3/100 + 1/100)-close to that of a true execution of A on p.

Appendix C. Testing Algorithm

We use FindRelevantVariables and MeanTester to give an algorithm for testing k-junta

distributions. The algorithm, TestingJuntas, is described in Figure 4; we prove the following

theorem:

Theorem 5 (Testing junta distributions) There is an algorithm, which takes subcube conditioning

access to an unknown distribution p over {−1, 1}n, an integer k ∈ N, and ε ∈ (0, 1/4]. It makes

Õ

(
k +
√
n

ε2

)

queries, runs in time Õ(n(k +
√
n)2/ε4) and achieves the following guarantee: It accepts with

probability at least 2/3 if p is a k-junta distribution, and rejects with probability at least 2/3 if p is

ε-far from a k-junta.

Proof of Theorem 5: We start with the soundness case to show that TestingJuntas rejects

with probability at least 2/3 when p is far from k-juntas. Assume without loss of generality that the

set J returned by FindRelevantVariables has size at most k; otherwise TestingJuntas

rejects.

Given |J | ≤ k and p is ε-far from k-junta distributions, the main structural lemma implies that

dlog2 2ne∑

j=1

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥
2

]]
≥ ε

logc(n/ε)
.

As a result, there exists a j ∈ dlog2 2ne (using the choice of ε′ in (18)) such that

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ((p|ρ)|ν)
∥∥
2

]]
≥ ε′.

Fix such a j and we apply the following claim (which is elementry and we delay its proof):
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Subroutine TestingJuntas(p, k, ε)

Input: Subcube conditioning access to a distribution p supported on {−1, 1}n, an integer

k ∈ N and a proximity parameter ε ∈ (0, 1/4].
Output: Either accept or reject.

1. Let c be the universal constant in the main structural lemma. We let

ε′ =
ε

dlog2 2ne · logc(n/ε)
, r =

⌈
log(2

√
n/ε′)

⌉
and ε∗ =

ε′

1600r
. (18)

2. Execute FindRelevantVariables(p, k, ε∗) and let J be the set it returns.

3. If |J | > k, reject.

4. For each j ∈ [dlog2 2ne] and ` ∈ [r] with r = dlog(2√n/ε′)e:

Repeat the following L ·R times, where

L =
4r
√
n

2`ε′
and R = O

(
log
(n
ε′

))

(A) Sample ρ ∼ DJ(p) and ν ∼ Dσj (p|ρ), execute

MeanTester((p|ρ)|ν , k, 2−`) for

R times and take the majority of answers.

Reject if for at least R/2 rounds of (A), the majority of answers is “Not a

Junta”.

5. Accept if this line is reached.

Figure 4: The TestingJuntas algorithm for testing junta distributions.

Claim 24 Let X be a random variable that takes values between 0 and 1. If E[X] ≥ δ for some

δ ∈ (0, 1), then there exists an ` ∈ [dlog(2/δ)e] such that

Pr
[
X ≥ 2−`

]
≥ 2`δ

4dlog(2/δ)e

Scaling down by
√
n and applying Claim 24, there is an ` ∈ [r] with r = dlog(2√n/ε′)e such

that

Prρ,ν

[∥∥µ((p|ρ)|ν)
∥∥
2
≥ √n

/
2`
]
≥ 2`ε′

4r
√
n
. (19)

It follows from a Chernoff bound that, with probability at least 1− on(1), the number of rounds of

(A) in which ρ,ν satisfy (19) is at least 2R/3 (since the expectation is at least R). It follows from

the promise we get from MeanTester (i.e., each run returns “Not a Junta” with probability

at least 2/3 when the event in (19) holds) that with probability at least 1 − on(1), the majority of
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answers returned by MeanTester is “Not a Junta” in each of these 2R/3 rounds of (A). So

overall the algorithm rejects with probability at least 1− on(1). This finishes the soundness case.

Next we work on the completeness case to show that TestingJuntas accepts with probabil-

ity at least 2/3 when p is a k-junta distribution. Suppose p is a k-junta distribution, and let K ⊂ [n]
be the set of at most k relevant variables (which is unknown to the algorithm). First it follows

from Lemma 13 that with probability at least 7/9, the output J of FindRelevantVariables

satisfies both conditions of Lemma 25. So let |J | ≤ k, and for every j ∈ [dlog2(2k)e],

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[
‖µ((p|ρ)|ν)‖2

]
]
≤ ε∗. (20)

We will now use this fact, as well as the following simple claim (whose proof we defer), to derive

the bound (20) for all j ∈ [dlog2(2n)e], and not just up to dlog2(2k)e.

Claim 25 Fix m ∈ N and let h be any distribution over {−1, 1}m. For any 0 ≤ σ2 ≤ σ1 ≤ 1/m,

we have

E
ν∼Dσ2 (h)

[
‖µ(h|ν)‖2

]
≤ E

ν∼Dσ1 (h)

[
‖µ(h|ν)‖2

]

For every ρ ∈ supp(DJ(p)), let h(ρ) be the distribution over {−1, 1}K\J given by (p|ρ)K\J .

Since p is a junta over variables in K, for every ρ ∈ supp(DJ(p)), the distribution of p|ρ over

variables outside of K is always uniform, irrespective of the restriction ρ. Hence, for any σ′ ∈ (0, 1),
the non-zero coordinates of the mean vector µ((p|ρ)ν) for ν ∼ Dσ′(p|ρ) are always supported on

those coordinates in K. Hence, for every σ′ ∈ (0, 1),

E
ν∼Dσ′ (p|ρ)

[
‖µ((p|ρ)ν)‖2

]
= E

ν∼Dσ′ (h(ρ))

[
‖µ(h(ρ)|ν )‖2

]
.

We let j∗ = dlog2(2k)e and note that σj∗ ≤ 1/k. By Claim 25, we have that for j′ ∈ [dlog2(2n)e]
with j′ ≥ j∗,

E
ν∼D

σj′ (p|ρ)

[
‖µ((p|ρ)|ν)‖2

]
= E

ν∼D
σj′ (h

(ρ))

[
‖µ(h(ρ)|ν )‖2

]
≤ E

ν∼D
σj∗

[
‖µ(h(ρ)|ν )‖2

]
= E

ν∼D
σj∗

[
‖µ((p|ρ)ν)‖2

]
.

Averaging over ρ ∼ DJ(p) implies that for all j ∈ [dlog2(2n)e],

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[
‖µ((p|ρ)|ν)‖2

]
]
≤ ε∗,

which in turn, implies that for all j ∈ [dlog2(2n)e], and all ` ∈ [r],

Pr
ρ,ν

[
‖µ((p|ρ)|ν)‖2 ≥

√
n/(100 · 2`)

]
≤ 2`ε∗ · 100√

n
≤ 2`ε′

16r
√
n

(21)

using our choice of ε∗ in (18). Fix j and `. It follows from a Chernoff bound that with probability

at least 1−e−Ω(R), the number of rounds of (A) that satisfy the event in (21) is at most R/2 (because

the expectation is at most R/4). The latter implies that the number of rounds of (A) that violate the
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event in (21) is at least LR − R/2. For each of these LR − R/2 rounds of (A), the majority of

runs of MeanTester in (A) returns “Is a Junta” with probability at least 1 − e−Ω(R) by a

Chernoff bound. By a union bound we have that all these LR − R/2 rounds have majority being

“Is a Junta” with probability at least 1 − (LR − R/2) · e−Ω(R). It follows that the main loop

with j and ` rejects with probability at most

1− e−Ω(R) − (LR−R/2) · e−Ω(R) ≤ 1− LR · e−Ω(R).

Using a union bound over all main loops, the algorithm rejects with probability at most

2

9
+ dlog 2ne · r · LR · e−Ω(R) <

1

3
.

Finally we bound the number of queries. Notice that both ε′ and ε∗ are ε/polylog(n/ε).
Hence the number of queries made by the call to FindRelevantVariables∗ is Õ(k/ε2) ·
polylog(n). On the other hand, the number of queries made by calls to MeanTester is (using

r = dlog2(2
√
n/ε′)e)

dlog2 2ne ·
r∑

`=1

4r
√
n

2`ε′
·O
(
log2

(n
ε′

))
· (k +

√
n) ·max

{
22`

n
,
2`√
n

}

= (k +
√
n) · polylog

(n
ε

)
·

r∑

`=1

√
n

2`ε
·max

{
22`

n
,
2`√
n

}
= Õ

(
k +
√
n

ε2

)
.

The upper bound on the running time can simply be verified from Figure 4 and Theorem 8. This

finishes the proof of the theorem.

