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Abstract. We show that the space of expanding maps contains an open and
dense set where smooth conjugacy classes of expanding maps are determined
by the values of the Jacobians of return maps at periodic points.

1. Introduction

Let M be a smooth closed manifold. Recall that a Cr, r ě 1, map f : M Ñ M

is called expanding if
}Dfv } ą } v }

for all non-zero v P TM and some choice of Riemannian metric on M . It is easy to
see that an expanding map is necessarily a covering map.

Recall that expanding maps have been classified up to topological conjugacy.
Shub [Sh69] proved that M is covered by the Euclidean space and also that an
expanding endomorphism of M is topologically conjugate to an affine expanding
endomorphism of an infranilmanifold if and only if the fundamental group π1pMq

contains a nilpotent subgroup of finite index. Franks [Fr70] showed that if M
admits an expanding endomorphism then π1pMq has polynomial growth. Finally, in
1981, Gromov [Gr81] completed classification by showing that any finitely generated
group of polynomial growth contains a nilpotent subgroup of finite index. Hence
any expanding endomorphism is topologically conjugate to an affine expanding
endomorphism of an infranilmanifold.

Let fi : Mi Ñ Mi be Cr smooth, r ě 1, expanding maps i “ 1, 2. Also we will
assume that f1 and f2 are conjugated via a homeomorphism h : M1 Ñ M2, i.e.,
h ˝ f1 “ f2 ˝ h. For example, homotopic expanding maps on the same manifold are
always conjugate.

It is well known that h is necessarily bi-Hölder continuous. However, a priori h
is not C1 smooth with obvious obstructions carried by the eigendata of periodic
points. That is, when h is C1, the differential of the return map Dfn1 pxq is conjugate
to Dfn2 phpxqq when x “ fn1 pxq. A weaker necessary assumption is coincidence of
Jacobian data, i.e.,

Jacpfn1 qpxq “ Jacpfn2 qphpxqq
for all periodic points x “ fn1 pxq.
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In this paper we offer the following progress for higher dimensional expanding
maps. For any r ě 2 there exists a Cr-dense and C1-open subset U in the space
of Cr expanding maps such that if f1 P U and f2 is an expanding map which is
conjugate to f1 and has the same Jacobian data then the conjugacy is Cr´1. In
the proof we use the fact that f1 lives on an infranilmanifold. In the next section
we will give precise statements which, in particular, explicitly describe the set U in
the next section. Our proof of this result was partially inspired by the Embedding
theorem (or Reconstruction theorem) of Takens [T81].

In dimension one smooth classification was already known. Indeed, Shub and
Sullivan showed that for Cr, r ě 2, expanding maps of the circle S1 the above con-
dition on coincidence of Jacobians implies that the conjugacy h is Cr smooth [SS85].
In fact they proved a stronger result that an absolutely continuous conjugacy (which
is not, a priori, even continuous) must be coincide a.e. with smooth conjugacy pro-
vided that the Jacobian of one of the expanding maps is not cohomologous to a
constant.

The analogous “smooth conjugacy problem” in the setting of Anosov diffeomor-
phisms was completely resolved by de la Llave, Marco and Moriyón in dimension
2 [dlL87, dlLM88, dlL92]. In higher dimensions there was a lot of partial progress,
e.g., see [dlL04, G08, KS09] and references therein. However progress was made
only for certain special classes of Anosov diffeomorphisms such as conformal or with
a fine dominated splitting. When compared to this body of work, the current pa-
per is very different. It relies on a fundamentally different approach — to examine
matching functions rather than matching measures. And it yields smooth classi-
fication on a large open set as opposed to characterization of smooth conjugacy
classes of certain special maps.

The next section contains the statement of our main technical result Theorem 2.1.
Then we state a number of corollaries for smooth conjugacy problem and discuss
necessity of various assumptions. Section 3 is devoted to preliminaries on properties
of the transfer operator associated to an expanding map. Section 4 contain the
proof of the main theorem under an additional simplifying assumption that the
underlying manifold is a torus, such an assumption makes the proof much shorter
and more transparent. Then in Section 5 we prove Theorem 2.1 in full generality.
In Section 6 we derive all the corollaries on smooth classification problem. Then,
nn Section 7, we give a number of examples of expanding maps illustrating various
features of our results and proofs. Finally, in Section 8 we state a generalized factor
version of Theorem 2.1 and also give an application.

Acknowledgement: The second author was spending his sabbatical year in Lab-
oratoire Paul Painlevé, Université de Lille during this research, he wants to thank
them and specially Livio Flaminio for their warm and generous hospitality. He
also thanks Livio Flaminio for all the discussions. We would like to thank Feliks
Przytycki for feedback pointing out references for Remark 3.2. We are grateful to
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Sasha Leibman and Vitaly Bergelson for their help with the elementary proof of
Lemma 5.11. Finally we would like to thank the referees for helpful feedback.

2. The results.

We adopt the standard convention and call a map f : M Ñ M Cr-smooth,
r ě 0, if it is tru times continuously differentiable and its Ctru-differential is Hölder
continuous with exponent r ´ tru. We also allow r “ 8 and r “ ω (real analytic
maps). One defines Cr smooth functions on M in a similar way.

Recall that we denote by fi : Mi Ñ Mi, i “ 1, 2, Cr smooth expanding maps
and we assume that f1 and f2 are conjugated by h, h ˝ f1 “ f2 ˝h. Given functions
ϕi : Mi Ñ R, i “ 1, 2, we say that pf1, ϕ1q is equivalent to pf2, ϕ2q and write

pf1, ϕ1q „ pf2, ϕ2q

if there exists a function u : M1 Ñ R such that

ϕ1 ´ ϕ2 ˝ h “ u´ u ˝ f1

Then, by the Livshits theorem [L72], pf1, ϕ1q „ pf2, ϕ2q if and only if for every
periodic point x P Fixpfn1 q

n´1
ÿ

k“0
ϕ1pf

k
1 pxqq “

n´1
ÿ

k“0
ϕ2pf

k
2 phpxqqq

Further, if ϕi are Cr smooth then the transfer function u is also Cr smooth.1 The
following is our main technical result.

Theorem 2.1. Assume that Mi, i “ 1, 2, are closed manifolds homeomorphic to
a nilmanifold. Let fi : Mi Ñ Mi, i “ 1, 2, be Cr smooth, r ě 1, expanding maps
and assume they are conjugate via a homeomorphism h : M1 Ñ M2. Then there
exist manifolds M̄i (which are homeomorphic to a nilmanifold) and Cr fibrations
pi : Mi Ñ M̄i, i “ 1, 2, (whose fibers are homeomorphic to a nilmanifold) and Cr

expanding maps f̄i : M̄i Ñ M̄i, such that fi fibers over f̄i, i.e.,

pi ˝ fi “ f̄i ˝ pi, i “ 1, 2

The conjugacy h maps fibers to fibers, i.e.,

p2 ˝ h “ h̄ ˝ p1

where the induced conjugacy h̄ : M̄1 Ñ M̄2, h̄ ˝ f̄1 “ f̄2 ˝ h̄, is a Cr diffeomorphism.
Further, the fibrations pi, i “ 1, 2, have the following property. If ϕi : Mi Ñ R,

i “ 1, 2, are Cr smooth functions such that pf1, ϕ1q „ pf2, ϕ2q then there exist Cr

functions ϕ̄i : M̄i Ñ R, i “ 1, 2, such that ϕi is cohomologous to ϕ̄i ˝ pi over fi,
i “ 1, 2, and

ϕ̄2 ˝ h̄ “ ϕ̄1

1The Livshits Theorem for expanding maps can be proved using the standard transitive point
argument [L72]. There is no loss of regularity in the bootstrap argument for the transfer function,
see e.g., [J02].
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All manifolds in the above theorem, including the fibers of the fibrations, are
connected. All manifolds are homeomorphic to nilmanifolds but could carry exotic
smooth structure.

At this point we recommend that the reader looks at Example 6.1 to better
understand the statement of the above theorem.

Remark 2.2. Manifold M̄1 may be equal to M1 or may be a point or some di-
mension in between. In the first case we obtain that f1 and f2 are Cr smoothly
conjugate and in the second case we obtain that the functions ϕ1 and ϕ2 are coho-
mologous to a constant.

Also notice that the regularity of the fi’s and ϕi’s may be different to start with.
Then naturally one takes r to be the minimal value. Moreover, for a given pair of
fi, i “ 1, 2, but different choices of r ě 1, the resulting fibrations pi, i “ 1, 2, may,
in fact, depend on r.

Remark 2.3. If one does not assume that Mi are homeomorphic to a nilmanold
then, instead of fibrations, the construction in the proof of Theorem 2.1 yields com-
pact foliations Fi i.e., foliations with all leaves compact. Further, by improving
the argument used to show that the leaves of Fi are compact, one can check that
these foliations are generalized Seifert fibrations. The argument for compactness
and the Seifert property of the foliation is independent of classification of expand-
ing maps. Klein bottle Example 7.8 shows that such foliations, indeed, can have
exceptional leaves on infranilmanifolds, that is, they are not necessarily locally triv-
ial fibrations. Hence the assumption that Mi are homeomorphic to nilmanifolds is
a necessary one. However, in practice, this assumption is not a big restriction.
Indeed, by classification, any manifold which supports an expanding map is home-
omorphic to an infranilmanifold. Hence, one can always lift given expanding maps
to finite nilmanifold covers and study the problem on the cover.

Remark 2.4. It will become clear from the proof of Theorem 2.1 that the fibra-
tions pi are uniquely determined by fi, h, and r. However, if one does not require
the latter property in the statement, i.e., that “matching” functions ϕi are co-
homologous to ϕ̄i ˝ pi then the choice of fibrations, in general, is not unique. For
example, there is always the trivial fibration whose fibers are points. In general
there are finitely or infinitely many distinct smooth fibrations for a given expand-
ing map and the maximal number of possible fibrations occurs when h is smooth.
This maximal number of fibrations is determined by the linearization of fi (see also
Remark 7.2). There is also a naturally defined partial order on the set of fibrations
with the trivial one being subordinate to any other fibration and the one given by
Theorem 2.1 being the maximal one.

Remark 2.5. Recall that there exist expanding maps on exotic nilmanifolds, i.e.,
manifolds homeomorphic but not diffeomorphic (or even not PL-homeomorphic)
to nilmanifolds [FJ78, FG14]. Our theorem applies to such examples. Moreover,
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by using Gromoll’s filtration and following the strategy of [FG12], one can con-
struct expanding map f1 : M1 Ñ M1, on a nilmanifold M1 and an expanding
map f2 : M2 Ñ M2 on an exotic nilmanifold M2 in such a way that the fibra-
tions pi : Mi Ñ M̄i are non-trivial, i.e., dimMi ą dim M̄i ą 0. Also note that our
theorem applies in the case when both M1 andM2 are exotic. We elaborate on this
remark in Example 7.9.

A linear expanding endomorphism L of a d-dimensional torus M is called irre-
ducible if the characteristic polynomial of the integer matrix defining L is irreducible
over Z; equivalently L does not have non-trivial invariant rational subspaces. Recall
that any expanding map f : M Ñ M is conjugate to an expanding endomorphism
L. We will say f is irreducible if L is irreducible.

Corollary 2.6. Let Mi be manifolds homeomorphic to the d-dimensional torus.
Assume that fi : Mi Ñ Mi are Cr`1 smooth, r ě 1, expanding maps. Assume that
they are conjugate via h. Also assume that f1 is irreducible and that the entropy
maximizing measure for f1 is not absolutely continuous with respect to Lebesgue
measure. If Jacpfn1 qpxq “ Jacpfn2 qphpxqq for every x P Fixpfn1 q and every n then h
is a Cr diffeomorphism.

We make four remarks pertaining this corollary.

