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Abstract. We introduce a notion of abelian cohomology in the context of
smooth flows. This is an equivalence relation which is weaker than the standard
cohomology equivalence relation for flows. We develop Livshits theory for
abelian cohomology over transitive Anosov flows. In particular, we prove an
abelian Livshits theorem for homologically full Anosov flows. Then we apply
this theorem to strengthen marked length spectrum rigidity for negatively
curved surfaces. We also present an application to rigidity of contact Anosov
flows. Some new results on homologically full Anosov flows are also given.

1. Introduction

Cohomological equations play a crucial role in dynamical systems theory. In the
setting when the dynamical system is a smooth flow Xt : M ÑM generated by the
vector field X the equation

ϕ “ LXu

is called a cohomological equation. Here u : M Ñ R is an unknown function and LX
is the Lie derivative in the direction of X. If the above equation has a solution then
the function ϕ : M Ñ R is called an Xt-coboundary.1 Accordingly, two continuous
functions ϕ and ψ are said to be Xt-cohomologous if ϕ ´ ψ is a coboundary. We
recommend A. Katok’s book for a general introduction of cohomology for dynamical
systems [K03].

The basic question is to decide whether the space of Xt-coboundaries BX is closed
in an appropriate topology (Hölder, smooth, etc.). If this is the case then BX is
given by the intersection of kernels of all Xt-invariant bounded linear functionals.
Even better is to explicitly describe a family of functionals which would yield BX .
If Xt : M Ñ M is a transitive Anosov flow on a compact manifold M then this
problem was solved by A. Livshits in the classical paper [Liv72]. He proved that in
this case the space BX , as a subspace of the space of Hölder continuous functions
is characterized by countably many functionals which are given by integration over
periodic orbits of Xt.

The authors were partially supported by NSF grants DMS-1823150 and DMS-1500947 & DMS-
1900778, respectively.

1We use the term Xt-cohomologous rather than just “cohomologous” to avoid confusion when
we consider cohomology of the manifold.
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Much later, A. Katok and A. Kononenko introduced a new type of functionals
called periodic cycle functionals to handle the case of partially hyperbolic dynam-
ical systems. They proved that the space of coboundaries is closed for partially
hyperbolic diffeomorphisms and flows which satisfy certain local accessibility con-
dition on its stable and unstable foliation [KK96]. The local accessibility was later
relaxed to a more general accessibility condition by Wilkinson [W13].

In this paper we revisit the idea of Katok-Kononenko and define a version of pe-
riodic cycle functionals. We prove several versions of an abelian Livshits Theorem
for transitive Anosov flows, where abelian cohomology is a certain weaker equiv-
alence relation than cohomology.2 Roughly speaking, this relation is given by the
standard cohomology on the universal abelian cover. Then we give an application
to marked length spectrum rigidity. More specifically, we improve the Croke-Otal
marked length spectrum rigidity theorem ([Cr90, Ot90]) in the following way. If,
for a given pair of negatively curved compact surfaces, the marked lengths spec-
tra on homologically trivial orbits coincide then, in fact, the full marked length
spectra match and, by the Croke-Otal [Cr90, Ot90] rigidity theorem, the surfaces
are isometric. We also apply our machinery to the rigidity problem of contact
Anosov flows. Namely, under a technical assumption, if two contact Anosov flows
are smoothly orbit equivalent then, in fact, the first flow is conjugate to a very spe-
cial reparametrization of the second flow. Both of these applications also strongly
rely on R. Sharp’s work on homologically full Anosov flows [Sh93].

Organization. In the next section we recall the definition of homologically full
Anosov flows and recall some results of Sharp. We provide a new characterization
of homologically full Anosov flows in terms of transitivity on the universal abelian
cover. We also prove that contact Anosov flows are homologically full. In Section
3 we state and prove two abelian Livshits theorems: one for general Anosov flows
in terms of periodic cycle functionals and one for homologically full Anosov flows
in terms of homologically trivial periodic data. We also give an “integer Livshits
theorem." In Section 4 we establish several properties of reparametrized flows which
will be needed for applications. In particular, we study how equilibrium states and
Sharp’s minimizers for homologically full Anosov flows behave under reparametriza-
tion. In Section 5 we apply an abelian Livshits Theorem to the conjugacy problem
of homologically full Anosov flows similarly to the way that the classical Livshits
Theorem applies to the conjugacy problem of transitive Anosov flows. Then, in
Section 6, we use the preceding results to weaken the assumption in the Croke-Otal
rigidity theorem to matching of homologically trivial spectra only. In Section 7 we
also give an application to the conjugacy problem for contact Anosov flows. Fi-
nally, in Section 8, we present an instructive example showing that our results from

2To avoid confusion we stress that the term “abelian" does not refer to the group of values.
All cocycles in this paper are R-valued.
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Sections 6 and 7 are optimal in certain ways. We also pose two open questions, one
at the end of Section 2 and one at the end of Section 3.

Acknowledgement. The authors would like to thank all the referees for their
careful reading of the paper and suggestions for improvement.

Notation. We will denote by rαs the homology class of a periodic orbit or, more
generally, a loop α. Similarly by rωs we will denote the cohomology class of a closed
1-form ω.

2. Homologically full Anosov flows

Here we recall some notions and results due to R. Sharp on homologically full
Anosov flows [Sh93]. We also establish some results about such flows which will
be needed for our abelian Livshits theory and applications, but may have some
independent interest. We begin with a general definition based on the idea that
“homologically full" should mean that points can move asymptotically in any di-
rection in homology of the manifold.

LetM be a compact smooth manifold and letXt : M ÑM be a smooth flow. De-
note by MpXq the space of Xt-invariant probability measures. Recall that MpXq ‰
∅ by the Krylov-Bogolyubov theorem [KB37]. Following Schwartzman [Sch57] de-
fine the asymptotic cycle ρ : MpXq Ñ H1pM,Rq » HompH1pM,Rq,Rq by

ρµprωsq “

ż

M

ωpXqdµ

where ωpXq is the evaluation of the 1-from ω on the generating vector field X.
Recall that this is indeed well-defined, i.e., ρµprωsq is independent of the 1-form
representative of the cohomology class rωs. We define the Schwartzman simplex as
the set SpXq “ tρµ : µ PMpXqu Ă H1pM,Rq which is a compact convex set.

Definition 2.1. A smooth flow Xt : M Ñ M is called homologically full if the
origin is contained in the interior of SpXq.

Definition 2.2. Denote by VpXq Ă H1pM,Rq the linear span of SpXq. Then
Xt : M ÑM is called homologically ample if the origin is contained in the interior
of SpXq as a subset of VpXq.

For example, the geodesic flow on a flat 2-torus is homologically ample, but not
homologically full. On the other hand, if Xt is a transitive homologically ample
Anosov flow then it is homologically full. Indeed this follows from the fact that
homology classes of periodic orbits of Xt span H1pM,Zq which is due to Parry and
Pollicott [PP86]. (Plante proved the same for volume preserving flows earlier, using
a much simpler argument [Pl73].)

Remark 2.3. Let N be a compact Riemannian manifold. If N ‰ T2 then the
projection map T 1N Ñ N induces the isomorphism H1pT

1N,Rq » H1pN,Rq. Let
Xt : T 1N Ñ T 1N be the geodesic flow. Then the Schwartzman simplex SpXq Ă
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H1pT
1N,Rq coincides with the unit ball in H1pN,Rq with respect to so called stable

norm which is a very popular object of study in geometry [M96, Théorème 1.3.9].

