SMOOTH RIGIDITY FOR VERY NON-ALGEBRAIC
EXPANDING MAPS

ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

ABSTRACT. We show that the space of expanding maps contains an open and
dense set where smooth conjugacy classes of expanding maps are determined
by the values of the Jacobians of return maps at periodic points.

1. INTRODUCTION

Let M be a smooth closed manifold. Recall that a C", r > 1, map f: M - M

is called expanding if

IDfvl > v
for all non-zero v € T'M and some choice of Riemannian metric on M. It is easy to
see that an expanding map is necessarily a covering map.

Recall that expanding maps have been classified up to topological conjugacy.
Shub [Sh69] proved that M is covered by the Euclidean space and also that an
expanding endomorphism of M is topologically conjugate to an affine expanding
endomorphism of an infranilmanifold if and only if the fundamental group 1 (M)
contains a nilpotent subgroup of finite index. Franks [Fr70] showed that if M
admits an expanding endomorphism then m; (M) has polynomial growth. Finally, in
1981, Gromov [Gr81] completed classification by showing that any finitely generated
group of polynomial growth contains a nilpotent subgroup of finite index. Hence
any expanding endomorphism is topologically conjugate to an affine expanding
endomorphism of an infranilmanifold.

Let f;: M; — M; be C" smooth, r > 1, expanding maps i = 1,2. Also we will
assume that f; and fy are conjugated via a homeomorphism h : M7 — Ms, i.e.,
ho fi = fooh. For example, homotopic expanding maps on the same manifold are
always conjugate.

It is well known that h is necessarily bi-Holder continuous. However, a priori h
is not C' smooth with obvious obstructions carried by the eigendata of periodic
points. That is, when h is C, the differential of the return map D fJ*(z) is conjugate
to DfI(h(xz)) when x = f{*(z). A weaker necessary assumption is coincidence of
Jacobian data, i.e.,

Jac(f7)(x) = Jac(f3) (h(x))
for all periodic points x = f]*(x).
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In this paper we offer the following progress for higher dimensional expanding
maps. For any r > 2 there exists a C"-dense and C'-open subset U in the space
of C" expanding maps such that if f1 € U and fy is an expanding map which is
conjugate to f1 and has the same Jacobian data then the conjugacy is C"~1. In
the proof we use the fact that f; lives on an infranilmanifold. In the next section
we will give precise statements which, in particular, explicitly describe the set U/ in
the next section. Our proof of this result was partially inspired by the Embedding
theorem (or Reconstruction theorem) of Takens [T81].

In dimension one smooth classification was already known. Indeed, Shub and
Sullivan showed that for C”, r > 2, expanding maps of the circle S! the above con-
dition on coincidence of Jacobians implies that the conjugacy h is C” smooth [SS85].
In fact they proved a stronger result that an absolutely continuous conjugacy (which
is not, a priori, even continuous) must be coincide a.e. with smooth conjugacy pro-
vided that the Jacobian of one of the expanding maps is not cohomologous to a
constant.

The analogous “smooth conjugacy problem” in the setting of Anosov diffeomor-
phisms was completely resolved by de la Llave, Marco and Moriyén in dimension
2 [dIL87, dILMS8S8, dIL92]. In higher dimensions there was a lot of partial progress,
e.g., see [dIL04, GO8, KS09] and references therein. However progress was made
only for certain special classes of Anosov diffeomorphisms such as conformal or with
a fine dominated splitting. When compared to this body of work, the current pa-
per is very different. It relies on a fundamentally different approach — to examine
matching functions rather than matching measures. And it yields smooth classi-
fication on a large open set as opposed to characterization of smooth conjugacy
classes of certain special maps.

The next section contains the statement of our main technical result Theorem 2.1.
Then we state a number of corollaries for smooth conjugacy problem and discuss
necessity of various assumptions. Section 3 is devoted to preliminaries on properties
of the transfer operator associated to an expanding map. Section 4 contain the
proof of the main theorem under an additional simplifying assumption that the
underlying manifold is a torus, such an assumption makes the proof much shorter
and more transparent. Then in Section 5 we prove Theorem 2.1 in full generality.
In Section 6 we derive all the corollaries on smooth classification problem. Then,
nn Section 7, we give a number of examples of expanding maps illustrating various
features of our results and proofs. Finally, in Section 8 we state a generalized factor
version of Theorem 2.1 and also give an application.

Acknowledgement: The second author was spending his sabbatical year in Lab-
oratoire Paul Painlevé, Université de Lille during this research, he wants to thank
them and specially Livio Flaminio for their warm and generous hospitality. He
also thanks Livio Flaminio for all the discussions. We would like to thank Feliks
Przytycki for feedback pointing out references for Remark 3.2. We are grateful to
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Sasha Leibman and Vitaly Bergelson for their help with the elementary proof of
Lemma 5.11. Finally we would like to thank the referees for helpful feedback.

2. THE RESULTS.

We adopt the standard convention and call a map f: M — M C"-smooth,
r =0, if it is |r| times continuously differentiable and its Cl"]-differential is Holder
continuous with exponent r — |r|. We also allow r = o0 and r = w (real analytic
maps). One defines C” smooth functions on M in a similar way.

Recall that we denote by f;: M; — M;, i = 1,2, C" smooth expanding maps
and we assume that f; and fy are conjugated by h, ho f; = fs o h. Given functions
wi: M; > R i =1,2 we say that (f1,¢1) is equivalent to (f2,p2) and write

(flawl) ~ (f?a‘pQ)

if there exists a function u : M; — R such that
p1—paoh=u—wuofi

Then, by the Livshits theorem [L72], (f1,01) ~ (f2,92) if and only if for every
periodic point z € Fiz(f]")

S (@) = 3 pa(fE k()
k=0 k=0

Further, if ; are C™ smooth then the transfer function u is also C” smooth.! The
following is our main technical result.

Theorem 2.1. Assume that M;, i = 1,2, are closed manifolds homeomorphic to
a nilmanifold. Let f;: M; — M;, i = 1,2, be C" smooth, r = 1, expanding maps
and assume they are conjugate via a homeomorphism h: My — Ms. Then there
exist manifolds M; (which are homeomorphic to a nilmanifold) and CT fibrations
pi: My — M;, i=1,2, (whose fibers are homeomorphic to a nilmanifold) and C"

expanding maps f; - M; — M;, such that f; fibers over f;, i.e.,
piofi=fiop, i=12
The conjugacy h maps fibers to fibers, i.e.,
proh=hom

where the induced conjugacy h: My — My, ho fi = fooh, is a C" diffeomorphism.

Further, the fibrations p;, i = 1,2, have the following property. If p; : M; — R,
i=1,2, are C" smooth functions such that (fi,¢1) ~ (fa2,p2) then there exist C”
functions @; : M; — R, i = 1,2, such that p; is cohomologous to @; o p; over f;,
i=1,2, and

P20h=¢1
IThe Livshits Theorem for expanding maps can be proved using the standard transitive point

argument [L72]. There is no loss of regularity in the bootstrap argument for the transfer function,
see e.g., [JO2].
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All manifolds in the above theorem, including the fibers of the fibrations, are
connected. All manifolds are homeomorphic to nilmanifolds but could carry exotic
smooth structure.

At this point we recommend that the reader looks at Example 6.1 to better
understand the statement of the above theorem.

Remark 2.2. Manifold M; may be equal to M; or may be a point or some di-
mension in between. In the first case we obtain that f; and fy; are C™ smoothly
conjugate and in the second case we obtain that the functions ¢; and @9 are coho-
mologous to a constant.

Also notice that the regularity of the f;’s and ¢;’s may be different to start with.
Then naturally one takes r to be the minimal value. Moreover, for a given pair of
fi, i = 1,2, but different choices of r > 1, the resulting fibrations p;, i = 1,2, may,
in fact, depend on 7.

Remark 2.3. If one does not assume that M, are homeomorphic to a nilmanold
then, instead of fibrations, the construction in the proof of Theorem 2.1 yields com-
pact foliations F; i.e., foliations with all leaves compact. Further, by improving
the argument used to show that the leaves of F; are compact, one can check that
these foliations are generalized Seifert fibrations. The argument for compactness
and the Seifert property of the foliation is independent of classification of expand-
ing maps. Klein bottle Example 7.8 shows that such foliations, indeed, can have
exceptional leaves on infranilmanifolds, that is, they are not necessarily locally triv-
ial fibrations. Hence the assumption that M; are homeomorphic to nilmanifolds is
a necessary one. However, in practice, this assumption is not a big restriction.
Indeed, by classification, any manifold which supports an expanding map is home-
omorphic to an infranilmanifold. Hence, one can always lift given expanding maps
to finite nilmanifold covers and study the problem on the cover.

Remark 2.4. It will become clear from the proof of Theorem 2.1 that the fibra-
tions p; are uniquely determined by f;, h, and r. However, if one does not require
the latter property in the statement, i.e., that “matching” functions ¢; are co-
homologous to ¢; o p; then the choice of fibrations, in general, is not unique. For
example, there is always the trivial fibration whose fibers are points. In general
there are finitely or infinitely many distinct smooth fibrations for a given expand-
ing map and the maximal number of possible fibrations occurs when h is smooth.
This maximal number of fibrations is determined by the linearization of f; (see also
Remark 7.2). There is also a naturally defined partial order on the set of fibrations
with the trivial one being subordinate to any other fibration and the one given by
Theorem 2.1 being the maximal one.

Remark 2.5. Recall that there exist expanding maps on exotic nilmanifolds, i.e.,
manifolds homeomorphic but not diffeomorphic (or even not PL-homeomorphic)
to nilmanifolds [FJ78, FG14]. Our theorem applies to such examples. Moreover,
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by using Gromoll’s filtration and following the strategy of [FG12], one can con-
struct expanding map fi1: M; — M;i, on a nilmanifold M; and an expanding
map fo: My — Ms on an exotic nilmanifold M, in such a way that the fibra-
tions p;: M; — M, are non-trivial, i.e., dim M; > dim M; > 0. Also note that our
theorem applies in the case when both M; and M> are exotic. We elaborate on this
remark in Example 7.9.

