ABELIAN LIVSHITS THEOREMS AND GEOMETRIC
APPLICATIONS

ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

dedicated to the memory of Anatole Katok, our mentor and friend

ABSTRACT. We introduce a notion of abelian cohomology in the context of
smooth flows. This is an equivalence relation which is weaker than the standard
cohomology equivalence relation for flows. We develop Livshits theory for
abelian cohomology over transitive Anosov flows. In particular, we prove an
abelian Livshits theorem for homologically full Anosov flows. Then we apply
this theorem to strengthen marked length spectrum rigidity for negatively
curved surfaces. We also present an application to rigidity of contact Anosov
flows. Some new results on homologically full Anosov flows are also given.

1. INTRODUCTION

Cohomological equations play a crucial role in dynamical systems theory. In the
setting when the dynamical system is a smooth flow X*: M — M generated by the
vector field X the equation

v =Lxu
is called a cohomological equation. Here u: M — R is an unknown function and Lx
is the Lie derivative in the direction of X. If the above equation has a solution then
the function p: M — R is called an X*-coboundary." Accordingly, two continuous
functions ¢ and 1 are said to be X‘-cohomologous if p — 1) is a coboundary. We
recommend A. Katok’s book for a general introduction of cohomology for dynamical
systems [K03].

The basic question is to decide whether the space of X*-coboundaries By is closed
in an appropriate topology (Holder, smooth, etc.). If this is the case then Bx is
given by the intersection of kernels of all X*-invariant bounded linear functionals.
Even better is to explicitly describe a family of functionals which would yield By.
If Xt: M — M is a transitive Anosov flow on a compact manifold M then this
problem was solved by A. Livshits in the classical paper [Liv72]. He proved that in
this case the space By, as a subspace of the space of Holder continuous functions
is characterized by countably many functionals which are given by integration over
periodic orbits of X*.
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e use the term X t_cohomologous rather than just “cohomologous” to avoid confusion when
we consider cohomology of the manifold.
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Much later, A. Katok and A. Kononenko introduced a new type of functionals
called periodic cycle functionals to handle the case of partially hyperbolic dynam-
ical systems. They proved that the space of coboundaries is closed for partially
hyperbolic diffeomorphisms and flows which satisfy certain local accessibility con-
dition on its stable and unstable foliation [KK96]. The local accessibility was later
relaxed to a more general accessibility condition by Wilkinson [W13].

In this paper we revisit the idea of Katok-Kononenko and define a version of pe-
riodic cycle functionals. We prove several versions of an abelian Livshits Theorem
for transitive Anosov flows, where abelian cohomology is a certain weaker equiv-
alence relation than cohomology.” Roughly speaking, this relation is given by the
standard cohomology on the universal abelian cover. Then we give an application
to marked length spectrum rigidity. More specifically, we improve the Croke-Otal
marked length spectrum rigidity theorem ([Cr90, Ot90]) in the following way. If,
for a given pair of negatively curved compact surfaces, the marked lengths spec-
tra on homologically trivial orbits coincide then, in fact, the full marked length
spectra match and, by the Croke-Otal [Cr90, Ot90] rigidity theorem, the surfaces
are isometric. We also apply our machinery to the rigidity problem of contact
Anosov flows. Namely, under a technical assumption, if two contact Anosov flows
are smoothly orbit equivalent then, in fact, the first flow is conjugate to a very spe-
cial reparametrization of the second flow. Both of these applications also strongly
rely on R. Sharp’s work on homologically full Anosov flows [Sh93].

Organization. In the next section we recall the definition of homologically full
Anosov flows and recall some results of Sharp. We provide a new characterization
of homologically full Anosov flows in terms of transitivity on the universal abelian
cover. We also prove that contact Anosov flows are homologically full. In Section
3 we state and prove two abelian Livshits theorems: one for general Anosov flows
in terms of periodic cycle functionals and one for homologically full Anosov flows
in terms of homologically trivial periodic data. We also give an “integer Livshits
theorem." In Section 4 we establish several properties of reparametrized flows which
will be needed for applications. In particular, we study how equilibrium states and
Sharp’s minimizers for homologically full Anosov flows behave under reparametriza-
tion. In Section 5 we apply an abelian Livshits Theorem to the conjugacy problem
of homologically full Anosov flows similarly to the way that the classical Livshits
Theorem applies to the conjugacy problem of transitive Anosov flows. Then, in
Section 6, we use the preceding results to weaken the assumption in the Croke-Otal
rigidity theorem to matching of homologically trivial spectra only. In Section 7 we
also give an application to the conjugacy problem for contact Anosov flows. Fi-
nally, in Section 8, we present an instructive example showing that our results from

2To avoid confusion we stress that the term “abelian” does not refer to the group of values.
All cocycles in this paper are R-valued.
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Sections 6 and 7 are optimal in certain ways. We also pose two open questions, one
at the end of Section 2 and one at the end of Section 3.

Acknowledgement. The authors would like to thank all the referees for their
careful reading of the paper and suggestions for improvement.

Notation. We will denote by [a] the homology class of a periodic orbit or, more
generally, a loop «. Similarly by [w] we will denote the cohomology class of a closed

1-form w.

2. HOMOLOGICALLY FULL ANOSOV FLOWS

Here we recall some notions and results due to R. Sharp on homologically full
Anosov flows [Sh93]. We also establish some results about such flows which will
be needed for our abelian Livshits theory and applications, but may have some
independent interest. We begin with a general definition based on the idea that
“homologically full" should mean that points can move asymptotically in any di-
rection in homology of the manifold.

Let M be a compact smooth manifold and let X*: M — M be a smooth flow. De-
note by M(X) the space of X*-invariant probability measures. Recall that M(X) #
@ by the Krylov-Bogolyubov theorem [KB37]. Following Schwartzman [Sch57] de-
fine the asymptotic cycle p: M(X) — Hy(M,R) ~ Hom(H"(M,R),R) by

pulled) = | w(X)du

where w(X) is the evaluation of the 1-from w on the generating vector field X.
Recall that this is indeed well-defined, i.e., p,([w]) is independent of the 1-form
representative of the cohomology class [w]. We define the Schwartzman simplex as
the set 8(X) = {p, : p € M(X)} c Hi(M,R) which is a compact convex set.

Definition 2.1. A smooth flow X*: M — M is called homologically full if the
origin is contained in the interior of $(X).

Definition 2.2. Denote by V(X) < H;(M,R) the linear span of 8§(X). Then
Xt: M — M is called homologically ample if the origin is contained in the interior
of $(X) as a subset of V(X).

For example, the geodesic flow on a flat 2-torus is homologically ample, but not
homologically full. On the other hand, if X! is a transitive homologically ample
Anosov flow then it is homologically full. Indeed this follows from the fact that
homology classes of periodic orbits of X* span Hy(M,Z) which is due to Parry and
Pollicott [PP86]. (Plante proved the same for volume preserving flows earlier, using
a much simpler argument [P173].)

Remark 2.3. Let N be a compact Riemannian manifold. If N # T? then the
projection map T'N — N induces the isomorphism H;(T'N,R) ~ H;(N,R). Let
X': TIN — TN be the geodesic flow. Then the Schwartzman simplex §(X) <
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Hi(T'N,R) coincides with the unit ball in H; (N, R) with respect to so called stable
norm which is a very popular object of study in geometry [M96, Théoréme 1.3.9].