Now we follow Sharp and recall the definition of the β-functional for Anoov
flows [Sh93]. Define β : H1pM,Rq Ñ R using the formula

βprθsq “ sup
µPMpXq

"

hµpXq `

ż

M

θpXqdµ

*

The definition is independent of a particular 1-form representative in the cohomol-
ogy class. Indeed, if dα is an exact form then

ş

M
dαpXqdµ “

ş

M
LXαdµ “ 0 and

hence βpθ ` dαq “ βpθq. Sharp proved that β is convex.

Theorem 2.4 ([Sh93]). Let Xt : M Ñ M be a transitive Anosov flow. Then the
following statements are equivalent.

(i) every homology class in H1pM,Zq is represented by a periodic orbit of Xt;
(ii) there exists a fully supported measure µ P M such that

ş

M
ωpXqdµ “ 0 for

all closed 1-forms ω;
(iii) the functional β : H1pM,Rq Ñ R is bounded below and there exists unique

ξX P H
1pM,Rq for which the minimum is attained;

(iv) the convex hull of the set trγs : γ is a periodic orbitu Ă H1pM,Rq contains
the origin in its interior.

We note right away that in the context of Anosov flows (iv) is equivalent to our
definition of homologically full because measures supported on periodic orbits are
dense in MpXq [S72]. We call the cohomology class ξX from (iii) Sharp’s minimizer.
Further, Sharp established an asymptotic formula for the number of periodic orbits
in a fixed homology class. When ξX “ 0 the flow is “balanced" in the sense that
asymptotic density of periodic orbits in different homology classes is the same.

The following result provides yet one more characterization of homologically full
Anosov flows. We need it for our abelian Livshits theory, but it might be of some
independent interest as well. Let M̂ be the universal abelian cover of M , that is,
the cover which corresponds to the commutator subgroup rπ1M,π1M s; its group
of Deck transformation is given by H1pM,Zq.

Theorem 2.5. A transitive Anosov flow Xt : M ÑM is homologically full if and
only if its lift to the universal abelian cover is transitive.

Remark 2.6. Transitivity on the universal abelian cover is equivalent to absence
of wandering points. Indeed, transitivity on the abelian cover clearly implies that
the lift has no wandering points. In the other direction, by Anosov closing lemma,
full non-wandering set implies that periodic points are dense. Then transitivity
follows by the standard Smale’s argument as in the proof below.

Proof. We begin with the following lemma.

Lemma 2.7. If Xt : M Ñ M is a homologically full transitive Anosov flow then
homologically trivial periodic orbits are dense in M .
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By [Sh93, Theorem 2], homologically trivial orbits equidistribute according to an
equilibrium measure given by a potential ξpXq, where ξ is a certain closed 1-form.
(When X is a geodesic flow ξ “ 0 and homologically trivial orbits equidistribute
to the measure of maximal entropy.) In particular, because equilibrium states are
fully supported, it follows that the homologically trivial orbits are dense. However,
one can avoid using Sharp’s machinery altogether and give a simpler proof by using
shadowing. We briefly sketch this proof.

Proof of Lemma 2.7. For any ε ą 0 we will construct an ε-dense homologically
trivial periodic orbit. Begin with an ε-dense periodic geodesic γε. Then by (i) of
Theorem 2.4 there exist geodesics γ1ε in the opposite homology class, i.e., such that
the sum γε ` γ

1
ε bounds a 2-cycle.

Consider a point x P M such that γ1ptεq Ñ x, ε Ñ 0. Pick a Markov partition
for Xt in such a way that x is in the interior of a Markov rectangle R. Both γε
and γ1ε intersect R at two points p and q, respectively, which are ε-close to each
other. By concatenating symbolic periods of γε and γ1ε we can find a periodic orbit
ηε which ε-shadows γε first and then ε-shadows γ1ε. Orbit ηε intersects R very close
to rp, qs once and then intersect R very close to rq, ps. (Of course there could be
more points of intersection with R corresponding to other points of intersection of
γε and γ1ε with R.). Applying Fried’s construction [Fri83, pp. 300-301] to γε, γ1ε
and η yields a 2-dimensional immersed surface whose boundary consists of these
periodic orbits;3 Moreover, ηε is homologous to γε`γ1ε and, hence, is homologically
trivial. It remains to notice that γε is contained in the ε-neighborhood of η. Hence
ηε is 2ε-dense in M . �

First assume that Xt is homologically full. Denote by M̂ the universal abelian
cover of M and by X̂t : M̂ Ñ M̂ the lift of the flow Xt. Note that homologically
trivial periodic orbits in M are precisely those periodic orbits which lift to periodic
orbits of X̂t. Hence, by the above lemma, periodic orbits of X̂t are dense in M̂ .
Now we can apply a standard argument of Smale [Sm67, (7.5)] to conclude that
X̂t : M̂ Ñ M̂ is indeed a transitive flow. Namely, given two open sets U and V in
M̂ one can use local product structure and denseness of periodic orbits to connect
U to V using a finite chain of local stable and unstable manifolds of periodic orbits.
Then one can apply the λ-lemma to show that X̂T pUqXV ‰ ∅ for some large T .4.

It remains to check the converse implication. (This implication is not needed for
Theorem 3.5.) Assume that X̂t is transitive, i.e., tX̂tpx̂q : t P Ru is dense in M̂ for
some x̂ P M̂ .

The homology group H1pM,Zq is identified with the group of Deck transforma-
tions of the cover M̂ Ñ M . Take any γ P H1pM,Zq. Then for some t0 ą 0 the
point X̂t0px̂q is very close to γpx̂q so that X̂t0px̂q and γpx̂q belong to the same small

3Fried considers 3-dimensional Anosov flows, but this particular construction works well in any
dimension.

4With some more care one could show the topological mixing property.
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local product structure chart. Denote by x the image of x̂ in M . Then Xt0pxq and
x also belong to the same small local product structure chart. Hence, by Anosov
closing lemma, the orbit segment rx,Xt0pxqs can be shadowed by a periodic orbit of
a point y, Xt1pyq “ y, t1 « t0, which is very close to x. By the shadowing property
the orbit of y is homotopic to the orbit segment rx,Xt0pxqs concatenated with a
short curve connecting Xt0pxq back to x. It follows that X̂t1pŷq “ γpŷq, where ŷ
is a lift of y. That is, γ is represented by a periodic orbit of Xt and, hence, Xt is
homologically full. �

Remark 2.8. The latter implication (transitivity on the universal cover implies
homologically full property) was also proved using a different argument in [DS19,
Lemma 7.4]

The following theorem provides a natural class of homologically full Anosov flows.
It is interesting whether any contact flow can be shown to be homologically ample.

Theorem 2.9. Let Xt : M ÑM be a contact Anosov flow. Then Xt is homologi-
cally full.

Proof. Let α be the positive contact form for Xt and let m “ α ^ pdαqk be the
invariant volume form. Recall that by (ii) of Theorem 2.4: Xt is homologically full
if for every rωs P H1pM,Rq

ż

M

ωpXqm “ 0

So let ω be a closed 1-form. Note that ω^ pdαqk is a top-dimensional form and,
hence, ω ^ pdαqk “ ψα ^ pdαqk for some smooth function ψ. Contraction with X
yields ωpXqpdαqk “ ψιXpα^ pdα

kqq “ ψpdαqk. Hence ψ “ ωpXq. Now we have
ż

M

ωpXqm “

ż

M

ωpXqα^pdαqk “

ż

M

ω^pdαqk “

ż

M

´dpω^α^pdαqk´1q “ 0

�

Remark 2.10. I was pointed out to us by G. Paternain that the above result is
well-known, see e.g., [Pl72, Corollary 4.10].