Proof of Claim 24: Let r = dlog(2/δ)e, and assume for contradiction that the claim is not true for

any ` ∈ [r]. Then we have

δ ≤ E[X] <

r∑

`=1

2`δ

4r
· 2
2`

+ 1 · 1
2r

= δ,

a contradiction.

Proof of Claim 25: We simply note that for any restriction ν ∈ {−1, 1, ∗}m with stars(ν) = S,

Pr
ν∼Dσ1 (h)

[ν = ν] = Pr
S∼Sσ1

[S = S] · Pr
x∼h

S

[
x = νS

]
≥ Pr

S∼Sσ2

[S = S] · Pr
x∼h

S

[
x = νS

]
= Pr

ν∼Dσ2 (h)
[ν = ν] ,

where we used the fact that

d

dσ

[
Pr

S∼Sσ

[S = S]

]
= σ|S|−1 (1− σ)m−|S|−1 (|S| − σm) > 0

whenever 0 ≤ σ ≤ 1/m.

Appendix D. Lower Bound for Testing

In this section, we prove the following theorem showing a lower bound for testing whether a product

distribution is an k-junta distribution with k = n/2. We first state the theorem and proceed to show

it implies Theorem 6.
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Theorem 26 There exist two absolute constants ε1 > 0 and C1 ∈ N such that for all 0 < ε ≤
ε1 and n ≥ C2

1 , any algorithm which receives samples from an unknown product distribution p
supported on {−1, 1}n and distinguishes with probability at least 2/3 between the case p is an

(n/2)-junta distribution and the case p is ε-far from being an (n/2)-junta distribution must observe

at least Ω̃(n)/ε2 many samples from p.

Proof of Theorem 6 assuming Theorem 26: We first inspect the proof of Theorem 4.8 from

Canonne et al. (2017), which presents a lower bound on the sample complexity of testing whether

an unknown product distribution is uniform or far from uniform. Specifically, they show that there

are two constants ε2 > 0 and C2 ∈ N such that for any ε ∈ (0, ε2] and n ≥ C2, there are two

distributions Y andN , supported on product distributions over {−1, 1}n such that no algorithm can

determine whether a draw p belongs to Y orN with probability greater than 2/3 without observing

Ω(
√
n/ε2) samples from p. Moreover, the distribution Y always outputs Un and the distribution N

always outputs a distribution p that is ε-far from being a (n/2)-junta distribution. We are done if

k ≤ √n so we are left with the case when k ≥ √n. In the rest of the proof we prove a lower bound

of Ω̃(k)/ε2 with a reduction to Theorem 26.

We now prove Theorem 6 by setting the two constants ε0 = min(ε1, ε2) and C0 = max(C2
1 , C2).

Let ε ∈ (0, ε0], n ≥ C0 and 0 ≤ k ≤ n/2. Since Un is trivially a k-junta distribution and k ≤ n/2,

the properties of Y and N from Canonne et al. (2017) imply a lower bound of Ω(
√
n/ε2) for

distinguishing between the case p is a k-junta distribution and the case p is ε-far from a k-junta

distribution.

Note that k ≥ √n ≥ C1. Consider an unknown product distribution g over {−1, 1}2k and

the task of distinguishing the case g is a k-junta distribution and the case g is ε-far from a k-junta

distribution. By Theorem 26, any algorithm for this task must observe Ω̃(k)/ε2 samples from g. On

the other hand, let g′ be the distribution supported on {−1, 1}n defined using g as follows: To draw

x ∼ g′ we first draw a sample y ∼ g and set y to be the first 2k bits of x; the last n− 2k bits of x

are drawn independently and uniformly at random. Notice that if g is a k-junta, then g′ is a k-junta,

and if g is ε-far from a k-junta, then g′ is ε-far from a k-junta. Given that sample access to g′ can be

simulated using sample access to g, the task of distinguishing between the case g′ is a k-junta and

the case g′ is ε-far from k-junta is at least as hard as the task for g. From this reduction we get a

sample complexity lower bound of Ω̃(k)/ε2.

The proof of Theorem 26 follows from the following lemma by simply noticing that any algo-

rithm which receives s independent samples from an unknown product distribution p over {−1, 1}n
can be simulated by an algorithm which receives a sample from the product distribution Bin(s, p1)×
· · · × Bin(s, pn).

Lemma 27 There exists an absolute constant ε0 > 0 such that for all ε ∈ (0, ε0] and n ∈ N, there

exist two distribution Dyes and Dno supported on product distributions over {−1, 1}n satisfying

Pr
p∼Dyes

[
p ∈ Junta(n/2)

]
≥ 1− on(1) and Pr

p∼Dno

[
dTV(p, Junta(n/2)) ≥ ε

]
≥ 1− on(1).

(22)

Moreover, letting s = dn/(ε2 log12 n)e, the two distributions Ryes = R(s,Dyes) and Rno =
R(s,Dno) supported on Nn satisfy dTV (Ryes,Rno) = on(1), where R(s,D) is specified by let-

ting

Pr
r∼R(s,D)

[r = r] = E
p∼D

[
n∏

i=1

Pr
`∼Bin(s,pi)

[` = ri]

]
, for every r ∈ Nn. (23)
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The proof of Lemma 27 constitutes the next two subsections. We give the construction of Dyes

and Dno and prove (22) in Section D.1, and bound the distance between Ryes and Rno in Section

D.2.

D.1. Construction of Dyes and Dno

Let p be a product distribution over {−1, 1}n. We prove the following lemma that lowerbounds

dTV(p,Un) using ‖µ(p)‖2:

Lemma 28 There is two constants c∗1, c
∗
2 > 0 such that any product distribution p over {−1, 1}n

satisfies

dTV(p,Un) ≥
(
1

8
− c∗1‖µ(p)‖∞
‖µ(p)‖2

)
·min

(
c∗2,
‖µ(p)‖2

4

)
.

We delay the proof of Lemma 28 to Section D.3. We fix the constant ε0 ∈ R≥0 in Lemma 27 to

be

ε0 =
c∗2
9
. (24)

For n ∈ N, let ` = dlog n/ log log ne. Given any vector α ∈ R` we let A(α) be the Vander-

monde matrix defined with respect to α, and e1 ∈ R` be the first basis vector:

A(α) =




α0
1 α0

2 α0
3 . . . α0

`

α1
1 α1

2 α1
3 . . . α1

`

α2
1 α2

2 α2
3 . . . α2

`
...

...
...

. . .
...

α`−1
1 α`−1

2 α`−1
3 . . . α`−1

`




and e1 =




1

0

0
...

0



.

Recall the following closed form for the determinant of a Vandermonde matrix A(α):

det
(
A(α)

)
=
∏

i,j∈[`]
i<j

(αj − αi),

so that det(A(α)) 6= 0 whenever coordinates of α are distinct. For the rest of the section, consider

the vector α ∈ R` given by letting

αj = j3 ∀j ∈ [`], (25)

and let z ∈ R` be the unique solution to the system of ` linear equations where A(α)z = e1. Let

W = {j ∈ [`] : zj ≥ 0} and V = [`] \W .

We will need the following technical claim about z; we delay its proof to Subsection D.4.

Claim 29 There is an absolute constant C∗ > 0 such that for any ` ∈ N, the solution z ∈ R` to

the Vandermonde system A(α)z = e1 with α as in (25) satisfies ‖z‖1 ≤ C∗.
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We now describe Dno and Dyes using α,W and V given above. Let τ ∈ R≥0 be set as

τ = min

{
36
√
C∗ · ε,

√
n

2`3

}
, (26)

and notice that for large n, τ = 36
√
C∗ε = Θ(ε). First we let p ∼ Dno be the product distribution

supported on {−1, 1}n given by letting for each i ∈ [n], be independently set to

Pr
x∼p

[xi = 1] =
1

2
+

γi · τ√
n

such that γi =





0 w.p. 1−
∑

j∈W zj

‖z‖1
j3 w.p.

zj
‖z‖1

for j ∈ W .

. (27)

Notice that probabilities above are smaller than 1 since γi ≤ `3, for ` = dlog n/ log log ne and the

setting of τ . On the other hand, we let q ∼ Dyes be the product distribution supported on {−1, 1}n
given by letting for each i ∈ [n], be independently set to

Pr
x∼q

[xi = 1] =
1

2
+

δi · τ√
n

such that δi =





0 w.p. 1−
∑

j∈V −(zj)
‖z‖1

j3 w.p.
−zj
‖z‖1

for j ∈ V .

. (28)

Again, we note that the probabilities are at most 1 since δi ≤ `3 as well. We record a claim that

follows directly from the definition of z,W and V:

Claim 30 For all k = 1, . . . , `− 1, we have

E
δi

[
δki
]
= E

γi

[
γk
i

]
. (29)

Proof: The proof follows from the fact that

E
γ

[
γk
i

]
−E

δi

[
δki
]
=

1

‖z‖1
∑̀

j=1

αk
j zj =

1

‖z‖1
(A(α)z)k+1 = 0,

since A(α)z = e1.