Now we follow Sharp and recall the definition of the S-functional for Anoov
flows [Sh93]. Define 3: H'(M,R) — R using the formula
506D = sup {0+ [ o000}
pEM(X) M
The definition is independent of a particular 1-form representative in the cohomol-
ogy class. Indeed, if dov is an exact form then §, do(X)du = §,, Lxadp = 0 and
hence (6 + da) = 3(6). Sharp proved that § is convex.

Theorem 2.4 ([Sh93]). Let X': M — M be a transitive Anosov flow. Then the
following statements are equivalent.
(i) every homology class in Hi(M,Z) is represented by a periodic orbit of X*;
(ii) there exists a fully supported measure ju € M such that §,, w(X)dp = 0 for
all closed 1-forms w;
(iii) the functional B: HY(M,R) — R is bounded below and there exists unique
Ex € HY(M,R) for which the minimum is attained;
(iv) the convex hull of the set {[] : v is a periodic orbit} ¢ Hi(M,R) contains
the origin in its interior.

We note right away that in the context of Anosov flows (iv) is equivalent to our
definition of homologically full because measures supported on periodic orbits are
dense in M(X) [S72]. We call the cohomology class x from (iii) Sharp’s minimizer.
Further, Sharp established an asymptotic formula for the number of periodic orbits
in a fixed homology class. When £x = 0 the flow is “balanced" in the sense that
asymptotic density of periodic orbits in different homology classes is the same.

The following result provides yet one more characterization of homologically full
Anosov flows. We need it for our abelian Livshits theory, but it might be of some
independent interest as well. Let M be the universal abelian cover of M , that is,
the cover which corresponds to the commutator subgroup [m M, M]; its group
of Deck transformation is given by Hy(M,Z).

Theorem 2.5. A transitive Anosov flow X*: M — M is homologically full if and

only if its lift to the universal abelian cover is transitive.

Remark 2.6. Transitivity on the universal abelian cover is equivalent to absence
of wandering points. Indeed, transitivity on the abelian cover clearly implies that
the lift has no wandering points. In the other direction, by Anosov closing lemma,
full non-wandering set implies that periodic points are dense. Then transitivity
follows by the standard Smale’s argument as in the proof below.

Proof. We begin with the following lemma.

Lemma 2.7. If X*: M — M is a homologically full transitive Anosov flow then
homologically trivial periodic orbits are dense in M.
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By [Sh93, Theorem 2], homologically trivial orbits equidistribute according to an
equilibrium measure given by a potential £(X), where £ is a certain closed 1-form.
(When X is a geodesic flow £ = 0 and homologically trivial orbits equidistribute
to the measure of maximal entropy.) In particular, because equilibrium states are
fully supported, it follows that the homologically trivial orbits are dense. However,
one can avoid using Sharp’s machinery altogether and give a simpler proof by using
shadowing. We briefly sketch this proof.

Proof of Lemma 2.7. For any ¢ > 0 we will construct an e-dense homologically
trivial periodic orbit. Begin with an e-dense periodic geodesic .. Then by (i) of
Theorem 2.4 there exist geodesics . in the opposite homology class, i.e., such that
the sum v, + 7. bounds a 2-cycle.

Consider a point € M such that +/(t.) — z, ¢ — 0. Pick a Markov partition
for X* in such a way that z is in the interior of a Markov rectangle R. Both ~,.
and ~y. intersect R at two points p and ¢, respectively, which are e-close to each
other. By concatenating symbolic periods of v, and . we can find a periodic orbit
7N which e-shadows . first and then e-shadows .. Orbit 7. intersects R very close
to [p, ¢] once and then intersect R very close to [¢,p]. (Of course there could be
more points of intersection with R corresponding to other points of intersection of
v. and . with R.). Applying Fried’s construction [Fri83, pp. 300-301] to ~., .
and 7 yields a 2-dimensional immersed surface whose boundary consists of these
periodic orbits;* Moreover, 7. is homologous to 7. + . and, hence, is homologically
trivial. It remains to notice that v. is contained in the e-neighborhood of 1. Hence
7e is 2e-dense in M. d

First assume that X is homologically full. Denote by M the universal abelian
cover of M and by X*: M — M the lift of the flow X*. Note that homologically
trivial periodic orbits in M are precisely those periodic orbits which lift to periodic
orbits of X*. Hence, by the above lemma, periodic orbits of Xt are dense in M.
Now we can apply a standard argument of Smale [Sm67, (7.5)] to conclude that
Xt: M — M is indeed a transitive flow. Namely, given two open sets U and V in
M one can use local product structure and denseness of periodic orbits to connect
U to V using a finite chain of local stable and unstable manifolds of periodic orbits.
Then one can apply the A-lemma to show that X7 (U) nV # & for some large T.".

It remains to check the converse implication. (This implication is not needed for
Theorem 3.5.) Assume that X? is transitive, i.e., {X*(&) : t € R} is dense in M for
some & € M.

The homology group H; (M, Z) is identified with the group of Deck transforma-
tions of the cover M — M. Take any v € Hy(M,Z). Then for some to > 0 the
point X (%) is very close to (&) so that X' (2) and ~(#) belong to the same small

3Fried considers 3-dimensional Anosov flows, but this particular construction works well in any
dimension.
4With some more care one could show the topological mixing property.
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local product structure chart. Denote by x the image of # in M. Then X' (x) and
x also belong to the same small local product structure chart. Hence, by Anosov
closing lemma, the orbit segment [z, X (z)] can be shadowed by a periodic orbit of
a point y, X" (y) =y, t1 ~ tg, which is very close to z. By the shadowing property
the orbit of y is homotopic to the orbit segment [z, X (z)] concatenated with a
short curve connecting X' (z) back to x. It follows that X*1 () = ~(§), where §
is a lift of 4. That is, v is represented by a periodic orbit of X and, hence, X! is
homologically full. O

Remark 2.8. The latter implication (transitivity on the universal cover implies
homologically full property) was also proved using a different argument in [DS19,
Lemma 7.4]

The following theorem provides a natural class of homologically full Anosov flows.
It is interesting whether any contact flow can be shown to be homologically ample.

Theorem 2.9. Let X': M — M be a contact Anosov flow. Then X' is homologi-
cally full.

Proof. Let a be the positive contact form for X* and let m = a A (da)* be the
invariant volume form. Recall that by (ii) of Theorem 2.4: X* is homologically full
if for every [w] € H*(M,R)

w(X)m =20
M

So let w be a closed 1-form. Note that w A (da)¥ is a top-dimensional form and,
hence, w A (da)* = a A (da)k for some smooth function 1. Contraction with X
yields w(X)(da)* = Yix(a A (da®)) = ¢ (da)*. Hence 1) = w(X). Now we have

J w(X)m = j w(X)an (da)k = J wA(da)® = f —d(wran(da)* 1) =0
M M M M

O
Remark 2.10. I was pointed out to us by G. Paternain that the above result is
well-known, see e.g., [P172, Corollary 4.10].

Asaoka proved that any transitive codimension-1 Anosov flow is orbit equivalent
to a volume preserving Anosov flow [A08]. Also recall that Foulon and Hasselblatt
developed contact surgery and created many examples of 3-dimensional contact
Anosov flows [FH13].

Question 2.11. Is every 3-dimensional homologically full Anosov flow orbit equiv-
alent to a contact Anosov flow?