Remark 2.7. The condition on the measure of maximal entropy can be detected
from a pair of periodic points. Hence the space of expanding maps which satisfy
this assumption is Cr`1 dense and C1 open in the space of expanding maps.

Remark 2.8. The analogue of Corollary 2.6 for non-abelian nilmanifolds is vacu-
ous. This is because every linear expanding maps on a nilmanifolds leaves invariant
the fibration given by the center subgroup of the corresponding nilpotent Lie group.
Indeed, the proof of Corollary 2.6 relies on absence of such fibrations (which is guar-
anteed by irreducibility in the toral case).

Remark 2.9. Recall that an infratorusM is a closed manifold covered by the torus
Td. The Deck transformations of the covering Td ÑM have the form x ÞÑ Qx` v

and the linear parts Q form so called holonomy group of M . We can define an
expanding map f : M Ñ M to be irreducible if its’ lift to Td is irreducible. Then
Corollary 2.6 holds for such irreducible expanding maps of infratori by first passing
to the torus cover and then arguing in the same way.

However, the supply of irreducible examples of expanding endomorphisms of
infratori which are not tori is rather limited. Notice that any Q ‰ Id from the
holonomy group has 1 for an eigenvalue. Indeed otherwise corresponding affine map
of the torus x ÞÑ Qx`v would have a fixed point by the Lefschetz formula. Further L
acts on the holonomy group by conjugation. Hence, because the holonomy group is
finite, for a sufficiently large k, Lk and Q commute and, hence, Lk leaves invariant
the non-trivial rational subspace — the eigenspace space of eigenvalue 1 for Q.
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Hence all irreducible examples must become reducible after passing to a finite power.
Still examples like that exist and we present one such example as Example 7.7.

Remark 2.10. Define the critical regularity r0 by

r0pf1q “ min
ně1

max
xPM1

log }Dxf
n
1 }

logmpDxfn1 q

where m is the conorm. Then by the argument of de la Llave [dlL92, Section 6] one
can rectify the loss of one derivative and bootstrap the regularity of the conjugacy.
That is if r ą r0 then the Cr conjugacy given by Corollary 2.6 is, in fact, Cr`1.
Same observation applies to other statements in this section.

In fact r0pf1q admits an alternative expression

r0pf1q “ max
pPPerpf1q

λ`ppq

λ´ppq

where λ˘ppq is respectively the largest/smallest Lyapunov exponent for f1 at p.
Therefore r0pf1q can be computed directly from Lyapunov exponents along periodic
orbits. To see that the two formulae give the same value r0pf1q one can pass to the
invertible solenoid diffeomorphism and apply the approximation result [WW10].

Notice also that a priori it does not follow from the hypothesis of Corollary 2.6
that r0pf1q “ r0pf2q, however a posteriori one obtains this equality from smoothness
of the conjugacy.

We say that an expanding map f : M Ñ M is very non-algebraic if for every
λ P Z and for every m, 1 ď m ď dimpMq, there exists a periodic point x of period
n such that λn is not an eigenvalue of the m-fold exterior power

m
ľ

Dxf
n

Notice that this condition is open and dense.

Corollary 2.11. Assume that fi : Mi Ñ Mi are Cr`1 smooth, r ě 1, expanding
maps. Assume that they are topologically conjugate and also assume that f1 : M1 Ñ

M1 is very non-algebraic. Furthermore, assume that for every periodic point x of
f1 of period n

Jacpfn1 qpxq “ Jacpfn2 qphpxqq

Then h is a Cr diffeomorphism.

Remark 2.12. It will be clear from the proof that the very non-algebraic assump-
tion can be weakened to asking that for m “ 1, 2, . . . , dimpMq if λ P Z appears in
the spectrum of

m
ľ

Df1˚

then λn does not appear in the spectrum of
m
ľ

Dxf
n
1
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for some periodic point x, x “ fn1 x. Here f1˚ stands for the linear expanding auto-
morphism induced by f1 on the nilpotent Lie group and Df1˚ is the corresponding
Lie algebra automorphism.

Note that the very non-algebraic condition prevents f1 from being linear.

Given two linear maps Di : Rd Ñ Rd, i “ 1, 2, we say that D1 and D2 have
disjoint spectrum if for every m “ 1, . . . d, the m-th exterior powers ^mD1 and
^mD2 do not share any real eigenvalues. Given two periodic points x “ fkpxq and
y “ f lpyq we say that they have disjoint spectrum if the differentials Dxf

kl and
Dyf

kl have disjoint spectrum.

Corollary 2.13. Assume that fi : Mi Ñ Mi are Cr`1 smooth, r ě 1, expanding
maps. Assume that they are conjugate and also assume that there exists f1-periodic
points x and y which have disjoint spectrum. If for every periodic point x of f1

of period n the Jacobians Jacpfn1 qpxq and Jacpfn2 qphpxqq coincide then f1 is Cr

conjugate to f2.

Corollary 2.13 follows directly from Corollary 2.11 since the property of having
two periodic points with disjoint spectrum directly implies the very non-algebraic
property.

Recall that a homeomorphism is called absolutely continuous if it send the
Lebesgue measure to a measure which is absolutely continuous with respect to
Lebesgue measure.

Corollary 2.14. Let r ě 1. If two Cr`1 very non-algebraic expanding maps which
are conjugate via an absolutely continuous homeomorphism h then h is, in fact, Cr

smooth.

Corollary 2.14 follows directly from Corollary 2.11. Indeed, by ergodicity h must
map the smooth absolutely continuous measure of f1 to the smooth absolutely
continuous measure for f2. It follows that the Jacobians at corresponding periodic
points must be equal.

3. Krzyżewski-Sacksteder Theorem for expanding maps

Given a Cr, r ě 1, expanding map f : M Ñ M and a Cr potential ϕ : M Ñ R
the transfer operator Lϕ,f : CkpMq Ñ CkpMq given by

Lϕ,fupxq “
ÿ

yPf´1x

eϕpyqupyq

is defined for Ck functions u, where k ď r. When no confusion is possible we
abbreviate the notation for the transfer operator to Lϕ.

Theorem 3.1 (Ruelle-Perron-Frobenius/Krzyżewski-Sacksteder). Let f : M ÑM

be a Cr, r ě 1, expanding map and let ϕ : M Ñ R be a Cr potential; let 0 ď k ď r.
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Then the transfer operator Lϕ : CkpMq Ñ CkpMq has a unique maximal positive
eigenvalue ec

Lϕeu “ ec`u

Corresponding eigenfunction eu is positive and is unique up to scaling. The eigen-
value ec and the eigenvalue eu are independent of the choice of k P r0, rs. Further,
eu is Cr smooth.

Remark 3.2. Originally this theorem was established by Ruelle for a more general
class of expanding maps and in Hölder regularity [Rue68, Rue76] (see also [Bow75,
1.7]). Sacksteder [Sac74] and Krzyżewski [Krz77] had independently established
regularity of the eigenfunction. Krzyżewski [Krz82] has done the analytic case as
well. We note that both Sacksteder and Krzyżewski only considered the case when
ϕ “ ´ log Jacpfq because they were interested in regularity of the smooth invariant
measure for f . However the proofs work equally well for arbitrary smooth poten-
tials. Note that the uniqueness of the eigenspace occurs already among continuous
functions provided that the potential is at least Hölder.

Another comment is that when r is an integer the proof of Sacksteder only
yields pr´ 1q `Lip regularity of the eigenfunction eu. The Cr regularity of eu was
established by Szewc [Sz84], see also [BG97, Theorem 8.6.3] for an exposition in
the one-dimensional case.

Corollary 3.3. Let f and ϕ be the same as in Theorem 3.1. Then there exists
a unique Cr smooth function ϕ̂ : M Ñ R and a unique constant c given by Theo-
rem 3.1 such that

1. ϕ̂` c is cohomologous to ϕ;
2. 1 is the maximal eigenvalue of the transfer operator Lϕ̂;
3. Lϕ̂1 “ 1

Proof. Let ec be the maximal eigenvalue with eigenfunction eu for Lϕ given by
Theorem 3.1

Lϕeu “ ec`u

Let ϕ̂ “ ϕ´ c` u´ u ˝ f then
Lϕ̂1 “ 1

It is also clear that 1 is the maximal eigenvalue of Lϕ̂ since otherwise ec would not
be maximal positive eigenvalue for Lϕ.

Further, assume that c1 P R and ϕ̂1 continuous also satisfy the conclusion of the
corollary with

ϕ̂1 “ ϕ´ c1 ` u1 ´ u1 ˝ f

Then by the same calculation we have

Lϕeu
1

“ ec
1
`u1

with ec1 being the maximal positive eigenvalue. Hence, by the uniqueness part of
Theorem 3.1 we obtain that c “ c1 and u “ u1. �



SMOOTH RIGIDITY FOR VERY NON-ALGEBRAIC EXPANDING MAPS 9

Such normalized potentials ϕ̂ have been recently studied in the context of ther-
modynamical formalism [GKLM18].

Remark 3.4. Constant c equals to topological pressure P pϕq. It follows that
if pf1, ϕ1q „ pf2, ϕ2q then the maximal eigenvalue is the same for corresponding
operators and hence pf1, ϕ̂1q „ pf2, ϕ̂2q. (But we won’t use this fact.)

Remark 3.5. Let ec be the maximal positive eigenvalue for Lϕ with eigenfunction
eu and assume that ew is another positive continuous eigenfunction for Lϕ, i.e.,
Lϕew “ σew for some σ P R, then w “ u` k for some k P R and σ is the maximal
eigenvalue. Notice that it follows that condition 2 of Corollary 3.3 is automatic
from condition 3 because a positive eigenfunction necessarily corresponds to the
maximal eigenvalue. (But we won’t use this fact.)

4. Proof of the Main Theorem: the torus case

The proof of Theorem 2.1 consists of two steps. The first step is to built the
fibrations and the second step is to verify the posited property of the fibrations.
In this section will prove Theorem 2.1 under an additional assumption that Mi are
homeomorphic to a torus. This assumption simplifies quite a bit the construction
of fibrations. The second step is general and does not rely on homotopy type of
Mi. Building fibrations in the case when Mi are general nilmanifold requires a
more complicated argument that involves and inductive procedure on the degree of
nilpotency of the the fundamental group. This more general argument appears in
Section 5.

4.1. Fibrations. We begin by explaining the construction of fibrations pi, i “ 1, 2,
which appear in Theorem 2.1.

Recall that h ˝ f1 “ f2 ˝ h and consider the following space of pairs of smooth
functions

V “ tpψ1, ψ2q P C
rpM1q ˆ C

rpM2q : ψ1 “ ψ2 ˝ hu

This is a closed subspace of CrpM1q ˆ CrpM2q. Note that if pψ1, ψ2q P V then
pψ1 ˝ f1, ψ2 ˝ f2q P V . Also note that V always contains constants pc, cq and is an
algebra. We denote by Vi the projection of V on CrpMiq, i “ 1, 2.

Define the subspace fields Eipxq Ă TxMi, i “ 1, 2,

Eipxq “
č

ψiPV ri

ker dxψi

Notice that if xn Ñ x, n Ñ 8, then lim supEipxnq Ă Eipxq. This property
implies that the dimension function dimEipxq is upper semicontinuous. Let mi “

minxPMi
dimEipxq, then upper semicontinuity implies that the set

Ui “ tx PMi : kipxq “ miu

is open.