A linear expanding endomorphism L of a d-dimensional torus M is called irre-
ducible if the characteristic polynomial of the integer matrix defining L is irreducible
over Z; equivalently L does not have non-trivial invariant rational subspaces. Recall
that any expanding map f: M — M is conjugate to an expanding endomorphism
L. We will say f is érreducible if L is irreducible.

Corollary 2.6. Let M; be manifolds homeomorphic to the d-dimensional torus.
Assume that fi: M; — M; are C"T1 smooth, r > 1, expanding maps. Assume that
they are conjugate via h. Also assume that fi is irreducible and that the entropy
mazimizing measure for fi is not absolutely continuous with respect to Lebesque
measure. If Jac(f])(x) = Jac(f3)(h(x)) for every x € Fixz(f]') and every n then h
is a C" diffeomorphism.

We make four remarks pertaining this corollary.

Remark 2.7. The condition on the measure of maximal entropy can be detected
from a pair of periodic points. Hence the space of expanding maps which satisfy
this assumption is C"*! dense and C! open in the space of expanding maps.

Remark 2.8. The analogue of Corollary 2.6 for non-abelian nilmanifolds is vacu-
ous. This is because every linear expanding maps on a nilmanifolds leaves invariant
the fibration given by the center subgroup of the corresponding nilpotent Lie group.
Indeed, the proof of Corollary 2.6 relies on absence of such fibrations (which is guar-
anteed by irreducibility in the toral case).

Remark 2.9. Recall that an infratorus M is a closed manifold covered by the torus
T<¢. The Deck transformations of the covering T — M have the form z — Qx + v
and the linear parts @ form so called holonomy group of M. We can define an
expanding map f: M — M to be irreducible if its’ lift to T? is irreducible. Then
Corollary 2.6 holds for such irreducible expanding maps of infratori by first passing
to the torus cover and then arguing in the same way.

However, the supply of irreducible examples of expanding endomorphisms of
infratori which are not tori is rather limited. Notice that any @ # Id from the
holonomy group has 1 for an eigenvalue. Indeed otherwise corresponding affine map
of the torus z — Qx+v would have a fixed point by the Lefschetz formula. Further L
acts on the holonomy group by conjugation. Hence, because the holonomy group is
finite, for a sufficiently large k, L* and @ commute and, hence, L* leaves invariant
the non-trivial rational subspace — the eigenspace space of eigenvalue 1 for Q.
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Hence all irreducible examples must become reducible after passing to a finite power.
Still examples like that exist and we present one such example as Example 7.7.

Remark 2.10. Define the critical regularity ry by
. log | Do /1"
)~ o
where m is the conorm. Then by the argument of de la Llave [d11.92, Section 6] one
can rectify the loss of one derivative and bootstrap the regularity of the conjugacy.
That is if » > r¢ then the C" conjugacy given by Corollary 2.6 is, in fact, C"*1.
Same observation applies to other statements in this section.
In fact 7o(f1) admits an alternative expression

C e At (p)
ro(f1) = pepﬁ(fl) A= (p)

where A% (p) is respectively the largest/smallest Lyapunov exponent for f; at p.
Therefore ro(f1) can be computed directly from Lyapunov exponents along periodic
orbits. To see that the two formulae give the same value 7¢(f1) one can pass to the
invertible solenoid diffeomorphism and apply the approximation result [WW10].

Notice also that a priori it does not follow from the hypothesis of Corollary 2.6
that 79(f1) = ro(f2), however a posteriori one obtains this equality from smoothness
of the conjugacy.

We say that an expanding map f: M — M is very non-algebraic if for every
A € Z and for every m, 1 < m < dim(M), there exists a periodic point z of period
n such that A" is not an eigenvalue of the m-fold exterior power

m

A Daf"
Notice that this condition is open and dense.
Corollary 2.11. Assume that f;: M; — M; are C™t' smooth, » > 1, expanding
maps. Assume that they are topologically conjugate and also assume that f1 : M; —

M is very non-algebraic. Furthermore, assume that for every periodic point x of
f1 of period n

Jac(f1')(x) = Jac(f3') (h(z))
Then h is a C" diffeomorphism.

Remark 2.12. It will be clear from the proof that the very non-algebraic assump-
tion can be weakened to asking that for m = 1,2,...,dim(M) if A € Z appears in

/m\Dfl*

then A\™ does not appear in the spectrum of

/\ Daf?

the spectrum of
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for some periodic point x, x = f{*z. Here fi, stands for the linear expanding auto-
morphism induced by fi on the nilpotent Lie group and D fi, is the corresponding
Lie algebra automorphism.

Note that the very non-algebraic condition prevents f; from being linear.

Given two linear maps D;: R — R? i = 1,2, we say that D; and D, have
disjoint spectrum if for every m = 1,...d, the m-th exterior powers A™D; and
A™ Dy do not share any real eigenvalues. Given two periodic points z = f*(z) and
y = f'(y) we say that they have disjoint spectrum if the differentials D, f* and
D, f*! have disjoint spectrum.

Corollary 2.13. Assume that f;: M; — M; are C"T smooth, r > 1, expanding
maps. Assume that they are conjugate and also assume that there exists fy-periodic
points x and y which have disjoint spectrum. If for every periodic point x of fi
of period n the Jacobians Jac(f)(x) and Jac(f%)(h(x)) coincide then fy is C"
conjugate to fs.

Corollary 2.13 follows directly from Corollary 2.11 since the property of having
two periodic points with disjoint spectrum directly implies the very non-algebraic
property.

Recall that a homeomorphism is called absolutely continuous if it send the
Lebesgue measure to a measure which is absolutely continuous with respect to
Lebesgue measure.

Corollary 2.14. Letr > 1. If two C"*! very non-algebraic expanding maps which
are conjugate via an absolutely continuous homeomorphism h then h is, in fact, C”

smooth.

Corollary 2.14 follows directly from Corollary 2.11. Indeed, by ergodicity A must
map the smooth absolutely continuous measure of f; to the smooth absolutely
continuous measure for fs. It follows that the Jacobians at corresponding periodic
points must be equal.

3. KRZYZEWSKI-SACKSTEDER THEOREM FOR EXPANDING MAPS

Given a C", r > 1, expanding map f: M — M and a C" potential ¢: M — R
the transfer operator L, r: C*(M) — C*(M) given by

L, ju(x) = Z e W (y)
yef~tz

is defined for C* functions u, where k& < r. When no confusion is possible we
abbreviate the notation for the transfer operator to L.

Theorem 3.1 (Ruelle-Perron-Frobenius/Krzyzewski-Sacksteder). Let f: M — M
< .

be a C", r = 1, expanding map and let o: M — R be a C" potential; let 0 < k <
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Then the transfer operator L,: C*(M) — C*(M) has a unique mazimal positive
etgenvalue e©

£¢eu — ec+u
Corresponding eigenfunction e* is positive and is unique up to scaling. The eigen-
value e and the eigenvalue e* are independent of the choice of k € [0,7]. Further,

e¥ is C" smooth.

Remark 3.2. Originally this theorem was established by Ruelle for a more general
class of expanding maps and in Holder regularity [Rue68, Rue76] (see also [Bow75,
1.7]). Sacksteder [Sac74] and Krzyzewski [Krz77] had independently established
regularity of the eigenfunction. Krzyzewski [Krz82] has done the analytic case as
well. We note that both Sacksteder and Krzyzewski only considered the case when
© = —log Jac(f) because they were interested in regularity of the smooth invariant
measure for f. However the proofs work equally well for arbitrary smooth poten-
tials. Note that the uniqueness of the eigenspace occurs already among continuous
functions provided that the potential is at least Holder.

Another comment is that when r is an integer the proof of Sacksteder only
yields (r — 1) + Lip regularity of the eigenfunction e*. The C” regularity of e* was
established by Szewc [Sz84], see also [BG97, Theorem 8.6.3] for an exposition in
the one-dimensional case.

Corollary 3.3. Let f and ¢ be the same as in Theorem 3.1. Then there exists
a unique C" smooth function ¢: M — R and a unique constant c given by Theo-
rem 3.1 such that

1. ¢+ c is cohomologous to ¢;

2. 1 is the mazimal eigenvalue of the transfer operator Lg;

3. Lol=1

Proof. Let e® be the maximal eigenvalue with eigenfunction e* for £, given by
Theorem 3.1
Loe" =e
Let =9 —c+u—uo f then
Lyl=1

It is also clear that 1 is the maximal eigenvalue of £, since otherwise e® would not
be maximal positive eigenvalue for L.

Further, assume that ¢/ € R and ¢’ continuous also satisfy the conclusion of the
corollary with

@’:go—c/—ku'—u’Of

Then by the same calculation we have

’ / ’
Eweu _ ec +u

with e¢ being the maximal positive eigenvalue. Hence, by the uniqueness part of
Theorem 3.1 we obtain that ¢ = ¢/ and u = u’. O
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Such normalized potentials ¢ have been recently studied in the context of ther-
modynamical formalism [GKLM18].

Remark 3.4. Constant ¢ equals to topological pressure P(yp). It follows that
if (f1,1) ~ (f2,¢2) then the maximal eigenvalue is the same for corresponding
operators and hence (f1,$1) ~ (f2,P2). (But we won’t use this fact.)

Remark 3.5. Let e© be the maximal positive eigenvalue for £, with eigenfunction
e" and assume that e is another positive continuous eigenfunction for L, i.e.,
Lye?” = oe” for some o € R, then w = u + k for some k£ € R and o is the maximal
eigenvalue. Notice that it follows that condition 2 of Corollary 3.3 is automatic
from condition 3 because a positive eigenfunction necessarily corresponds to the
maximal eigenvalue. (But we won’t use this fact.)

4. PROOF OF THE MAIN THEOREM: THE TORUS CASE

The proof of Theorem 2.1 consists of two steps. The first step is to built the
fibrations and the second step is to verify the posited property of the fibrations.
In this section will prove Theorem 2.1 under an additional assumption that M; are
homeomorphic to a torus. This assumption simplifies quite a bit the construction
of fibrations. The second step is general and does not rely on homotopy type of
M;. Building fibrations in the case when M, are general nilmanifold requires a
more complicated argument that involves and inductive procedure on the degree of
nilpotency of the the fundamental group. This more general argument appears in
Section 5.