3. ABELIAN COHOMOLOGY FOR ANOSOV FLOWS

Let X*: M — M is a transitive Anosov flow on a closed compact manifold M of
arbitrary dimension. A Holder continuous function ¢ is called an abelian coboundary
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if there exists a smooth closed 1—form w and a Holder continuous function u, which
is continuously differentiable along X, such that

(3.1) p=w(X)+ Lxu

Recall that w(X) stands for the contraction given by evaluation of w on the gen-
erating vector field X. Accordingly, we say that two function ¢ and v are abelian
cohomologous if ¢ — 1) is an abelian coboundary.

Remark 3.1. Notice that the decomposition (3.1) is highly non-unique because we
can change w by any exact 1-form. Indeed, given any smooth function v: M — R
we can write a different decomposition

v =(w+dv)(X)+ Lx(u—v)

However one could make some canonical choice for example by asking w to be har-
monic with respect to a Riemannian metric. (Recall that given a fixed Riemannian
metric there exists a unique harmonic representative in each cohomology class.)

We develop the counterpart of the standard Livshits theory [Liv72] for abelian
cohomology. Specifically, we prove two abelian Livshits Theorems for transitive
Anosov flows:

e General Livshits Theorem 3.3 which characterizes the space of abelian cobound-
aries as the intersection of kernels of periodic cycle functionals;

e Livshits Theorem 3.5 for homologically full Anosov flows which characterizes
abelian coboundaries via obstructions given by integration over homologi-
cally trivial periodic orbits;

At the end of this section we also give a similar proposition for functions whose
periodic orbits obstructions take values in a rank one abelian subgroup of R and
pose an open question for the case of finite rank.

Now we explain the term “abelian.” Recall that the universal abelian cover
M — M is the cover which corresponds to the commutator subgroup [ M, m M].
Then the lift & of any closed 1-form w on M is exact on M. Hence a lift ¢ to M of
an abelian coboundary ¢: M — R is a true coboundary for the lifted Anosov flow
X because

3.1. Katok-Kononenko theory of periodic cycle functionals revisited. Given
an Anosov flow X*: M — M a us-adapted path is a piecewise smooth path v: [0,1] —
M such that each of its legs lies entirely in a stable or an unstable leaf of X*. Anal-
ogously, an Xus-adapted path (or simply an adapted path) is a piecewise smooth
path ~ such that each of its legs is either a flow-line segment or lies entirely in a
stable or an unstable leaf. An Xwus-adapted loop is an Xus-adapted path which
begins and ends at the same point.
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Given an adapted path or loop v we proceed to define periodic cycle functionals
PCF, : C*(M,R) — R as follows. If 7 lies entirely in a stable leaf then let

o]

PCE,(p) = JO P(X'(7(0)) — p(X " (v(1)))dt

If ~ lies entirely in an unstable leaf then let

0
PCF,(¢) = [ olX' (1)) = (X' G0

Note that convergence follows from exponential contraction/expansion and Holder
continuity of ¢. If 7 is a positively oriented orbit segment v = [z, o (z)], T > 0,

then let
T

PCF,(¢) = | (X! (@)t

and if v = [, XT(x)], T < 0, then let

0

PP (o) = = | ol (@)ar

Finally for an adapted path v define PCF, () as a the sum of values on each of
the legs. The following properties are immediate from the definitions.

1. Any continuous path can be C° approximated by an Xus-adapted path;

2. The value of of PCF,(y) only depends on the sequence of the endpoints of
the legs of v and is independent of the choice of leg between the endpoints;

3. If 4 denotes the adapted path (or loop) with reversed orientation then
PCF;(p) = —PCE,(p);

4. Suppose « and 3 are adapted loops such that « contains a subpath v and g
contains 7, the same subpath with the opposite orientation. Concatenating
«a with v removed and 8 with 4 removed results in a loop « * 8. Then we
have the additive property

(3.2) PCFu4p(p) = PCF,(p) + PCFg(p)

Remark 3.2. As mentioned earlier, originally periodic cycle functionals were intro-
duced by Katok and Kanonenko [KK96] as obstructions, given by adapted wus-loops,
to solving the cohomological equation in the setting of partially hyperbolic diffeo-
morphisms when periodic orbits obstructions are not readily available. Note that
our definition is different from the original one as we allow the flow direction in the
definition of the adapted loop.

If ¢ is an X*-coboundary, ¢ = Lxu, then it is easy to see that in all three
cases (v is contained in a stable leaf, unstable leaf or an orbit segment) we have
PCF,(¢) = u(y(1)) — u(v(0)). Hence periodic cycle functionals of Xus-adapted
loops vanish. Similarly if ¢ is an abelian coboundary then periodic cycle functions
vanish on homologically trivial Xwus-adapted loops because these are the loops
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which can be lifted to the universal abelian cover where ¢ becomes a true cobound-
ary. We prove that vanishing on homotopically (and even homologically) trivial
Xus-adapted loops is also a sufficient condition for being an abelian coboundary.

Theorem 3.3. Let X': M — M be a transitive Anosov flow and let ¢ € C™(M),
r > 0. Assume that PCF,(p) = 0 for every homotopically trivial Xus-adapted loop
~. Then there exist a C* smooth closed 1-form w and uwe C™ (M), such that

¢ =w(X)+ Lxu

In the Theorem above, ry =rif ré¢ Nand r, =r — 1+ Lip if re N.
We immediately obtain the following corollary.

Corollary 3.4. If function ¢ : M — R above is C* smooth then there is a C®
smooth closed 1-form w such that

¢ =w(X)

Indeed we have ¢ = w(X)+ Lxu, where u € C*(M). Hence p = w(X)+du(X) =
(w+ du)(X).

Proof of Theorem 3.3. We lift all the objects to the universal cover M and, by a
light abuse of notation, we still denote by ¢ and X the lifts of ¢ and X to the
universal cover. Pick a point a € M and define @, : M — R in the following way.
For a given point 2 € M let v be an adapted path starting at a and ending at = we
set

ta(r) = PCE,(p)

This definition is independent of the choice of « because we have assumed that
periodic cycle functionals vanish on homotopically trivial adapted loops. Note that,
because we can assume that the last leg of v is a flow segment, we have Lx i, = ¢
(though we will not use this last fact). It easily follows from the definition that for
any pair of points a,b € M

(3.3) i — iy = 10 (D)
Let D ~ m; M be the group of deck transformations acting on M. The function
T, solves the cohomological equation on M , but a priori is not D—invariant, so it

needs to be adjusted.
Let T e D and let v be an adapted path. Because ¢ o T = ¢ we have

PCF,(¢) = PCFr(y)(p)

Hence for every T € D
Ur(a)(T(2)) = a(2)
Define ¢: D — R in the following way

o (T () = ta(z) = @a(T(2)) = Gr)(T(x)) = @a(T(a)) = c(T) e R
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where we have used (3.3). Then ¢ is a homomorphism. Indeed,
(T o 8) = ua(T(S(a)) = @a(T(5(a)) — Ua(S(a)) + @a(S(a)) = ¢(T) + c(S5)

Notice also that ¢ does not depend on the choice of the base point a.

Now we use the isomorphism Hom(D,R) ~ H'(M,R). Recall that the coho-
mology class corresponding to c: D — R is represented by a closed 1-form w on M
such that

o1) = [ atin(s)ds

where 7 is any curve starting at  and ending at T'(z) and & is the lift of w to M.