Asaoka proved that any transitive codimension-1 Anosov flow is orbit equivalent
to a volume preserving Anosov flow [A08]. Also recall that Foulon and Hasselblatt
developed contact surgery and created many examples of 3-dimensional contact
Anosov flows [FH13].

Question 2.11. Is every 3-dimensional homologically full Anosov flow orbit equiv-
alent to a contact Anosov flow?

3. Abelian cohomology for Anosov flows

Let Xt : M ÑM is a transitive Anosov flow on a closed compact manifold M of
arbitrary dimension. A Hölder continuous function ϕ is called an abelian coboundary
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if there exists a smooth closed 1´form ω and a Hölder continuous function u, which
is continuously differentiable along X, such that

(3.1) ϕ “ ωpXq ` LXu

Recall that ωpXq stands for the contraction given by evaluation of ω on the gen-
erating vector field X. Accordingly, we say that two function ϕ and ψ are abelian
cohomologous if ϕ´ ψ is an abelian coboundary.

Remark 3.1. Notice that the decomposition (3.1) is highly non-unique because we
can change ω by any exact 1-form. Indeed, given any smooth function v : M Ñ R
we can write a different decomposition

ϕ “ pω ` dvqpXq ` LXpu´ vq

However one could make some canonical choice for example by asking ω to be har-
monic with respect to a Riemannian metric. (Recall that given a fixed Riemannian
metric there exists a unique harmonic representative in each cohomology class.)

We develop the counterpart of the standard Livshits theory [Liv72] for abelian
cohomology. Specifically, we prove two abelian Livshits Theorems for transitive
Anosov flows:

‚ General Livshits Theorem 3.3 which characterizes the space of abelian cobound-
aries as the intersection of kernels of periodic cycle functionals;

‚ Livshits Theorem 3.5 for homologically full Anosov flows which characterizes
abelian coboundaries via obstructions given by integration over homologi-
cally trivial periodic orbits;

At the end of this section we also give a similar proposition for functions whose
periodic orbits obstructions take values in a rank one abelian subgroup of R and
pose an open question for the case of finite rank.

Now we explain the term “abelian.” Recall that the universal abelian cover
M̂ ÑM is the cover which corresponds to the commutator subgroup rπ1M,π1M s.
Then the lift ω̂ of any closed 1-form ω on M is exact on M̂ . Hence a lift ϕ̂ to M̂ of
an abelian coboundary ϕ : M Ñ R is a true coboundary for the lifted Anosov flow
X̂ because

ϕ̂ “ ω̂pX̂q ` LX̂ û “ dαpX̂q ` LX̂ û “ LX̂pα` ûq

3.1. Katok-Kononenko theory of periodic cycle functionals revisited. Given
an Anosov flowXt : M ÑM a us-adapted path is a piecewise smooth path γ : r0, 1s Ñ
M such that each of its legs lies entirely in a stable or an unstable leaf of Xt. Anal-
ogously, an Xus-adapted path (or simply an adapted path) is a piecewise smooth
path γ such that each of its legs is either a flow-line segment or lies entirely in a
stable or an unstable leaf. An Xus-adapted loop is an Xus-adapted path which
begins and ends at the same point.
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Given an adapted path or loop γ we proceed to define periodic cycle functionals
PCFγ : CαpM,Rq Ñ R as follows. If γ lies entirely in a stable leaf then let

PCFγpϕq “

ż 8

0
ϕpXtpγp0qqq ´ ϕpXtpγp1qqqdt

If γ lies entirely in an unstable leaf then let

PCFγpϕq “

ż 0

´8

ϕpXtpγp1qqq ´ ϕpXtpγp0qqqdt

Note that convergence follows from exponential contraction/expansion and Hölder
continuity of ϕ. If γ is a positively oriented orbit segment γ “ rx, ϕT pxqs, T ą 0,
then let

PCFγpϕq “

ż T

0
ϕpXtpxqqdt

and if γ “ rx,XT pxqs, T ă 0, then let

PCFγpϕq “ ´

ż 0

T

ϕpXtpxqqdt

Finally for an adapted path γ define PCFγpϕq as a the sum of values on each of
the legs. The following properties are immediate from the definitions.

1. Any continuous path can be C0 approximated by an Xus-adapted path;
2. The value of of PCFγpϕq only depends on the sequence of the endpoints of

the legs of γ and is independent of the choice of leg between the endpoints;
3. If γ̄ denotes the adapted path (or loop) with reversed orientation then
PCFγ̄pϕq “ ´PCFγpϕq;

4. Suppose α and β are adapted loops such that α contains a subpath γ and β
contains γ̄, the same subpath with the opposite orientation. Concatenating
α with γ removed and β with γ̄ removed results in a loop α ˚ β. Then we
have the additive property

(3.2) PCFα˚βpϕq “ PCFαpϕq ` PCFβpϕq

Remark 3.2. As mentioned earlier, originally periodic cycle functionals were intro-
duced by Katok and Kanonenko [KK96] as obstructions, given by adapted us-loops,
to solving the cohomological equation in the setting of partially hyperbolic diffeo-
morphisms when periodic orbits obstructions are not readily available. Note that
our definition is different from the original one as we allow the flow direction in the
definition of the adapted loop.

If ϕ is an Xt-coboundary, ϕ “ LXu, then it is easy to see that in all three
cases (γ is contained in a stable leaf, unstable leaf or an orbit segment) we have
PCFγpϕq “ upγp1qq ´ upγp0qq. Hence periodic cycle functionals of Xus-adapted
loops vanish. Similarly if ϕ is an abelian coboundary then periodic cycle functions
vanish on homologically trivial Xus-adapted loops because these are the loops
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which can be lifted to the universal abelian cover where ϕ becomes a true cobound-
ary. We prove that vanishing on homotopically (and even homologically) trivial
Xus-adapted loops is also a sufficient condition for being an abelian coboundary.

Theorem 3.3. Let Xt : M Ñ M be a transitive Anosov flow and let ϕ P CrpMq,
r ą 0. Assume that PCFγpϕq “ 0 for every homotopically trivial Xus-adapted loop
γ. Then there exist a C8 smooth closed 1-form ω and u P Cr˚pMq, such that

ϕ “ ωpXq ` LXu

In the Theorem above, r˚ “ r if r R N and r˚ “ r ´ 1` Lip if r P N.
We immediately obtain the following corollary.

Corollary 3.4. If function ϕ : M Ñ R above is C8 smooth then there is a C8

smooth closed 1-form ω such that

ϕ “ ωpXq

Indeed we have ϕ “ ωpXq`LXu, where u P C8pMq. Hence ϕ “ ωpXq`dupXq “

pω ` duqpXq.

Proof of Theorem 3.3. We lift all the objects to the universal cover M̃ and, by a
light abuse of notation, we still denote by ϕ and X the lifts of ϕ and X to the
universal cover. Pick a point a P M̃ and define ũa : M̃ Ñ R in the following way.
For a given point x P M̃ let γ be an adapted path starting at a and ending at x we
set

ũapxq “ PCFγpϕq

This definition is independent of the choice of γ because we have assumed that
periodic cycle functionals vanish on homotopically trivial adapted loops. Note that,
because we can assume that the last leg of γ is a flow segment, we have LX ũa “ ϕ

(though we will not use this last fact). It easily follows from the definition that for
any pair of points a, b P M̃

(3.3) ũa ´ ũb “ ũapbq

Let D » π1M be the group of deck transformations acting on M̃ . The function
ũa solves the cohomological equation on M̃ , but a priori is not D´invariant, so it
needs to be adjusted.