We show in the next two claims that (22) holds when n is sufficiently large.

Claim 31 We have p ∈ Junta(n/2) with probability at least 1−on(1) over the draw of p ∼ Dyes.

Proof: Let p ∼ Dyes, and let A ⊆ [n] be the set of coordinates i ∈ [n] with δi 6= 0. We will

show that, when n is sufficiently large, |A| ≤ n/2 with probability 1 − on(1), which implies that

p ∼ Dyes is an (n/2)-junta for Un with probability at least 1− on(1).
To see this is the case, we notice that each δi is 0 with probability

1−
∑

j∈V −zj
‖z‖1

=
1

2

(
1 +

∑
j∈W zj +

∑
j∈V zj

‖z‖1

)
=

1

2
+

1

2‖z‖1
≥ 1

2
+

1

2C∗ ,

where we used the fact that z was the solution to (A(α)z)1 = 1 to deduce that
∑

j zj = 1.

Hence, for large n, we apply a Chernoff bound to deduce that |A| ≤ n/2 except with probabil-

ity on(1).
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Claim 32 We have p is ε-far from Junta(n/2) with probability at least 1 − on(1) over the draw

of p ∼ Dno.

Proof: By a similar computation, as the proof of Claim 31, if we let A be the subset of coordinates

i ∈ [n] with γi = 0 in p ∼ Dno, we have

|A| ≤ n

(
1

2
− 1

4C∗

)

except with probability on(1). Consider a fixed distribution p in the support of Dno where the above

event occurs, i.e., the set A ⊂ [n] of coordinates with zero γi (specifying the marginal distributions

of p as in (27)) is smaller than n/2 − n/(4C∗). Let q be any (n/2)-junta distribution and let S be

the influential variables of q’s p.d.f with |S| ≤ n/2. We have that, for each i ∈ A ∩ S,

|µ(p)i| ≥ 2τγi/
√
n ≥ 2τ/

√
n.

Let T be A ∩ S with

t
def
= |T | = |A ∩ S| ≥ n

(
1

2
+

1

4C∗

)
− n

2
≥ n

4C∗ .

Consider the distributions pT and qT given by taking a sample and projecting onto the coor-

dinates in T . Since T ⊂ S, and the p.d.f of q is constant for any setting of variables in S, the

distribution qT is the uniform distribution over t bits. We note

dTV(pT ,Ut) =
1

2

∑

x∈{−1,1}T
|pT (x)− qT (x)| =

1

2

∑

x∈{−1,1}T

∣∣∣∣∣∣

∑

y∈{−1,1}T
p(x, y)− q(x, y)

∣∣∣∣∣∣

≤ 1

2

∑

z∈{−1,1}n
|p(z)− q(z)| = dTV(p, q), (30)

where p(x, y) = p(z) with zi = xi for i ∈ T and zi = yi for i /∈ T , and q(x, y) is defined

analogously. We now apply Lemma 28 to deduce a lower bound on dTV(pT ,Ut), and by (30) lower

bound dTV(p, q). Since p is a product distribution, µ(p)i = µ(pT )i for all i ∈ T , and we have

‖µ(pT )‖∞ ≤
2τ`3√

n
and ‖µ(pT )‖2 ≥

√
t · 2τ√

n
=

τ√
C∗ . (31)

Applying Lemma 28, we have

dTV(pT ,Ut) ≥
(
1

8
− on(1)

)
·min

(
c∗2,

τ

4
√
C∗

)
≥ min

(
c∗2
9
,

τ

36
√
C∗

)
,

once n is a large enough constant. Finally, by the setting of ε0 in (24), and τ in (26), dTV(pT ,Ut) ≥
min(ε0, ε) = ε for large enough n. Since the distribution q was an arbitrary (n/2)-junta distribution,

this concludes the proof.
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D.2. Statistical Distance BetweenRyes andRno

Let s = dn/(ε2 log12 n)e. We show that distributions Ryes = R(s,Dyes) and Rno = R(s,Dno) as

defined in (23) using Dyes and Dno satisfy

dTV(Ryes,Rno) ≤ on(1). (32)

Recall thatRyes is the distribution supported on {0, . . . , s}n given by first sampling δ1, . . . , δn
independently according to (28) and then sampling from the product distribution

r ∼
n∏

i=1

Bin (s, qi) , where qi
def
= Pr

x∼q
[xi = 1] =

1

2
+

δi · τ√
n

. (33)

Notice that we always have

1

2
≤ qi ≤

1

2
+

τ`3√
n
≤ 1

2
+O

(
ε log3 n√

n

)

once n is a large enough constant.

Similarly, Rno is the distribution supported on {0, . . . , s}n given by first sampling γ1, . . . ,γn

according to (27), and then sampling from the product distribution

r ∼
n∏

i=1

Bin (s,pi) , where pi
def
= Pr

x∼p
[xi = 1] =

1

2
+

γi · τ√
n

,

and similarly, we have 1/2 ≤ pi ≤ 1/2 + O(ε log3 n/
√
n). In particular, if we denote the set

B ⊂ {0, . . . , s}n given by

B =
{
r = (r1, . . . , rn) ∈ {0, . . . , s}n : ∃j ∈ [n],

∣∣∣rj −
s

2

∣∣∣ ≥
√
s log2 n

}
.

It follows from our choice of s, that for every i ∈ [n] and any fixed setting of p1, . . . ,pn and

q1, . . . , qn,

s

2
≤ E

ri∼Bin(s,pi)
[ri] , E

ri∼Bin(s,qi)
[ri] ≤

s

2
+O

(
sε log3 n√

n

)
=

s

2
+O

(√
s
)
,

so that via a Chernoff bound and a union bound,

Pr
r∼Ryes

[r ∈ B], Pr
r∼Rno

[r ∈ B] = on(1).

Therefore, in order to show dTV(Ryes,Rno) = on(1), it suffices to show that for every r /∈ B,

Prr∼Ryes [r = r]

Prr∼Rno [r = r]
=

Eδ1,...,δn

[∏n
i=1

((
s
ri

) (
1
2 + δiτ√

n

)ri (1
2 − δiτ√

n

)s−ri
)]

Eγ1,...,γn

[∏n
i=1

((
s
ri

) (
1
2 + γiτ√

n

)ri (1
2 −

γiτ√
n

)s−ri
)] ≤ 1 + on(1). (34)
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Toward this goal, consider a fixed r /∈ B, and notice that since δ1, . . . , δn are drawn independently,

the numerator in (34) is

n∏

i=1

E
δi

[(
s

ri

)(
1

2
+

δiτ√
n

)ri (1

2
− δiτ√

n

)s−ri
]

=

n∏

i=1

(
s

ri

)
· 1
2s
·E
δi

[(
1−

(
2δiτ√

n

)2
)mi (

1− sgn(ti) ·
2δiτ√

n

)|ti|
]
, (35)

where ti = s − 2ri and mi = min {ri, s− ri}; notice that |ti| ≤ 2
√
s log2 n since r /∈ B.

Similarly, the denominator in (34) may be expressed as (35) by replacing δi with γi. We analyze

(34) by considering each term in the product; in particular, it suffices to show that for every i ∈ [n],

Eδi

[(
1− 4δ2i τ

2/n
)mi (1− sgn(ti) · 2δiτ/

√
n)

|ti|
]

Eγi

[(
1− 4γ2

i τ
2/n
)mi (1− sgn(ti) · 2γiτ/

√
n)

|ti|
] ≤ 1 + on(1/n). (36)

Using the choice of s and the fact that both δi and γi are no larger than log3 n, we always have

(
1− 4δ2i τ

2

n

)mi

,

(
1− sgn(ti) ·

2δiτ√
n

)|ti|
,

(
1− 4γ2

i τ
2

n

)mi

,

(
1− sgn(ti) ·

2γiτ√
n

)|ti|
= 1± on(1).

(37)

In addition, we have,

(
1− 4δ2i τ

2

n

)mi

=

mi∑

k=0

(
mi

k

)(−4δ2i τ2
n

)k

=

`/4−1∑

k=0

(
mi

k

)(−4δ2i τ2
n

)k

+

mi∑

k=`/4

(
mi

k

)(−4δ2i τ2
n

)k

. (38)

For each term in the second sum, we upperbound δi ≤ `3 and use the approximation of
(
mi

k

)
≤

(emi/k)
k. We also use k ≥ `/4, mi ≥ s/3 and the choice of ` = dlog n/ log log ne. As a result,

the absolute value of the kth term in the second sum is at most

(
emi · 4`6 ·O(ε2)

kn

)k

≤
(
O

(
s`5ε2

n

))k

≤
(

1

log6 n

)k

. (39)

As a result, the absolute value of the second sum is at most

mi∑

k=`/4

(
1

log6 n

)k

≤ 2 ·
(

1

log6 n

) logn
4 log logn

= on(1/n).