Note that ¢ = ¢ — w(X) is a function on M. Now take any periodic orbit 7 in
M and lift it to an orbit segment 4 in M. Then, of course, PCF5(¢) = PCF,(p).
Let « and T'(z), T € D, be the endpoints of 4. We have

Ls@ - Lw=Lw—Lw<X>=ax<T<x>>—az<x>—c<T>
Ta(T(2)) — Ga(z) — (T) = 0

J o=
i

for every closed orbit 4. Then by Livshits Theorem [Liv72] there exists a Holder

_ﬂa

Hence

continuous u, continuously differentiable along X such that that Lxu = ¢, i.e.,
v =Lxu+w(X)

Further the Holder exponent of u is the same as the Holder exponent for ¢. If ¢ is
C™ with r > 1 then de la Llave-Marco-Mariyén smooth Livshits Theorem [LMMS86,
Appendix A] applies and together with Journé’s regularity lemma [Jou88] yields
C™* regularity of u. O

3.2. Livshits Theorem for homologically trivial orbits.

Theorem 3.5. Assume that Xt: M — M is a homologically full transitive Anosov
flow and let o: M — R be a C", r > 0 function such that

[
|

for all homologically trivial periodic orbits . Then there is a C® smooth closed
I-form w on M and a function uw € C™* (M) such that

¢ =w(X)+ Lxu

Remark 3.6. Notice that any homologically trivial periodic orbit bounds a 2-cycle.
Hence, using (3.2), the integral Sv ¢ can be decomposed into sum of periodic cycle
functionals of homotopically trivial Xus-adapted loops. Hence, it is easy to see that
vanishing of periodic cycle functionals on homotopically trivial Xus-adapted loops
implies vanishing on all homologically trivial periodic orbits. Thus Theorem 3.5
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can be viewed as a strengthening of Theorem 3.3 in the setting of homologically
full Anosov flows.

Proof. Let M be the universal abelian cover of M. We denote by ¢ the lift of ¢ to
M and we still write X* for the lift of the flow as it won’t cause any confusion. By
Theorem 2.5 the lifted flow is transitive.

Let 2 € M be a point with a dense orbit. Define

t

A (@) = | P (@)r

0

Recall that homologically trivial periodic orbits of X* are precisely those periodic
orbits which lift to periodic orbits of the lifted flow on M. Hence we have

J o=
i

for every periodic orbit v on M. Hence we can apply the classical argument of
Livshits and conclude that u is Holder continuous (with a uniform constant) on the
orbit of z and hence extends to a Holder function on M. Further 4 is continuously
differentiable along the flow direction and solves the cohomological equation

Lxti=¢

Let D ~ Hy(M,Z) be the group of deck transformations of the covering M — M.
Because ¢ is D invariant, we have Lx (toT — @) = 0 for every T € D. And because
X* has a dense orbit we conclude that %o T — 4 is constant. Let ¢(T) = 4o T — .
Then ¢ : D — R is a homomorphism, indeed

c(ToS)=t0(ToS)—ta=00(ToS)—tGoS+ha0S—10=c(T)+c(5)

Now identify D with its orbit in M. By the de Rham Theorem we can extend
¢: D — R to a smooth function ¢: M — R which is equivariant with respect to the
D action, that is,

coT —c=c¢(T)
Let @ = dec. Then @ is an exact 1-form which is invariant under the action of D.
Hence it descends to a closed 1-form w on M. (The form w is a de Rham repre-
sentative in the cohomology class given by ¢ € Hom(H;(M,R),R).) The function
1, — ¢ is D-invariant and hence descends to a function u on M. We have

Lx(i—c)=¢—o(X)

Thus

Lxu=¢—w(X)

Finally, if ¢ is C" then, as in the proof of Theorem 3.3, smooth Livshits the-
ory [LMMS86, Appendix A], [Jou88] yields C"* regularity of w. O
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3.3. Integer periods Livshits Theorem. We will prove the following proposition
using the circle valued Livshits Theorem.

Proposition 3.7. Let Xt: M — M be a transitive Anosov flow and let ¢: M — R
be a Hélder continuous function. Let

P = {L(pzvePer(X)}cR

be the set of periods of p. If the rank of the additive group generated by & is one,
then there are a smooth closed 1—form w and a Hélder continuous function u such

that ¢ is an abelian coboundary, i.e.,
¢ =w(X)+ Lxu

Recall that integral cohomology H'(M,Z) is torsion-free and can be regarded as
Bruschlinsky group of homotopy classes of maps {{M — S']}. Indeed, a smooth
function w: M — S' defines a closed integral form w = dw. The correspondence
[w] — [w] € HY(M,Z) is in fact an isomorphism.

Note that, if w: M — S is not smooth then, by Whitney Approximation The-
orem it can be C¥ approximated by a smooth map v: M — S'. The function
% = w — v has its image in a small interval and hence lifts to a function u: M — R.

Proof. Assume that & < c¢Z, ¢ # 0. By a constant reparametrization we can
assume that ¢ = 1. Consider the cocycle

T

P(x,T) = L o(X*®(x))ds e R

and consider ®(z,T) = [¢(x,T)] € S = R/Z. By assumption, for every periodic
orbit p of period T, we have ®(p,T},) = 0. Hence, by applying Sl-valued Livshits
Theorem, there exists a function w : M — S, which is differentiable along the flow
direction, such that

Oz, T) = w(XT(z)) —w(x)

for every x € M and T € R. By applying the preceding discussion to w we have
the decomposition w = % + v, where w = dv is smooth and u: M — S* lifts to a
function u: M — R. Since v is smooth, u and w are also differentiable along the
flow direction. So, taking the limit of

F8(0, T) = 2 (w(XT (@) ~ w(e) = #(@XT (@) ~ 8) + 70X (@) - o))
as T"— 0, we obtain that ¢ is an abelian coboundary

¢ =Lxu+w(X)=Lxu+w(X)
O

Remark 3.8. If ¢ = 1, i.e., the flow X! only has integer length periodic orbits
then we have w(X) = 1. Therefore by Schwartzman’s theorem [Sch57] the flow is a
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suspension. Further if we denote by S < M the section then for any periodic orbit
~v we have

o) = f w(X)dt = (w,7) = ¢ #{S N 1)

Hence, we can apply the Livshits Theorem to the roof function and obtain that
the roof function is smoothly cohomologous to a constant c, 7.e., the flow X? is a
constant roof suspension over an Anosov diffeomorphism.

Question 3.9. In the setting of Proposition 3.7 assume that & has finite rank
instead of rank one. Does there exist w € H'(M,R) and a Holder continuous
function u such that

¢ =w(X)+ Lxu?

4. REPARAMETRIZATIONS OF FLOWS

In this section we introduce some preliminaries on reparametrized flows (see
Parry [Par86] for a more detailed introduction). We study how equilibrium states
change under reparamerization. We also examine the behavior of Sharp’s minimizer
under reparametrization.

Given a X'-invariant measure p we will denote by h,(X) the metric entropy of
Xt. Also recall that given a flow X*: M — M and a Hélder continuous function
©: M — R the pressure Px(y) is defined by

Px (¢) = sup {h,,(X )+ J<pd1/ : v invariant probability measure}

When X' is a transitive Anosov flow, the unique measure v, = v, x realizing the
supremum is called the equilibrium state of ¢ with respect to X*.