Let T P D and let γ be an adapted path. Because ϕ ˝ T “ ϕ we have

PCFγpϕq “ PCFT pγqpϕq

Hence for every T P D
ũT paqpT pxqq “ ũapxq

Define c : D Ñ R in the following way

ũapT pxqq ´ ũapxq “ ũapT pxqq ´ ũT paqpT pxqq “ ũapT paqq
def
“ cpT q P R



10 ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

where we have used (3.3). Then c is a homomorphism. Indeed,

cpT ˝ Sq “ ũapT pSpaqq “ ũapT pSpaqq ´ ũapSpaqq ` ũapSpaqq “ cpT q ` cpSq

Notice also that c does not depend on the choice of the base point a.
Now we use the isomorphism HompD,Rq » H1pM,Rq. Recall that the coho-

mology class corresponding to c : D Ñ R is represented by a closed 1-form ω on M
such that

cpT q “

ż

γT

ω̂p 9γT psqqds

where γT is any curve starting at x and ending at T pxq and ω̂ is the lift of ω to M̂ .
Note that ϕ̄ “ ϕ ´ ωpXq is a function on M . Now take any periodic orbit γ in

M and lift it to an orbit segment γ̃ in M̃ . Then, of course, PCFγ̃pϕ̄q “ PCFγpϕ̄q.
Let x and T pxq, T P D, be the endpoints of γ̃. We have

ż

γ

ϕ̄ “

ż

γ̃

ϕ̄ “

ż

γ̃

ϕ´

ż

γ̃

ωpXq “ ũxpT pxqq ´ ũxpxq ´ cpT q

“ ũapT pxqq ´ ũapxq ´ cpT q “ 0

Hence
ż

γ

ϕ̄ “ 0

for every closed orbit γ. Then by Livshits Theorem [Liv72] there exists a Hölder
continuous u, continuously differentiable along X such that that LXu “ ϕ̄, i.e.,

ϕ “ LXu` ωpXq

Further the Hölder exponent of u is the same as the Hölder exponent for ϕ. If ϕ is
Cr with r ą 1 then de la Llave-Marco-Mariyón smooth Livshits Theorem [LMM86,
Appendix A] applies and together with Journé’s regularity lemma [Jou88] yields
Cr˚ regularity of u. �

3.2. Livshits Theorem for homologically trivial orbits.

Theorem 3.5. Assume that Xt : M ÑM is a homologically full transitive Anosov
flow and let ϕ : M Ñ R be a Cr, r ą 0 function such that

ż

γ

ϕ “ 0

for all homologically trivial periodic orbits γ. Then there is a C8 smooth closed
1-form ω on M and a function u P Cr˚pMq such that

ϕ “ ωpXq ` LXu

Remark 3.6. Notice that any homologically trivial periodic orbit bounds a 2-cycle.
Hence, using (3.2), the integral

ş

γ
ϕ can be decomposed into sum of periodic cycle

functionals of homotopically trivial Xus-adapted loops. Hence, it is easy to see that
vanishing of periodic cycle functionals on homotopically trivial Xus-adapted loops
implies vanishing on all homologically trivial periodic orbits. Thus Theorem 3.5
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can be viewed as a strengthening of Theorem 3.3 in the setting of homologically
full Anosov flows.

Proof. Let M̂ be the universal abelian cover of M . We denote by ϕ̂ the lift of ϕ to
M̂ and we still write Xt for the lift of the flow as it won’t cause any confusion. By
Theorem 2.5 the lifted flow is transitive.

Let x P M̂ be a point with a dense orbit. Define

ûpXtpxqq “

ż t

0
ϕ̂pXτ pxqqdτ

Recall that homologically trivial periodic orbits of Xt are precisely those periodic
orbits which lift to periodic orbits of the lifted flow on M̂ . Hence we have

ż

γ

ϕ̂ “ 0

for every periodic orbit γ on M̂ . Hence we can apply the classical argument of
Livshits and conclude that u is Hölder continuous (with a uniform constant) on the
orbit of x and hence extends to a Hölder function on M̂ . Further û is continuously
differentiable along the flow direction and solves the cohomological equation

LX û “ ϕ̂

Let D » H1pM,Zq be the group of deck transformations of the covering M̂ ÑM .
Because ϕ̂ is D invariant, we have LXpû ˝T ´ ûq “ 0 for every T P D. And because
Xt has a dense orbit we conclude that û ˝ T ´ û is constant. Let cpT q “ û ˝ T ´ û.
Then c : D Ñ R is a homomorphism, indeed

cpT ˝ Sq “ û ˝ pT ˝ Sq ´ û “ û ˝ pT ˝ Sq ´ û ˝ S ` û ˝ S ´ û “ cpT q ` cpSq

Now identify D with its orbit in M̂ . By the de Rham Theorem we can extend
c : D Ñ R to a smooth function c : M̂ Ñ R which is equivariant with respect to the
D action, that is,

c ˝ T ´ c “ cpT q

Let ω̂ “ dc. Then ω̂ is an exact 1-form which is invariant under the action of D.
Hence it descends to a closed 1-form ω on M . (The form ω is a de Rham repre-
sentative in the cohomology class given by c P HompH1pM,Rq,Rq.) The function
û´ c is D-invariant and hence descends to a function u on M . We have

LXpû´ cq “ ϕ̂´ ω̂pXq

Thus

LXu “ ϕ´ ωpXq

Finally, if ϕ is Cr then, as in the proof of Theorem 3.3, smooth Livshits the-
ory [LMM86, Appendix A], [Jou88] yields Cr˚ regularity of u. �
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3.3. Integer periods Livshits Theorem. We will prove the following proposition
using the circle valued Livshits Theorem.

Proposition 3.7. Let Xt : M ÑM be a transitive Anosov flow and let ϕ : M Ñ R
be a Hölder continuous function. Let

P “

"
ż

γ

ϕ : γ P PerpXq
*

Ă R

be the set of periods of ϕ. If the rank of the additive group generated by P is one,
then there are a smooth closed 1´form ω and a Hölder continuous function u such
that ϕ is an abelian coboundary, i.e.,

ϕ “ ωpXq ` LXu

Recall that integral cohomology H1pM,Zq is torsion-free and can be regarded as
Bruschlinsky group of homotopy classes of maps trM Ñ S1su. Indeed, a smooth
function w : M Ñ S1 defines a closed integral form ω “ dw. The correspondence
rws ÞÑ rωs P H1pM,Zq is in fact an isomorphism.

Note that, if w : M Ñ S1 is not smooth then, by Whitney Approximation The-
orem it can be C0 approximated by a smooth map v : M Ñ S1. The function
ū “ w´ v has its image in a small interval and hence lifts to a function u : M Ñ R.

Proof. Assume that P Ă cZ, c ‰ 0. By a constant reparametrization we can
assume that c “ 1. Consider the cocycle

ϕ̂px, T q “

ż T

0
ϕpXspxqqds P R

and consider Φpx, T q “ rϕ̂px, T qs P S1 “ R{Z. By assumption, for every periodic
orbit p of period Tp we have Φpp, Tpq “ 0. Hence, by applying S1-valued Livshits
Theorem, there exists a function w : M Ñ S1, which is differentiable along the flow
direction, such that

Φpx, T q “ wpXT pxqq ´ wpxq

for every x P M and T P R. By applying the preceding discussion to w we have
the decomposition w “ ū ` v, where ω “ dv is smooth and ū : M Ñ S1 lifts to a
function u : M Ñ R. Since v is smooth, ū and u are also differentiable along the
flow direction. So, taking the limit of
1
T

Φpx, T q “ 1
T
pwpXT pxqq ´ wpxqq “

1
T
pūpXT pxqq ´ ūpxqq `

1
T
pvpXT pxqq ´ vpxqq

as T Ñ 0, we obtain that ϕ is an abelian coboundary

ϕ “ LX ū` ωpXq “ LXu` ωpXq

�

Remark 3.8. If ϕ “ 1, i.e., the flow Xt only has integer length periodic orbits
then we have ωpXq “ 1. Therefore by Schwartzman’s theorem [Sch57] the flow is a
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suspension. Further if we denote by S ĂM the section then for any periodic orbit
γ we have

`pγq “

ż

γ

ωpXqdt “ xω, γy “ c ¨#tS X γu

Hence, we can apply the Livshits Theorem to the roof function and obtain that
the roof function is smoothly cohomologous to a constant c, i.e., the flow Xt is a
constant roof suspension over an Anosov diffeomorphism.