In fact, we have shown, by negating all terms in (38) of degree (in δi) at least `/4,

(
1− 4δ2i τ

2

n

)mi

=

`/4−1∑

k=0

(
mi

k

)(−4τ2
n

)k

· δ2ki ± on(1/n). (40)
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Similarly,

(
1− 2sgn(ti)δiτ√

n

)|ti|
=

|ti|∑

k=0

(|ti|
k

)(−2sgn(ti)δiτ√
n

)k

=

`/2−1∑

k=0

(|ti|
k

)(−2sgn(ti)δiτ√
n

)k

+

|ti|∑

k=`/2

(|ti|
k

)(−2sgn(ti)δiτ√
n

)k

.

Analogously to (39), the absolute value of the second sum can be bounded from above by

|ti|∑

k=`/2

(
O

( |ti|
k
· ε`

3

√
n

))k

≤ 2

(
O

(
1

log2 n log2(log n)

)) logn
2 log logn

= on(1/n)

and we have

(
1− 2sgn(ti)δiτ√

n

)|ti|
=

`/2−1∑

k=0

(|ti|
k

)(−2sgn(ti)τ√
n

)k

· δki ± on(1/n). (41)

Analogously, we may conclude that

(
1− 4γ2

i τ
2

n

)mi

=

`/4−1∑

k=0

(
mi

k

)(−4τ2
n

)k

· γ2k
i ± on(1/n) and

(
1− 2sgn(ti)γiτ√

n

)|ti|
=

`/2−1∑

k=0

(|ti|
k

)(−2sgn(ti)τ√
n

)k

· γk
i ± on(1/n). (42)

It follows from (37) and all four approximations in (40), (41) and (42) that all four sums on the right

hand side are 1 ± on(1), and note that all these inequalities hold with probability 1 (over the draw

of δi and γ1). Putting (40), (41), (42) and (37) together, we have

E
δi

[(
1− 4δ2i τ

2/n
)mi

(
1− sgn(ti) · 2δiτ/

√
n
)|ti|] (43)

≤ E
δi






`/4−1∑

k=0

(
mi

k

)(−4τ2
n

)k

· δ2ki + on(1/n)






`/2−1∑

k=0

(|ti|
k

)(−2sgn(ti)τ√
n

)k

· δki + on(1/n)






≤ E
δi






`/4−1∑

k=0

(
mi

k

)(−4τ2
n

)k

· δ2ki






`/2−1∑

k=0

(|ti|
k

)(−2sgn(ti)τ√
n

)k

· δki




+ on(1/n),

E
γi

[(
1− 4γ2

i τ
2/n
)mi

(
1− sgn(ti) · 2γiτ/

√
n
)|ti|] (44)

≥ E
γi






`/4−1∑

k=0

(
mi

k

)(−4τ2
n

)k

· γ2k
i






`/2−1∑

k=0

(|ti|
k

)(−2sgn(ti)τ√
n

)k

· γk
i




− on(1/n).
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Hence, notice that (43) and (44) are both 1 ± on(1), and can each be expressed as the same linear

function of the first `−1 moments of δi and γi up to additive errors±on(1/n). Since the first `−1
moments of δi and γi are equal by Claim 30, we have shown (34), which completes the proof of

(32).

D.3. Proof of Lemma 28

We will use the fact that e−x ≤ 1− x/2 for all x ∈ [0, 1], which implies that

e−x ≤ max
(
e−1, 1− x/2

)
(45)

for all x ≥ 0. We set the constant c∗ in Lemma 28 to be 1− e−1.

Let µ = µ(p) for convenience and we assume without loss of generality that µi ≥ 0 for all

i ∈ [n]. A sample x ∼ p has all coordinates set independently, where the ith coordinate of xi is 1
with probability (1 + µi)/2 and −1 with probability (1− µi)/2. Given any x ∈ {−1, 1}n, we have

p(x) =
∏

i∈[n]
xi=1

(
1 + µi

2

)
·
∏

i∈[n]
xi=−1

(
1− µi

2

)
=

1

2n
·
∏

i∈[n]
xi=1

(1 + µi) ·
∏

i∈[n]
xi=−1

(1− µi).

We say a string x ∈ {−1, 1}n is good if

∑

i∈[n]
µixi ≤ −

‖µ‖2
2

.

The proof proceeds in two steps. First we show that there exists a constant c∗1 > 0 such that when x

is drawn uniformly at random from {−1, 1}n, x is good with probability at least

1

4
− c∗1‖µ‖∞
‖µ‖2

.

Next we show there exists a constant c∗2 > 0 that every good string x ∈ {−1, 1}n satisfies

∣∣∣∣p(x)−
1

2n

∣∣∣∣ ≥
1

2n
·min

(
c∗2,
‖µ‖2
4

)
.

The lemma follows since

dTV(p,Un) =
1

2

∑

x∈{−1,1}n

∣∣∣∣p(x)−
1

2n

∣∣∣∣ ≥
1

2

∑

x∈{−1,1}n
good x

∣∣∣∣p(x)−
1

2n

∣∣∣∣

≥ 1

2
· Pr
x∼{−1,1}n

[
x is good

]
·min

(
c∗,
‖µ‖2
4

)
.

For the first step, we let x ∼ {−1, 1}n be drawn uniformly at random and write yi = µixi. We

recall the Berry–Esséen theorem:
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Theorem 33 (Berry–Esséen) There exists a universal constant c∗1 > 0 such that letting s = y1 +
· · · + yn, where y1, . . . ,yn be independent real-valued random variables with E[yi] = 0 and

Var[yi] = σ2
i , and suppose that |yi| ≤ τ with probability 1 for all i ∈ [n]. Let g be a Gaussian

random variable with mean 0 and variance
∑

i∈[n] σ
2
j , matching those of s. Then for all θ ∈ R we

have ∣∣∣Pr[s ≤ θ]−Pr[g ≤ θ]
∣∣∣ ≤ c∗1τ√∑

i∈[n] σ
2
i

.

Note that in our case, τ = ‖µ‖∞ and σ2
i = µ2

i and thus, the variance of g is ‖µ‖22.

Recall the following fact about Gaussian anti-concentration:

Fact 34 (Gaussian anti-concentration) Let g be a Gaussian random variable with variance σ2.

Then for all κ > 0 it holds that

sup
θ∈R

{
Pr
[
|g − θ| ≤ κσ

]}
≤ κ.

Setting κ = 1/2 and θ = 0 (and using the symmetry of g), we have that

Pr
g∼N (0,‖µ‖22)

[
g ≤ −‖µ‖2/2

]
≥ 1/4.

It follows from Berry-Esséen that

Pr
x∼{−1,1}n


∑

i∈[n]
µixi ≤ −

‖µ‖2
2


 ≥ 1

4
− c∗1‖µ‖∞
‖µ‖2

.

This finishes the proof of the first step. For the second we use the fact that ex ≥ 1+ x for all x ∈ R

and thus, for each good x ∈ {−1, 1}n we have

2n · p(x) ≤
∏

i∈[n]
xi=1

eµi ·
∏

i∈[n]
xi=1

e−µi = e
∑

i∈[n] µixi ≤ e−‖µ‖2/2 ≤ max
(
e−1, 1− ‖µ‖2/4

)
,

where we used (45) in the last inequality. As a result, we have

∣∣1− 2n · p(x)
∣∣ = 1− 2n · p(x) ≥ min (c∗2, ‖µ‖2/4)

since we set c∗2 = 1− e−1. This finishes the proof of the lemma.

D.4. Proof of Claim 29

Applying Cramer’s rule, we have

|zi| =
∣∣∣∣
det(Ai)

det(A)

∣∣∣∣ =
∏

j∈[`]\{i}

∣∣∣∣
αj

αi − αj

∣∣∣∣ , (46)

where Ai is the ` × ` matrix given by replacing the i-th column with e1, and notice that Ai is the

Vandermonde matrix A(α(i)), with α(i) ∈ R` being the vector which is exactly αj on all j 6= i and
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0 when j = i. We now show that there exists a constant i0 ∈ N (which does not depend on `) such

that for all ` ∈ N, the sequence {|zi|}i≥i0 is geometrically decreasing with constant bounded away

from 1. This suffices to bound ‖z‖1, since

‖z‖1 =
∑̀

i=1

|zi| ≤
i0−1∑

i=1

|zi|+
∑̀

i=i0

|zi| ≤ (i0 − 1)max
i<i0
|zi|+O(|zi0 |),

and for every i ∈ [`], we can upperbound the logarithm of (46) by

log2
(
|zi|
)
≤ (i− 1) log2 i+

∑

j>i

log2

(
1 +

i3

j3 − i3

)
≤ i3


1 +

∑

j>i

1

j3 − i3


 . i3.