4.1. Fibrations. We begin by explaining the construction of fibrations p;, i = 1,2,
which appear in Theorem 2.1.
Recall that ho fi = fo o h and consider the following space of pairs of smooth
functions
V = A{(W1,92) € C"(My) x C"(Mz) : b1 = pa 0 h}
This is a closed subspace of C"(M;) x C"(Mz). Note that if (¢1,12) € V then
(1 0 f1,109 0 fo) € V. Also note that V always contains constants (¢, c¢) and is an
algebra. We denote by V; the projection of V on C"(M;), i = 1, 2.
Define the subspace fields E;(z) ¢ T, M;, i = 1,2,
Ei(z) = () kerday;
i€V
Notice that if x, — x, n — oo, then limsup E;(x,) < E;(x). This property
implies that the dimension function dim F;(z) is upper semicontinuous. Let m; =
mingeps, dim F;(x), then upper semicontinuity implies that the set

Ui = {I € Mz : kz(llf) = mi}
is open.

Lemma 4.1. U; = M;, ¢t = 1,2 and hence E;, in fact, is a distribution.
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Proof. Let I'}?' be the group of Deck transformations of the covering map f*: M; —
M;, i = 1,2. Deck transformations are C" diffeomorphisms. By definition

L =A{T: fi'oT = [}

and, hence, hy: 7 — I'% given by hy(T) = hoT oh™! is an isomorphism. Indeed,
if T eTy then fo(hoToh™)=hoffoToh ™t =ho ffoh™! = f and vice
versa.

Now it is easy to see that V; are I'P’-invariant, that is, if (¢1,%2) € V then
(10T, a0 hy(T)) €V for all T e I'?. Indeed,

s 0hy(T)oh = pohoT =y oT
Hence, for all T'e I'}' we have
By(T(x)) = ) kerdpyw = [ kerdpey (oT) = () DT(ker do()) = DT(E;(x))
YeV; PeV; peV;
Hence E; is I'’-invariant and, in particular, the set U; is I'!-invariant.
Because 71 M; = Z% is abelian the covering f7 is normal and T'?(z) = f; "(x).

Hence the orbits I'}"(z) become arbitrarily dense as n — oo and because U; is open
we will have that for a sufficiently large n we have U; = I'(U;) = M. ]

It is easy to see now that the distributions E; integrate to C" foliation ;. Indeed,
for every x € M; there exist finitely many functions v}, .. .wffm" € V; such that

dfm.;

E;(x) = ﬂ ker d, 1)

Jj=1

Indeed, just take 1/)5 such that {dmwzj }; is a maximal linearly independent set of
{dat}yev,- _

By continuity of di)! and since E; has constant dimension, the same formula
holds on a small neighborhood of x. That is, there exists a neighborhood U; , of
such that

dfmi

Ei(y) = () kerd,y!
j=1

for all y € U; 5. Therefore, by the implicit function theorem, we have that the maps
\I/i,x : Ui,z - Rd_mia

define a foliation atlas of a C" foliation which is tangent to E;. We denote these
foliations by F;, ¢ = 1, 2.

Lemma 4.2. The leaves of F; are compact. In fact, the leaf F;(x) for x € My, is
the connected component of x of the intersection

N v (W)

eV
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Proof. Let 1 be a function in V; and let = € M;. Then by the definition
TFi(y) = Ei(y) < kerdyy

for every y € F;(z). Hence 1 is constant on F;(z) and F;(z) < ¢~ *(¢)(z)). Hence

Fiz) < [ v (@)

wevy

On the other hand, recall that, locally, for sufficiently small neighborhood U; , 3 x
we have the foliation chart and hence

Fi(@) nUse = U (Vin(@) = [ @) @ (@) n Uiz () ¢ (@) 0 Uis
j=1 Yev;r
and the main claim of the lemma follows. O

Recall that for every function 1, € V| there is 99 € V3 such that g o h = ¢
and vice versa. This implies that h(Fi(x)) = Fa(h(z)) for every x € M;. Hence
by the invariance of domain theorem we obtain m; = mg, i.e., the dimensions of
foliations JF; and Fy are the same. Also note that Lemma 4.2 and V; o f; < V;
immediately implies that F; is invariant under f;.

To conclude that compact C” foliations JF; are, in fact, fibrations we need to rely
on global structural stability of expanding maps and complete the argument on the
“linear side." Namely, we have that h; o f o h;l = A: T? - T¢ is an expanding
endomorphism. Then F = h;(F;) is an A-invariant compact continuous foliation
on T¢. The action of I'? is conjugate via h; to the translation action by the set
A7"({z0}), where x is a fixed point of A which we identify with 0 € T?. Because
the set U,>0A™"({z0}) is dense in T? we conclude that F is invariant under the T¢-
action on itself by translations. Hence, Yy € F(x¢) we have y+ F(z¢) = F(y+zo) =
F(y) = F(xo) and F(—y) = —y+F(z0) = —y+F(y) = F(—y+y) = F(x0); that is,
F(x) is a subgroup of T%. Also recall that F'(x) is compact and connected. Hence,
one can easily check (or use Cartan’s closed subgroup thereom) that F(xg) is a
linearly embedded subtorus T™ < T¢. And because F invariant under translations,
we conclude that F is a linear fibration T™ — T¢ — T<~™. It remains to recall
that F; = h; '(F) and, therefore F; is a fibration whose fiber is homeomorphic to
T™ and whose base M; is a C” manifold homeomorphic to T4,

Because h sends F; to F3 it induces a homeomorphism h: M; — M,. To see
that h is smooth consider foliations charts around = and h(z), € M, given by

Via(y) = (W1e®), - 01" (), and W i) (y) = (U3 4 @), - V3 105 (1)

respectively. In these local coordinates h is given by h(¥1 ,(y)) = Uop)(h(y)).
However, by defintion, we know that there exist C" functions 1] h(x) which satisfy

/(/){,h(z) = ¢g7h(z) oh,j=1,...d —msy. Hence, h is given by

ROOE ), ™ @) = (VL ey (0, - T2 ()
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and since ¥, is a C" submersion we conclude that h is C” on a neighborhood of
p1(z). A symmetric argument proves that h=! is C".

4.2. Second step of the proof of Theorem 2.1: verifying the matching
property. Finally we need to show that given (f1, 1) ~ (f2,¢2) we have that ¢;
are cohomologous to functions in V.

By Corollary 3.3 we have C" functions ¢; and constants ¢; € R such that ¢; is
fi-cohomologous to ¢; + ¢; and we also have L4, ,1 =1, Ly, f,1 = 1. Moreover,
@, are unique among the functions cohomologous to ¢; up to a constant with this
property. We know that @9 o h is cohomologous to ¢1 + ¢ — ¢1. In fact, we will
show that

P20h=¢
By direct calculation, we have that
(‘C¢2,f2v) oh= ‘C’@QOh,fl (U © h)
for every function v. In particular, for the constant function v = 1 we have
L=10h=(Lsp1)0h=Leonp(1oh) = Loyonp (1)

Since ¢ o h is cohomologous to ¢1 up to a constant we get that ¢ 0oh = ¢1. Hence
(@1, p2) € VT and, by the definition of foliations F;, we conclude that @; is constant
on F;, i =1,2. Tt remains to set @;(p;(z)) = @:(x) + ¢;.

5. PROOF OF THE MAIN THEOREM: BUILDING FIBRATIONS ON NILMANIFOLDS

In this section we built the fibrations in the general case when M; are homeo-
morphic to a nilmanifold N/T. Recall that, by classification, there is an expanding
automorphism A: N — N, A(T") c I, which induces an algebraic expanding map
N/T" — N/T topologically conjugate to f;: M; — M;, i = 1,2. The rest of the
proof of Theorem 2.1, that is, verification of the matching property of fibrations,
was already done in the second half of Section 4.

Define the subspace fields F;(z) c T, M;, i = 1,2, and level sets as follows

Bi(z) = [ kerdywy, Pi(z) = (] v~ (¢(@))
PeV; PeV;
and let F;(z) = cc,Pi(x), where cc, stands for the “connected component of z."
Our goal is to show that F; are, in fact, C" fibrations with fiber and base both
homeomorphic to nilmanifolds.

Remark 5.1. If dim F;(x) = 0 at one point € M; then it is easy to conclude
using the inverse function theorem that the conjugacy h is C" on a neighborhood
of x and then, using dynamics, that h is C" globally. Thus the main interest of the
proof to follow is in the case when dim E; > 1.
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5.1. Algebraic lemmas. Recall that I is a lattice in a simply connected nilpotent
Lie group N and, hence, I is torsion free and nilpotent. Let T® = T let IV =
[T, T771] be the lower central series. Denote by k the smallest number such that
*+1 = {0}. Recall that A(T') < T and, hence, we also have A(IY) < TY. Now
define the following lattice
A*TY = A7Y (1Y) . T

Note that A*T? = A=Y(T) and A*T'**! = I'. The following lemma implies that
A*TJ is indeed a well-defined group.

Lemma 5.2. A~}(IV).- T =T -A"Y1Y),j=0,...k+ 1.
Proof. Let a € IV and v € I'. Then

AN a)y = A7 (aA(y) = A7H(A(v)ac)
where ¢ is a commutator, ¢ € [[',[7] = TV*! < IV, Hence A~!(a)y = yA ™ (ac) €
I'- A=Y(TY). This proves the inclusion A=*(I'V)-T' < I' - A=}(I) and the reverse
inclusion follows from a similar calculation. g

Lemma 5.3. The group A*T7+! is a normal subgroup of A*T7, j =0,...k.

Proof. We will use a group element vy € ATV - T to conjugate an element 36 €
A7+ T and we will see that the result is in A*T7+1,

aypdytat = (ava Tty T y(aBa BT Blady e T )y TS
Indeed we have written as a product of elements in A*IV*+! and commutators from
[A~Y(TY),T] = A7V, A(T)] € A7, T] = A~HIIHY) < A*TI+L. O
We also recall that IV < A~'TY and I' © A*IY are finite index subgroups.