Question 3.9. In the setting of Proposition 3.7 assume that P has finite rank
instead of rank one. Does there exist ω P H1pM,Rq and a Hölder continuous
function u such that

ϕ “ ωpXq ` LXu?

4. Reparametrizations of flows

In this section we introduce some preliminaries on reparametrized flows (see
Parry [Par86] for a more detailed introduction). We study how equilibrium states
change under reparamerization. We also examine the behavior of Sharp’s minimizer
under reparametrization.

Given a Xt-invariant measure µ we will denote by hµpXq the metric entropy of
Xt. Also recall that given a flow Xt : M Ñ M and a Hölder continuous function
ϕ : M Ñ R the pressure PXpϕq is defined by

PXpϕq “ sup
"

hνpXq `

ż

ϕdν : ν invariant probability measure
*

When Xt is a transitive Anosov flow, the unique measure νϕ “ νϕ,X realizing the
supremum is called the equilibrium state of ϕ with respect to Xt.

Let Xt : M Ñ M be a flow generated by the vector field X, let ` : M Ñ R be a
positive smooth function. Define Z “ `X to be the generator of the reparametrized
flow Zt. Then Zt “ Xτt , where τt : M Ñ R is the Zt-cocycle with infinitesimal
generator ` and is given by

τtpxq “

ż t

0
`pZspxqqds

Similarly, if k “ 1{`, then Xt “ Zκt , where κt : M Ñ R is a Xt-cocycle given by

κtpxq “

ż t

0
kpXspxqqds

Lemma 4.1. A reparametrization Zt as above is conjugate to Xt via a time´u
map Xu : M ÑM , u : M Ñ R, if and only if

LXu “
1
`
´ 1

Further, two reparametrizations, Zi “ `iX, i “ 1, 2, are mutually conjugate via Xu

if and only if
LXu “

1
`1
´

1
`2
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Proof. The conjugacy relation Xu ˝ Zt “ Xt ˝Xu yields

upZtxq ` τtpxq “ t` upxq

or
upZtxq ´ upxq “ t´ τtpxq

Dividing by t and taking the limit as tÑ 0 gives LZu “ 1´ `. It remains to notice
that LZu “ `LXu. To show that Xu is a conjugacy when LXu “ 1{`´1 one works
backwards to obtain Xu ˝ Zt “ Xt ˝Xu by integrating.

For the last statement notice that Z1 “
`1
`2
Z2 and apply the criterion. �

Also recall the following result of Anosov and Sinai.

Proposition 4.2. If Xt : M ÑM is an Anosov flow and Zt is a smooth reparametriza-
tion of Xt, that is Z “ `X, where ` is positive and smooth then Zt is also Anosov.

If µ is a X-invariant measure then

µk “
k

ş

kdµ
µ

is Zt-invariant. Recall that by definition, entropy of a flow is the entropy of its
time-1 map. Then the Abramov entropy formula gives

hµkpZq “
hµpXq
ş

kdµ

Proposition 4.3. Let Xt : M Ñ M be a transitive Anosov flow and let Z “ `X,
` ą 0, be a smooth reparametrization. Let ϕ : M Ñ R be a Hölder continuous
function and let k “ 1{`. Then

PZp`pϕ´ PXpϕqqq “ 0

Moreover, if νϕ,X is the equilibrium measure for ϕ with respect to Xt, then the
equilibrium measure ν`pϕ´PXpϕqq,Z for `pϕ´ PXpϕqq with respect to Zt is given by

ν`pϕ´PXpϕqq,Z “
k

ş

kνϕ,X
νϕ,X

Proof. Take any X-invariant measure ν and let ν̂ “ k
ş

kdν
ν. Then

hν̂pZq `

ż

`pϕ´ PXpϕqqdν̂ “
1

ş

kdν

ˆ

hνpXq `

ż

pϕ´ PXpϕqqdν

˙

“
1

ş

kdν

ˆˆ

hνpXq `

ż

ϕdν

˙

´ PXpϕq

˙

ď 0

Further, the equality in the above inequality holds if and only if ν “ νϕ,X . Since the
correspondence ν ÞÑ ν̂ is a one-to-one and onto correspondence between invariant
measures for X and Z, uniqueness of equilibrium measures yields the posited result.

�
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Now let Xt : M ÑM be a homologically full Anosov flow. Recall the definition
of β-functional, βprθsq “ PXpθpXqq, and Sharp’s minimizer ξX from Section 2.
Denote by µξ the equilibrium state of ξXpXq. Also recall that by Step 1 of the
proof of [Sh93, Theorem 1]

(4.1)
ż

M

θpXqdµξ “ 0

for any closed 1´form θ. It follows that

(4.2) PXpξXpXqq “ hµξpXq

Proposition 4.4. Let Xt be a homologically full Anosov flow and let Zt be a
reparametrization given by Z “ `X where ` “ 1{pa` ωpXqq for some positive
constant a and some smooth closed 1´form ω with a` ωpXq ą 0. Then

ξZ “ ξX `
PXpξXpXqq

a
rωs

Proof. By Proposition 4.3 we have PZp`pθpXq ´ PXpθpXqqq “ 0 for every 1´form
θ. Applying ω to

Z “
X

a` ωpXq

yields

ωpZq “
ωpXq

a` ωpXq

and hence
` “

1
a` ωpXq

“
1
a
p1´ ωpZqq

Then
`pθpXq ´ PXpθpXqqq “ θpZq `

ωpZq

a
PXpθpXqq ´

1
a
PXpθpXqq

and we obtain

PZ

ˆ

θpZq `
ωpZq

a
PXpθpXqq ´

1
a
PXpθpXqq

˙

“ 0

or
PZ

ˆ

θpZq `
ωpZq

a
PXpθpXqq

˙

“
1
a
PXpθpXqq

for every θ.
We use the above formula to conclude that the map

θ ÞÑ θ `
PXpθpXqq

a
ω

is an invertible bijection on cohomology H1pM,Rq. Indeed the inverse is given by
θ ÞÑ θ ´ PZpθpZqqω. Hence, if θ minimizes

θ ÞÑ PXpθpXqq

then
θ̂ “ θ `

PXpθpXqq

a
ω
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minimizes PZpθ̂pZqq. Hence, by uniqueness of Sharp’s minimizer.

ξZ “ ξX `
PXpξXpXqq

a
rωs

�

Finally we use Proposition 4.3 to show that any homologically full Anosov flow
can be reparametrized so that Sharp’s minimizer becomes zero. Sharp proved that
such flows are special in the sense that periodic orbit growth is balanced in different
homology classes [Sh93, Section 5]. We will need the following lemma.

Lemma 4.5. Assume that for a cohomology class µ and each Xt-invariant proba-
bility measure ν we have

ş

M
µpXqdν ą ´1. Then µ can be represented by a 1-form

ω such that ωpXq ą ´1.

The proof is very standard and is similar to the proof of uniform convergence
of Birkhoff ergodic averages for uniquely ergodic systems. We just indicate the
approach.