The first inequality follows from the fact that |j3/(i3 − j3)| ≤ i for j < i; the second inequality

follows from upperbounding log(1 + x) ≤ x for x ≥ 0; the last inequality follows from the fact

j3 − i3 > (j − i)3 for all j > i, and the sums to a constant. From the upper bound on log2 |zi|, we

may conclude ‖z‖1 ≤ 2O(i30).

In order to pick i0 ∈ N, notice that for all i ∈ N, we use (46) on zi+1 and zi to obtain

|zi+1|
|zi|

=
i−1∏

j=0

i3 − j3

(i+ 1)3 − j3
·
∏̀

j=i+2

j3 − i3

j3 − (i+ 1)3
.

We first handle the case when ` ≥ 2i+ 1. In this case we break the product into

|zi+1|
|zi|

=
i∏

k=1

(
i3 − (i− k)3

(i+ 1)3 − (i− k)3
· (i+ 1 + k)3 − i3

(i+ 1 + k)3 − (i+ 1)3

) ∏̀

j=2i+2

j3 − i3

j3 − (i+ 1)3
. (47)

Using a3 − b3 = (a− b)(a2 + ab+ b2), the factor for each k ∈ [i] in the first product becomes

3i2 − 3ki+ k2

3i2 − 3(k − 1)i+ k2 − k + 1
· 3i2 + 3(k + 1)i+ (k + 1)2

3i2 + 3(k + 2)i+ k2 + 3k + 3
. (48)

Noting that the denominator of the first factor is

(i+ 1)2 + (i+ 1)(i− k) + (i− k)2 ≤ (2i+ 1− k)2

we can bound the first factor of (48) by

1− 3i− k + 1

(i+ 1)2 + (i+ 1)(i− k) + (i− k)2
≤ 1− 3i− k + 1

(2i+ 1− k)2
≤ 1− 1

2i+ 1− k
.

Similarly we have that the second factor of (48) is

1− 3i+ k + 2

(i+ 1 + k)2 + (i+ 1 + k)(i+ 1) + (i+ 1)2
≤ 1− 3i+ k + 2

(2i+ 2 + k)2
≤ 1− 1

2i+ k + 2
.

As a result, the first product in (48) is at most (using 1 + x ≤ ex)

exp

(
−

i∑

k=1

(
1

2i+ 1− k
+

1

2i+ k + 2

))
.
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We note that by re-indexing terms,

i∑

k=1

(
1

2i+ 1− k
+

1

2i+ k + 2

)
=

3i+2∑

h=i+1

1

h
−
(

1

2i+ 1
+

1

2i+ 2

)
≥
∫ 3i+2

i+1

1

x
· dx− 1

i

i→∞−→ ln(3)

where the sum approaches ln 3 as i grows so we fix our i0 to be sufficiently large so that when i ≥ i0
the above sum is at least 1 + 1

20 . For the second product of (48) we rewrite it as

∏̀

j=2i+2

j3 − i3

j3 − (i+ 1)3
=

`−i−1∏

k=i+1

(
1 +

3i2 + 3i+ 1

(i+ 1 + k)3 − (i+ 1)3

)

≤
`−i−1∏

k=i+1

(
1 +

3i2 + 3i+ 1

3(i+ 1)k2 + k3

)

≤
`−i−1∏

k=i+1

(
1 +

i

k2

)
≤ exp


 ∑

k≥i+1

i

k2


 ≤ e,

where the third inequality used 3i2 + 3i + 1 ≤ i(3i + 3 + k) and the last inequality used the

fact that
∑

k≥i+1 1/k
2 ≤ 1/i. As a result, in this case (i ≥ i0 and ` ≥ 2i + 1) we have that

|zi+1|/|zi| ≤ e−1/20. We are almost done. For the case when ` < 2i+ 1, we simply note that

|zi+1|
|zi|

≤
i∏

k=1

i3 − (i− k)3

(i+ 1)3 − (i− k)3
· (i+ 1 + k)3 − i3

(i+ 1 + k)3 − (i+ 1)3

since we added more factors that are at least 1. Since i ≥ i0, the same argument used earlier implies

that the ratio is at most e−1−1/20.

Appendix E. Robust Mean Testing for k-Juntas

In this section, we consider a robust distribution testing algorithm which distinguishes between a

given distribution p having a mean vector µ(p) with large `2 norm, and p being a k-junta distribution

and having a mean vector with small `2 norm. Our tester is similar to the mean testing algorithm of

Canonne et al. (2019), however we will require a tighter analysis of the completeness case, which

in our setting is more general. The goal of this section is to demonstrate an algorithm that draws

a small number of samples from p to distinguish these two cases with probability at least 2/3. We

restate the main theorem of this section:

Theorem 8 (Robust mean testing for juntas) There is an algorithm which, given sample access to

a distribution p on {−1, 1}n, k ∈ N and a parameter ε ∈ (0, 1), has the following behavior:

1. If p is a k-junta distribution with ‖µ(p)‖2 ≤ ε
√
n/100, the algorithm returns “Is a

k-junta” with probability at least 2/3;

2. If p is a distribution that satisfies ‖µ(p)‖2 ≥ ε
√
n, the algorithm returns “Not a

k-junta” with probability at least 2/3.
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Moreover, the algorithms draws

q = O

(
max

{
k +
√
n

ε2n
,
k +
√
n

ε
√
n

})
(2)

samples from p and runs in time O(q2n).

To describe the testing algorithm we start with some notation.

Definition 35 Given x ∈ {−1, 1}n, we write x⊗ y to denote the tensor product of x and y:

x⊗ x = (x1x1, x1x2, . . . x1xn, x2x1, . . . xnxn) ∈ {−1, 1}n
2
.

We also write x⊗r to denote the tensor product of r copies of x:

x⊗r = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
r

.

Given a distribution p over {−1, 1}n, we define the tensor-distribution �(p) of p, a distribution

over {−1, 1}n2
, as the distribution of x ⊗ x with x ∼ p. We define �r(p) recursively as �r(p) =

�(�r−1(p)) with�0(p) = p, which is a distribution of dimension n2r . We call�r(p) the r-th order

tensor distribution of p and note that, equivalently, �r(p) is the distribution of x⊗2r with x ∼ p.

The following claim follows from the definition of tensor-distributions since µ(�r+1(p)) is the

vectorization of the covariance matrix Σ(�r(p)).

Claim 36 Given p over {−1, 1}n and r ≥ 0, we have ‖µ(�r+1(p))‖2 = ‖Σ(�r(p))‖F .

Let p be a distribution over {−1, 1}n. The main test statistic used by our algorithm first draws

2q samples X1, . . . ,Xq and Y1, . . . ,Yq independently from p, for some q to be specified, and

construct

X =
1

q

q∑

i=1

Xi and Y =
1

q

q∑

i=1

Yi.

We then set Z = 〈X,Y〉. We use the following lemma (Lemma 4.1) from Canonne et al. (2019):

Proposition 37 Let p be a distribution over {−1, 1}n. Then we have

E
[
Z
]
=
∥∥µ(p)

∥∥2
2

Var
[
Z
]
≤ 1

q2
·
∥∥Σ(p)

∥∥2
F
+

4

q
·
∥∥µ(p)

∥∥2
2
·
∥∥Σ(p)

∥∥
F
.

We will use the above test statistic for higher order tensor distributions of p. For r ≥ 0, given

2q samples X1, . . . ,Xq and Y1, . . . ,Yq from p, we use them to obtain 2q samples X
(r)
1 , . . . ,X

(r)
q

and Y
(r)
1 , . . . ,Y

(r)
q from �r(p), by setting

X
(r)
i = X⊗2r

i ∈ {−1, 1}n2r

.

We can then similarly form their averages X
(r)

,Y
(r)

and set Z(r) = 〈X(r)
,Y

(r)〉.
We record the following corollary from the above proposition:
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Algorithm 1: Robust Junta Mean Tester

input : Sample access to distribution p over {−1, 1}n and a distance parameter ε ∈ (0, 1)
Set r0 = dlog log ne.