5.2. The setup on universal covers. The expanding maps f; are conjugate to
the algebraic expanding map via conjugacies h;: M; — N/T'. Let z; = h;l(idNI‘)
and let 7;: (Mz,iz) — (M;,x;) be the universal covers, i = 1,2. We denote by
I, ={T:moT =m} ~T the group of Deck transformation of m;, which we can
also identify with the fundamental group m (M;, x;). Next we lift h; and f; to the
universal covers in such a way that h;(Z;) = idy and f;(Z;) = &. Then we have
ilioﬁ- = Aoh;, Bofl :fQOB,

where h = B;l o hy: My — M,. We also have f; o T = A(T) o fi,for T eT;.

The group A~1(T) acts on N by left translations x — A= (T) -z = (A1 oTo
A)(x), T e T'. Following the same idea as in Section 4 we can conjugate this action
using fLi and obtain actions on ]\;[Z-

AT = {fi ' oTof,: Tely}
Furthermore we can similarly consider the following actions for any 7 =0,...k+ 1
AT = {7 oTo fi: TeTl},
AT = AT ol = {f7 oTo f;08:Tel?, Sely}
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Clearly the actions of A*F{ and A*I‘g are conjugate via h. Consider the orbits
Ol (x) = A*T (), z € M,

It is immediate that the orbits are T'-invariant: O (T'(z)) = O!(z), T € T';. Hence

the projection of the orbit O7(m;(x)) = m;(O/(x)) is a finite set of cardinality

|A*TJ/T|. Further these partitions into orbits are invariant under the expanding

maps: f;(Ol(x)) = Ol(fi(x)), fi(Ol(z)) = O)(fi(x)). Indeed, let T € I’} and

S eT'; then

fil(fiteTo fioS)(x)) = (T o fio S)(x) = (T o A(S))(filx)) € O] (fi(x))
because T € T/ ¢ A~'TY.
Note that OFF!(z) is just that I';-orbit of  and, hence, OF*!(z) = {z}; and
O9(x) is A7'T; orbit of 2 and, hence, O%(z) = ;1 (fi(x)), while O (z), j = 1,...k
interpolate in between.

Remark 5.4. The fact that O?(m;(z)) are not orbits of a finite Deck group action
on M; is forcing us to work on the universal cover; cf. Section 4.

We now make an observation, which will be very important in the sequel, that
we can consider the same setting for expanding maps f7*, f3 and the expanding
endomorphism A™ for any n > 1, making the above discussion the case when n = 1.
Namely, we have actions of A”Tf and of A*"Fg = A*"I‘g - T';, on the universal
covers M;, i = 1,2, which are conjugate via h. Also, the action of A*TY = A7"Ty
is conjugate via h; to the action by left translations by elements of A~"T' on N.
Hence we can consider the group

AT = J AT

n=1
which is a dense subgroup of N, and its actions A~*T; on M;, i = 1,2.

5.3. Invariance of the level set partition. To set up an induction argument we
introduce “interpolating” subspace fields and level sets as follows. Recall that

V= A{(W1,92) € C"(My) x C"(Mz) : 1 = pa 0 h}
Denote by V the corresponding space of lifted pairs
V= {(¢1,42) € C"(M1) x C7(My) s ¢p o T = p VT € Tyi = 1,2; 4y = ¢n o b}

and denote by Vj the projection of V on i-th coordinate.
Now consider the filtration V0 c V! < ... c VF+1 = V given by

V3 = {(t1,2) € CT(N) x O (M) : 0T =y VT € AT i = 1,2; 4y = ol

As before, we will use f/ij to denote the projection of V7 on i-th coordinate. Let
Vi = (n7t,m51) o VI which is well defined due to equivarience. Hence we have
corresponding filtration on M; — V? = V;' = ... < V™! = V. Note that functions
on Vij are precisely those functions from V; which are constant on O{ (z), x € M;.
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Define

Bl@) = ] kerdo, Pl(2) = [] 07" (@), F(2) = ccaPl(2)

eV peV;

In the same way define

El(w) = ()] kerdyyp, Pl(a)= [) 07 (), F(x)=ce,Pi(x)
peVy YeV;?
Also given a set O define
Pi0) = | P(a)
ze0O
and similarly define sets P/(0).
Immediately from definitions we have the following properties:
1. EFf = B, PF = P, and Ff 1 = Fi;
2. P/ and F/ are well-defined partitions of M; and P/ and F/ are well-defined
partitions of M;;
3. E~'f, 7323 and ]:'ZJ are A*Fg-invariant;
4 DA(E @) < B (fi(2), £:(P(2) = P(fi(2)) and £,(F(x)) « F(fi(x)),
x € M;; and similarly for EY, P/ and F;
5. h(Pi(x)) = PJ(h(z)) and h(F](x)) = Fj(h(z)); and similarly for P/ and
7
6. Ei(x) = EF*' c EF(x) c ... ¢ E)(x),x € M;; and similarly for E/;
7. Pi(z) = P (x) € PF(z) < ... < P(x),x € M;; and similarly for P/, F/
and F7;
8. O)(z) c Pl(x), z € M, and O (z) < P!(z), x € M;;
9. Dm(E’Z) = EZ,
10. ;' (P (mi(w))) = P (x) and 7y(F] () © F (mi(2)), @ € M;;

K2

Lemma 5.5. For all j = 0,1,...k and all T € A*T? we have T(P! ™ (z)) =
P/NT(x)) and DT(E! (x)) = E/(T(x)), x € M;.

Proof. Tt is sufficient to show that if ¢ € f/in then ¢ oT € ‘75“ for all T € A*Ff
which implies that f/ij = f/ij Hor. Indeed, if we have that then

PN T@) = () v '@@@)=T| () @oD)((oT)(x))

rJ+1 7i+1
eV peVv/!

=7 () ¢ @) | =TF M ()
7#6‘7,-'”1
Similarly, we would have DT(E? (x)) = E!(T(z)) (cf. the proof of Lemma 4.1).
i Let ff#: A*I‘{ — A*T) be the isomorphism given by conjugation, ~h#(T) =
hoT oh™!. To complete the proof we have to show that if (11,15) € Vi]+1 then
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(10T, a0 hy(T)) € Vf“. We have
’Q/JQOh#(T)OiL:’L/JQOiLOT:’L/Jl oT

and it remains to check that the function ¢, o T, T € A*F? ,is A*I‘f *1_equivariant.
Indeed, for S e A*Fg *1 we have

YioToS=po(ToSoT ) oT =0T,
where the last equality holds because T o SoT ! e A*FZ 1 by Lemma 5.3. O

Lemma 5.6. Let X andY be finite subsets of M;. If X mPfH(Y) = & then there
exists a function 1 € Vi]-H such that ¥|x =0 and |y = 1.

Proof. The proof is based on the observation that if 1 € Vin then o € Vin
for any C" function ¢: R — R.

First consider the case when X = {z} and Y = {y1,%2,...yp}. Then because
x ¢ Pz-j H(Y) it can be separated from every point in Y by a function from Vij +
that is, for all ¢ = 1,...p there exists 1, € V/ ™' such that ¢,(z) # ¥ (y:). By
replacing v¢; with appropriate linear combination Av; + B, we can assume that
Yi(x) = 0 and ¥ (y;) = 1. Now let

p
wx = Z /(/)L?
t=1

Then we have ¢, (z) = 0 and ¢, (y;) = 1 for all t = 1,...p. Finally we replace 1,
with ¢ o1, where ¢ is a C" function such that ¢(0) = 0 and ¢(§) =1 for all £ > 1.
This completes the proof in the case when X = {x}.

In the general case we have X = {z1,%2,...24} and Y = {y1,92,...y,} and
we ca apply the above construction to each x,, s = 1,...¢, to obtain a function
Xs € Vin such that xs(zs) =0 and xs(y:) =1 for all t = 1,...p. Consider

x=>,(1—xs)?

Obviously, x(y:) = 0 for all ¢ and x(z,) > 1 for all s. We can use the C" function
© to define the posited separating function as ¢ =1 — ¢ o . ]

Lemma 5.7. P/ (O!(z)) = P/(z), z € M; and P! (O} (x)) = P! (x), x € M;,
forallj=0,1,...k.

Proof. The inclusion ﬁf“(@f (z)) < ﬁf(x) is straigtfoward. Indeed @f (z) c 755 (z)
and P/ (y) < PI(y) = P!(x) for all y € O)(x).

Assume the reverse inclusion does not hold. Then there exists a point x and
y € P! () such that y ¢ P/ ™' (O?(x)). By Lemma 5.5 the set P! ™' (07 (z)) is A*T-
invariant and hence O?(y) n P/ (O (z)) = @. Then we also have O (m;(y)) N
P/ (O (m;(z))) = @ and we can apply Lemma 5.6 to O (m;(y)) and O (m(x))
and obtain a function ¢ € V7™ such that w‘@g(m(z)) =0 and w|0{(m(y)) =1. We
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now lift 1 to M; and consider the finite sum

1/;= Z pomoTl

[T]eA*TI jA%TIH!
Note that the summands are well-defined because ¥ o 7; € f/ij + and, hence, are
A*TI ! equivariant. Notice that méi(f’?) =‘O and 1E|(,~)Z(y) — |A*TY/A*TIHY > 0.
Finally notice that for any [S] e A*I'//A*T7+

oS = 2 omoT oS = Z YomoT =1
[T]eA*DI /A*TI*! [T]eA*TI /A*DI+!
Hence 1 belongs to ‘7; and separates z and y which yields a contradiction. O

We finally arrive at the main lemma of this subsection. Recall that F; = .7:";”1.

Lemma 5.8. Forallj=0,1,...k, ]:'f = F; and F; is a A~'T;-invariant partition
of M, i =1,2.

Proof. Recall that cc, stands for “connected component of z." Applying the previ-

ous lemma we have

./—:.lj (I) = CCyg (755 (J,’)) = CCy U 755+1(y)
= ot U 737 @) |=ce (P @) = 7 @)
[T]eA*TI jA%DIH!

where the first equality in the second line is due to invariance of 755 *1(y) under
the action of A*I/*'. By induction on j we conclude that F7(z) = FF*1(z). In
particular ) = F;. It remains to recall that F? is A*T9 = A~'T-invariant. O

Using higher iterates of expanding maps we can prove, using exactly the same
arguments, that partitions F; are invariant under the action A~"T; for all n > 1.
Hence we have the following corollary. (Recall that A=*T"; = U, =147 "T;.)