Fix a closed 1-form ω0 which represents µ. For any λ ą 0 let

ωλx “
1
λ

ż Xλpxq

x

pXtq˚ω0
Xtpxqdt

We have rωλs “ µ and ωλxpXq is given by the ergodic average of ω0pXq

ωλxpXq “
1
λ

ż Xλpxq

x

ω0
XtpxqpXpX

tpxqqdt

Then the condition on the integrals of ωpXq implies that ωλpXq ą ´1 for a suffi-
ciently large λ.

Proposition 4.6. Let Xt : M Ñ M be a homologically full Anosov flow. Then
there is a unique (up to conjugacy) reparametrization of the form

Z “
X

1` ωpXq
which has zero Sharp’s minimizer. Here ω is a closed 1-form.

Proof. By Proposition 4.3 we have ξZ “ ξX ` PXpξXpXqqrωs and hence the coho-
mology class rωs is uniquely determined

rωs “
´1

PXpξXpXqq
ξX

(Recall that by (4.2) PXpξXpXqq “ hµξpXq ą 0.)
Thus it remains to show that the class rωs can be realized by a 1-form ω with

ωpXq ą ´1. According to Lemma 4.5 it is enough to show that
ż

M

ωpXqdν ą ´1

for every Xt-invariant probability measure ν. If ν “ µξ then
ż

M

ωpXqdν “ 0
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by (4.1). Otherwise, if ν ‰ µξ then
ż

M

ωpXqdν “
´1

PXpξXpXqq

ż

M

ξXpXqdν ą
´
ş

M
ξXpXqdν

hνpXq `
ş

M
ξXpXqdν

ě ´1

�

5. Conjugacy for homologically full flows.

Recall that a transitive Anosov flow Xt : M Ñ M is homologically full if every
integral homology class contains a periodic orbit of Xt (cf. Theorem 2.4). No-
tice that being homologically full is a property which is invariant under any orbit
equivalence.

Two flows Xt
i : M ÑM , i “ 1, 2 are conjugate if there exists a homeomorphism

H : M ÑM such that
@t H ˝Xt “ Y t ˝H

We say that Xt
1 and Xt

2 are orbit equivalent if there exists a homeomorphism H

which send orbits of Xt
1 to orbits of Xt

2 preserving the time direction.
Let Xt

i : M Ñ M , i “ 1, 2, be orbit equivalent Anosov flows. Fix an orbit
equivalence H0 : M Ñ M which sends orbits of Xt

1 to orbits of Xt
2. We say that

H0 matches period spectra if for every periodic point x the Xt
1-period of x is the

same as Xt
2-period of H0pxq. And we say that H0 matches homologically trivial

period spectra if only the periods of corresponding homologically trivial periodic
orbits are assumed to be the same. Note that matching is not merely a property of
Xt

1 and Xt
2, but also depends on the choice of H0 because flows can admit multiple

non-equivalent orbit equivalences.
Recall the following classical application of the Livshits Theorem due to Katok.

Theorem 5.1. Let Xt
1 and Xt

2 be transitive Anosov flows and let H0 be an orbit
equivalence which matches period spectra. Then Xt

1 and Xt
2 are conjugate

H ˝Xt
1 “ Xt

2 ˝H

where H : M ÑM is a bi-Hölder continuous homeomorphism.

Proof. The orbit equivalence H0 is a bi-Hölder homeomorphism. By adjusting in
the time direction we can also make H0 continuously differentiable in the flow
direction. Define

Zt “ H0 ˝X
t
1 ˝H

´1
0

Then Zt is a Hölder continuous reparamerization of Xt
2 with the same periods.

We use the same notation as in Section 4: Z “ `X2, Zt “ Xτt
2 , Xt

2 “ Zκt . For
any periodic point x of period T we have

x “ ZT pxq “ XT
2 pxq “ ZκT pxq

and, hence, κT pxq “ T or
ż T

0

ˆ

1
`pXs

2pxqq
´ 1

˙

ds “ 0
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Now, by Livshits Theorem there exists a Hölder function u : M Ñ R which is
continuously differentiable along X2 such that LX2u “

1
` ´ 1. We conclude from

Lemma 4.1 that Zt and Xt
2 are bi-Hölder conjugate. �

Recall from Section 2 that ξX P H1pM,Rq denotes the Sharp’s minimizer for a
homologically full Anosov flow Xt : M ÑM .

Theorem 5.2. Let Xt
1 : M Ñ M be a homologically full Anosov flow. Assume

that Xt
2 : M Ñ M is another Anosov flow which is orbit equivalent to Xt

1 via H0.
Assume that H0 matches homologically trivial period spectra. Then Xt

1 is conjugate
to the reparametrization of Xt

2 generated by
X2

1` ωpX2q

where ω is a smooth closed 1´form. If, moreover, H˚0 ξX2 “ ξX1 then ω can be
chosen to be zero and, hence, Xt

1 and Xt
2 are conjugate.

Proof. The proof proceeds in exactly the same way as the proof of Theorem 5.1,
but instead of applying the classical Livshits Theorem we apply Theorem 3.5 and
obtain a function u : M Ñ R and a smooth closed 1´form ω such that

LX2u “
1
`
´ 1´ ωpX2q

Note that we can approximate LX2u with LX2u
1, where u1 is smooth. Then, after

replacing ω with ω ´ du1 we have (cf. Remark 3.1)

LX2pu´ u
1q “

1
`
´ 1´ ωpX2q

and for a sufficiently small LX2pu´u
1q we have 1`ωpX2q ą 0. Then by Lemma 4.1

flow Zt (and hence Xt
1) is conjugate to the reparametrization of Xt

2 generated by
X2{p1` ωpX2qq. This gives us the first part of the theorem.

Hence without loss of generality we can (and do) assume that

Z “
1

1` ωpX2q
X2,

It is left to check that ω is exact if the cohomology classes ξX1 and ξX2 match.
Because Zt is conjugate to Xt

1 we have ξX1 “ H˚0 ξZ and hence, by the assump-
tion of the theorem, ξZ “ ξX2 . Recall that by (4.2) we have PX2pξX2pX2qq “

hµX2
pX2q ą 0. Thus applying Proposition 4.4 with a “ 1 and X “ X2 we obtain

that rωs “ 0, that is, ω is exact. Hence, by Lemma 4.1, flows Zt and Xt
2 are

conjugate. �

6. Sharpened Marked Length Spectrum Rigidity

Here we explain that our abelian Livshits theory can be used to improve marked
length spectrum rigidity results on surfaces and higher dimensional manifolds. Re-
call that Croke [Cr90] and Otal [Ot90] famously proved that marked lengths of
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closed geodesics determine the isometry class of a negatively curved surface. We
offer the following enhancement.

Given a negatively curved surface pS, gq, a free homotopy class of loops α on
S admits a unique geodesic representative. Denote by `gpαq the length of this
geodesic.

Theorem 6.1. Let g1 and g2 be two negatively curved metrics on a smooth compact
surface S. Given a free homotopy class of loops α on S, denote by `gipαq the length
of the gi-geodesic representative of α, i “ 1, 2. Assume that their marked length
spectra are the same for homologically trivial geodesics, i.e., `g1pαq “ `g2pαq for
every homologically trivial free homotopy class of loops α. Then g1 and g2 are
isometric.

In fact the following more general result holds true.

Addendum 6.2. Fix a homology class c P H1pS,Zq. If instead we assume that
`g1pαq “ `g2pαq for every free homotopy class of loops in homology class c then g1

and g2 are isometric.