Let X*: M — M be a flow generated by the vector field X, let £: M — R be a
positive smooth function. Define Z = £X to be the generator of the reparametrized
flow Zt. Then Z' = X", where 7;: M — R is the Z*-cocycle with infinitesimal
generator £ and is given by

ri(z) = L (2% (2))ds

Similarly, if k = 1/¢, then X' = Z"t where k;: M — R is a X*-cocycle given by
¢
i) = | ROX @) ds
0

Lemma 4.1. A reparametrization Z' as above is conjugate to X' via a time—u
map X": M — M, u: M — R, if and only if
1

Further, two reparametrizations, Z; = £; X, i = 1,2, are mutually conjugate via X"
if and only if
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Proof. The conjugacy relation X% o Z! = Xt o X" yields
w(Z'z) + m(x) =t + u(w)

or
w(Ztx) —u(x) =t — (x)
Dividing by t and taking the limit as ¢ — 0 gives Lzu = 1 —£. It remains to notice
that Lzu = {Lxu. To show that X" is a conjugacy when Lxu = 1/¢ —1 one works
backwards to obtain X% o Z! = X o X* by integrating.
For the last statement notice that Z; = %Zg and apply the criterion. [

Also recall the following result of Anosov and Sinai.

Proposition 4.2. If Xt: M — M is an Anosov flow and Z* is a smooth reparametriza-
tion of X, that is Z = £X, where { is positive and smooth then Z* is also Anosov.

If i is a X-invariant measure then

k

M = Skdﬂﬂ

is Z'-invariant. Recall that by definition, entropy of a flow is the entropy of its
time-1 map. Then the Abramov entropy formula gives
hu(X)
h, (Z) = B/
Mk( ) Skdu
Proposition 4.3. Let X': M — M be a transitive Anosov flow and let Z = (X,

¢ > 0, be a smooth reparametrization. Let ¢: M — R be a Hélder continuous
function and let k = 1/€. Then

Pz(l(p — Px(¢))) =0

Moreover, if vy, x is the equilibrium measure for ¢ with respect to X', then the
equilibrium measure Vo, py o)),z for £(¢ — Px(p)) with respect to Z* is given by

k

S ngD,X VLP’X

Vi(p—Px (), 2 =

Proof. Take any X-invariant measure v and let o = T kkdyy. Then

@)+ [t Peio)ar = i (1030 + [0 = Pxtenav)

_ gkldy <<hl,(X) + f(pdu) - PX(@) <0

Further, the equality in the above inequality holds if and only if v = v, x. Since the
correspondence v — ¥ is a one-to-one and onto correspondence between invariant
measures for X and Z, uniqueness of equilibrium measures yields the posited result.

O
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Now let X: M — M be a homologically full Anosov flow. Recall the definition
of p-functional, 5([0]) = Px(6(X)), and Sharp’s minimizer {x from Section 2.
Denote by pe the equilibrium state of £x(X). Also recall that by Step 1 of the
proof of [Sh93, Theorem 1]

(4.1) J G(X)d,ug =0
M

for any closed 1—form 6. It follows that

(4.2) Px(Ex(X)) = by (X)

Proposition 4.4. Let X! be a homologically full Anosov flow and let Z* be a
reparametrization given by Z = (X where £ = 1/(a + w(X)) for some positive
constant a and some smooth closed 1—form w with a + w(X) > 0. Then

Px(fx(X» [w]

Proof. By Proposition 4.3 we have Pz (¢(6(X) — Px(6(X))) = 0 for every 1—form
6. Applying w to

§z=Ex +

X
2= e
yields
_ w(X)
(2) = a+ w(X)
and hence )
T a+ w(X) - 5(1 —w(2))
Then
()~ Pe(0(x)) = 6(2) + “ D py(o(x)) — Lpy(o(x))

and we obtain

P, (e<z> + 9D poex)) - 1PX<0<X>>) 0

or

Py (9(2) +2
for every 6.
We use the above formula to conclude that the map

N Px(0(X)) |

00— 0

is an invertible bijection on cohomology H'(M,R). Indeed the inverse is given by
0 — 0 — Pz(6(Z))w. Hence, if 6 minimizes

0 — Px(6(X))

then
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minimizes Pz (A(Z)). Hence, by uniqueness of Sharp’s minimizer.

€7 = Ex + Px (€x (X)) (]
’ (I

Finally we use Proposition 4.3 to show that any homologically full Anosov flow
can be reparametrized so that Sharp’s minimizer becomes zero. Sharp proved that
such flows are special in the sense that periodic orbit growth is balanced in different
homology classes [Sh93, Section 5]. We will need the following lemma.

Lemma 4.5. Assume that for a cohomology class u and each X' -invariant proba-
bility measure v we have SM w(X)dv > —1. Then u can be represented by a 1-form
w such that w(X) > —1.

The proof is very standard and is similar to the proof of uniform convergence
of Birkhoff ergodic averages for uniquely ergodic systems. We just indicate the

approach.
Fix a closed 1-form w® which represents u. For any A > 0 let
w>\ _ 1 JXA(m)O(t)*wO dt
r 2 N Xt(z)
We have [w?] = p and w)(X) is given by the ergodic average of w®(X)
A 1 0 t
D=5 [ (XX @)

Then the condition on the integrals of w(X) implies that w*(X) > —1 for a suffi-
ciently large A.

Proposition 4.6. Let X*: M — M be a homologically full Anosov flow. Then
there is a unique (up to conjugacy) reparametrization of the form
X
Z = ——"
14+ w(X)

which has zero Sharp’s minimizer. Here w is a closed 1-form.

Proof. By Proposition 4.3 we have £z = {x + Px(£x(X))[w] and hence the coho-
mology class [w] is uniquely determined

[w] = -1
T P (X))
(Recall that by (4.2) Px({x(X)) = hy (X) > 0.)

Thus it remains to show that the class [w] can be realized by a 1-form w with

Ex

w(X) > —1. According to Lemma 4.5 it is enough to show that

JM w(X)dv > -1

for every X'-invariant probability measure v. If v = ¢ then

fM w(X)dv =0
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by (4.1). Otherwise, if v # ¢ then

_ _71 v _SM Sx (X)dv -
Jy 0 = gy ), 00w > o o = !

5. CONJUGACY FOR HOMOLOGICALLY FULL FLOWS.

Recall that a transitive Anosov flow Xt: M — M is homologically full if every
integral homology class contains a periodic orbit of X* (cf. Theorem 2.4). No-
tice that being homologically full is a property which is invariant under any orbit
equivalence.

Two flows X!: M — M, i = 1,2 are conjugate if there exists a homeomorphism
H: M — M such that

Vt HoX'=Y'oH
We say that X! and X% are orbit equivalent if there exists a homeomorphism H
which send orbits of X! to orbits of X preserving the time direction.

Let X!: M — M, i = 1,2, be orbit equivalent Anosov flows. Fix an orbit
equivalence Hy: M — M which sends orbits of X} to orbits of Xi. We say that
Hy matches period spectra if for every periodic point z the X}i-period of z is the
same as X&-period of Ho(z). And we say that Hy matches homologically trivial
period spectra if only the periods of corresponding homologically trivial periodic
orbits are assumed to be the same. Note that matching is not merely a property of
X1 and X%, but also depends on the choice of Hy because flows can admit multiple
non-equivalent orbit equivalences.

Recall the following classical application of the Livshits Theorem due to Katok.

Theorem 5.1. Let Xt and X% be transitive Anosov flows and let Hy be an orbit
equivalence which matches period spectra. Then Xt and X% are conjugate
HoX!=X!oH

where H: M — M is a bi-Holder continuous homeomorphism.