Corollary 5.9. The partition F; of M; is invariant under the action of A~*T;.

5.4. Upgrading to a foliation. Now we will prove that F; is, in fact, a C" smooth
foliation.

Consider the dimension function dim EZ— and let m; = min_, A dim EN’Z- (z). Pick
a point x € M; such that dim E;(z) = m;. Then, by definition of F;(x) we can find
functions ¥1,%2, ... Yg—m, € V; such that

d—mi

Ei(z) = ﬂ ker d1;

Jj=1
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From continuity of d;; and the fact that m; is minimal dimension, we also have

the same formula
dfmi

Ei(y) = () kerdyy = (] kerdy;
YeV; j=1
for all y in a sufficiently small open neighborhood B of z.
Consider the map ¥U: B — R4™™i given by U(y) = (¥1(y), V2(y), - - - Ya—m, (v))-
It is clear that the plaque ¥~ (¥(y)) is tangent to E; at every point of the plaque.
By choosing B appropriately we may assume that the plaques ¥ ~!(¥(y)) are path-
connected for all y € B.

Lemma 5.10. For every y € B we have U1 (¥(y)) = Fi(y) n B.

Proof. If a point z € B does not belong to a plaque ¥~1(¥(y)) then one of the
functions 1); separates z and y. Hence z ¢ Pi(y) o Fi(y).

Now take z € U~!(¥(y)) and consider any function ¢ € V;. Connect z to y by a
path. If ¥(2) # ¢ (y) then for some point ¢ on the path the restriction of ¥ to this
path have non-zero derivative and, hence, E;(q) ¢ ker dq.¥ giving a contradiction.
Hence t(z) = v(y) for all 1 € V;, which implies that ¥~ (¥(y)) < Pi(y). Thus we
also have U—1(¥(y)) = F;(y) because ¥~1(¥(y)) is connected. O

Now we have that the restriction .7:"l| B is a foliation and we would like to spread
the foliation structure to the whole M;. For that we have to see that A~"I';(B) =
M;. If we have it, then using invariance under A—"T'; provided by Corollary 5.9,
we can conclude that F; has C" foliation structure in the neighborhood of every
point. And, hence, F; is indeed a C" foliation.

Recall that the action of of A="T"; on ]\;[i is conjugate via lNzi to the action by left
translations by A="(I') ¢ N on N. To guarantee that A="T;(B) = M; it suffices
to choose a sufficiently large n so that the set h;(B) covers a fundamental domain

of the lattice A="(T").

5.5. Upgrading to a fibration and completing the proof. Now we have that
both F; and F, are C" foliations. We also have that ﬁ(]:'l) = F, and, hence,
by Invariance of Domain, these foliations have the same dimension. It remains to
show that m;(F;) (which are clearly also C” foliations) are, in fact, C" fibrations.
We also need to show that the fibers m;(F;)(z) and the base of the fibrations are
homeomorphic to nilmanifolds and that the induced conjugacy on the base is a C”
diffeomorphism. To do that we go to linearized dynamics on N/I" similarly to the
argument in Section 4.

Let F' = hi(F1) = ho(F3). Then F is a topological foliation with closed leaves
which is invariant under the expanding automorphism A: N — N. By Corollary 5.9
foliation F is also invariant under left translations by A=%(T). Because F' is con-
tinuous and A~*(I') is dense we conclude that F is invariant by all left translations
on N. This allows us to argue that F(idy) is a group. Indeed for all z,y € F(idy)

we have F(zy) = zF(y) = zF(idy) = F(zidy) = F(idy), and similarly for all
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z € F(idy) we have F(z™') = 2 'F(idy) = o 'F(z) = F(z~'z) = F(idy).
We can now apply apply Cartan’s closed subgroup (see e.g., [Halll5]) theorem to
conclude that F(idy) is a Lie subgroup of N.

So we denote the leaf through identity by G = F(id ~). Hence, using translation
invariance again, we conclude that F is a smooth foliation by cosets of G.

Lemma 5.11. Let F be the projection of F' on N/T. Then each leaf of F is either
compact or it “accumulates on itself’, that is, there exists x € N/T such that for
arbitrarily small neighborhood B of x the intersection F(x) N B has infinitely many
connected components.

Proof. The leaves of F are orbits of the action of GG, which is a nilpotent Lie group
on N/T. So one can refer to Ratner theory, specifically to [Rat91], which gives,
in particular, that the closures of orbits of such a unipotent action are affinely
embedded nilmanifolds. Hence each orbit is either compact or dense in it’s higher
dimensional closure, which implies the needed recurrence. It also not so hard to
derive this lemma from earlier work of Parry on homogeneous flows on nilmanifolds:
one needs to choose orbits which escape to infinity in non-compact leaves and
use [Par69, Theorem 5.

However the lemma can also be derived from more basic topological dynamics
using work of Ellis and Furstenberg on distal actions [ElI58, Fur63], which we
proceed to explain. It well-known and simple fact that the nilpotent action of
G on N/T is distal. (It follows from the fact that a nil-translation is an iterated
isometric extension). Based on work of Ellis, Furstenberg proved that a distal
actions can be decomposed into a disjoint union of minimal sets [Fur63, Theorem
3.2]. Hence each leaf of F' is either compact or has a non-trivial closure and is dense
in the closure and hence recurrent. O

Lemma 5.12. There exists a non-empty open set U < N /T such that each leaf of
F' that meets U is compact.

Proof. We begin by noticing that the properties of being compact and to “to ac-
cumulate on itself" are topological. Hence we have the property given by the
Lemma 5.11 on the non-linear side as well by applying hi_lz for all z € M; ei-

ther m;(F;)(z) is compact or for all small neighborhoods B of z the intersection
(m;(Fy)(z)) N B has infinitely many connected components.

Now we will argue in the same way as in Subsection 5.4, but on M; instead of
M;. Let U; € M; be the set where dim E; achieves its minimum m,. Recall that
the dimension function z — dim E;(z) is upper semicontinuous, which implies that
U, is open.

Take a point x € U;. Then we can construct a foliation chart for F; which we
denote by ¥: B — R™:i about x, B < U, such that W~(¥(x)) is a connected

subset of F;(x) and for all 2 € B which do not belong to ¥~!(¥(z)) we have
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z ¢ Pi(x) (see the proof of Lemma 5.10). Then we have
(m3(Fi)(z)) n B < Fi(z) n B < Pi(z) n B =01 (T(x))

On the other hand, recalling that Dm;(E;) = E; and the discussion at the beginning
of Subsection 5.4, we have that m;(F;) is a (d — m;)-dimensional foliation; that
is, it has the same dimension as the plaque ¥~1(¥(z)), hence m;(F;)(z) n B =
U—1(W(z)). Therefore ;(F;)(x) n B has only one connected component and we
conclude, by dichotomy of Lemma 5.11, that m;(F;)(z) is compact. Going back to
the foliation F' via h; we obtain the same conclusion: all leaves of F' which meet

the non-empty open set U = h;(U;) are compact. O
Lemma 5.13. Group G is a normal subgroup of N.

Proof. By Lemma 5.12 there exists a small open ball B « U < N/T" such that every
leaf F'(2T') = GzT', x € B, is compact. We consider the stabilizer group I'; of the
leaf F(x).

I,={yel: Ge=Gry}={yel: aya 'eG}=Tnaz 'GzcT

Thus F(2T') = F(z)/T, is homeomorphic to z~'Gz/T, and, hence T, is a cocom-
pact lattice in 271Gz, z € B.

Now assume that for some zg,z1 € B we have xglGxo # $1_1G(£1. Then we
can find a path x; € B, t € I, such that xt_lG’zt, t € I, are all mutually distinct
subgroups of N. (Indeed, just connect zy to x; by a path in B and then choose
a small subpath in a neighborhood of a point where x; LG, varies infinitesimally
linearly with ¢.)

We can also see that all ', = T' n x; 'Gz; are mutually distinct. To see that
notice that, because the exponential map provides a one-to-one correspondence
between subalgebras of the Lie algebra of the simply connected nilpotent Lie group
N and its connected Lie subgroups, we intersection subgroup (z; *Gz;) n (25 Gx,),
s # t is at least codimension one in both z; 'Ga; and z;'Gx,. Because T',, is
cocompact in z, LGz, it must have a non-trivial image in the non-compact quotient
space 27 *Gxy/((x7'Gay) N (x5 Gxy)). Hence, indeed T, contains elements which
are not in I',.

Thus we have obtained an uncountable family I'y,, ¢t € I, of mutually distinct
subgroups of I', which gives a contradiction. Indeed, I' is finitely generated and
nilpotent and, hence, any subgroup of I' is also finitely generated. So I' only have
countably many distinct subgroups. We conclude that z, Gy = xl_lle for all
ro, 1 € B. Hence (xlxgl)*llemgl = @ for all xlxal is a small neighborhood
of idy. And because such neighborhood generates N we can conclude that G is

normal. O

Let '¢ = I' n G. Normality of G implies that I', = ' for all  and we have
that I'¢ is a cocompact lattice in G by Lemma 5.12. Again using normality of
G (and I'¢ in I') it is easy to check that the quotient homomorphism N — G\N
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induces a well-defined fibration map p: N/I' — M with compact nilmanifold base
M = (G\N)/(Tg\I') and nilmanifold fiber G/T'¢. Conjugating back to M; we
obtain the posited fibrations p;: M; — M, whose fibers are the leaves of 7rl(]-'l)
which are homeomorphic to G/T'¢ and whose base M, is homeomorphic to M.
Note that p; are C" smooth because we already have that m(]t'i) are C".

It remains to check that h: M; — M, induced by h is a C” diffeomorphism. This
remaining argument follows closely the corresponding argument in Section 4. The
only difficulty comes from the fact that we still do not know that T'(m;(F;)) = E;
(and that F; is a foliation). However, we do know, from the proof of Lemma 5.12,
that E; = TF; = T(m;(F;)) on an open and dense set — the set where E; achieves
the minimal dimension m;. Indeed, recall that m; denotes the minimal dimension
of E;. We have shown that m; = dimJF; = dimF, = ma. Let U; = {x € M, :
dim E;(x) = m;}. Recall that U; is open (cf. the discussion of Subsection 4.4).