Remark 6.3. A precursor for the idea of considering a fixed homology class can
be found in [K88, Theorem 3], where Katok proved that marked length spectrum
in a fixed homology class c determines the negatively curved metric on the surface
in a fixed conformal class.

We proceed to prove Theorem 6.1 below. The addendum can be reduced to
Theorem 6.1 in the following way. The length of a homologically trivial geodesic
can be arbitrarily well approximated by the difference of lengths of two geodesics in
homology class c. This approximation can be done in the same way as in the proof of
Lemma 2.7. Hence the length of such homologically trivial geodesic can be recovered
from the lengths of geodesics in c. Further, the approximation procedure persists
under orbit equivalence of geodesic flows and, hence, marked length spectrum in c
recovers the homologically trivial length spectrum.

Lemma 6.4. Let Xt : T 1S Ñ T 1S be the geodesic flow on a negatively curved
surface and let I : T 1S Ñ T 1S be the involution given by v ÞÑ ´v. Assume that µ
is an Xt-invariant measure such that I˚µ “ µ. Then

ż

ωpXqdµ “ 0

for every closed 1´form ω. In particular, this holds for the measure of maximal
entropy.

Proof. Note that Ipx, vq “ px,´vq conjugates the geodesic flow and its inverse
and interchanges the stable and unstable foliations. We have X´t “ IXtI or,
infinitesimally, DIpXq “ ´X. Hence, if µ is the measure of maximal entropy
for Xt then I˚µ is the measure of maximal entropy for X´t and, hence, indeed,
I˚µ “ µ.
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Recall that the bundle map T 1S Ñ S induces an isomorphism on cohomology.
Hence we can and do assume that ω is a pullback of a 1´form on the surface. It
is easy to see that for such forms we have ωpx,´vqpXpx,´vqq “ ´ωpx,vqpXpx, vqq.
Now, for any µ such that I˚µ “ µ, the claim of the lemma comes from the following
calculation.

ż

ωpXqdµ “

ż

ωpXqdI˚µ “

ż

ωpx,´vqpXpx,´vqqdµpx, vq

“

ż

´ωpx,vqpXpx, vqqdµpx, vq “ ´

ż

ωpXqdµ.

�

Proof of Theorem 6.1. Denote byX1 andX2 the generating vector fields of geodesic
flows on T 1S corresponding to g1 and g2, respectively. Then, it is well-known that
there is exists H : T 1S Ñ T 1S, an orbit equivalence between Xt

1 and Xt
2, which is

homotopic to identity.
Recall the definition of the β-functional

βprθsq “ P pθpXqq “ sup
µ

"

hµpXq `

ż

θpXqdµ

*

where the supremum is taken among all Xt´invariant probability measures.
Denote by ξi, i “ 1, 2, Sharp’s minimizers of the β functional for Xi. Let µξi be

the equilibrium measures for ξipXq and also denote by µi, i “ 1, 2, the measures of
maximal entropy for Xi.

Then, using (4.1) which gives
ş

ξipXiqdµξi “ 0 and Lemma 6.4, we have

βpξiq “ hµξi pXiq `

ż

ξipXiqdµξi “ hµξi pXiq ď hµipXiq “ hµipXiq `

ż

ξipXiqdµi

Hence, by the definition of β, we have µξi “ µi and, by uniqueness of Sharp’s
minimizer, ξi “ 0, i “ 1, 2. Then, obviously, H˚ξ2 “ 0 “ ξ1 and we can apply
Theorem 5.2 to conclude that Xt

1 and Xt
2 are conjugate. Hence, we have com-

plete matching of marked length spectra and, by Croke-Otal rigidity theorem, g1 is
isometric to g2. �

Remark 6.5. Recent results of Guillarmou and Lefeuvre on local marked length
spectrum rigidity [GL18, Theorem 1] for higher dimensional negatively curved man-
ifolds can be enhanced in the same way — one only needs to assume that homo-
logically trivial marked length spectra coincide.

7. Conjugacy for contact Anosov flows

Recall that a (positive) contact form on an oriented p2k`1q-dimensional manifold
M is a smooth 1´form α such that α^pdαqk ą 0. Associated to the contact form is
its Reeb vector field Xα which is uniquely determined by αpXαq “ 1 and LXαα “ 0
(the latter is equivalent to ιXαdα “ 0q. Call an Anosov flow Xt a contact Anosov
flow if X is the Reeb vector field for a contact form α.
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Theorem 7.1. Let Xi, i “ 1, 2, be contact Anosov flows. Assume one of the
following

1. Xi are flows on a 3-dimensional manifold, which are orbit equivalent via a
C1 orbit equivalence;

2. Xi are Anosov geodesic flows with C1 Anosov splittings, which are orbit
equivalent via a C2 orbit equivalence.

Then there exist a closed 1´form ω and a constant c ą 0 such that X1 is conjugated
to X2

c`ωpX2q
. If, moreover, the orbit equivalence matches Sharp’s minimizers ξX1 P

H1pM,Rq to ξX2 P H
1pM,Rq, then ω can be taken to be 0, that is, X1 is conjugate

to a constant rescaling of X2.

Recall that geodesic flows on perturbations of hyperbolic manifolds are 1
2 -pinched

and hence have C1 Anosov splittings.

Addendum 7.2. In the first case when Xi are 3-dimensional flows the C0 conju-
gacy is in fact smooth.

The addendum follows from work of Fledman-Ornstein [FO87] who proved that a
C0 conjugacy must be C1 and the bootstrap argument of de la Llave-Moriyón [LM88].

Proof of Theorem 7.1. Let α be the contact form for X1 and let β be the contact
form for X2. Denote by H the orbit equivalence so that H˚X1 “ ϕX2 for some
positive ϕ P C0.

Lemma 7.3. There exists a constant c ą 0 such that the 1-form µ “ cβ ´H˚α is
closed.

Proof. First we prove the lemma whenXi are Anosov geodesic flows with C1 Anosov
splitting and H is C2. Because of the C2 hypothesis we have that ϕ P C1 and
H˚dα “ dH˚α is exact. We claim that it is also X2-invariant. Using functoriality,
we have

0 “ LX1dα “ LϕX2H˚dα “ ϕLX2pH˚dαq ` dϕ^ ιX2H˚dα

Notice that 0 “ ιX1dα “ ιϕX2H˚dα “ ϕιX2H˚dα. Hence, indeed, we have
ϕLX2pH˚dαq “ 0.

Therefore, both dβ and H˚dα are exact X2-invariant 2-forms. Then by [Ham95,
Theorem A3] there is a constant c ą 0 such that H˚dα “ cdβ and lemma follows.
(The constant c is positive because both α and β are positive contact forms and
ϕ ą 0.)

In the 3-dimensional case when H is merely C1 (and, hence, we do not know
that H˚dα is exact anymore) we can actually make a direct argument. We have
that H˚pα ^ dαq is a ϕX2-invariant C0 volume form. Hence, both β ^ dβ and
ϕH˚pα^ dαq are X2-invariant volume forms. Then, by ergodicity,

ϕH˚pα^ dαq “ cβ ^ dβ
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where c ą 0, again, because both α and β are positive.
Now note that ιX2pβ ^ dβq “ dβ and ιX1pα^ dαq “ dα. We calculate

cdβ “ cιX2pβ ^ dβq “
c

ϕ
ιH˚X1pβ ^ dβq “ ιH˚X1

ˆ

c

ϕ
β ^ dβ

˙

“ ιH˚X1 pH˚pα^ dαqq “ H˚ιX1 pα^ dαq

“ H˚dα

�

Consider any homologically trivial X1-periodic orbit γ. Then H˚γ bounds a
surface S and we can derive a relation between the periods of γ and and H˚γ as
follows

c perX2
pH˚γq ´ perX1

pγq “ c

ż

H˚γ

β ´

ż

γ

α “

ż

H˚γ

cβ ´

ż

H˚γ

H˚α

“

ż

H˚γ

µ “

ż

S

dµ “ 0

Hence, after rescaling by c, the marked length spectra for homologically trivial
orbits match. Hence the result follows immediately from Theorem 2.9 and Theo-
rem 5.2. �

Remark 7.4. For non-homotopically trivial periodic orbits γ the above calculation
gives that the periods perX1pγq and perX2pH˚γq are related as follows

perX1
pγq “ c perX2

pH˚γq ` rµsprH˚γsq

Note that rH˚γs “ rγs if H is homotopic to identity.