Lemma 4.1. Ui “Mi, i “ 1, 2 and hence Ei, in fact, is a distribution.
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Proof. Let Γni be the group of Deck transformations of the covering map fni : Mi Ñ

Mi, i “ 1, 2. Deck transformations are Cr diffeomorphisms. By definition

Γni “ tT : fni ˝ T “ fni u

and, hence, h# : Γn1 Ñ Γn2 given by h#pT q “ h˝T ˝h´1 is an isomorphism. Indeed,
if T P Γn1 then fn2 ˝ ph ˝ T ˝ h´1q “ h ˝ fn1 ˝ T ˝ h

´1 “ h ˝ fn1 ˝ h
´1 “ fn2 and vice

versa.
Now it is easy to see that Vi are Γni -invariant, that is, if pψ1, ψ2q P V then

pψ1 ˝ T, ψ2 ˝ h#pT qq P V for all T P Γn1 . Indeed,

ψ2 ˝ h#pT q ˝ h “ ψ2 ˝ h ˝ T “ ψ1 ˝ T

Hence, for all T P Γni we have

EipT pxqq “
č

ψPVi

ker dT pxqψ “
č

ψPVi

ker dT pxqpψ˝T q “
č

ψPVi

DT pker dxpψqq “ DT pEipxqq

Hence Ei is Γni -invariant and, in particular, the set Ui is Γni -invariant.
Because π1Mi “ Zd is abelian the covering fni is normal and Γni pxq “ f´ni pxq.

Hence the orbits Γni pxq become arbitrarily dense as nÑ8 and because Ui is open
we will have that for a sufficiently large n we have Ui “ Γni pUiq “Mi. �

It is easy to see now that the distributions Ei integrate to Cr foliation Fi. Indeed,
for every x PMi there exist finitely many functions ψ1

i , . . . ψ
d´mi
i P Vi such that

Eipxq “
d´mi
č

j“1
ker dxψji

Indeed, just take ψji such that tdxψji uj is a maximal linearly independent set of
tdxψuψPVi .

By continuity of dψji and since Ei has constant dimension, the same formula
holds on a small neighborhood of x. That is, there exists a neighborhood Ui,x of x
such that

Eipyq “
d´mi
č

j“1
ker dyψji

for all y P Ui,x. Therefore, by the implicit function theorem, we have that the maps
Ψi,x : Ui,x Ñ Rd´mi ,

Ψi,xpyq “ pψ
1
i pyq, . . . ψ

d´mi
i pyqq

define a foliation atlas of a Cr foliation which is tangent to Ei. We denote these
foliations by Fi, i “ 1, 2.

Lemma 4.2. The leaves of Fi are compact. In fact, the leaf Fipxq for x P Mi, is
the connected component of x of the intersection

č

ψPVi

ψ´1pψpxqq
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Proof. Let ψ be a function in Vi and let x PMi. Then by the definition

TFipyq “ Eipyq Ă ker dyψ

for every y P Fipxq. Hence ψ is constant on Fipxq and Fipxq Ă ψ´1pψpxqq. Hence

Fipxq Ă
č

ψPV r
i

ψ´1pψpxqq

On the other hand, recall that, locally, for sufficiently small neighborhood Ui,x Q x
we have the foliation chart and hence

Fipxq X Ui,x “ Ψ´1
i,xpΨi,xpxqq “

d´mi
č

j“1
pψji q

´1pψji pxqq X Ui,x Ą
č

ψPV r
i

ψ´1pψpxqq X Ui,x

and the main claim of the lemma follows. �

Recall that for every function ψ1 P V
r
1 there is ψ2 P V

r
2 such that ψ2 ˝ h “ ψ1

and vice versa. This implies that hpF1pxqq “ F2phpxqq for every x P M1. Hence
by the invariance of domain theorem we obtain m1 “ m2, i.e., the dimensions of
foliations F1 and F2 are the same. Also note that Lemma 4.2 and Vi ˝ fi Ă Vi
immediately implies that Fi is invariant under fi.

To conclude that compact Cr foliations Fi are, in fact, fibrations we need to rely
on global structural stability of expanding maps and complete the argument on the
“linear side." Namely, we have that hi ˝ f ˝ h´1

i “ A : Td Ñ Td is an expanding
endomorphism. Then F “ hipFiq is an A-invariant compact continuous foliation
on Td. The action of Γni is conjugate via hi to the translation action by the set
A´nptx0uq, where x0 is a fixed point of A which we identify with 0 P Td. Because
the set Yně0A

´nptx0uq is dense in Td we conclude that F is invariant under the Td-
action on itself by translations. Hence, @y P F px0q we have y`F px0q “ F py`x0q “

F pyq “ F px0q and F p´yq “ ´y`F px0q “ ´y`F pyq “ F p´y`yq “ F px0q; that is,
F px0q is a subgroup of Td. Also recall that F px0q is compact and connected. Hence,
one can easily check (or use Cartan’s closed subgroup thereom) that F px0q is a
linearly embedded subtorus Tm Ă Td. And because F invariant under translations,
we conclude that F is a linear fibration Tm Ñ Td Ñ Td´m. It remains to recall
that Fi “ h´1

i pF q and, therefore Fi is a fibration whose fiber is homeomorphic to
Tm and whose base M̄i is a Cr manifold homeomorphic to Td´m.

Because h sends F1 to F2 it induces a homeomorphism h̄ : M̄1 Ñ M̄2. To see
that h̄ is smooth consider foliations charts around x and hpxq, x PM1, given by

Ψ1,xpyq “ pψ
1
1,xpyq, . . . ψ

d´m1
1,x pyqq, and Ψ2,hpxqpyq “ pψ

1
2,hpxqpyq, . . . ψ

d´m2
2,hpxqpyqq

respectively. In these local coordinates h̄ is given by h̄pΨ1,xpyqq “ Ψ2,hpxqphpyqq.
However, by defintion, we know that there exist Cr functions ψj1,hpxq which satisfy
ψj1,hpxq “ ψj2,hpxq ˝ h, j “ 1, . . . d´m2. Hence, h̄ is given by

h̄pψ1
1,xpyq, . . . ψ

d´m1
1,x pyqq “ pψ1

1,hpxqpyq, . . . ψ
d´m2
1,hpxqpyqq
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and since Ψ1,x is a Cr submersion we conclude that h̄ is Cr on a neighborhood of
p1pxq. A symmetric argument proves that h̄´1 is Cr.

4.2. Second step of the proof of Theorem 2.1: verifying the matching
property. Finally we need to show that given pf1, ϕ1q „ pf2, ϕ2q we have that ϕi
are cohomologous to functions in V ri .

By Corollary 3.3 we have Cr functions ϕ̂i and constants ci P R such that ϕi is
fi-cohomologous to ϕ̂i ` ci and we also have Lϕ̂1,f11 “ 1, Lϕ̂2,f21 “ 1. Moreover,
ϕ̂i are unique among the functions cohomologous to ϕi up to a constant with this
property. We know that ϕ̂2 ˝ h is cohomologous to ϕ̂1 ` c2 ´ c1. In fact, we will
show that

ϕ̂2 ˝ h “ ϕ̂1

By direct calculation, we have that

pLϕ̂2,f2vq ˝ h “ Lϕ̂2˝h,f1pv ˝ hq

for every function v. In particular, for the constant function v “ 1 we have

1 “ 1 ˝ h “ pLϕ̂2,f21q ˝ h “ Lϕ̂2˝h,f1p1 ˝ hq “ Lϕ̂2˝h,f1p1q

Since ϕ̂2 ˝h is cohomologous to ϕ1 up to a constant we get that ϕ̂2 ˝h “ ϕ̂1. Hence
pϕ̂1, ϕ̂2q P V

r and, by the definition of foliations Fi, we conclude that ϕ̂i is constant
on Fi, i “ 1, 2. It remains to set ϕ̄ippipxqq “ ϕ̂ipxq ` ci.

5. Proof of the Main Theorem: building fibrations on nilmanifolds

In this section we built the fibrations in the general case when Mi are homeo-
morphic to a nilmanifold N{Γ. Recall that, by classification, there is an expanding
automorphism A : N Ñ N , ApΓq Ă Γ, which induces an algebraic expanding map
N{Γ Ñ N{Γ topologically conjugate to fi : Mi Ñ Mi, i “ 1, 2. The rest of the
proof of Theorem 2.1, that is, verification of the matching property of fibrations,
was already done in the second half of Section 4.

Define the subspace fields Eipxq Ă TxMi, i “ 1, 2, and level sets as follows

Eipxq “
č

ψPVi

ker dxψ, Pipxq “
č

ψPVi

ψ´1pψpxqq

and let Fipxq “ ccxPipxq, where ccx stands for the “connected component of x."
Our goal is to show that Fi are, in fact, Cr fibrations with fiber and base both
homeomorphic to nilmanifolds.

Remark 5.1. If dimE1pxq “ 0 at one point x P M1 then it is easy to conclude
using the inverse function theorem that the conjugacy h is Cr on a neighborhood
of x and then, using dynamics, that h is Cr globally. Thus the main interest of the
proof to follow is in the case when dimEi ě 1.



SMOOTH RIGIDITY FOR VERY NON-ALGEBRAIC EXPANDING MAPS 13

5.1. Algebraic lemmas. Recall that Γ is a lattice in a simply connected nilpotent
Lie group N and, hence, Γ is torsion free and nilpotent. Let Γ0 “ Γ let Γj “
rΓ,Γj´1s be the lower central series. Denote by k the smallest number such that
Γk`1 “ t0u. Recall that ApΓq Ă Γ and, hence, we also have ApΓjq Ă Γj . Now
define the following lattice

A˚Γj “ A´1pΓjq ¨ Γ
Note that A˚Γ0 “ A´1pΓq and A˚Γk`1 “ Γ. The following lemma implies that
A˚Γj is indeed a well-defined group.

Lemma 5.2. A´1pΓjq ¨ Γ “ Γ ¨A´1pΓjq, j “ 0, . . . k ` 1.

Proof. Let α P Γj and γ P Γ. Then

A´1pαqγ “ A´1pαApγqq “ A´1pApγqαcq

where c is a commutator, c P rΓ,Γjs “ Γj`1 Ă Γj . Hence A´1pαqγ “ γA´1pαcq P

Γ ¨ A´1pΓjq. This proves the inclusion A´1pΓjq ¨ Γ Ă Γ ¨ A´1pΓjq and the reverse
inclusion follows from a similar calculation. �

Lemma 5.3. The group A˚Γj`1 is a normal subgroup of A˚Γj, j “ 0, . . . k.

Proof. We will use a group element αγ P A´1Γj ¨ Γ to conjugate an element βδ P
A´1Γj`1 ¨ Γ and we will see that the result is in A˚Γj`1.

αγβδγ´1α´1 “ pαγα´1γ´1qγpαβα´1β´1qβpαδγ´1α´1γδ´1qγ´1δ

Indeed we have written as a product of elements in A˚Γj`1 and commutators from
rA´1pΓjq,Γs “ A´1rΓj , ApΓqs Ă A´1rΓj ,Γs “ A´1pΓj`1q Ă A˚Γj`1. �

We also recall that Γj Ă A´1Γj and Γ Ă A˚Γj are finite index subgroups.

5.2. The setup on universal covers. The expanding maps fi are conjugate to
the algebraic expanding map via conjugacies hi : Mi Ñ N{Γ. Let xi “ h´1

i pidNΓq
and let πi : pM̃i, x̃iq Ñ pMi, xiq be the universal covers, i “ 1, 2. We denote by
Γi “ tT : πi ˝ T “ πiu » Γ the group of Deck transformation of πi, which we can
also identify with the fundamental group π1pMi, xiq. Next we lift hi and fi to the
universal covers in such a way that h̃ipx̃iq “ idN and f̃ipx̃iq “ x̃i. Then we have

h̃i ˝ f̃i “ A ˝ h̃i, h̃ ˝ f̃1 “ f̃2 ˝ h̃,

where h̃ “ h̃´1
2 ˝ h̃1 : M̃1 Ñ M̃2. We also have f̃i ˝ T “ ApT q ˝ f̃i, for T P Γi.