Further if 2 € U; and f;(y) = « then, using V; o f; < V;, we have

Dfi(Ei(y)) = Dfi ( (] ker dyw) < Df; ( () kerd, (v o f»)

peV; peV;

= () Dfilkerd, (o f;)) = ) kerdytp = Ei()

PeV; YeV;

Hence, because dim E;(x) is minimal the above inclusion is, in fact, equality and y €
U;. We obtain f;l (U;) < U;, which implies that U; is dense in M;. Therefore we can
pick a point x € Uy such that h(z) € Us. Consequently both of these points admit
nice foliation charts and we can show, repeating verbatim the arguments of the last
paragraph of Subsection 4.1, that h is a C" diffeomorphism on a neighborhood B
of p1(x).

Now recall that h conjugates the induced C" expanding maps, ho f; = fo 0 h.
We can lift all the maps to the universal covers and express the lift of h as follows:

b= frohofn

If B~is the lift of B, then the above equation implies that l:1 is a C" diffeomorphism
on f3(B). For a sufficiently large n the set fi*(B) contains a fundamental domain
of the cover and we conclude that A is indeed a C” diffeomorphism.

Remark 5.14. Once the proof is finished we can actually conclude that F; =
T (]:'1) and F; = TF;. This fact would be very helpful to have in the course of the
proof, however it was out reach and we only can obtain it a posteriori. To see that
Fi=m (]:'Z) and F; = TF; one can characterize the space of functions V; as the
space of C" functions which are constant on the fibers of p;. Such characterization
easily follows from the fact that h is a C” diffeomorphism. Note, however, that this

fact is not needed in the statement of Theorem 2.1.
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6. PROOFS OF COROLLARIES

Proof of Corollary 2.6. We denote by L the linear endomorphism to which both f;
and fo are conjugated.

By passing to the second iterate we may assume Jac(f;) > 0, ¢ = 1,2. Let
;i = —log Jac(f;). By Theorem 2.1 we have C" fibrations (with connected fiber)
pi » M; — M; and functions D; M; — R such that ;i o p; is cohomologous to ¢;
and the induced conjugacy h : My — My, hop; = py o h, is a C" diffeomorphism.

If dim M, = 0, then @, is constant and, hence, ¢; is cohomologous to a constant.
Then the equilibrium state for ¢, which is the absolutely continuous measure equals
the equilibrium state for the constant function which is the entropy maximizing
measure [Bow75], contradicting the assumption of the corollary.

If dim M; = d, then p; and py are diffeomorphisms (in fact, identity diffeomor-
phisms) and, hence, h is a C" diffeomorphism since h = p5 Lohop.

It remains to consider the case when 0 < dim M; < d. However, this is impossible
due to irreducibility. Indeed from the proof of Theorem 2.1 in Section 4.1 it is clear
that L leaves invariant a torus of a positive dimension m < d, which contradicts
to irreducibility. We can also provide an alternative self-contained short argument
below.

Abbreviate M = M; and M = M;. Let z be a fixed point of f; and let F
be the fiber of p; which contains z. Recall that, by Theorem 2.1, M supports an
expanding map f; and, hence, is aspherical. Therefore the fundamental groups fit
into the short exact sequence

0 — 7 (F) - 7 (M) - 7 (M) -0

Note that taking tensor product with R leaves the sequence exact.

Because f1(F) = F we have (f1)(71(F)) = Ly (7 (F)) < 7 (F) < m (M) ~ Z4.
Since dim M < d we have that dim F > 0 and F is compact and also aspherical
(because it supports the expanding map fi|r). It follows that m (F) ® R gives a
non-zero rational invariant subspace for L. Because L is irreducible we conclude
that 71 (F)®R = R%. Hence 711 (M)®R = 0, 4.e., m1(M) is torsion finitely generated
abelian group, hence, finite. But any closed aspherical manifold of dimension >0
has an infinite fundamental group, a contradiction. O

Proof of Corollary 2.11. By classification of expanding maps, manifolds M; are
homeomorphic to infranilmanifolds. Therefore we can pass to the nilmanifold covers
and, accordingly, pass to the lifts of expanding maps. It is easy to see that the very
non-algebraic assumption still holds for the lifted maps. From now on we assume
that M; are homeomorphic to nilmanifolds and, hence, Theorem 2.1 applies.
Recall that f; are C"*!, r > 1, very non-algebraic expanding maps and h :
M; — M> is a conjugacy. We apply Theorem 2.1 to f; and r (not r + 1!). Let
pi - My — M;, fi : M; — M;, h : M; — My be the C” maps given by Theorem 2.1.
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We shall show that dim(M;) = dim(M;). Then we would have h = h and, by
Theorem 2.1, the conjugacy is C".

Assume that dim(M;) — dim(M;) = m > 0. Recall that by Theorem 2.1 the
fibers F; , = p;l(pi(x)) are nilmanifolds and, hence, are orientable. Moreover the
fibers can be simultaneously coherently oriented because the base space M; is also
an orientable nilmanifold. We fix a choice of orientation on fibers and on the base.
The expanding map f; does not necessarily preserve any of the orientations. (And
we cannot pass to finite iterates because such operation would not preserve the
“very non-algebraic condition.”) Let d be the absolute value of the degree of the
map between the fibers

d= |deg(fi

Fiot Fie = Fif@)]

Note that d is indeed independent of x by continuity and is independent of 7 because
fi are conjugate. Further, if dim F; ; > 0 then d > 1 because the expanding map
on the fiber through a fixed point is a self cover of degree > 1.

In the rest of the proof write J to denote the absolute value of the Jacobian of a
map — J f := |Jac(f)|. Let ¥; = log(J fi|ker Dp;)- We note that these functions are
only C"~! because the distributions ker Dp; are merely C"~1.

First we pick Riemannian metrics on M;, i = 1,2, so that h is volume preserving
(e.g., an isometry) and, hence,

log JJf1 =logJfaoh

Then pick a smooth connections &; for p; (subbundles transverse to ker Dp;) and
then lift the Riemannian metrics from M; to &. Then consider Riemannian metrics
on M; which are direct sums of metrics on ker Dp; and the lifted metrics on &;. By
construction, the differential D f; have upper-triangular form and we have

Y =log Jf; —log J f; o p;

The Livshits Theorem for expanding maps together with the assumption on Jaco-
bians at periodic points imply that log J f; is cohomologous to log Jfs o h. Note
that log.Jf; are C" functions. Hence, by the main property of (p;, fi, h) given by
Theorem 2.1, we have that log J f; is f;-cohomologous to a C” function which is
constant on the fibers. Because log J f; o p; are also constant on the fibers, it follows
that 1; are cohomologous to ¥; o p;.

In other words, there exist C" function w,; such that

log(J filker Dp;) — ui +u; 0 fi = i o p;
Therefore by replacing the volume form w on the fibers F , with the volume form
uy

w=e'w
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we can assume that the absolute value of the Jacobian of fi|ker pp, equals to e¥1op1
Denote by vol(Fi ;) the total w-volume of F ;. For any x € My we have

1 1

dropi(z) Propis J o = d
c vol(Fy ) JFme v vol(F} ;) Lﬁ,m Jilver D,

Hence for every periodic point z, ffz = = we have that JfF|xer pp, = d¥. This
means that either d* or (—d)* belongs to the spectrum of

m

/\ Dt ()
which contradicts to fi being very non-algebraic. We conclude that m = 0, i.e.,
dim(M;) = dim(M;) and we are done. O

Note that even though the regularity of f; is r + 1, we use Theorem 2.1 with
regularity r because we work with Jacobian of f;.

7. EXAMPLES

Example 7.1 (Basic example). Here we give an explicit example where non-trivial
fibrations p;: M; — M;, i = 1,2, with dim M; # 0,dim M, appear. Consider the
expanding maps L, f: T? — T2 given by L(z,y) = (2z,2y) and f(z,y) = (g(z),2y),
where g is conjugate to x2 map via nowhere differentiable conjugacy hg, hg o g =
2hyg. For simplicity we may assume that g(0) = 0 and ¢’(0) < 2. Then h = (hg, idgs1)
is the conjugacy between f and L. Recall that fibrations p; arise from the space of
pair of C™ functions (1)1, ¥9) which satisfy @1 = 9 0 h, i.e.,

Y1(z,y) = Y2(ho(z),y)

Clearly any C" function ¥1(x,y) = ¥(y) belong to this space. We will show that
these are the only functions which could appear. Then, it immediately follows that
p1(z,y) = p2(z,y) = y. That is, p; are circle fibrations over S?.

Denote by 0inrho the lower derivative of ho defined via liminf. All periodic
points which spend sufficiently large proportion of time near 0 have Lyapunov
exponent < log?2. Such periodic points p are dense in S! and it is easy to see that
Oingho(p) = 0 for any such p. Hence differentiating the relation between ); and 1,
with respect to x yields

0 0
%%(P, y) = %¢2(ho(P)7y)5mfho(p) =0

for a dense set of p. Hence, indeed, 17 and vy are functions of y only.

Remark 7.2. Any primitive vector (m,n) € Z? yields a fibration S* — T? — S!
whose fibers in the universal cover R? are lines parallel to the vector (m,n). This
gives infinitely different fibrations each of which is preseved by the conformal map
L from Example 7.1. Further, similarly to the construction of Example 7.1, one can
construct perturbations f(,, ) such that the fibration given by the Theorem 2.1 is
precisely the fibration coming from (m,n).
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Example 7.3 (de la Llave example). Non-trivial fibration may appear in a more
subtle way when Jacobians full periodic data match. Of course, this can only hap-
pen for expanding maps which are not very non-algebraic. The example presented
here is due to de la Llave [dIL92].