Draw a sequence of 2q samples S = (X1, . . . ,Xq,Y1, . . . ,Yq) from p independently

for r = 0, 1, 2, . . . r0 do

Using samples from S to compute X
(r)

,Y
(r)

and Z(r)

if Z(r) > τr then
output: Not a k-Junta

end

end

if All r0 tests pass then
output: Is a k-Junta

end

Figure 5: Robust Junta Mean Tester

Corollary 38 Let p be a distribution over {−1, 1}n and r ≥ 0. Then we have

E
[
Z(r)

]
=
∥∥µ(�r(p))

∥∥2
2

Var
[
Z(r)

]
≤ 1

q2
·
∥∥Σ(�r(p))

∥∥2
F
+

4

q
·
∥∥µ(�r(p))

∥∥2
2
·
∥∥Σ(�r(p))

∥∥
F
.

Next, we set

q = C ·max

{
k +
√
n

ε2n
,
1 + k/

√
n

ε

}

for some sufficiently large constant C > 0, and define a sequence (τr)r≥0 with τ0 = ε2n/2 and

τr =
1

5000
· q2τ2r−1 (49)

for each r ≥ 1. Setting a = 1/5000, we have the following closed form for τr:

τr =
1

aq2

(
aq2ε2n

2

)2r

. (50)

Our main algorithm is presented in Figure 5 and we prove Theorem 8 in the rest of the section.

We divide the proof of correctness into a soundness and completeness case. The two cases are

addressed in Sections E.2 and E.1 respectively, where we prove the following two lemmas:

Lemma 39 (Soundness) Suppose p is a distribution over {−1, 1}n satisfying ‖µ(p)‖2 ≥ ε
√
n.

Then there exists an r ∈ {0, 1, . . . , r0} such that

Pr
[
Z(r) > τr

]
≥ 2

3
.
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Lemma 40 (Completeness) Suppose p is a k-junta distribution over {−1, 1}n with ‖µ(p)‖2 ≤
ε
√
n/100. Then for every r ∈ {0, 1, . . . , r0}, we have

Pr
[
Z(r) > τr

]
≤ 1

25
·
(
1

2

)2r−1

.

Proof of Theorem 8: The soundness case follows directly from Lemma 39. For completeness, we

can apply a union bound over all r ∈ {0, 1, . . . , r0}, giving

Pr
[
Z(r) > τr for some r ∈ {0, 1, . . . , r0}

]
≤
∑

r≥0

1

25
·
(
1

2

)2r−1

< 1/3. (51)

The sample complexity of the algorithm follows directly from our choice of q in (2). Finally, we

demonstrate that Z(r) from the r-th order tensor distribution can be computed in polynomial time in

n and q — much faster than the naive O(n2r) time required to compute samples X
(r)
i from �r(p)

using samples Xi from p. To do this, we will use the following mixed-product property of tensor

products.

Fact 41 (Van Loan (2000)) If A,B,C,D are matrices with such that the products AC and BD
are well-defined, then we have (A⊗B)(C ⊗D) = (AC ⊗BD).

Let X1, . . . , Xq, Y1, . . . , Yq be strings in {−1, 1}n. Then our target Z(r) can be written as

Z(r) =
1

q2

〈
q∑

i=1

X⊗2r

i ,

q∑

i=1

Y ⊗2r

i

〉

=
1

q2

∑

1≤i,j≤q

(
X⊗2r

i

)T
Y ⊗2r

j

=
1

q2

∑

1≤i,j≤q

(
XT

i ⊗XT
i ⊗ · · · ⊗XT

i

)
(Yj ⊗ Yj ⊗ · · · ⊗ Yj)

=
1

q2

∑

1≤i,j≤q

(
XT

i Yj ⊗XT
i Yj ⊗ · · · ⊗XT

i Yj
)

=
1

q2

∑

1≤i,j≤q

〈Xi, Yj〉2
r

.

(52)

To compute Z(r) for each r = 0, 1, . . . , r0, we can first construct the q × q matrix M with Mi,j =
〈Xi, Yj〉 in time O(q2n). Then each Z(r) is just the average of 2r-th power of entries of M , namely

Z(r) = (1/q2) ·∑i,j M
2r
i,j . The time needed to compute Z(r) from M for r = 0, 1, . . . , r0 is o(q2n)

(recall that r = dlog log ne). This completes the analysis of running time of our algorithm.

E.1. Soundness: Proof of Lemma 39

We first prove the following lemma, which we will iteratively apply in the soundness case.
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Lemma 42 Let p be a distribution supported on {−1, 1}n and r ≥ 0. Suppose that

‖µ(�r(p))‖22 ≥ 2τ

for some τ > 0 and Pr[Z(r) ≤ τ ] ≥ 1/3. Then we have ‖µ(�r+1(p))‖22 ≥ (τq/24)2.

Proof: By Proposition 37, we have E
[
Z(r)

]
= ‖µ(�r(p))‖22 ≥ 2τ . Thus

1

3
≤ Pr

[
Z(r) ≤ τ

]
≤ Pr

[∣∣∣Z(r) −E
[
Z(r)

]∣∣∣ ≥
E
[
Z(r)

]

2

]

≤ 4

‖µ(�r(p))‖42

(
1

q2
· ‖µ(�r+1(p))‖22 +

4

q
· ‖µ(�r(p))‖22 · ‖µ(�r+1(p))‖2

)
,

(53)

where in the last inequality we applied Chebyshev’s inequality. It follows that at least one of the two

terms on the last line of equation (53) must be greater than 1/6. Thus ‖µ(�r+1(p))‖22 ≥ τ2q2/3 or

‖µ(�r+1(p))‖2 ≥ τq/24, from which the lemmas follows.

Proof of Lemma 39: Assume for the sake of contradiction that Pr[Z(r) ≤ τr] ≥ 1/3 for every

r = 0, 1, . . . , r0. We apply Lemma 42 to prove by induction on r that ‖µ(�r(p))‖22 ≥ 2τr for

every r = 0, 1, 2, . . . , r0 + 1. The base case of r = 0 follows from the choice of τ0 = ε2n/2
and the assumption that ‖µ(�0(p))‖2 = ‖µ(p)‖2 ≥ ε

√
n. For the induction step, we have by the

inductive hypothesis that ‖µ(�r(p))‖22 ≥ 2τr for some r ≤ r0. It follows from Lemma 42 and

Pr[Z(r) ≤ τr] ≥ 1/3 that

∥∥µ(�r+1(p))
∥∥2
2
≥
(τrq
24

)2
≥ 1

2500
· q2τ2r = 2τr+1.

Now to get a contradiction, we note that

∥∥µ(�r0+1(p))
∥∥2
2
≥ 2

aq2

(
aq2ε2n

2

)2r0+1

= q2
r0+2−2 ·

(
ε
√
n
)2r0+2

·
(a
2

)2r0+1−1
.

Given that q ≥ C/ε and q ≥ C/(ε2
√
n) in (2), we have

q2
r0+2−2 ≥

(
C

ε

)2r0+2−4

·
(

C

ε2
√
n

)2

=

(
1

ε

)2r0+2

· 1
n
· C2r0+2−2

and thus,

‖µ(�r0+1(p))‖22 ≥ n2r0+1 · 1
n
· C2r0+2−2 ·

(a
2

)2r0+1−1
,

which, after setting C to be a large enough constant and recalling that r0 = dlog log ne, contradicts

the fact that we always have ‖µ(�r0+1(p))‖22 ≤ n2r0+1
. This completes the proof of the lemma.

E.2. Completeness: Proof of Lemma 40

We will now need the following bound on the mean vector in the completeness case.
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Proposition 43 Suppose p is a k-junta distribution over {−1, 1}n. Then for each r ≥ 1 we have

∥∥µ(�r(p))
∥∥2
2
≤
(
2 ·max{n, k2} · 2r

)2r−1

.

Proof: For r = 0, the result holds because µ(p) is k-sparse when p is a k-junta distribution.

Next consider the case when r > 0. Let R = 2r and let S ⊆ [n] be the set of influential

variables with |S| = k. (Note that if the number of influential variables is smaller than k we can

always add more variables to S to make it size k.) Without loss of generality we assume S = [k]
and by the definition of k-junta distributions, there is a distribution p′ over {−1, 1}k such that

x = (x1, . . . ,xn) ∼ p can be drawn by first drawing (x1, . . . ,xk) ∼ p′ and then drawing each xi,

i > k, independently and uniformly at random from {−1, 1}.
Now we consider the mean vector µ(�r(p)). Note that it has nR entries and each entry is

indexed by an R-tuple I = (i1, . . . , iR) ∈ [n]R: the entry indexed by I is given by

Ex∼p

[
xi1 · · ·xiR

]
.