The group A´1pΓq acts on N by left translations x ÞÑ A´1pT q ¨ x “ pA´1 ˝ T ˝

Aqpxq, T P Γ. Following the same idea as in Section 4 we can conjugate this action
using h̃i and obtain actions on M̃i

A´1Γi “ tf̃´1
i ˝ T ˝ f̃i : T P Γiu

Furthermore we can similarly consider the following actions for any j “ 0, . . . k` 1

A´1Γji “ tf̃
´1
i ˝ T ˝ f̃i : T P Γji u,

A˚Γji “ A´1Γji ˝ Γi “ tf´1
i ˝ T ˝ fi ˝ S : T P Γji , S P Γiu
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Clearly the actions of A˚Γj1 and A˚Γj2 are conjugate via h̃. Consider the orbits

Õj
i pxq “ A˚Γji pxq, x P M̃i

It is immediate that the orbits are Γi-invariant: Õj
i pT pxqq “ Õj

i pxq, T P Γi. Hence
the projection of the orbit Oj

i pπipxqq “ πipÕj
i pxqq is a finite set of cardinality

|A˚Γj{Γ|. Further these partitions into orbits are invariant under the expanding
maps: f̃ipÕj

i pxqq Ă Õj
i pf̃ipxqq, fipO

j
i pxqq Ă Oj

i pfipxqq. Indeed, let T P Γji and
S P Γi then

f̃ippf̃
´1
i ˝ T ˝ f̃i ˝ Sqpxqq “ pT ˝ f̃i ˝ Sqpxq “ pT ˝ApSqqpf̃ipxqq P Õj

i pf̃ipxqq

because T P Γji Ă A´1Γji .
Note that Õk`1

i pxq is just that Γi-orbit of x and, hence, Ok`1
i pxq “ txu; and

Õ0
i pxq is A´1Γi orbit of x and, hence, O0

i pxq “ f´1
i pfipxqq, while Oj

i pxq, j “ 1, . . . k
interpolate in between.

Remark 5.4. The fact that O0
i pπipxqq are not orbits of a finite Deck group action

on Mi is forcing us to work on the universal cover; cf. Section 4.

We now make an observation, which will be very important in the sequel, that
we can consider the same setting for expanding maps fn1 , fn2 and the expanding
endomorphism An for any n ě 1, making the above discussion the case when n “ 1.
Namely, we have actions of A´nΓji and of A˚nΓji “ A´nΓji ¨ Γi, on the universal
covers M̃i, i “ 1, 2, which are conjugate via h̃. Also, the action of A˚nΓ0

i “ A´nΓi
is conjugate via h̃i to the action by left translations by elements of A´nΓ on N .
Hence we can consider the group

A´8Γ “
ď

ně1
A´nΓ

which is a dense subgroup of N , and its actions A´8Γi on M̃i, i “ 1, 2.

5.3. Invariance of the level set partition. To set up an induction argument we
introduce “interpolating" subspace fields and level sets as follows. Recall that

V “ tpψ1, ψ2q P C
rpM1q ˆ C

rpM2q : ψ1 “ ψ2 ˝ hu

Denote by Ṽ the corresponding space of lifted pairs

Ṽ “ tpψ1, ψ2q P C
rpM̃1q ˆ C

rpM̃2q : ψi ˝ T “ ψi @T P Γi, i “ 1, 2; ψ1 “ ψ2 ˝ h̃u

and denote by Ṽi the projection of V on i-th coordinate.
Now consider the filtration Ṽ 0 Ă Ṽ 1 Ă . . . Ă Ṽ k`1 “ Ṽ given by

Ṽ j “ tpψ1, ψ2q P C
rpM̃1qˆC

rpM̃2q : ψi ˝T “ ψi @T P A
˚Γji , i “ 1, 2; ψ1 “ ψ2 ˝ h̃u

As before, we will use Ṽ ji to denote the projection of Ṽ j on i-th coordinate. Let
V j “ pπ´1

1 , π´1
2 q ˝ Ṽ j which is well defined due to equivarience. Hence we have

corresponding filtration onMi — V 0
i Ă V 1

i Ă . . . Ă V k`1
i “ Vi. Note that functions

on V ji are precisely those functions from Vi which are constant on Oj
i pxq, x PMi.
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Define

Ẽji pxq “
č

ψPṼ j
i

ker dxψ, P̃j
i pxq “

č

ψPṼ j
i

ψ´1pψpxqq, F̃ j
i pxq “ ccxP̃j

i pxq

In the same way define

Eji pxq “
č

ψPV j
i

ker dxψ, Pj
i pxq “

č

ψPV j
i

ψ´1pψpxqq, F j
i pxq “ ccxPj

i pxq

Also given a set O define
P̃j
i pOq “

ď

xPO

P̃j
i pxq

and similarly define sets Pj
i pOq.

Immediately from definitions we have the following properties:

1. Ek`1
i “ Ei, Pk`1

i “ Pi and Fk`1
i “ Fi;

2. Pj
i and F j

i are well-defined partitions of Mi and P̃j
i and F̃ j

i are well-defined
partitions of M̃i;

3. Ẽji , P̃j
i and F̃ j

i are A˚Γji -invariant;
4. DfipEji pxqq Ă Eji pfipxqq, fipP

j
i pxqq Ă Pj

i pfipxqq and fipF
j
i pxqq Ă F j

i pfipxqq,
x PMi; and similarly for Ẽji , P̃j

i and F̃ j
i ;

5. hpPj
1pxqq “ Pj

2phpxqq and hpF j
1 pxqq “ F j

2 phpxqq; and similarly for P̃j
i and

F̃ j
i ;

6. Eipxq “ Ek`1
i Ă Eki pxq Ă . . . Ă E0

i pxq, x PMi; and similarly for Ẽji ;
7. Pipxq “ Pk`1

i pxq Ă Pk
i pxq Ă . . . Ă P0

i pxq, x P Mi; and similarly for P̃j
i , F j

i

and F̃ j
i ;

8. Oj
i pxq Ă Pj

i pxq, x PMi, and Õj
i pxq Ă P̃j

i pxq, x P M̃i;
9. DπipẼji q “ Eji ;
10. π´1

i pP
j
i pπipxqqq “ P̃j

i pxq and πipF̃
j
i pxqq Ă F j

i pπipxqq, x PMi;

Lemma 5.5. For all j “ 0, 1, . . . k and all T P A˚Γji we have T pP̃j`1
i pxqq “

P̃j`1
i pT pxqq and DT pẼji pxqq “ Ẽji pT pxqq, x P M̃i.

Proof. It is sufficient to show that if ψ P Ṽ j`1
i then ψ ˝ T P Ṽ j`1

i for all T P A˚Γji
which implies that Ṽ j`1

i “ Ṽ j`1
i ˝ T . Indeed, if we have that then

P̃j`1
i pT pxqq “

č

ψPṼ j`1
i

ψ´1pψpT pxqqq “ T

¨

˝

č

ψPṼ j`1
i

pψ ˝ T q´1`pψ ˝ T qpxqq
˘

˛

‚

“ T

¨

˝

č

ψPṼ j`1
i

ψ´1pψpxqq

˛

‚“ T pP̃j`1
i pxqq

Similarly, we would have DT pẼji pxqq “ Ẽji pT pxqq (cf. the proof of Lemma 4.1).
Let h# : A˚Γj1 Ñ A˚Γj2 be the isomorphism given by conjugation, h#pT q “

h̃ ˝ T ˝ h̃´1. To complete the proof we have to show that if pψ1, ψ2q P Ṽ
j`1
i then
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pψ1 ˝ T, ψ2 ˝ h#pT qq P Ṽ
j`1
i . We have

ψ2 ˝ h#pT q ˝ h̃ “ ψ2 ˝ h̃ ˝ T “ ψ1 ˝ T

and it remains to check that the function ψ1 ˝T , T P A˚Γji , is A˚Γj`1
i -equivariant.

Indeed, for S P A˚Γj`1
i we have

ψi ˝ T ˝ S “ ψi ˝ pT ˝ S ˝ T
´1q ˝ T “ ψi ˝ T,

where the last equality holds because T ˝ S ˝ T´1 P A˚Γj`1
i by Lemma 5.3. �

Lemma 5.6. Let X and Y be finite subsets of Mi. If XXPj`1
i pY q “ ∅ then there

exists a function ψ P V j`1
i such that ψ|X “ 0 and ψ|Y “ 1.

Proof. The proof is based on the observation that if ψ P V j`1
i then ϕ ˝ ψ P V j`1

i

for any Cr function ϕ : RÑ R.
First consider the case when X “ txu and Y “ ty1, y2, . . . ypu. Then because

x R Pj`1
i pY q it can be separated from every point in Y by a function from V j`1

i ;
that is, for all t “ 1, . . . p there exists ψt P V j`1

i such that ψtpxq ‰ ψtpytq. By
replacing ψt with appropriate linear combination Aψt ` B, we can assume that
ψtpxq “ 0 and ψtpytq “ 1. Now let

ψx “
p
ÿ

t“1
ψ2
t

Then we have ψxpxq “ 0 and ψxpytq ě 1 for all t “ 1, . . . p. Finally we replace ψx
with ϕ˝ψx, where ϕ is a Cr function such that ϕp0q “ 0 and ϕpξq “ 1 for all ξ ě 1.
This completes the proof in the case when X “ txu.

In the general case we have X “ tx1, x2, . . . xqu and Y “ ty1, y2, . . . ypu and
we ca apply the above construction to each xs, s “ 1, . . . q, to obtain a function
χs P V

j`1
i such that χspxsq “ 0 and χspytq “ 1 for all t “ 1, . . . p. Consider

χ “
q
ÿ

s“1
p1´ χsq2

Obviously, χpytq “ 0 for all t and χpxsq ě 1 for all s. We can use the Cr function
ϕ to define the posited separating function as ψ “ 1´ ϕ ˝ χ. �

Lemma 5.7. P̃j`1
i pÕj

i pxqq “ P̃j
i pxq, x P M̃i and Pj`1

i pOj
i pxqq “ Pj

i pxq, x P Mi,
for all j “ 0, 1, . . . k.

Proof. The inclusion P̃j`1
i pÕj

i pxqq Ă P̃j
i pxq is straigtfoward. Indeed Õj

i pxq Ă P̃j
i pxq

and P̃j`1
i pyq Ă P̃j

i pyq “ P̃j
i pxq for all y P Õj

i pxq.
Assume the reverse inclusion does not hold. Then there exists a point x and

y P P̃j
i pxq such that y R P̃j`1

i pÕj
i pxqq. By Lemma 5.5 the set P̃j`1

i pÕj
i pxqq is A˚Γji -

invariant and hence Õj
i pyq X P̃j`1

i pÕj
i pxqq “ ∅. Then we also have Oj

i pπipyqq X

Pj`1
i pOj

i pπipxqqq “ ∅ and we can apply Lemma 5.6 to Oj
i pπipyqq and Oj

i pπipxqq

and obtain a function ψ P V j`1
i such that ψ|Oj

i
pπipxqq

“ 0 and ψ|Oj
i
pπipyqq

“ 1. We
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now lift ψ to M̃i and consider the finite sum

ψ̄ “
ÿ

rT sPA˚Γj
i
{A˚Γj`1

i

ψ ˝ πi ˝ T

Note that the summands are well-defined because ψ ˝ πi P Ṽ j`1
i and, hence, are

A˚Γj`1
i -equivariant. Notice that ψ̄|Õj

i
pxq “ 0 and ψ̄|Õj

i
pyq “ |A

˚Γji {A˚Γj`1
i | ą 0.

Finally notice that for any rSs P A˚Γji {A˚Γj`1
i

ψ̄ ˝ S “
ÿ

rT sPA˚Γj
i
{A˚Γj`1

i

ψ ˝ πi ˝ T ˝ S “
ÿ

rT sPA˚Γj
i
{A˚Γj`1

i

ψ ˝ πi ˝ T “ ψ̄

Hence ψ̄ belongs to Ṽ ji and separates x and y which yields a contradiction. �

We finally arrive at the main lemma of this subsection. Recall that F̃i “ F̃k`1
i .