Proof. The orbit equivalence Hy is a bi-Holder homeomorphism. By adjusting in
the time direction we can also make H; continuously differentiable in the flow
direction. Define
Z'= Hyo XioHy!
Then Z! is a Holder continuous reparamerization of X4 with the same periods.
We use the same notation as in Section 4: Z = (X5, Z' = X', X} = Z*t. For

any periodic point = of period T we have

r=27"(x) = XI(2) = 2" ()

J; (=)=

and, hence, kp(z) =T or
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Now, by Livshits Theorem there exists a Holder function w: M — R which is
continuously differentiable along X5 such that Lx,u = % — 1. We conclude from
Lemma 4.1 that Z* and X} are bi-Holder conjugate. O

Recall from Section 2 that £x € H!(M,R) denotes the Sharp’s minimizer for a
homologically full Anosov flow X*: M — M.

Theorem 5.2. Let Xi: M — M be a homologically full Anosov flow. Assume
that X5: M — M is another Anosov flow which is orbit equivalent to Xt via Hy.
Assume that Hg matches homologically trivial period spectra. Then Xt is conjugate
to the reparametrization of X generated by
Xo
1+ w(Xo)

where w is a smooth closed 1—form. If, moreover, H¥¢x, = &x, then w can be
chosen to be zero and, hence, X} and X% are conjugate.

Proof. The proof proceeds in exactly the same way as the proof of Theorem 5.1,
but instead of applying the classical Livshits Theorem we apply Theorem 3.5 and
obtain a function u: M — R and a smooth closed 1—form w such that

1

- —1—-w(X

7 w(Xz)

Note that we can approximate Lx,u with Lx,u, where «’ is smooth. Then, after

LXQU =

replacing w with w — du’ we have (cf. Remark 3.1)
1
Lx,(u—u) = 7 1 —w(X>?)

and for a sufficiently small Ly, (u—u') we have 14+ w(X2) > 0. Then by Lemma 4.1
flow Z' (and hence X?) is conjugate to the reparametrization of X% generated by
X2/(1 4+ w(X32)). This gives us the first part of the theorem.

Hence without loss of generality we can (and do) assume that

1
Z= 1+w(X2)X2’

It is left to check that w is exact if the cohomology classes {x, and {x, match.

Because Z' is conjugate to X} we have {x, = HF¢z and hence, by the assump-
tion of the theorem, £z = {x,. Recall that by (4.2) we have Px,({x,(X2)) =
Py, (X2) > 0. Thus applying Proposition 4.4 with a = 1 and X = X, we obtain
that [w] = 0, that is, w is exact. Hence, by Lemma 4.1, flows Z! and X! are
conjugate. (I

6. SHARPENED MARKED LENGTH SPECTRUM RIGIDITY

Here we explain that our abelian Livshits theory can be used to improve marked
length spectrum rigidity results on surfaces and higher dimensional manifolds. Re-
call that Croke [Cr90] and Otal [Ot90] famously proved that marked lengths of
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closed geodesics determine the isometry class of a negatively curved surface. We
offer the following enhancement.

Given a negatively curved surface (5, g), a free homotopy class of loops « on
S admits a unique geodesic representative. Denote by ¢4(a) the length of this
geodesic.

Theorem 6.1. Let gy and go be two negatively curved metrics on a smooth compact
surface S. Given a free homotopy class of loops ac on S, denote by {4, () the length
of the g;-geodesic representative of o, i = 1,2. Assume that their marked length
spectra are the same for homologically trivial geodesics, i.e., £y, () = £g,(a) for
every homologically trivial free homotopy class of loops . Then g1 and go are
isometric.

In fact the following more general result holds true.

Addendum 6.2. Fiz a homology class ¢ € H{(S,Z). If instead we assume that
Ly, (o) = Uy, () for every free homotopy class of loops in homology class ¢ then g1
and g2 are isometric.

Remark 6.3. A precursor for the idea of considering a fixed homology class can
be found in [K88, Theorem 3|, where Katok proved that marked length spectrum
in a fixed homology class ¢ determines the negatively curved metric on the surface
in a fixed conformal class.

We proceed to prove Theorem 6.1 below. The addendum can be reduced to
Theorem 6.1 in the following way. The length of a homologically trivial geodesic
can be arbitrarily well approximated by the difference of lengths of two geodesics in
homology class c. This approximation can be done in the same way as in the proof of
Lemma 2.7. Hence the length of such homologically trivial geodesic can be recovered
from the lengths of geodesics in ¢. Further, the approximation procedure persists
under orbit equivalence of geodesic flows and, hence, marked length spectrum in ¢
recovers the homologically trivial length spectrum.

Lemma 6.4. Let X*: T'S — TS be the geodesic flow on a negatively curved
surface and let I: T*S — TS be the involution given by v — —v. Assume that
is an X'-invariant measure such that Iy = pn. Then

Jw(X)du -0

for every closed 1—form w. In particular, this holds for the measure of mazximal
entropy.

Proof. Note that I(z,v) = (x,—v) conjugates the geodesic flow and its inverse
and interchanges the stable and unstable foliations. We have Xt = IX*I or,
infinitesimally, DI(X) = —X. Hence, if u is the measure of maximal entropy
for X* then I.p is the measure of maximal entropy for Xt and, hence, indeed,

Lip = p.
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Recall that the bundle map T'S — S induces an isomorphism on cohomology.
Hence we can and do assume that w is a pullback of a 1—form on the surface. It
is easy to see that for such forms we have wg, ) (X (2, —v)) = —w(gw) (X (2,)).
Now, for any u such that I,u = u, the claim of the lemma comes from the following
calculation.

[t = [0t = [w (@ —o)duta,)

~ [~ (K@ 0)dita) = = [
O

Proof of Theorem 6.1. Denote by X; and X5 the generating vector fields of geodesic
flows on T'S corresponding to ¢g; and g, respectively. Then, it is well-known that
there is exists H: T1S — TS, an orbit equivalence between X! and X}, which is
homotopic to identity.

Recall the definition of the g-functional

() = POCY)) = s {hum o H(X)du}

where the supremum is taken among all X*—invariant probability measures.
Denote by &;, @ = 1,2, Sharp’s minimizers of the 8 functional for X;. Let p¢, be
the equilibrium measures for &;(X) and also denote by p;, ¢ = 1,2, the measures of
maximal entropy for X;.
Then, using (4.1) which gives §&(X;)due, = 0 and Lemma 6.4, we have

B(&i) = hpe, (Xi) + in(Xi)dﬂfi = hue, (Xi) < hy, (Xi) = by (X5) + fﬁi(Xz‘)d/M

Hence, by the definition of 3, we have pe¢, = p; and, by uniqueness of Sharp’s
minimizer, £ = 0, ¢ = 1,2. Then, obviously, H*{, = 0 = & and we can apply
Theorem 5.2 to conclude that X! and X% are conjugate. Hence, we have com-
plete matching of marked length spectra and, by Croke-Otal rigidity theorem, g; is
isometric to gs. (I

Remark 6.5. Recent results of Guillarmou and Lefeuvre on local marked length
spectrum rigidity [GL18, Theorem 1] for higher dimensional negatively curved man-
ifolds can be enhanced in the same way — one only needs to assume that homo-
logically trivial marked length spectra coincide.