Consider the maps

L(z,y) = (dz,ay), d = 2,a = 2,
and

f(z,y) = (dz + a(y), ay)
Then the conjugacy between L and f has the form

h(z,y) = (= + B(y), )

where 3 can be expressed explicitly as the series [d11.92]
=3 Z —a a'y)
1,>0
Notice that 3 is a Weierstrass function. Let

log d
ro =

loga
and let 7o = n + 6 where ng € Ny and 6 € (0, 1].

To analyze the regularity of S there are several cases to consider which give
different answers.

Lemma 7.4. Assume that « € C", r =k+ 6, ke Ny, 60 €[0,1) and let ro =n+0,
as above n € Nog and 0 € (0,1], then

1. Case I: r <rg then B C";

2. Case II: v > rg, 79 ¢ N then € C™;

3. Case III: > 1o, 7o = n + 1 € N then g € Ctellogz|.

4. Case IV: r = 1y then 3 € Cn+°logal .
In all cases, there is a generic set of a € C" where the regularity is optimal, in
particular for such o, B ¢ C™F¢ for any € > 0.

Proof. We give the proof for Case IV, all other cases being analogous.
By term-wise differentiation we have that

dz( ) ™ (qiy)

120

which is convergent because ry > n. Comparing the series for § and (™), clearly
we can assume that n = 0 because the argument for n > 0 would be the same with
B in place of 3.

Let A = max |a| and C the 6-Holder constant for a. Take z # y and let N be

such that )

N1 <z -yl < N
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Then
R k k 1 k k
18(z) — B(y)] < Z s la(a*z) — ala®y)| + Z P la(a*z) — a(a®y)|
k=0 k=N

The first summand is smaller than
N1y
C Z mwaekh: —y|? <CONl|z —y|® < Clz —y|°| Jlog |z — y]|
k=0

The second summand is smaller than

24 1

1—0,9 aNg <C|$_y|9

Hence we obtain the posited 2| log z| modulus of continuity for /3.

On the other hand, if we assume, to simplify notation, that a(0) = 0, and say

af(z) > 0 for > 0, and that liminf,_q ‘T{Elﬁ)l > 0. Pick ¢y > 0 sufficiently small so

that K = inf|, <, (Jo(2)|/|#]?) is positive. Then, taking z > 0 very close to 0 and
N > 0 first such that o™z > €y, we obtain

N-1
1 1
1B(x) — B(O)] = Z Wa(akm)— Z Wa(akm)
k=0 k>N
2A 2A
> (KN-— 0> (KC. |1 SN
( 1_ae)m (co|og|x|| (1_a9)€g)|x|

So, by taking z close enough to 0 we see that 3 is not C? at 0.
Now notice that

B(a) = 5(ax) + Talx)
and o € C™. Let S be the set of x such that £ is not C™ at z. Then, from the
above equation, if ax € S then z € S, i.e., S is backward invariant (and non empty)
and hence dense.
To show the genericity property we will use the following functional analysis

Lemma (it is a concequence of the proof of the open mapping theorem.)

Lemma 7.5. Let X and Y be Banach spaces and L : X — Y be a bounded linear
map then either L is onto or the image of L is a first category set.

Now consider X =Y = C? and L(3) = dS — oa. We have that the image of L
is the set of v € C? such that the corresponding § belongs to C?. We just showed
that L is not surjective, hence the set of « such that the corresponding 5 belongs
to C? is a first category set and so its complement is a second category set. ([

Remark 7.6. Notice that if 7o € N, then d = a™. And we have that if 5 € C" then
we can differentiate the above equation and obtain that (") solves the equation

dB\) (z) — a™ B (az) = a7 (z)

(o)

meaning that is cohomologous to 0, which does not happen for generic «.
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With Lemma 6.4 at hand we return to discussion of Example 6.3. If we apply
Theorem 2.1 to L, f and r < rg then the fibrations p; are trivial with point fibers.

If r = ro we will have p;(x,y) = p2(x,y) =y, i.e., fibrations with circle fiber.
Let us show this fact.

Differentiating v (x,y) = ¥a(z + 5(y), y) with respect to y variable yields

Oyt (z,y) = Oytha(x + B(y), y) + duti2(z + By),y) B (y)
Notice that d,19(x + B(y),y) € C™~! and, in particular, it is continuous. Let

U ={y: 0xta(x + B(y),y) # 0 for some z},

then U is open and for y € U and the appropiate z,
By = dyr(z,y) — dyva(z + By) y)
Oath2(z + B(y),y)
So, for y € U we obtain that that the right hand side is locally in C™~! and hence
B’ is locally in C™ ! for points in U. Hence by Lemma, 7.4, U is empty and hence
a%wz (x+B(y),y) = 0 for all z and a dense set of y € S1. We conclude that 1, (and
similarly, ) depends solely on the y-coordinate.

Example 7.7 (Irreducible automorphism of an infratorus). We have explained
in Remark 2.9 that (non-trivial) infratori do not support totally irreducible affine
automorphisms. Here we show that one can still construct irreducible examples
(which become reducible after passing to a finite iterate).

Define the expanding endomorphism of T® by

0 0 3
L=11 0 0
01 0
Note that L? is diagonal. Define the holonomy group {id,~1,72,7v3} as follows
1 0 0 -1 0 O -1 0 0
m=|(0 -1 0 =0 1 0 =0 -1 0
0o 0 -1 0O 0 -1 0 0 1

Finally let

11\’ 11\ 11\
u= (2’0’2> v = (2’2’0> v = <°’2’2>
and T;(x) = v;(x) + v, ¢ = 1,2,3. We let ' be the group of affine diffeomorphisms
of T generated by the T}’s. It is easy to see that, in fact, I' = {Idys, T}, Ts, T3}
and, hence, I" acts freely on T3.
Finally LI'L~' < T and, hence, induces an expanding endomorphism of the
infratorus T3/T'. Indeed, L o Ty o L= = Ty + (1,0,0)!, Lo Ty o L™! = T3 and
LoTso L™t =T +(1,0,0)".

Example 7.8 (Seifert fibration). Recall that in Theorem 2.1 we assume that man-
ifolds M; are homeomorphic to nilmanifolds. If M; are not homeomorphic to nil-
manifolds then the construction of compact foliations in the proof of Theorem 2.1
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still works, but these foliations might fail to be fibrations. The example below
illustrates this point.

Consider the Klein bottle K given as a quotient of the torus T? = R?/Z? by the
involution T'(z,y) = (z + 1, —y). We can also model K as the rectangle [0, 1] x
[—1/2,1/2] where the sides are identified by (z,y) — (z — 1/2,—y) and (x,y) —
(z,y 4+ 1). One can easily check that the expanding linear map

v (6 2)

induces an expanding map L: K — K. We foliate K by horizontal curves {y =
const}. More precisely, for every y € [—1/2,1/2] define the circles

cy={(t,y):t€ [07;]}U{(t,y):t6 [0;]}

Notice that if y # 0, % then C, consists of two segments on the rectangle. For y = 0,
Co is a singular curve that consists of only one segment [0,1/2] x {0} and hence
has half of the length of the other leaves. The same happens for y = %, C 1 is a
singular curve that consist of only one segment [0,1/2] x {1/2} ~ [0,1/2] x {—1//2}.
Moreover, notice that C, = C_,.

We have defined a foliation on K which is obviously not a fibration. Indeed, the
quotient map 7 : K — S'/[y ~ —y] yields an orbifold structure on S'/[y ~ —y].

Notice that L(Cy) = C(2y moa 1), hence, the foliation is L-invariant.

We now define expanding maps f;: K - K, i = 1,2. Welet f;(z,y) = (g:(x), 2y),
where g;(z) = 3z + o;(z) with o;(0) = 0 and a;(z + 3) = o;(z) for every z € S,
Such formulae define maps on the Klein bottle which are homotopic to L. Moreover,
these maps are expanding provided that C' norms of «; are sufficiently small. Also
notice that f; preserve the foliation C.

The conjugacy h between f; and fo, ho fi = fy o h has the form h(z,y) =
(ho(z),y), where hgog; = gaohg. Notice that by the symmetries of f;, ho(z+1/2) =
ho(x)+1/2 and hence h is indeed the conjugacy on the Klein bottle. We can assume
that «; are chosen so that ho and, hence, h is not C*.

Take any ¢o : R — R such that ¢o(y + 1) = ¢o(y) and ¢o(—y) = »o(y) e.g.,
wo(y) = cos 2my. Then ¢(x,y) = wo(y) defines a function on K and ¢ o h = ¢. On
the other hand if 7 = @9 o h for some smooth functions ¢; and @y then both ¢
and o must be constant on the leaves of C because hg is non-differentiable on a
dense set of x € St. So defining ¢; = ¢ for i = 1,2 we are in the hypothesis of the
Theorem 2.1. We conclude that C is precisely the compact foliation given by the
construction in the proof of Theorem 2.1.

Example 7.9 (Exotic examples). Here we explain that the fiber bundle structure
given by Theorem 2.1 could be non-trivial even in the case when the ambient
manifold is an exotic torus. Examples of expanding maps on exotic tori were first
constructed by Farrell and Jones [FJ78] in dimensions d > 7. We explain how, with
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some extra care, the beautiful construction of Farrell-Jones can be adapted to our
setting.

Let % be a d-dimensional, d > 7, homotopy sphere and let T¢ be the standard
torus. A simple way of constructing an exotic torus is by taking the connected
sum T4, If £ is not homeomorphic to the standard sphere then TI#X¢ is
not homeorphic to T¢ [Wal70, §15A]. Further, it is well-known that for d > 7, one
can realize T?#%% as T? with a disk D? removed and then glued back in using an
orientation-preserving “twist diffeomorphism” ¢ e Diff(S?~1).

T¢4#x? = (TY\D?) U, D?
It is easy to check that if ¢’ is isotopic to ¢ then the corresponding exotic tori are

diffeomorphic.
We view the sphere S~! = 0D? as the standard sphere in R?