Lemma 5.8. For all j “ 0, 1, . . . k, F̃ j
i “ F̃i and F̃i is a A´1Γi-invariant partition

of Mi, i “ 1, 2.

Proof. Recall that ccx stands for “connected component of x." Applying the previ-
ous lemma we have

F̃ j
i pxq “ ccx

´

P̃j
i pxq

¯

“ ccx

¨

˝

ď

yPÕj
i
pxq

P̃j`1
i pyq

˛

‚

“ ccx

¨

˝

ď

rT sPA˚Γj
i
{A˚Γj`1

i

T pP̃j`1
i pxqq

˛

‚“ ccx

´

P̃j`1
i pxq

¯

“ F̃ j`1
i pxq

where the first equality in the second line is due to invariance of P̃j`1
i pyq under

the action of A˚Γj`1
i . By induction on j we conclude that F̃ j

i pxq “ F̃k`1
i pxq. In

particular F̃0
i “ F̃i. It remains to recall that F̃0

i is A˚Γ0
i “ A´1Γi-invariant. �

Using higher iterates of expanding maps we can prove, using exactly the same
arguments, that partitions F̃i are invariant under the action A´nΓi for all n ě 1.
Hence we have the following corollary. (Recall that A´8Γi “ Yně1A

´nΓi.)

Corollary 5.9. The partition F̃i of M̃i is invariant under the action of A´8Γi.

5.4. Upgrading to a foliation. Now we will prove that F̃i is, in fact, a Cr smooth
foliation.

Consider the dimension function dim Ẽi and let mi “ minxPM̃i
dim Ẽipxq. Pick

a point x P M̃i such that dim Ẽipxq “ mi. Then, by definition of Ẽipxq we can find
functions ψ1, ψ2, . . . ψd´mi P Ṽi such that

Ẽipxq “
d´mi
č

j“1
ker dxψj
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From continuity of dxψj and the fact that mi is minimal dimension, we also have
the same formula

Ẽipyq “
č

ψPṼi

ker dyψ “
d´mi
č

j“1
ker dyψj

for all y in a sufficiently small open neighborhood B of x.
Consider the map Ψ: B Ñ Rd´mi given by Ψpyq “ pψ1pyq, ψ2pyq, . . . ψd´mipyqq.

It is clear that the plaque Ψ´1pΨpyqq is tangent to Ẽi at every point of the plaque.
By choosing B appropriately we may assume that the plaques Ψ´1pΨpyqq are path-
connected for all y P B.

Lemma 5.10. For every y P B we have Ψ´1pΨpyqq “ F̃ipyq XB.

Proof. If a point z P B does not belong to a plaque Ψ´1pΨpyqq then one of the
functions ψj separates z and y. Hence z R P̃ipyq Ą F̃ipyq.

Now take z P Ψ´1pΨpyqq and consider any function ψ P Ṽi. Connect z to y by a
path. If ψpzq ‰ ψpyq then for some point q on the path the restriction of ψ to this
path have non-zero derivative and, hence, Ẽipqq Ć ker dqψ giving a contradiction.
Hence ψpzq “ ψpyq for all ψ P Ṽi, which implies that Ψ´1pΨpyqq Ă P̃ipyq. Thus we
also have Ψ´1pΨpyqq Ă Fipyq because Ψ´1pΨpyqq is connected. �

Now we have that the restriction F̃i|B is a foliation and we would like to spread
the foliation structure to the whole M̃i. For that we have to see that A´nΓipBq “
M̃i. If we have it, then using invariance under A´nΓi provided by Corollary 5.9,
we can conclude that Fi has Cr foliation structure in the neighborhood of every
point. And, hence, Fi is indeed a Cr foliation.

Recall that the action of of A´nΓi on M̃i is conjugate via h̃i to the action by left
translations by A´npΓq Ă N on N . To guarantee that A´nΓipBq “ M̃i it suffices
to choose a sufficiently large n so that the set h̃ipBq covers a fundamental domain
of the lattice A´npΓq.

5.5. Upgrading to a fibration and completing the proof. Now we have that
both F̃1 and F̃2 are Cr foliations. We also have that h̃pF̃1q “ F̃2 and, hence,
by Invariance of Domain, these foliations have the same dimension. It remains to
show that πipF̃iq (which are clearly also Cr foliations) are, in fact, Cr fibrations.
We also need to show that the fibers πipF̃iqpxq and the base of the fibrations are
homeomorphic to nilmanifolds and that the induced conjugacy on the base is a Cr

diffeomorphism. To do that we go to linearized dynamics on N{Γ similarly to the
argument in Section 4.

Let F̃ “ h̃1pF̃1q “ h̃2pF̃2q. Then F̃ is a topological foliation with closed leaves
which is invariant under the expanding automorphism A : N Ñ N . By Corollary 5.9
foliation F̃ is also invariant under left translations by A´8pΓq. Because F̃ is con-
tinuous and A´8pΓq is dense we conclude that F̃ is invariant by all left translations
on N . This allows us to argue that F̃ pidN q is a group. Indeed for all x, y P F̃ pidN q
we have F̃ pxyq “ xF̃ pyq “ xF̃ pidN q “ F̃ pxidN q “ F̃ pidN q, and similarly for all
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x P F̃ pidN q we have F̃ px´1q “ x´1F̃ pidN q “ x´1F̃ pxq “ F̃ px´1xq “ F̃ pidN q.
We can now apply apply Cartan’s closed subgroup (see e.g., [Hall15]) theorem to
conclude that F̃ pidN q is a Lie subgroup of N .

So we denote the leaf through identity by G “ F̃ pidN q. Hence, using translation
invariance again, we conclude that F̃ is a smooth foliation by cosets of G.

Lemma 5.11. Let F be the projection of F̃ on N{Γ. Then each leaf of F is either
compact or it “accumulates on itself", that is, there exists x P N{Γ such that for
arbitrarily small neighborhood B of x the intersection F pxqXB has infinitely many
connected components.

Proof. The leaves of F are orbits of the action of G, which is a nilpotent Lie group
on N{Γ. So one can refer to Ratner theory, specifically to [Rat91], which gives,
in particular, that the closures of orbits of such a unipotent action are affinely
embedded nilmanifolds. Hence each orbit is either compact or dense in it’s higher
dimensional closure, which implies the needed recurrence. It also not so hard to
derive this lemma from earlier work of Parry on homogeneous flows on nilmanifolds:
one needs to choose orbits which escape to infinity in non-compact leaves and
use [Par69, Theorem 5].

However the lemma can also be derived from more basic topological dynamics
using work of Ellis and Furstenberg on distal actions [Ell58, Fur63], which we
proceed to explain. It well-known and simple fact that the nilpotent action of
G on N{Γ is distal. (It follows from the fact that a nil-translation is an iterated
isometric extension). Based on work of Ellis, Furstenberg proved that a distal
actions can be decomposed into a disjoint union of minimal sets [Fur63, Theorem
3.2]. Hence each leaf of F is either compact or has a non-trivial closure and is dense
in the closure and hence recurrent. �

Lemma 5.12. There exists a non-empty open set U Ă N{Γ such that each leaf of
F that meets U is compact.

Proof. We begin by noticing that the properties of being compact and to “to ac-
cumulate on itself" are topological. Hence we have the property given by the
Lemma 5.11 on the non-linear side as well by applying h´1

i : for all x P Mi ei-
ther πipF̃iqpxq is compact or for all small neighborhoods B of x the intersection
pπipF̃iqpxqq XB has infinitely many connected components.

Now we will argue in the same way as in Subsection 5.4, but on Mi instead of
M̃i. Let Ui Ă Mi be the set where dimEi achieves its minimum mi. Recall that
the dimension function x ÞÑ dimEipxq is upper semicontinuous, which implies that
Ui is open.

Take a point x P Ui. Then we can construct a foliation chart for Fi which we
denote by Ψ: B Ñ Rd´mi about x, B Ă Ui, such that Ψ´1pΨpxqq is a connected
subset of Fipxq and for all z P B which do not belong to Ψ´1pΨpxqq we have
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z R Pipxq (see the proof of Lemma 5.10). Then we have

pπipF̃iqpxqq XB Ă Fipxq XB Ă Pipxq XB “ Ψ´1pΨpxqq

On the other hand, recalling that DπipẼiq “ Ei and the discussion at the beginning
of Subsection 5.4, we have that πipF̃iq is a pd ´ miq-dimensional foliation; that
is, it has the same dimension as the plaque Ψ´1pΨpxqq, hence πipF̃iqpxq X B “

Ψ´1pΨpxqq. Therefore πipF̃iqpxq X B has only one connected component and we
conclude, by dichotomy of Lemma 5.11, that πipF̃iqpxq is compact. Going back to
the foliation F via hi we obtain the same conclusion: all leaves of F which meet
the non-empty open set U “ hipUiq are compact. �

Lemma 5.13. Group G is a normal subgroup of N .

Proof. By Lemma 5.12 there exists a small open ball B Ă U Ă N{Γ such that every
leaf F pxΓq “ GxΓ, x P B, is compact. We consider the stabilizer group Γx of the
leaf F̃ pxq.

Γx “ tγ P Γ : Gx “ Gxγu “ tγ P Γ : xγx´1 P Gu “ ΓX x´1Gx Ă Γ

Thus F pxΓq “ F̃ pxq{Γx is homeomorphic to x´1Gx{Γx and, hence Γx is a cocom-
pact lattice in x´1Gx, x P B.

Now assume that for some x0, x1 P B we have x´1
0 Gx0 ‰ x´1

1 Gx1. Then we
can find a path xt P B, t P I, such that x´1

t Gxt, t P I, are all mutually distinct
subgroups of N . (Indeed, just connect x0 to x1 by a path in B and then choose
a small subpath in a neighborhood of a point where x´1

t Gxt varies infinitesimally
linearly with t.)

We can also see that all Γxt “ Γ X x´1
t Gxt are mutually distinct. To see that

notice that, because the exponential map provides a one-to-one correspondence
between subalgebras of the Lie algebra of the simply connected nilpotent Lie group
N and its connected Lie subgroups, we intersection subgroup px´1

t GxtqXpx
´1
s Gxsq,

s ‰ t is at least codimension one in both x´1
t Gxt and x´1

s Gxs. Because Γxt is
cocompact in x´1

t Gxt it must have a non-trivial image in the non-compact quotient
space x´1

t Gxt{ppx
´1
t Gxtq X px

´1
s Gxsqq. Hence, indeed Γxt contains elements which

are not in Γxs .
Thus we have obtained an uncountable family Γxt , t P I, of mutually distinct

subgroups of Γ, which gives a contradiction. Indeed, Γ is finitely generated and
nilpotent and, hence, any subgroup of Γ is also finitely generated. So Γ only have
countably many distinct subgroups. We conclude that x´1

0 Gx0 “ x´1
1 Gx1 for all

x0, x1 P B. Hence px1x
´1
0 q´1Gx1x

´1
0 “ G for all x1x

´1
0 is a small neighborhood

of idN . And because such neighborhood generates N we can conclude that G is
normal. �

Let ΓG “ Γ X G. Normality of G implies that Γx “ ΓG for all x and we have
that ΓG is a cocompact lattice in G by Lemma 5.12. Again using normality of
G (and ΓG in Γ) it is easy to check that the quotient homomorphism N Ñ GzN
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induces a well-defined fibration map p : N{Γ Ñ M̄ with compact nilmanifold base
M̄ “ pGzNq{pΓGzΓq and nilmanifold fiber G{ΓG. Conjugating back to Mi we
obtain the posited fibrations pi : Mi Ñ M̄i whose fibers are the leaves of πipF̃iq
which are homeomorphic to G{ΓG and whose base M̄i is homeomorphic to M̄ .
Note that pi are Cr smooth because we already have that πipF̃iq are Cr.