7. CONJUGACY FOR CONTACT ANOSOV FLOWS

Recall that a (positive) contact form on an oriented (2k+1)-dimensional manifold
M is a smooth 1—form « such that a A (da)* > 0. Associated to the contact form is
its Reeb vector field X,, which is uniquely determined by a(X,) =1and Lx, a =0
(the latter is equivalent to tx_ da = 0). Call an Anosov flow X' a contact Anosov
flow if X is the Reeb vector field for a contact form «.
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Theorem 7.1. Let X;, i = 1,2, be contact Anosov flows. Assume one of the
following

1. X; are flows on a 3-dimensional manifold, which are orbit equivalent via a
C" orbit equivalence;

2. X; are Anosov geodesic flows with C' Anosov splittings, which are orbit
equivalent via a C? orbit equivalence.

Then there exist a closed 1—form w and a constant ¢ > 0 such that X, is conjugated
C_WX*(QXQ). If, moreover, the orbit equivalence matches Sharp’s minimizers £x, €
HY(M,R) to {x, € HY(M,R), then w can be taken to be 0, that is, X1 is conjugate

to a constant rescaling of Xs.

to

Recall that geodesic flows on perturbations of hyperbolic manifolds are %—pinched
and hence have C' Anosov splittings.

Addendum 7.2. In the first case when X; are 3-dimensional flows the C° conju-
gacy is in fact smooth.

The addendum follows from work of Fledman-Ornstein [FO87] who proved that a
C° conjugacy must be C'! and the bootstrap argument of de la Llave-Moriyén [LMSS].

Proof of Theorem 7.1. Let « be the contact form for X; and let S be the contact
form for X5. Denote by H the orbit equivalence so that H,.X; = ¢ X5 for some
positive ¢ € C°.

Lemma 7.3. There exists a constant ¢ > 0 such that the 1-form p = c¢f — Hyav is

closed.

Proof. First we prove the lemma when X; are Anosov geodesic flows with C'' Anosov
splitting and H is C?. Because of the C? hypothesis we have that ¢ € C' and
Hyda = dHa is exact. We claim that it is also Xs-invariant. Using functoriality,
we have

0= Lx,do= Lyx,Heda = pLx,(Hyda) + do A tx, Hyda

Notice that 0 = 1x,doa = tox,Hedoo = pix,Hyido. Hence, indeed, we have
wLx,(Hyda) = 0.

Therefore, both df and H,da are exact Xo-invariant 2-forms. Then by [Ham95,
Theorem A3] there is a constant ¢ > 0 such that Hyda = cdf and lemma follows.
(The constant ¢ is positive because both « and § are positive contact forms and
v >0.)

In the 3-dimensional case when H is merely C' (and, hence, we do not know
that H,do is exact anymore) we can actually make a direct argument. We have
that Hy(a A da) is a @Xo-invariant C° volume form. Hence, both 3 A df and
©H.(a A da) are Xs-invariant volume forms. Then, by ergodicity,

oHy(a A da) =cf AdS
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where ¢ > 0, again, because both a and g are positive.
Now note that tx, (8 A dB) = df and tx, (a A da) = da. We calculate

cdf = cx,(BndB) = %H*xl (B AdB) = iy x, (:6 A dﬂ)

3: 9 ¢1 (H*(Oé A da)) = I"I*LX1 (a A da)
H.do

O

Consider any homologically trivial Xj-periodic orbit 4. Then H,vy bounds a
surface S and we can derive a relation between the periods of v and and H,~v as
follows

cpery, (Hyy) —pery, (7) =cf B—f a=f B — H.a
Hayy v Hyy Hyey

e
Hyy S

Hence, after rescaling by ¢, the marked length spectra for homologically trivial
orbits match. Hence the result follows immediately from Theorem 2.9 and Theo-
rem 5.2. g

Remark 7.4. For non-homotopically trivial periodic orbits v the above calculation
gives that the periods pery (7) and pery, (Hy7) are related as follows

pery, () = epery, (Hx7) + [u]([He7])
Note that [Hyv] = [v] if H is homotopic to identity.

8. AN EXAMPLE

We begin by pointing out that the scenario of Theorem 7.1 actually occurs.
Indeed, given a contact Anosov flow X with a contact form 5 and a closed 1-from
w with w(X) > —1, then the reparametrization

X
T 1+ w(X)

is Anosov by Proposition 4.2 and contact with contact form 8 + w. Note that

Xo

Remark 7.4 implies X! is not conjugate to X!, if X' admits a periodic orbit on
which [w] does not vanish. In particular, if X* admits at least one homologically
non-trivial (in Hy(M,R) i.e., non-torsion) periodic orbit then there exists a small
cohomology class [w] such that X* is not conjugate it X},.

Hence we see that indeed, unlike in Theorem 6.1, matching of homologically
trivial length spectra does not imply conjugacy for contact Anosov flows. This
observation shows that that the conclusion of Theorem 7.1 is optimal. Further
by Proposition 4.6 we can find the “best" contact reparametrization with Sharp’s
minimizer equal to zero.
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In this section we would like to present the same example from the point of
view of deforming the Deck group rather than reparametrizing. At the end we will
find out that this is exactly the same example. While there is some redundancy
with what was already discussed, we consider this alternative description quite
instructive and thus give a rather detailed and self-contained presentation.

We will describe an explicit deformation X7},: M,, — M,, of a flow X* = X§ for

small p € H'(M,R), such that the length spectrum deforms according to

pery, (h(p)) = perx(p) + p(v)

where h is an orbit equivalence and ~ is the homology class of closed orbit of x.
The result of the construction will be summarized below as Proposition 8.3. In
the context of geodesic flows on surfaces of constant negative curvature the same
example was given by Ghys [G87, Theorem 2.2]. He was interested in examples of
Anosov flows which are not conjugate to algebraic flows and have analytic stable
and unstable distributions. We give a different, more general construction.

We proceed with the description of the example. Let X': M — M be a flow.
We lift the flow to the universal abelian cover X*: M — M. Then Ty ~ H,(M,7Z)
is the group of Deck transformations acting by isometries on M. Note that v € Ty
commutes with X?.

Take a € H'(M,R) ~ Hom(H;(M,Z),R). Let

r,= {’po’“(V) :yelo}
It is easy to see now that I,: T'y — I'), = Im(I,) given by
I(2) = 70 X0

is a group homomorphism (which is one-to-one when X* is not a periodic flow).

Then T, acts on M by v: x — ~y(X*#)(z)). First we will see that for all
sufficiently small ;1 the orbit space M,, = M /T, is a smooth manifold diffeomorphic
to M.

Recall that the isomorphism H'(M,R) ~ Hom(H;(M,Z),R) arises as follows.
Let w be a closed 1-form with cohomology class [w] = u. Then the lift @ of w to
M is exact, that is, there exists a function a: M — R such that @ = do. Then the
homomorphism p: Hy(M,Z) — R is given by

v(2)

no) = [ 6 = @) - ala)

T

for any z € M.
Now define H: M — M by H(z) = X*®)(z). Clearly H sends orbits of X* to
themselves. If

(8.1) Lia>—1
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then H is invertible on every orbit and, hence, is a smooth diffeomorphism. Further
H intertwines actions of I'g and I',

VyeTog Hoy=1I,(y)oH
Indeed,

Xa(v(w))(,y(x)) = xol@)+p(y) (v(x))
= X (X (@) = 70 XHO (XD @) = L () 0 H
Hence, under condition (8.1), H induces a diffeomorphism h: M — M,,. Moreover,

if we denote by X},: M,, — M), the flow induced by X' then h is an orbit equivalence
between X* and X7,.