8. An example

We begin by pointing out that the scenario of Theorem 7.1 actually occurs.
Indeed, given a contact Anosov flow X with a contact form β and a closed 1-from
ω with ωpXq ą ´1, then the reparametrization

Xω “
X

1` ωpXq
is Anosov by Proposition 4.2 and contact with contact form β ` ω. Note that
Remark 7.4 implies Xt is not conjugate to Xt

ω if Xt admits a periodic orbit on
which rωs does not vanish. In particular, if Xt admits at least one homologically
non-trivial (in H1pM,Rq i.e., non-torsion) periodic orbit then there exists a small
cohomology class rωs such that Xt is not conjugate it Xt

ω.
Hence we see that indeed, unlike in Theorem 6.1, matching of homologically

trivial length spectra does not imply conjugacy for contact Anosov flows. This
observation shows that that the conclusion of Theorem 7.1 is optimal. Further
by Proposition 4.6 we can find the “best" contact reparametrization with Sharp’s
minimizer equal to zero.
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In this section we would like to present the same example from the point of
view of deforming the Deck group rather than reparametrizing. At the end we will
find out that this is exactly the same example. While there is some redundancy
with what was already discussed, we consider this alternative description quite
instructive and thus give a rather detailed and self-contained presentation.

We will describe an explicit deformation Xt
µ : Mµ Ñ Mµ of a flow Xt “ Xt

0 for
small µ P H1pM,Rq, such that the length spectrum deforms according to µ

perXµphppqq “ perXppq ` µpγq

where h is an orbit equivalence and γ is the homology class of closed orbit of x.
The result of the construction will be summarized below as Proposition 8.3. In
the context of geodesic flows on surfaces of constant negative curvature the same
example was given by Ghys [G87, Theorem 2.2]. He was interested in examples of
Anosov flows which are not conjugate to algebraic flows and have analytic stable
and unstable distributions. We give a different, more general construction.

We proceed with the description of the example. Let Xt : M Ñ M be a flow.
We lift the flow to the universal abelian cover X̃t : M̃ Ñ M̃ . Then Γ0 » H1pM,Zq
is the group of Deck transformations acting by isometries on M̃ . Note that γ P Γ0

commutes with X̃t.
Take a µ P H1pM,Rq » HompH1pM,Zq,Rq. Let

Γµ “ tγ ˝ X̃µpγq : γ P Γ0u

It is easy to see now that Iµ : Γ0 Ñ Γµ “ ImpIµq given by

Iµpγq “ γ ˝ X̃µpγq

is a group homomorphism (which is one-to-one when Xt is not a periodic flow).
Then Γµ acts on M̃ by γ : x ÞÑ γpX̃µpγqpxqq. First we will see that for all

sufficiently small µ the orbit spaceMµ “ M̃{Γµ is a smooth manifold diffeomorphic
to M .

Recall that the isomorphism H1pM,Rq » HompH1pM,Zq,Rq arises as follows.
Let ω be a closed 1-form with cohomology class rωs “ µ. Then the lift ω̃ of ω to
M̃ is exact, that is, there exists a function α : M̃ Ñ R such that ω̃ “ dα. Then the
homomorphism µ : H1pM,Zq Ñ R is given by

µpγq “

ż γpxq

x

ω̃ “ αpγpxqq ´ αpxq

for any x P M̃ .
Now define H : M̃ Ñ M̃ by Hpxq “ X̃αpxqpxq. Clearly H sends orbits of X̃t to

themselves. If

(8.1) LX̃α ą ´1
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then H is invertible on every orbit and, hence, is a smooth diffeomorphism. Further
H intertwines actions of Γ0 and Γµ

@γ P Γ0 H ˝ γ “ Iµpγq ˝H

Indeed,

Xαpγpxqqpγpxqq “ Xαpxq`µpγqpγpxqq

“ XαpxqpXµpγqpγpxqqq “ γ ˝XµpγqpXαpxqpxqq “ Iµpγq ˝H

Hence, under condition (8.1), H induces a diffeomorphism h : M ÑMµ. Moreover,
if we denote byXt

µ : Mµ ÑMµ the flow induced by X̃t then h is an orbit equivalence
between Xt and Xt

µ.

Remark 8.1. Note that Xµ “ pLXα`1qDhpXq. Hence by Proposition 4.2, under
the condition (8.1), if X is Anosov then so is Xµ. Note also that if X is contact
then so is Xµ because the action of Γµ preserves the contact form. In fact, if β is
the contact form for Xt then β ` µ is the contact form for h´1 ˝Xt

µ ˝ h.

Let x P M be a periodic point of period perXpxq and let x̃ P M̃ be a lift of x.
Then X̃perXpxq “ γpx̃q, where γ is the homology class of the orbit of x. Then

X̃perXpxq`µpγq “ X̃µpγqpγpx̃qq “ Iµpγqpx̃q

and hence

(8.2) perXµphppqq “ perXppq ` µpγq

Finally we have the following lemma.

Lemma 8.2. The set

U “ tµ P H1pM,Rq : Dω : rωs “ µ, }ω }C0 ă 1u

is an open neighborhood of 0 in H1pM,Rq. Further, if µ “ rωs P U then condi-
tion (8.1) holds.

We summarize all of the above discussion as follows.

Proposition 8.3. Let Xt : M Ñ M be a smooth flow on a compact manifold M .
Then there exists a open neighborhood U Ă H1pM,Rq of zero and a deformation
Xt
µ : Mµ ÑMµ such that
1. Xt

0 “ Xt;
2. There exists a family of diffeomorphisms hµ : M Ñ Mµ which give orbit

equivalences between Xt and Xt
µ;

3. The periods of periodic orbits deform according to (8.2);
4. If Xt is Anosov, then all Xt

µ, µ P U are Anosov;
5. If Xt is contact, then all Xt

µ, µ P U are contact.

Remark 8.4. While Lemma 8.2 is very simple and elementary, the actual descrip-
tion of the set of admissible cohomology classes µ appears in Lemma 4.5.
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It remains to prove the lemma.

Proof of Lemma 8.2. If µ “ rωs with }ω }C0 ă 1 then we have LX̃α “ dαpX̃q “

ω̃pX̃q “ ωpXq. Hence if µ P U then condition (8.1) is verified.
Now we check that U is open. Let rω1s, rω2s, . . . rωN s be a basis of H1pM,Rq.

By rescaling if necessary, we can assume that }ωi }C0 “ 1, i “ 1, . . . N . Then,
obviously, the set

Bε “

#

1
N

«

N
ÿ

i“1
tiωi

ff

:
N
ÿ

i“1
ti ď ε

+

contains an open neighborhood of 0 in H1pM,Rq and any µ P Bε can be represented
by a closed 1-form of norm ď ε.

For any µ P U we have µ “ rωs with }ω }C0 ă 1. Let ε “ 1
2 p1´ }ω }C0q. Then

it is easy to see that µ` Bε Ă U proving that U is open. �
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