It remains to check that h̄ : M̄1 Ñ M̄2 induced by h is a Cr diffeomorphism. This
remaining argument follows closely the corresponding argument in Section 4. The
only difficulty comes from the fact that we still do not know that T pπipF̃iqq “ Ei
(and that Fi is a foliation). However, we do know, from the proof of Lemma 5.12,
that Ei “ TFi “ T pπipF̃iqq on an open and dense set — the set where Ei achieves
the minimal dimension mi. Indeed, recall that mi denotes the minimal dimension
of Ei. We have shown that m1 “ dim F1 “ dim F2 “ m2. Let Ui “ tx P Mi :
dimEipxq “ miu. Recall that Ui is open (cf. the discussion of Subsection 4.4).
Further if x P Ui and fipyq “ x then, using Vi ˝ fi Ă Vi, we have

DfipEipyqq “ Dfi

˜

č

ψPVi

ker dyψ
¸

Ă Dfi

˜

č

ψPVi

ker dypψ ˝ fiq
¸

“
č

ψPVi

Dfipker dypψ ˝ fiqq “
č

ψPVi

ker dxψ “ Eipxq

Hence, because dimEipxq is minimal the above inclusion is, in fact, equality and y P
Ui. We obtain f´1

i pUiq Ă Ui, which implies that Ui is dense inMi. Therefore we can
pick a point x P U1 such that hpxq P U2. Consequently both of these points admit
nice foliation charts and we can show, repeating verbatim the arguments of the last
paragraph of Subsection 4.1, that h̄ is a Cr diffeomorphism on a neighborhood B
of p1pxq.

Now recall that h̄ conjugates the induced Cr expanding maps, h̄ ˝ f̄1 “ f̄2 ˝ h̄.
We can lift all the maps to the universal covers and express the lift of h̄ as follows:

˜̄h “ ˜̄fn1 ˝
˜̄h ˝ ˜̄f´n2

If B̃ is the lift of B, then the above equation implies that ˜̄h is a Cr diffeomorphism
on ˜̄fn2 pB̃q. For a sufficiently large n the set ˜̄fn2 pB̃q contains a fundamental domain
of the cover and we conclude that h̄ is indeed a Cr diffeomorphism.

Remark 5.14. Once the proof is finished we can actually conclude that Fi “
π1pF̃iq and Ei “ TFi. This fact would be very helpful to have in the course of the
proof, however it was out reach and we only can obtain it a posteriori. To see that
Fi “ π1pF̃iq and Ei “ TFi one can characterize the space of functions Vi as the
space of Cr functions which are constant on the fibers of pi. Such characterization
easily follows from the fact that h̄ is a Cr diffeomorphism. Note, however, that this
fact is not needed in the statement of Theorem 2.1.
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6. Proofs of Corollaries

Proof of Corollary 2.6. We denote by L the linear endomorphism to which both f1

and f2 are conjugated.
By passing to the second iterate we may assume Jacpfiq ą 0, i “ 1, 2. Let

ϕi “ ´ log Jacpfiq. By Theorem 2.1 we have Cr fibrations (with connected fiber)
pi : Mi Ñ M̄i and functions ϕ̄i : M̄i Ñ R such that ϕ̄i ˝ pi is cohomologous to ϕi
and the induced conjugacy h̄ : M̄1 Ñ M̄2, h̄ ˝ p1 “ p2 ˝ h, is a Cr diffeomorphism.

If dim M̄1 “ 0, then ϕ̄1 is constant and, hence, ϕ1 is cohomologous to a constant.
Then the equilibrium state for ϕ1, which is the absolutely continuous measure equals
the equilibrium state for the constant function which is the entropy maximizing
measure [Bow75], contradicting the assumption of the corollary.

If dim M̄1 “ d, then p1 and p2 are diffeomorphisms (in fact, identity diffeomor-
phisms) and, hence, h is a Cr diffeomorphism since h “ p´1

2 ˝ h̄ ˝ p1.
It remains to consider the case when 0 ă dim M̄1 ă d. However, this is impossible

due to irreducibility. Indeed from the proof of Theorem 2.1 in Section 4.1 it is clear
that L leaves invariant a torus of a positive dimension m ă d, which contradicts
to irreducibility. We can also provide an alternative self-contained short argument
below.

Abbreviate M “ M1 and M̄ “ M̄1. Let x be a fixed point of f1 and let F
be the fiber of p1 which contains x. Recall that, by Theorem 2.1, M̄ supports an
expanding map f̄1 and, hence, is aspherical. Therefore the fundamental groups fit
into the short exact sequence

0 Ñ π1pF q Ñ π1pMq Ñ π1pM̄q Ñ 0

Note that taking tensor product with R leaves the sequence exact.
Because f1pF q “ F we have pf1q˚pπ1pF qq “ L˚pπ1pF qq ă π1pF q ă π1pMq » Zd.

Since dim M̄ ă d we have that dimF ą 0 and F is compact and also aspherical
(because it supports the expanding map f1|F ). It follows that π1pF q b R gives a
non-zero rational invariant subspace for L. Because L is irreducible we conclude
that π1pF qbR “ Rd. Hence π1pM̄qbR “ 0, i.e., π1pM̄q is torsion finitely generated
abelian group, hence, finite. But any closed aspherical manifold of dimension >0
has an infinite fundamental group, a contradiction. �

Proof of Corollary 2.11. By classification of expanding maps, manifolds Mi are
homeomorphic to infranilmanifolds. Therefore we can pass to the nilmanifold covers
and, accordingly, pass to the lifts of expanding maps. It is easy to see that the very
non-algebraic assumption still holds for the lifted maps. From now on we assume
that Mi are homeomorphic to nilmanifolds and, hence, Theorem 2.1 applies.

Recall that fi are Cr`1, r ě 1, very non-algebraic expanding maps and h :
M1 Ñ M2 is a conjugacy. We apply Theorem 2.1 to fi and r (not r ` 1!). Let
pi : Mi Ñ M̄i, f̄i : M̄i Ñ M̄i, h̄ : M̄1 Ñ M̄2 be the Cr maps given by Theorem 2.1.
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We shall show that dimpM̄iq “ dimpMiq. Then we would have h “ h̄ and, by
Theorem 2.1, the conjugacy is Cr.

Assume that dimpMiq ´ dimpM̄iq “ m ą 0. Recall that by Theorem 2.1 the
fibers Fi,x “ p´1

i ppipxqq are nilmanifolds and, hence, are orientable. Moreover the
fibers can be simultaneously coherently oriented because the base space M̄i is also
an orientable nilmanifold. We fix a choice of orientation on fibers and on the base.
The expanding map fi does not necessarily preserve any of the orientations. (And
we cannot pass to finite iterates because such operation would not preserve the
“very non-algebraic condition.”) Let d be the absolute value of the degree of the
map between the fibers

d “
ˇ

ˇdegpfi|Fi,x : Fi,x Ñ Fi,fipxqq
ˇ

ˇ

Note that d is indeed independent of x by continuity and is independent of i because
fi are conjugate. Further, if dimFi,x ą 0 then d ą 1 because the expanding map
on the fiber through a fixed point is a self cover of degree ą 1.

In the rest of the proof write J to denote the absolute value of the Jacobian of a
map — Jf :“ |Jacpfq|. Let ψi “ logpJfi|kerDpiq. We note that these functions are
only Cr´1 because the distributions kerDpi are merely Cr´1.

First we pick Riemannian metrics on M̄i, i “ 1, 2, so that h̄ is volume preserving
(e.g., an isometry) and, hence,

log Jf̄1 “ log Jf̄2 ˝ h̄

Then pick a smooth connections Ei for pi (subbundles transverse to kerDpi) and
then lift the Riemannian metrics from M̄i to Ei. Then consider Riemannian metrics
on Mi which are direct sums of metrics on kerDpi and the lifted metrics on Ei. By
construction, the differential Dfi have upper-triangular form and we have

ψi “ log Jfi ´ log Jf̄i ˝ pi

The Livshits Theorem for expanding maps together with the assumption on Jaco-
bians at periodic points imply that log Jf1 is cohomologous to log Jf2 ˝ h. Note
that log Jfi are Cr functions. Hence, by the main property of ppi, f̄i, h̄q given by
Theorem 2.1, we have that log Jfi is fi-cohomologous to a Cr function which is
constant on the fibers. Because log Jf̄i ˝pi are also constant on the fibers, it follows
that ψi are cohomologous to ψ̄i ˝ pi.

In other words, there exist Cr function ui such that

logpJfi|kerDpiq ´ ui ` ui ˝ fi “ ψ̄i ˝ pi

Therefore by replacing the volume form ω on the fibers F1,x with the volume form

ω̄ “ eu1ω
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we can assume that the absolute value of the Jacobian of f1|kerDp1 equals to eψ̄1˝p1 .
Denote by volpF1,xq the total ω̄-volume of F1,x. For any x PM1 we have

eψ̄1˝p1pxq “
1

volpF1,xq

ż

F1,x

eψ̄1˝p1 ω̄ “
1

volpF1,xq

ż

F1,x

Jf1|kerDp1 ω̄ “ d

Hence for every periodic point x, fk1 x “ x we have that Jfk1 |kerDp1 “ dk. This
means that either dk or p´dqk belongs to the spectrum of

m
ľ

Dfk1 pxq

which contradicts to f1 being very non-algebraic. We conclude that m “ 0, i.e.,
dimpM̄1q “ dimpM1q and we are done. �

Note that even though the regularity of fi is r ` 1, we use Theorem 2.1 with
regularity r because we work with Jacobian of fi.

7. Examples

Example 7.1 (Basic example). Here we give an explicit example where non-trivial
fibrations pi : Mi Ñ M̄i, i “ 1, 2, with dim M̄i ‰ 0, dimMi appear. Consider the
expanding maps L, f : T2 Ñ T2 given by Lpx, yq “ p2x, 2yq and fpx, yq “ pgpxq, 2yq,
where g is conjugate to ˆ2 map via nowhere differentiable conjugacy h0, h0 ˝ g “

2h0. For simplicity we may assume that gp0q “ 0 and g1p0q ă 2. Then h “ ph0, idS1q

is the conjugacy between f and L. Recall that fibrations pi arise from the space of
pair of Cr functions pψ1, ψ2q which satisfy ϕ1 “ ψ2 ˝ h, i.e.,

ψ1px, yq “ ψ2ph0pxq, yq

Clearly any Cr function ψ1px, yq “ ψpyq belong to this space. We will show that
these are the only functions which could appear. Then, it immediately follows that
p1px, yq “ p2px, yq “ y. That is, pi are circle fibrations over S1.

Denote by Binfh0 the lower derivative of h0 defined via lim inf. All periodic
points which spend sufficiently large proportion of time near 0 have Lyapunov
exponent ă log 2. Such periodic points p are dense in S1 and it is easy to see that
Binfh0ppq “ 0 for any such p. Hence differentiating the relation between ψ1 and ψ2

with respect to x yields
B

Bx
ψ1pp, yq “

B

Bx
ψ2ph0ppq, yqBinfh0ppq “ 0

for a dense set of p. Hence, indeed, ψ1 and ψ2 are functions of y only.

Remark 7.2. Any primitive vector pm,nq P Z2 yields a fibration S1 Ñ T2 Ñ S1

whose fibers in the universal cover R2 are lines parallel to the vector pm,nq. This
gives infinitely different fibrations each of which is preseved by the conformal map
L from Example 7.1. Further, similarly to the construction of Example 7.1, one can
construct perturbations fpm,nq such that the fibration given by the Theorem 2.1 is
precisely the fibration coming from pm,nq.
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Example 7.3 (de la Llave example). Non-trivial fibration may appear in a more
subtle way when Jacobians full periodic data match. Of course, this can only hap-
pen for expanding maps which are not very non-algebraic. The example presented
here is due to de la Llave [dlL92].