Remark 8.1. Note that X,, = (Lxa+1)Dh(X). Hence by Proposition 4.2, under
the condition (8.1), if X is Anosov then so is X,. Note also that if X is contact
then so is X, because the action of I', preserves the contact form. In fact, if 3 is
the contact form for X* then 8 + p is the contact form for h=1 o XZL oh.

Let © € M be a periodic point of period pery(z) and let & € M be a lift of .
Then XPerx () — ~v(&), where ~ is the homology class of the orbit of . Then

perx (@) +u(y) — xn(v) (&) = L.(v)(@)
and hence

(8.2) pery, (h(p)) = perx (p) + u(7)

Finally we have the following lemma.

Lemma 8.2. The set
U={pe H'(M,R):Jw: [w]=p, |w]co <1}

is an open neighborhood of 0 in H'(M,R). Further, if u = [w] € U then condi-
tion (8.1) holds.

We summarize all of the above discussion as follows.

Proposition 8.3. Let X': M — M be a smooth flow on a compact manifold M.
Then there exists a open neighborhood U = H(M,R) of zero and a deformation
X,ﬁ: M, — M,, such that

1. X} =X1;

2. There exists a family of diffeomorphisms h,: M — M, which give orbit

equivalences between X' and X/,;

3. The periods of periodic orbits deform according to (8.2);

4. If Xt is Anosov, then all Xf“ welU are Anosov;

5. If X' is contact, then all X},, pe U are contact.

Remark 8.4. While Lemma 8.2 is very simple and elementary, the actual descrip-
tion of the set of admissible cohomology classes i appears in Lemma 4.5.
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It remains to prove the lemma.

Proof of Lemma 8.2. If y = [w] with ||w|co < 1 then we have Lgya = da(X) =
O(X) = w(X). Hence if ;1 € U then condition (8.1) is verified.

Now we check that U is open. Let [w1], [w2],...[wn] be a basis of H'(M,R).
By rescaling if necessary, we can assume that |w;||co = 1,4 = 1,... N. Then,

obviously, the set

1 N N
B. = N ;tiwi Zizzlti<€

contains an open neighborhood of 0 in H'(M,R) and any u € B. can be represented

by a closed 1-form of norm < e.

For any p € U we have p = [w] with |w|co < 1. Let € =

1(1— |lw| co). Then

it is easy to see that u + B. < U proving that U is open. ([l

[A08]
[Cr90]
[DS19]
[FO87]
[FH13]
[Frig3]
(G87]
[GL18]
[Ham95)
(K88
(K03
[KK96]

[KB37]

[Jou88]
[Liv72]
[LMSS]

[LMMB6]

[M96]

REFERENCES

M. Asaoka, On invariant volumes of codimension-one Anosov flows and the Verjovsky
conjecture. Invent. Math. 174 (2008), no. 2, 435-462.

C. Croke, Rigidity for surfaces of monpositive curvature. Comment. Math. Helv. 65
(1990), no. 1, 150-169.

R. Dougall, R. Sharp, Anosov flows, growth rates on covers and group extensions of
subshifts, Invent. math. (2020).

J. Feldman, D. Ornstein, Semirigidity of horocycle flows over compact surfaces of vari-
able negative curvature. Ergodic Theory Dynam. Systems 7 (1987), no. 1, 49-72.

P. Foulon, B. Hasselblatt, Contact Anosov flows on hyperbolic 3-manifolds. Geom.
Topol. 17 (2013), no. 2, 1225-1252.

D. Fried, Transitive Anosov flows and pseudo-Anosov maps. Topology 22 (1983), no. 3,
299-303.

E. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Annales sci-
entifiques de la E.N.S. 4e série, tome 20, no 2 (1987), pp. 251-270.

C. Guillarmou, T. Lefeuvre, The marked length spectrum of Anosov manifolds. Ann. of
Math. (2) 190 (2019), no. 1, 321-344.

U. Hamenstadt, Invariant two-forms for geodesic flows. Math. Ann. 301 (1995), no. 4,
677-698.

A. Katok, Four applications of conformal equivalence to geometry and dynamics. Er-
godic Theory Dynam. Systems 8 (1988), Charles Conley Memorial Issue, 139-152.

A. Katok, Combinatorial constructions in ergodic theory and dynamics. University Lec-
ture Series, 30. American Mathematical Society, Providence, RI, 2003. iv4+121 pp.

A. Katok, A. Kononenko, Cocycles’ stability for partially hyperbolic systems. Math.
Res. Lett. 3 (1996), no. 2, 191-210.

N. Kryloff, N. Bogoliouboff, La théorie générale de la mesure dans son application a
létude des systémes dynamiques de la mécanique non linéaire. Ann. of Math. (2) 38
(1937), no. 1, 65-113.

J.-L. Journé, A regularity lemma for functions of several wvariables. Rev. Mat.
Iberoamericana 4 (1988), no. 2, 187-193.

A.N. Livsic, Cohomology of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 36
(1972), 1296-1320.

R. de la Llave, R. Moriyén, Invariants for smooth conjugacy of hyperbolic dynamical
systems. I'V. Comm. Math. Phys. 116 (1988), no. 2, 185-192.

R. de la Llave, R, J. Marco, R. Moriyén, Canonical perturbation theory of Anosov
systems and regularity results for the Livsic cohomology equation. Ann. of Math. (2)
123 (1986), no. 3, 537—611.

D. Massart, Normes stables des surfaces. Mathématiques. Ecole normale supérieure de
Lyon, 1996.



26 ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

[0t90] J.-P. Otal, Le spectre marque des longueurs des surfaces a courbure negative. Ann. of
Math. (2) 131 (1990), no. 1, 151-162.

[Par86] W. Parry, Synchronisation of canonical measures for hyperbolic attractors. Comm.
Math. Phys. 106 (1986), no. 2, 267-275.

[PP86] W. Parry, M. Pollicott, The Chebotarov theorem for Galois coverings of Aziom A flows.
Ergodic Theory Dynam. Systems 6 (1986), no. 1, 133-148.

[P172] J. Plante, Anosov flows. American J. Math. 94 (1972), 729-754.

[P173] J. Plante, Homology of closed orbits of Anosov flows. Proc. Amer. Math. Soc. 37 (1973),
297-300.

[S72] K. Sigmund, On the space of invariant measures for hyperbolic flows. Amer. J. Math.
94 (1972), 31-37.

[Sh93] R. Sharp, Closed orbits in homology classes for Anosov flows. Ergodic Theory Dynam.
Systems 13 (1993), no. 2, 387-408.

[Sm67]  S. Smale, Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 1967 747-817.

[Sch57]  S. Schwartzman. Asymptotic Cycles. Ann. of Math. 66 (1957), 270-284.

[W13] A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms.
Astérisque No. 358 (2013), 75-165.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, CoLUMBUS, OH 43210, USA
Email address: gogolyev.1@osu.edu

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK,
PA 16802, USA
Email address: hertz@math.psu.edu



	1. Introduction
	Organization
	Acknowledgement
	Notation

	2. Homologically full Anosov flows
	3. Abelian cohomology for Anosov flows
	3.1. Katok-Kononenko theory of periodic cycle functionals revisited
	3.2. Livshits Theorem for homologically trivial orbits.
	3.3. Integer periods Livshits Theorem

	4. Reparametrizations of flows
	5. Conjugacy for homologically full flows.
	6. Sharpened Marked Length Spectrum Rigidity
	7. Conjugacy for contact Anosov flows
	8. An example
	References