ST = {(z1, 20, ... 2q) Zx? =1}

Cerf [Cer61] showed that for every homotopy sphere ©¢ one can realize Td#%¢
using a diffeomorphism ¢: S?~1 — S9! which preserves the first coordinate, i.e.,
has the form
o(z1, 0,3 .. xq) = (1, 2h, 2% ... x})

Then ¢ can viewed as a path of diffeomorhisms and gives a representative of an
element of 1 (Diff(S?~2)). More generally, one can consider the space Diff; (S?1) of
orientation preserving diffeomorphisms which preserve first k£ coordinates x1, xs, ... Tk
and, hence, give an element of 7, (Diff(S?~1=F)). Isotopy classes of such diffeomor-
phism form a subgroup I‘z +1 of the group of isotopy classes of all orientation diffeo-
morphisms O4 (which is identified with the group of homotopy spheres equipped
with the connected sum operation). It is known that I'¢ 41 is non-trivial in a certain
range of pairs (k,d) [ABK70].

Now we formulate the extra property of ¢ € Diffy(S9!) which we will need
(and which is not needed in the original Farrell-Jones construction). Consider the

obvious homomorphism
v: m(Diff(ST717F)) — 7o (Diff(ST1)) ~ 4

Lemma 7.10. ([ABK72, Proposition 1.2.3; §1.3]) There exists pairs (k,d)* and a
torsion element [¢] € m,(Diff(ST=17F)), [©P] = 0, whose image in mo(Diff(S¢~1))
non-trivial, i.e., y[p] # 0.

We proceed to briefly recall the Farrell-Jones construction [FJ78, Far96] and then
explain how the above lemma allows to produce exotic example which admit invari-
ant fibrations with (d — k)-dimensional fibers. The construction yields a xs-map
on 7 (T¢#%4) for a sufficiently large s which also must satisfy certain congruence

arithmetic condition.

2For specific arithmetic conditions see [ABK72, Corollary 1.3.6].
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We pick a ¢ € Diff, (S%~!) given by Lemma 7.10 and realize T?#%¢ by removing
a disk D? from T¢ and then attaching it back with a twist U,D?. Given an integer
s > 2 consider the manifold M, which is diffeomorphic to T¢#%¢ and which is
obtained by removing the conformally scaled disk %Dd and then attaching it back
with a twist UW%ID)d. Because of our choice of ¢ both manifolds are naturally total
spaces of smooth torus bundles

Td*k N Td#zd &) Tk, Td*k N Ms s Tk

where the base space T* corresponds to the first k& coordinates fixed by ¢.

Let N — T4#%? be the locally isometric cover which induces xs map on the
fundamental group. And let N be a copy of N with the Riemannian metric con-
formally scaled by % Clearly both N, and N smoothly fiber over T*. Then the
posited expanding map is the composition

Téuxd Loy pp, G N, 25 N o Tégxd

The diffeomorphisms Fy and G are constructed with a uniform (in s) lower bound
on minimal expansion. It immediately follows that for sufficiently large s the com-
posite map f: T¢#X? — T44%? is uniformly expanding.

The diffeomorphism Fy which “shrinks” the exotic sphere is constructed using
the “commutator trick” and it is easy to check that Fj is fiber preserving and fibers
over the identity map idpr. We claim that the same is true for the diffeomorphism
Gs. The purpose of Gy is to introduce a certain number of scaled exotic spheres
u@%Dd, and, thus, create Ns. These exotic spheres are introduced in groups of size
b which is divisible by the order of ¢ in ©4 [FJ78, Lemma 3]. Alternatively one can
think of G;! as a diffeomorphism which removes exotic spheres in groups of size
b. To remove one such group one uses diffeomorhism given by the isotopy between
¥ and idga—1. A priori such an isotopy does not preserve the fibers. However,
we can require b to be divisible by p which is given by Lemma 7.10. Then ¢’ is
isotopic to idga—1 in the space Diff(S?~!) and hence the resulting diffeomorphism
Gs: My — N; is fiber-preserving and fibers over idpr. Finally we notice that
the covering map N — T¢#X? and the expanding map xs: N, — N are fiber
preserving as well. We conclude that the expanding map f fibers over xs map on
T*.

Tdouyd Iy pdysd
AR
™ — 2 T+
The same diagram holds for the standard xs expanding map F,: T¢ — T¢

Td Es Td

W

T+ X% Tk
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and it is easy to see that the conjugacy h: T¢#X? — T¢ ho f = E,oh, maps fibers
to fibers and the induced conjugacy on T¥ is identity, i.e., h = idqr.

We claim that one can perturb f along the fibers so that the fibrations p; and ps
are precisely the ones appearing in the Theorem 2.1. Indeed consider the restrictions
of fp: Tg_k — ']I‘g_k and Ej: Tz(;l; — Tzzplg to the fibers through the corresponding
fixed points. Denote by p}, i = 1,2 the fibrations produced by Theorem 2.1 applied
to f and E,. Then the fibers of p; refine the fibers of p; and, hence, we can restrict
p} and pj to ']I‘g*’c and TZ(_,S’ respectively. Denote by ¢ the dimension of the base
space for these restricted fibrations. Recall that the induced conjugacy on the base
space is smooth. It follows that A¢Df, has s as an eigenvalue. Hence we perturb
f in the neighborhood of p so that A*Df, does not have s for an an eigenvalue for
all £ =1,2,...d — k. Then we have £ = 0 which means that p} = p;.

Remark 7.11. Similarly, one can perturb f along the fibers to an expanding map
fo: T4 — T4 such that both p} given by Theorem 2.1 when applied to f
and fo are equal to p;

Remark 7.12. An easier way of constructing an exotic expanding map with non-
trivial fibration would be to take the product f x L of an exotic expanding map
f: T4 — T4%? and a linear expanding map L: T™ — T™. Smoothing theory
implies that T?#3¢ x T™ is not diffeomorphic to T¢t™. Then T?#X? x T™ fibers
over T™ and one can arrange this fibration to be the fibration given by Theorem 2.1
in a similar way. The example which we described above is more interesting because
the smooth structure on T¢#X? is irreducible, that is, T?#%? is not diffeomorphic
to a smooth product of two lower dimensional smooth closed manifolds [FG12,
Proposition 1.3].

8. FACTOR VERSION

We formulate the following generalization of Theorem 2.1, where we replace the
topological conjugacy by a continuous factor map. The proof follows the same lines
with routine modifications and we omit it.

Theorem 8.1. Assume that M;, i = 1,2, are closed manifolds homeomorphic to a
nilmanifold. Let f;: M; — M;, i = 1,2, be C" smooth, r = 1, expanding maps and
assume that fo is a topological factor of f1, that is, there exists a continuous map
h: My — My such that ho fi = fyoh.

Then there exist a C" expanding map f : M — M where M is homeomorphic to a
nilmanfold, and C" fibrations (with connected fiber homeomorphic to a nilmanifold)
pi: M; — M, i=1,2, such that

piofi=fopi, 1=12
Further the map h sends fibers to fibers

p2oh =p;
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and the fibrations p;, i = 1,2, have the following property. If p; : M; - R, i =1,2,
are C" smooth functions such that for every periodic point x € Fixz(f{")

S (@) = 3 pa(fE k()
k=0 k=0

then there exist a C" function ¢ : M — R, such that @; is cohomologous to @ o p;
over f;.

Using Theorem 7.1 one can naturally study regularity properties of factors maps.
We proceed to describe an application.

Let My = N x M, where N and M, are nilmanifolds, and let L: My — M; be
a product expanding map L = (A, B). Then, clearly, L factors over B. Hence if f;
is an expanding map homotopic to L and f; is an expanding map homotopic to B
then f; factors over fo: ho f; = fooh.

To define nice invariants of smooth conjugacy we need to introduce a restriction
on L and f;. Namely, we assume that the maximal expansion of A is greater than
the minimal expansion of B. Then the “vertical foliation” N x {z}, x € My, is
a weakly expanding foliation. It is easy to see, that for any sufficiently C' small
perturbation f; of L the weakly expanding foliation survives as an fi-invariant
foliation W™,

Corollary 8.2. Consider L, fi, fo are C™T1 expanding maps and h is the factor
map, ho fi = faoh. Assume that fi belongs to a sufficiently small C* neighborhood
of L. Also assume that fo is very non-algebraic. If for any periodic point x = fF(x)

Jac(fb@) e
el h o () = Sl )

then the factor map h is C" smooth.

The proof is very similar to the proof of Corollary 2.11 and we merely provide a
sketch. Also one can replace the very non-algebraic assumption on fo by asking f5 to
be an irreducible toral diffeomorphism and assuming that the entropy maximizing
measure for fo is not absolutely continuous.

Sketch of the proof. Let p;: M; — M; be fibrations given by Theorem 8.1 when
applied to f; and r. If dim M = dim M, then p, is a difeomorphism and hence we
have that h = p{l opy is C7.

Hence we need to rule out the possibility that dim M < dim Mo, i.e., the case
when the fiber of p; has dimension > 1. In this case, following the proof of Corol-
lary 2.11, we can apply Theorem 8.1 to log Jac(f2) to conclude that log Jac( fo|ker(ps))
is cohomologous to a function which is constant along the fibers of py which yields
a contradiction, again, similarly to the proof of Corollary 2.11.

One subtle detail, however, is that in order to apply Theorem 8.1 one needs to
have a pair of C” functions (p1, ¢2). We let o = log Jac(f2) and p1 = log Jac(f1)—
log Jac(f1|wwu). (Assume for simplicity that f; are orientation preserving.) It is
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clear from the assumtion of the corollary that the sums of ¢; agree along the periodic
orbits and it is clear that 5 is C". However, one also need to argue that ¢, is C”
which is equivalent to log Jac(f1|ww«) being C”.

Smoothness of log Jac(fi1|ww«) can be established as follows. Pick a lift f): M; —
]\Zfl to the universal cover M 1. Foliation W¥* lifts to Wwu, Because fl is invertible
the fast foliation W% is also well defined by the standard cone argument. Notice
that W4 is not equivariant under the group of Deck transformations but this is
not going to be important for what follows. Then, by the usual application of the
C" Section Theorem [HPS77], we have that W** is C"*+! and hence log Jac(fi|uu)
is C". Finally, extending W** to a smooth coordinate system, we have that D f;
has an upper-triangular form and hence

log Jac(f1) = log Jac(fiyiuu) + log Jac(filyiuwu)

which implies that log Jac(fi|yw. ), and hence log Jac(f1|wws) is C”. O
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