Consider the maps

Lpx, yq “ pdx, ayq, d ě 2, a ě 2,

and
fpx, yq “ pdx` αpyq, ayq

Then the conjugacy between L and f has the form

hpx, yq “ px` βpyq, yq

where β can be expressed explicitly as the series [dlL92]

βpyq “
1
d

ÿ

iě0

1
di
αpaiyq

Notice that β is a Weierstrass function. Let

r0 “
log d
log a

and let r0 “ n` θ where n0 P N0 and θ P p0, 1s.
To analyze the regularity of β there are several cases to consider which give

different answers.

Lemma 7.4. Assume that α P Cr, r “ k` δ, k P N0, δ P r0, 1q and let r0 “ n` θ,
as above n P N0 and θ P p0, 1s, then

1. Case I: r ă r0 then β P Cr;
2. Case II: r ą r0, r0 R N then β P Cr0 ;
3. Case III: r ą r0, r0 “ n` 1 P N then β P Cn`x| log x|;
4. Case IV: r “ r0 then β P Cn`xθ| log x|;

In all cases, there is a generic set of α P Cr where the regularity is optimal, in
particular for such α, β R Cr0`ε for any ε ą 0.

Proof. We give the proof for Case IV, all other cases being analogous.
By term-wise differentiation we have that

βpnqpyq “
1
d

ÿ

iě0

ˆ

an

d

˙i

αpnqpaiyq

which is convergent because r0 ą n. Comparing the series for β and βpnq, clearly
we can assume that n “ 0 because the argument for n ą 0 would be the same with
βpnq in place of β.

Let A “ max |α| and C the θ-Hölder constant for α. Take x ‰ y and let N be
such that

1
aN´1 ď |x´ y| ď

1
aN
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Then

|βpxq ´ βpyq| ď
N´1
ÿ

k“0

1
aθk

ˇ

ˇαpakxq ´ αpakyq
ˇ

ˇ`
ÿ

kěN

1
aθk

ˇ

ˇαpakxq ´ αpakyq
ˇ

ˇ

The first summand is smaller than

C
N´1
ÿ

k“0

1
aθk

aθk|x´ y|θ ď CN |x´ y|θ ď C|x´ y|θ| |log |x´ y||

The second summand is smaller than
2A

1´ aθ
1
aNθ

ď C|x´ y|θ

Hence we obtain the posited xθ| log x| modulus of continuity for β.
On the other hand, if we assume, to simplify notation, that αp0q “ 0, and say

αpxq ą 0 for x ą 0, and that lim infxÑ0
|αpxq|
|x|θ

ą 0. Pick ε0 ą 0 sufficiently small so
that K “ inf |x|ăε0p|αpxq|{|x|

θq is positive. Then, taking x ą 0 very close to 0 and
N ą 0 first such that aNx ě ε0, we obtain

|βpxq ´ βp0q| ě

N´1
ÿ

k“0

1
aθk

αpakxq ´
ÿ

kěN

1
aθk

αpakxq

ě

ˆ

KN ´
2A

1´ aθ

˙

|x|θ ě

ˆ

KCε0 | log |x|| ´ 2A
p1´ aθqεθ0

˙

|x|θ

So, by taking x close enough to 0 we see that β is not Cθ at 0.
Now notice that

βpxq “
1
d
βpaxq `

1
d
αpxq

and α P Cr0 . Let S be the set of x such that β is not Cr0 at x. Then, from the
above equation, if ax P S then x P S, i.e., S is backward invariant (and non empty)
and hence dense.

To show the genericity property we will use the following functional analysis
Lemma (it is a concequence of the proof of the open mapping theorem.)

Lemma 7.5. Let X and Y be Banach spaces and L : X Ñ Y be a bounded linear
map then either L is onto or the image of L is a first category set.

Now consider X “ Y “ Cθ and Lpβq “ dβ´ β ˝ a. We have that the image of L
is the set of α P Cθ such that the corresponding β belongs to Cθ. We just showed
that L is not surjective, hence the set of α such that the corresponding β belongs
to Cθ is a first category set and so its complement is a second category set. �

Remark 7.6. Notice that if r0 P N, then d “ ar0 . And we have that if β P Cr0 then
we can differentiate the above equation and obtain that βpr0q solves the equation

dβpr0qpxq ´ ar0βpr0qpaxq “ αpr0qpxq

meaning that αpr0q

d is cohomologous to 0, which does not happen for generic α.
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With Lemma 6.4 at hand we return to discussion of Example 6.3. If we apply
Theorem 2.1 to L, f and r ă r0 then the fibrations pi are trivial with point fibers.

If r ě r0 we will have p1px, yq “ p2px, yq “ y, i.e., fibrations with circle fiber.
Let us show this fact.

Differentiating ψ1px, yq “ ψ2px` βpyq, yq with respect to y variable yields

Byψ1px, yq “ Byψ2px` βpyq, yq ` Bxψ2px` βpyq, yqβ
1pyq

Notice that Bxψ2px` βpyq, yq P C
r0´1 and, in particular, it is continuous. Let

U “ ty : Bxψ2px` βpyq, yq ‰ 0 for some xu,

then U is open and for y P U and the appropiate x,

β1pyq “
Byψ1px, yq ´ Byψ2px` βpyq, yq

Bxψ2px` βpyq, yq
.

So, for y P U we obtain that that the right hand side is locally in Cr0´1 and hence
β1 is locally in Cr0´1 for points in U . Hence by Lemma 7.4, U is empty and hence
B
Bxψ2px`βpyq, yq “ 0 for all x and a dense set of y P S1. We conclude that ψ2 (and
similarly, ψ1) depends solely on the y-coordinate.

Example 7.7 (Irreducible automorphism of an infratorus). We have explained
in Remark 2.9 that (non-trivial) infratori do not support totally irreducible affine
automorphisms. Here we show that one can still construct irreducible examples
(which become reducible after passing to a finite iterate).

Define the expanding endomorphism of T3 by

L “

¨

˝

0 0 3
1 0 0
0 1 0

˛

‚

Note that L3 is diagonal. Define the holonomy group tid, γ1, γ2, γ3u as follows

γ1 “

¨

˝

1 0 0
0 ´1 0
0 0 ´1

˛

‚ γ2 “

¨

˝

´1 0 0
0 1 0
0 0 ´1

˛

‚ γ3 “

¨

˝

´1 0 0
0 ´1 0
0 0 1

˛

‚

Finally let

v1 “

ˆ

1
2 , 0,

1
2

˙t

v2 “

ˆ

1
2 ,

1
2 , 0

˙t

v3 “

ˆ

0, 1
2 ,

1
2

˙t

and Tipxq “ γipxq ` vi, i “ 1, 2, 3. We let Γ be the group of affine diffeomorphisms
of T3 generated by the Ti’s. It is easy to see that, in fact, Γ “ tIdT3 , T1, T2, T3u

and, hence, Γ acts freely on T3.
Finally LΓL´1 Ă Γ and, hence, induces an expanding endomorphism of the

infratorus T3{Γ. Indeed, L ˝ T1 ˝ L
´1 “ T2 ` p1, 0, 0qt, L ˝ T2 ˝ L

´1 “ T3 and
L ˝ T3 ˝ L

´1 “ T1 ` p1, 0, 0qt.

Example 7.8 (Seifert fibration). Recall that in Theorem 2.1 we assume that man-
ifolds Mi are homeomorphic to nilmanifolds. If Mi are not homeomorphic to nil-
manifolds then the construction of compact foliations in the proof of Theorem 2.1
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still works, but these foliations might fail to be fibrations. The example below
illustrates this point.

Consider the Klein bottle K given as a quotient of the torus T2 “ R2{Z2 by the
involution T px, yq “ px ` 1

2 ,´yq. We can also model K as the rectangle r0, 1
2 s ˆ

r´1{2, 1{2s where the sides are identified by px, yq Ñ px ´ 1{2,´yq and px, yq Ñ
px, y ` 1q. One can easily check that the expanding linear map

L “

ˆ

3 0
0 2

˙

induces an expanding map L : K Ñ K. We foliate K by horizontal curves ty “
constu. More precisely, for every y P r´1{2, 1{2s define the circles

Cy “
"

pt, yq : t P
„

0, 1
2

*

Y

"

pt,´yq : t P
„

0, 1
2

*

Notice that if y ‰ 0, 1
2 then Cy consists of two segments on the rectangle. For y “ 0,

C0 is a singular curve that consists of only one segment r0, 1{2s ˆ t0u and hence
has half of the length of the other leaves. The same happens for y “ 1

2 , C 1
2
is a

singular curve that consist of only one segment r0, 1{2sˆt1{2u „ r0, 1{2sˆt´1{{2u.
Moreover, notice that Cy “ C´y.

We have defined a foliation on K which is obviously not a fibration. Indeed, the
quotient map π : KÑ S1{ry „ ´ys yields an orbifold structure on S1{ry „ ´ys.

Notice that LpCyq “ Cp2y mod 1q, hence, the foliation is L-invariant.
We now define expanding maps fi : KÑ K, i “ 1, 2. We let fipx, yq “ pgipxq, 2yq,

where gipxq “ 3x ` αipxq with αip0q “ 0 and αipx ` 1
2 q “ αipxq for every x P S1.

Such formulae define maps on the Klein bottle which are homotopic to L. Moreover,
these maps are expanding provided that C1 norms of αi are sufficiently small. Also
notice that fi preserve the foliation C.

The conjugacy h between f1 and f2, h ˝ f1 “ f2 ˝ h has the form hpx, yq “

ph0pxq, yq, where h0˝g1 “ g2˝h0. Notice that by the symmetries of fi, h0px`1{2q “
h0pxq`1{2 and hence h is indeed the conjugacy on the Klein bottle. We can assume
that αi are chosen so that h0 and, hence, h is not C1.

Take any ϕ0 : R Ñ R such that ϕ0py ` 1q “ ϕ0pyq and ϕ0p´yq “ ϕ0pyq e.g.,
ϕ0pyq “ cos 2πy. Then ϕpx, yq “ ϕ0pyq defines a function on K and ϕ ˝ h “ ϕ. On
the other hand if ϕ1 “ ϕ2 ˝ h for some smooth functions ϕ1 and ϕ2 then both ϕ1

and ϕ2 must be constant on the leaves of C because h0 is non-differentiable on a
dense set of x P S1. So defining ϕi “ ϕ for i “ 1, 2 we are in the hypothesis of the
Theorem 2.1. We conclude that C is precisely the compact foliation given by the
construction in the proof of Theorem 2.1.

Example 7.9 (Exotic examples). Here we explain that the fiber bundle structure
given by Theorem 2.1 could be non-trivial even in the case when the ambient
manifold is an exotic torus. Examples of expanding maps on exotic tori were first
constructed by Farrell and Jones [FJ78] in dimensions d ě 7. We explain how, with
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some extra care, the beautiful construction of Farrell-Jones can be adapted to our
setting.

Let Σd be a d-dimensional, d ě 7, homotopy sphere and let Td be the standard
torus. A simple way of constructing an exotic torus is by taking the connected
sum Td#Σ. If Σd is not homeomorphic to the standard sphere then Td#Σd is
not homeorphic to Td [Wal70, §15A]. Further, it is well-known that for d ě 7, one
can realize Td#Σd as Td with a disk Dd removed and then glued back in using an
orientation-preserving “twist diffeomorphism” ϕ P DiffpSd´1q.

Td#Σd “ pTdzDdq Yϕ Dd

It is easy to check that if ϕ1 is isotopic to ϕ then the corresponding exotic tori are
diffeomorphic.