We define Q ⊆ [n]R as the set of all R-tuples I = (i1, . . . , iR) ∈ [n]R such that every j /∈ S
appears an even number of times in I . Given that every xj , j /∈ S, is drawn independently from

other variables and is uniform over {−1, 1}, we have that entries of µ(�r(p)) are zero outside of

those indexed by tuples in Q. On the other hand, every nonzero entry of µ(�r(p)) trivially has

magnitude no larger than 1. As a result, ‖µ(�r(p))‖22 ≤ |Q| and we bound |Q| in the rest of the

proof.

To this end, let Qi ⊆ Q be the set of I = (i1, . . . , iR) ∈ Q such that {` ∈ [R] | i` /∈ S}| = i.
Then

|Qi| ≤
(
R

i

)
· kR−i · Li,

where Li is the number of ordered i-tuples, each entry selected from [n] (note that we relaxed it

from [n] \ S to [n] to simplify the presentation since this can only make Li bigger), in which every

j ∈ [n] appears an even number of times. Note that Li is trivially 0 when i is odd. We can bound Li

by noting that to pick a tuple (i1, . . . , iR) ∈ Qj , we can first pick i1 ∈ [n], and then pick an index

ij for some j > 1 and set ij = i1. Next, we pick i2 ∈ [n] (or i3 if i2 was chosen to be ij in the first

round) and then pick an unused index ij′ for some j′ > 2 and set ij′ = i2, and so on. Thus,

Li ≤ n(i− 1) · n(i− 3) · · ·n =
(n
2

)i/2
· i!

(i/2)!
≤
(n
2

)i/2
· ii/2

when i is even. Using that |Q0| = kR, we have

|Q| ≤
R/2∑

`=0

|Q2`| ≤ kR +

R/2∑

`=1

(
R

2`

)
· (n`)` · kR−2`.

Letting α = max{k2, n} so that k ≤ √α and n ≤ α, we have

|Q| ≤ αR/2 +

R/2∑

`=1

(
R

2`

)
· `` · αR/2 ≤ αR/2


1 + (R/2)R/2 ·

R/2∑

`=1

(
R

2`

)
 ≤ αR/2 · (R/2)R/2 · 2R,
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which completes the proof.

We now start the proof of Lemma 40.

Proof of Lemma 40: Again, we set R = 2r. We show for each r ∈ {0, 1, . . . , r0} that

E
[
Z(r)

]
=
∥∥µ(�r(p))

∥∥2
2
≤ 1

100

(
1

2

)R−1

· τr and Var
[
Z(r)

]
≤ 1

100

(
1

2

)R−1

τ2r .

(54)

Assuming this, by Chebyshev’s inequality we have

Pr
[
Z(r) > τr

]
≤ Pr

[ ∣∣∣Z(r) −E
[
Z(r)

]∣∣∣ > τr/2
]
≤ 4 · Var[Z(r)]

τ2r
≤ 1

25
·
(
1

2

)R−1

(55)

and this finishes the proof of the lemma.

We start with the case when r = 0. The first part of (54) follows trivially from the assumption

that ‖µ(p)‖2 ≤ ε
√
n/100, and the second part follows from Lemma 43. To see the latter, we have

from Claim 36 and Lemma 43 that

Var
[
Z(0)

]
≤ 1

q2
·
(
4 ·max(n, k2)

)
+

4

q
· ε2n

10000
·
√

(4 ·max(n, k2)) ≤ 1

100

(
1

2

)R−1

· τ21 ,

where the last inequality used the choice of τ1, ε ≤ 1, and q ≥ C(k +
√
n)/(ε2n) for some

sufficiently large constant C.

Moving to the general case when r ≥ 1, we have R = 2r ≥ 2. Letting β = max(n, k2) and

using q ≥ C
√
β/(ε2n) and q ≥ C

√
β/(ε
√
n), we have

q2R−2 = q2R−4 · q2 ≥
(
C
√
β

ε
√
n

)2R−4

·
(
C
√
β

ε2n

)2

=
(
C2β

)R−1 ·
(

1

ε2n

)R

.

Plugging this in the closed form (50) of τr, we have

τr =
1

aq2

(
aq2ε2n

2

)R

≥ 1

2
·
(
aC2β

2

)R−1

.

Using Proposition 43, we have E
[
Z(r)

]
≤ (2Rβ)R/2

and thus,

E[Z(r)]

τr
≤
(
2R ·

(
2

aC2

)R−1

· 2R/2

)
·
(
R

β

)R/2−1

.

Note that r ≤ r0 = dlog log ne and thus R/β < 1 when n is sufficiently large. As a result we have

E[Z(r)]

τr
≤ 2R ·

(
2

aC2

)R−1

· 2R/2 ≤ 2R ·
(

4

aC2

)R−1

≤ 1

100

(
1

2

)R−1

,

when C is sufficiently large. This completes the proof of the first part of (54). For the second part,

by Corollary 37 and using the first part of (54) and the recursive definition of τr in (49), we have

Var
[
Z(r)

]
≤ 1

q2
·
∥∥µ(�r+1(p))

∥∥2
2
+

4

q
·
∥∥µ(�r(p))

∥∥2
2
·
∥∥µ(�r+1(p))

∥∥
2

≤ 1

100 · q2 · 22R−1
· τr+1 +

1

250 · q · 2R−1
· τr ·

√
τr+1

=
1

100 · q2 · 22R−1
·
(
q2τ2r
5000

)
+

1

250 · q · 2R−1
· τr ·

√
q2τ2r
5000

<
1

100

(
1

2

)R−1

· τ2r .
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This finishes the proof of the lemma.

Appendix F. Proof of the Main Structural Lemma: Lemma 7

In this section, we prove the main structural lemma. The goal is to relate the distance in total

variation from a distribution which is far from being a k-junta to the expected Euclidean distance of

its mean vector after applying random restrictions.

The proof of Lemma 7 uses the following results from Canonne et al. (2019), which we repro-

duce below.

Lemma 44 (Lemma 1.4 in Canonne et al. (2019)) Let p be a distribution over {−1, 1}n. For any

σ ∈ (0, 1),

dTV(p,U) ≤ E
S∼Sσ

[
dTV(pS,U)

]
+ E

ρ∼Dσ(p)

[
dTV(p|ρ,U)

]
.

Lemma 45 (Implicit in Canonne et al. (2019)) Let p be a distribution over {−1, 1}n. Then we

have

dTV(p,U)
n log n

. E
i∼[n]

ρ∼D{i}(p)

[∥∥µ(p|ρ)
∥∥
2

]
.

Proof: We follow Subsection 1.1.2 in Canonne et al. (2019). Let f : {−1, 1}n → [−1,∞) be

f(x) = 2n · p(x)− 1.

Then by the first part of (4) in Canonne et al. (2019) (scaled by 1/n), we have

dTV(p,U)
n log n

.
1

n
· E
x∼{−1,1}n



√√√√

n∑

i=1

((
f(x)− f(x(i))

)+)2



=
1

n
· E
x∼p




√√√√
n∑

i=1

((
f(x)− f(x(i))

)+

f(x) + 1

)2



≤ 1

n
· E
x∼p

[
n∑

i=1

∣∣∣∣∣

(
f(x)− f(x(i))

)+

f(x) + 1

∣∣∣∣∣

]

≤ 2

n
·

n∑

i=1

E
x∼p

[ ∣∣∣∣∣
p(x)− p(x(i))

p(x) + p(x(i))

∣∣∣∣∣

]
= 2 E

i∼[n]
ρ∼D{i}(p)

[∣∣µ(p|ρ)i
∣∣
]
,

where the first inequality uses a robust version of Pisier’s inequality on f (see Theorem 1.7 and (3)

in Canonne et al. (2019)); the next equation follows from importance sampling; the third inequality

uses Jensen’s inequality. Finally we note that since p|ρ is supported on a single bit, the absolute

value is the same as the Euclidean norm.

We point out that the two lemmas above hold even when n is a small constant. The next theorem

from Canonne et al. (2019) holds only when n is sufficiently large.
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Theorem 46 (Theorem 1.5 in Canonne et al. (2019)) Let p be a distribution over {−1, 1}n. For

any σ ∈ (0, 1),

E
ρ∼Dσ(p)

[∥∥µ(p|ρ)
∥∥
2

]
≥ σ

poly(log n)
· Ω̃
(

E
S∼Sσ

[
dTV(pS,U)

]
− 2e−min(σ,1−σ)n/10

)
. (56)

We are now ready to prove Lemma 7.

Proof of Lemma 7: Let q be the junta distribution on J such that its projection qJ is the same as pJ
(equivalently, one can draw x ∼ q by first drawing a string from {0, 1}J from pJ and then drawing

every other bit independently and uniformly at random). Given our assumption that p is ε-far from

every junta distribution over J , we have

ε ≤ dTV(p, q) = E
ρ∼D

J
(p)

[
dTV

(
p|ρ, q|ρ

)]
= E

ρ∼D
J
(p)

[
dTV

(
p|ρ,U

)]
. (57)

In the rest of the proof we consider a restriction ρ ∈ {−1, 1, ∗}n with stars(ρ) = J and lowerbound

dTV(p|ρ,U). For simplicity of notation, we let g = p|ρ be the distribution supported over {−1, 1}J .

The goal is to obtain a lower bound for dTV(g,U) in terms of mean vectors of random restrictions

of g, which is then plugged into (57) to finish the proof of Lemma 7.

Let m = |J |. We start with the case when m satisfies m ≤ C · log(m/ε) for some constant

C > 0. We apply Lemma 45 on g (with the parameter n set to m). There is a constant ĉ such that

dTV(g,U) ≤ ĉ log2(m/ε) · E
i∼[n]

ν∼D{i}(p)

[∥∥µ(g|ν)
∥∥
2

]
.

Letting j = dlog2 2me, the probability of ρ ∼ Dσj (g) having exactly one ∗ is at least

m · σj · (1− σj)m−1 ≥ m · 1

4m
·
(
1− 1

2m

)m−1

≥ 1

8
,

and when this happens, the ∗ is distributed uniformly at random. As a result, we have

dTV(g,U) ≤ ĉ log2(m/ε) · E
i∼[n]

ν∼D{i}(p)

[∥∥µ(g|ν)
∥∥
2

]
≤ 8 ĉ log2(m/ε) · E

ν∼Dσ(g)

[∥∥µ(g|ν)
∥∥
2

]
(58)

The lemma then follows by combining (57) and (58). We now turn to the case when

|J | = m ≥ C · log(m/ε) (59)

for some sufficiently large constant C > 0. We first prove by induction that for any t ∈ N,

dTV(g,U) ≤ E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)]
+

t∑

j=1

E
ν∼D

σj−1(g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(g|ν)S,U

)]
]
. (60)
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Lemma 44 provides the base case when t = 1, as a draw from the distributionD1(g) always outputs

the all-∗ restriction (∗, ∗, . . . , ∗). For the induction step with t > 1, notice that

dTV(g,U) ≤ E
ν∼D

σt−1 (g)

[
dTV

(
g|ν ,U

)]
+

t−1∑

j=1

E
ν∼D

σj−1 (g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(gν)S,U

)]]

(61)

≤ E
ν∼D

σt−1(g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(g|ν)S,U

)]
+ E

ν′∼Dσ(g|ν)

[
dTV

(
(g|ν)|ν′ ,U

)]
]

(62)

+
t−1∑

j=1

E
ν∼D

σj−1 (g)

[
E

S∼Sσ(stars(ν))

[
dTV

(
(gν)S,U

)]]
,

where we first applied the inductive hypothesis in (61) and then Lemma 44 to the distribution g|ν
supported on {−1, 1}stars(ν) in (62). We get (60) by noticing that the distribution over distributions

(g|ν)|ν′ where ν ∼ Dσt−1(g) and ν ′ ∼ Dσ(g|ν) is equivalent to g|ν with ν ∼ Dσt(g).

Next for each restriction ν ∈ {−1, 1, ∗}n we let

α(ν) = E
S∼Sσ(stars(ν))

[
dTV

(
(g|ν)S,U

)]
,

and let Gt ⊂ {−1, 1, ∗}n for each t ∈ N be the set of restrictions ν ∈ {−1, 1, ∗}n that satisfy

α(ν) ≥ max
{ ε

6t
, 4e−|stars(ν)|/20

}
.

For each restriction ν /∈ Gt we trivially have

α(ν) ≤ ε

6t
+ 4e−|stars(ν)|/20.

For each ν ∈ Gt we have

α(ν)− 2e−|stars(ν)|/20 ≥ α(v)/2 ≥ ε/(12t).

We can then apply Theorem 46 to get

α(ν) ≤
(
c0 ·

(
log n · log(12t/ε)

)c1) · E
ν′∼Dσ(g|ν)

[∥∥µ
(
(g|ν)|ν′

)∥∥
2

]

for some universal constants c0 and c1. Therefore, we have for every ν ∈ {−1, 1, ∗}n that

α(ν) ≤
(
c0 ·

(
log n · log(12t/ε)

)c1) · E
ν′∼Dσ(g|ν)

[∥∥µ
(
(g|ν)|ν′

)∥∥
2

]
+

ε

6t
+ 4e−|stars(ν)|/20.
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Combining this bound with (60), we get

dTV(g,U) ≤ E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)]
(63)

+
(
c0 ·

(
log n · log(12t/ε)

)c1) ·
t∑

j=1

E
ν∼D

σj−1 (g)

[
E

ν′∼Dσ(g|ν)

[∥∥µ
(
(g|ν)|ν′

)∥∥
2

]]

(64)

+
ε

6
+ 4

t∑

j=1

E
ν∼D

σj−1 (g)

[
e−|stars(ν)|/20

]
. (65)

Setting (where C is the constant from (59))

t =

⌊
log

(
m

C · log(m/ε)

)⌋
+ 1 (66)

in the rest of the proof. We upper bound the right-hand side of (65) by noting that |stars(ν)|, when

ν ∼ Dσj−1(g) is a sum of n independent random variables, where each is set to 1 with probability

σj−1. Thus, we have

t∑

j=1

E
ν∼D

σj−1 (g)

[
e−|stars(ν)|/20

]
=

t∑

j=1

(
E

X∼Ber(σj−1)

[
e−X/20

])m

=
t∑

j=1

(
1− σj−1

(
1− e−1/20

))m

≤
t∑

j=1

(
1− σj−1

100

)m

≤ t · exp
(
−σt−1m

100

)
≤ ε

24
,

using our choice of t with σt−1m ≥ C · log(m/ε) and a sufficiently large constant C. Therefore,

the right-hand side of (65) can be bounded from above by ε/3.

Next we upperbound (64). Using again the fact that (g|ν)|ν′ with ν ∼ Dσj−1(g) and ν ′ ∼
Dσ(g|ν) is distributed as g|ν with ν ∼ Dσj (g), the right-hand side of (64) may be upper bounded

by

(
c0 ·

(
log n · log(12t/ε)

)c1) ·
t∑

j=1

E
ν∼D

σj (g)

[∥∥µ(g|ν)
∥∥
2

]
. (67)

Finally we bound the right-hand side of (63) by considering the set of restrictions F ⊂ {−1, 1, ∗}n
where ν ∈ {−1, 1, ∗}n is in F iff |stars(ν)| ≤ 2C · log(m/ε), and note that by the setting of t,

Pr
ν∼Dσt (g)

[
ν /∈ F

]
≤ ε

6
.

Using the trivial bound of dTV(g|ν ,U) ≤ 1, we have

E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)]
≤ ε

6
+ E

ν∼Dσt (g)

[
dTV

(
g|ν ,U

)
· 1 {ν ∈ F}

]
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We apply Lemma 45 to every g|ν with ν ∈ F . So there exists a universal constant c2 such that

E
ν∼Dσt (g)

[
dTV

(
g|ν ,U

)
· 1 {ν ∈ F}

]
≤ c2 · log2(m/ε) · E

ν∼Dσt (g)


 E

i∼stars(ν)
ν′∼D{i}(g|ν)

[∥∥µ
(
(g|ν)|ν′

)∥∥
2

]

 .

Note that the distribution on (g|ν)|ν′ is equivalent to the distribution g|ν which draws i ∼ [n] and

then sets ν ∼ D{i}(g). Hence, we can upperbound (63) by

ε

6
+ c2 · log2(m/ε) · E

i∼[n]
ν∼D{i}(g)

[∥∥µ
(
g|ν
)∥∥

2

]
≤ ε

6
+ 4c2 · log2(m/ε) · E

ν∼Dσr (g)

[∥∥µ
(
g|ν
)∥∥

2

]

where r = dlog2me. The inequality used the fact that ν ∼ Dσr(g) has stars(ν) = 1 with probabil-

ity at least 1/4 and when this happens, the star is distributed uniformly at random.

Finally, noting that t < r, we combine the upper bounds for (63), (64), and (65) to get

dTV(g,U) ≤
ε

2
+ c3 · logc4(n/ε) ·

dlog2 ne∑

j=1

E
ν∼D

σj (g)

[∥∥µ(g|ν)
∥∥
2

]

for some universal constants c3 and c4. It follows from (57) that

ε ≤ ε

2
+ polylog(n/ε) ·

dlog2 ne∑

j=1

E
ρ∼D

J
(p)

[
E

ν∼D
σj (p|ρ)

[∥∥µ
(
(p|ρ)|ν

)∥∥
2

]]
,

which completes the proof.
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