We view the sphere Sd´1 “ BDd as the standard sphere in Rd

Sd´1 “ tpx1, x2, . . . xdq :
ÿ

i

x2
i “ 1u

Cerf [Cer61] showed that for every homotopy sphere Σd one can realize Td#Σd

using a diffeomorphism ϕ : Sd´1 Ñ Sd´1 which preserves the first coordinate, i.e.,
has the form

ϕpx1, x2, x3 . . . xdq “ px1, x
1
2, x

1
3 . . . x

1
dq

Then ϕ can viewed as a path of diffeomorhisms and gives a representative of an
element of π1pDiffpSd´2qq. More generally, one can consider the space DiffkpSd´1q of
orientation preserving diffeomorphisms which preserve first k coordinates x1, x2, . . . xk
and, hence, give an element of πkpDiffpSd´1´kqq. Isotopy classes of such diffeomor-
phism form a subgroup Γdk`1 of the group of isotopy classes of all orientation diffeo-
morphisms Θd (which is identified with the group of homotopy spheres equipped
with the connected sum operation). It is known that Γdk`1 is non-trivial in a certain
range of pairs pk, dq [ABK70].

Now we formulate the extra property of ϕ P DiffkpSd´1q which we will need
(and which is not needed in the original Farrell-Jones construction). Consider the
obvious homomorphism

γ : πkpDiffpSd´1´kqq Ñ π0pDiffpSd´1qq » Θd

Lemma 7.10. ([ABK72, Proposition 1.2.3; §1.3]) There exists pairs pk, dq2 and a
torsion element rϕs P πkpDiffpSd´1´kqq, rϕps “ 0, whose image in π0pDiffpSd´1qq

non-trivial, i.e., γrϕs ‰ 0.

We proceed to briefly recall the Farrell-Jones construction [FJ78, Far96] and then
explain how the above lemma allows to produce exotic example which admit invari-
ant fibrations with pd ´ kq-dimensional fibers. The construction yields a ˆs-map
on π1pTd#Σdq for a sufficiently large s which also must satisfy certain congruence
arithmetic condition.

2For specific arithmetic conditions see [ABK72, Corollary 1.3.6].
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We pick a ϕ P DiffkpSd´1q given by Lemma 7.10 and realize Td#Σd by removing
a disk Dd from Td and then attaching it back with a twist YϕDd. Given an integer
s ě 2 consider the manifold Ms which is diffeomorphic to Td#Σd and which is
obtained by removing the conformally scaled disk 1

sD
d and then attaching it back

with a twist Yϕ 1
sD

d. Because of our choice of ϕ both manifolds are naturally total
spaces of smooth torus bundles

Td´k Ñ Td#Σd p1
ÝÑ Tk, Td´k ÑMs Ñ Tk

where the base space Tk corresponds to the first k coordinates fixed by ϕ.
Let N Ñ Td#Σd be the locally isometric cover which induces ˆs map on the

fundamental group. And let Ns be a copy of N with the Riemannian metric con-
formally scaled by 1

s . Clearly both Ns and N smoothly fiber over Tk. Then the
posited expanding map is the composition

Td#Σd Fs
ÝÑMs

Gs
ÝÑ Ns

ˆs
ÝÑ N Ñ Td#Σd

The diffeomorphisms Fs and Gs are constructed with a uniform (in s) lower bound
on minimal expansion. It immediately follows that for sufficiently large s the com-
posite map f : Td#Σd Ñ Td#Σd is uniformly expanding.

The diffeomorphism Fs which “shrinks” the exotic sphere is constructed using
the “commutator trick” and it is easy to check that Fs is fiber preserving and fibers
over the identity map idTk . We claim that the same is true for the diffeomorphism
Gs. The purpose of Gs is to introduce a certain number of scaled exotic spheres
Yϕ

1
sD

d, and, thus, create Ns. These exotic spheres are introduced in groups of size
b which is divisible by the order of ϕ in Θd [FJ78, Lemma 3]. Alternatively one can
think of G´1

s as a diffeomorphism which removes exotic spheres in groups of size
b. To remove one such group one uses diffeomorhism given by the isotopy between
ϕb and idSd´1 . A priori such an isotopy does not preserve the fibers. However,
we can require b to be divisible by p which is given by Lemma 7.10. Then ϕb is
isotopic to idSd´1 in the space DiffkpSd´1q and hence the resulting diffeomorphism
Gs : Ms Ñ Ns is fiber-preserving and fibers over idTk . Finally we notice that
the covering map N Ñ Td#Σd and the expanding map ˆs : Ns Ñ N are fiber
preserving as well. We conclude that the expanding map f fibers over ˆs map on
Tk.

Td#Σd

p1

��

f
// Td#Σd

p1

��

Tk ˆs
// Tk

The same diagram holds for the standard ˆs expanding map Es : Td Ñ Td

Td

p2
��

Es // Td

p2
��

Tk ˆs
// Tk
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and it is easy to see that the conjugacy h : Td#Σd Ñ Td, h˝f “ Es ˝h, maps fibers
to fibers and the induced conjugacy on Tk is identity, i.e., h̄ “ idTk .

We claim that one can perturb f along the fibers so that the fibrations p1 and p2

are precisely the ones appearing in the Theorem 2.1. Indeed consider the restrictions
of fp : Td´kp Ñ Td´kp and Es : Td´khppq Ñ Td´khppq to the fibers through the corresponding
fixed points. Denote by p1i, i “ 1, 2 the fibrations produced by Theorem 2.1 applied
to f and Es. Then the fibers of p1i refine the fibers of pi and, hence, we can restrict
p11 and p12 to Td´kp and Td´khppq, respectively. Denote by ` the dimension of the base
space for these restricted fibrations. Recall that the induced conjugacy on the base
space is smooth. It follows that ^`Dfp has s` as an eigenvalue. Hence we perturb
f in the neighborhood of p so that ^`Dfp does not have s` for an an eigenvalue for
all ` “ 1, 2, . . . d´ k. Then we have ` “ 0 which means that p1i “ pi.

Remark 7.11. Similarly, one can perturb f along the fibers to an expanding map
f2 : Td#Σd Ñ Td#Σd such that both p1i given by Theorem 2.1 when applied to f
and f2 are equal to p1

Remark 7.12. An easier way of constructing an exotic expanding map with non-
trivial fibration would be to take the product f ˆ L of an exotic expanding map
f : Td#Σd Ñ Td#Σd and a linear expanding map L : Tm Ñ Tm. Smoothing theory
implies that Td#Σd ˆTm is not diffeomorphic to Td`m. Then Td#Σd ˆTm fibers
over Tm and one can arrange this fibration to be the fibration given by Theorem 2.1
in a similar way. The example which we described above is more interesting because
the smooth structure on Td#Σd is irreducible, that is, Td#Σd is not diffeomorphic
to a smooth product of two lower dimensional smooth closed manifolds [FG12,
Proposition 1.3].

8. Factor version

We formulate the following generalization of Theorem 2.1, where we replace the
topological conjugacy by a continuous factor map. The proof follows the same lines
with routine modifications and we omit it.

Theorem 8.1. Assume that Mi, i “ 1, 2, are closed manifolds homeomorphic to a
nilmanifold. Let fi : Mi ÑMi, i “ 1, 2, be Cr smooth, r ě 1, expanding maps and
assume that f2 is a topological factor of f1, that is, there exists a continuous map
h : M1 ÑM2 such that h ˝ f1 “ f2 ˝ h.

Then there exist a Cr expanding map f̄ : M̄ Ñ M̄ where M̄ is homeomorphic to a
nilmanfold, and Cr fibrations (with connected fiber homeomorphic to a nilmanifold)
pi : Mi Ñ M̄ , i “ 1, 2, such that

pi ˝ fi “ f̄ ˝ pi, i “ 1, 2

Further the map h sends fibers to fibers

p2 ˝ h “ p1
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and the fibrations pi, i “ 1, 2, have the following property. If ϕi : Mi Ñ R, i “ 1, 2,
are Cr smooth functions such that for every periodic point x P Fixpfn1 q

n´1
ÿ

k“0
ϕ1pf

k
1 pxqq “

n´1
ÿ

k“0
ϕ2pf

k
2 phpxqqq

then there exist a Cr function ϕ̄ : M̄ Ñ R, such that ϕi is cohomologous to ϕ̄ ˝ pi
over fi.

Using Theorem 7.1 one can naturally study regularity properties of factors maps.
We proceed to describe an application.

Let M1 “ N ˆM2, where N and M2 are nilmanifolds, and let L : M1 ÑM1 be
a product expanding map L “ pA,Bq. Then, clearly, L factors over B. Hence if f1

is an expanding map homotopic to L and f2 is an expanding map homotopic to B
then f1 factors over f2: h ˝ f1 “ f2 ˝ h.

To define nice invariants of smooth conjugacy we need to introduce a restriction
on L and f1. Namely, we assume that the maximal expansion of A is greater than
the minimal expansion of B. Then the “vertical foliation” N ˆ txu, x P M2, is
a weakly expanding foliation. It is easy to see, that for any sufficiently C1 small
perturbation f1 of L the weakly expanding foliation survives as an f1-invariant
foliation Wwu.

Corollary 8.2. Consider L, f1, f2 are Cr`1 expanding maps and h is the factor
map, h˝f1 “ f2 ˝h. Assume that f1 belongs to a sufficiently small C1 neighborhood
of L. Also assume that f2 is very non-algebraic. If for any periodic point x “ fk1 pxq

Jacpfk1 pxqq
Jacpf1|

k
Wwupxqq

“ Jacpfk2 phpxqq

then the factor map h is Cr smooth.

The proof is very similar to the proof of Corollary 2.11 and we merely provide a
sketch. Also one can replace the very non-algebraic assumption on f2 by asking f2 to
be an irreducible toral diffeomorphism and assuming that the entropy maximizing
measure for f2 is not absolutely continuous.

Sketch of the proof. Let pi : Mi Ñ M̄i be fibrations given by Theorem 8.1 when
applied to fi and r. If dim M̄ “ dimM2 then p2 is a difeomorphism and hence we
have that h “ p´1

2 ˝ p1 is Cr.
Hence we need to rule out the possibility that dim M̄ ă dimM2, i.e., the case

when the fiber of p2 has dimension ě 1. In this case, following the proof of Corol-
lary 2.11, we can apply Theorem 8.1 to log Jacpf2q to conclude that log Jacpf2|kerpp2qq

is cohomologous to a function which is constant along the fibers of p2 which yields
a contradiction, again, similarly to the proof of Corollary 2.11.

One subtle detail, however, is that in order to apply Theorem 8.1 one needs to
have a pair of Cr functions pϕ1, ϕ2q. We let ϕ2 “ log Jacpf2q and ϕ1 “ log Jacpf1q´

log Jacpf1|Wwuq. (Assume for simplicity that fi are orientation preserving.) It is
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clear from the assumtion of the corollary that the sums of ϕi agree along the periodic
orbits and it is clear that ϕ2 is Cr. However, one also need to argue that ϕ1 is Cr

which is equivalent to log Jacpf1|Wwuq being Cr.
Smoothness of log Jacpf1|Wwuq can be established as follows. Pick a lift f̃1 : M̃1 Ñ

M̃1 to the universal cover M̃1. Foliation Wwu lifts to W̃wu. Because f̃1 is invertible
the fast foliation W̃uu is also well defined by the standard cone argument. Notice
that W̃uu is not equivariant under the group of Deck transformations but this is
not going to be important for what follows. Then, by the usual application of the
Cr Section Theorem [HPS77], we have that W̃uu is Cr`1 and hence log Jacpf̃1|W̃uuq

is Cr. Finally, extending W̃uu to a smooth coordinate system, we have that Df1

has an upper-triangular form and hence

log Jacpf̃1q “ log Jacpf̃1|W̃uuq ` log Jacpf̃1|W̃wuq

which implies that log Jacpf̃1|W̃wuq, and hence log Jacpf1|Wwuq is Cr. �
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