Noname manuscript No.
(will be inserted by the editor)

Misreporting Attacks Against
Software-Defined Networking

Quinn Burke : Patrick McDaniel - Thomas La Porta -

Ting He

Received: date / Accepted: date

Abstract Load balancers enable efficient use of net-
work resources by distributing traffic fairly across them.
In software-defined networking (SDN), load balancing
is most often realized by a controller application that
solicits traffic load reports from network switches and
enforces load balancing decisions through flow rules.
This separation between the control and data planes in
SDNs creates an opportunity for an adversary at a com-
promised switch to misreport traffic loads to influence
load balancing. In this paper, we evaluate the ability
of such an adversary to control the volume of traffic
flowing through a compromised switch by misreporting
traffic loads. We take a probabilistic approach to model
the attack and develop algorithms for misreporting that
allow an adversary to tune attack parameters toward
specific adversarial goals. We validate the algorithms
with a virtual network testbed, finding that through
misreporting the adversary can control traffic flow to a
high degree by drawing a target amount of load (e.g.,
+200%) to within a 2% to 10% error of that target. This
is yet another example of how depending on untrustwor-
thy reporting in making control decisions can lead to
fundamental security failures.

Keywords network security - SDN - load balancing

Quinn Burke (Corresponding author)
E-mail: gkb5007@psu.edu

Patrick McDaniel
E-mail: mcdaniel@cse.psu.edu

Thomas La Porta
E-mail: tfl12@psu.edu
Mingli Yu

E-mail: mxy309@psu.edu
Ting He

E-mail: tzh58@psu.edu

Load Balancers in

Mingli Yu -

1 Introduction

Today’s dynamic, cloud-centric marketplace demands
faster and more reliable services. In order to meet these
demands and maintain a specified quality of service,
scaling out infrastructure has become a necessity. Key
network functions, like load balancing, then provide the
support necessary to keep these larger networks working
efficiently. Load balancers split traffic fairly across equiv-
alent backend servers or links to enable more efficient
use of available network resources. In software-defined
networking (SDN), however, load balancing typically
manifests as a distributed system. The load balancer is
divided into two components: the controller application
that runs the load balancing algorithm and the network
switches that enforce the load balancing decisions via
flow rules. Here, chosen network switches report traffic
loads (switch statistics) to the controller application
which decides how to route incoming flows. Hence, effi-
cient load balancing requires distributed trust among
the switches in reporting accurate traffic loads. The dis-
tributed nature of the load balancer therefore creates an
opportunity for an adversary at a compromised switch
to misreport traffic loads to influence load balancing.
In this paper, we evaluate an adversary’s ability to
control the amount of traffic flowing through the com-
promised switch (for eavesdropping and traffic analysis)
by misreporting traffic loads (here, under-reporting).
We take a probabilistic approach to model the attack
and develop algorithms for misreporting that allow the
adversary to tune attack parameters toward specific ad-
versarial goals. We introduce two attacks against SDN
load balancers to draw a target volume of traffic through
the compromised switch: the trivial attack that naively
misreports zero load, and the stealthy attack that elu-
sively misreports realistic load values. We then evaluate

Quinn Burke et al.

them against four widely used load balancing algorithms:
least-loaded, weighted least-loaded, least-connections, and
weighted least-connections, which are included in the
widely used Floodlight’s [2] and OpenDayLight’s [3]
load balancing modules, and relied upon by several other
specialized load balancing solutions [59,42,11,32,39,47].
We note that most dynamic load balancers in practice
inevitably perform some form of least-X selection (e.g.,
least-loaded in bytes, least-connections) to select the
most suitable path or endpoint for a flow [43,31]. The
wide reliance on this calculation provides motivation for
evaluating its effectiveness in a setting where the load
balancer is subject to malicious inputs—in the form of
false load reports.

Additionally, as the network traffic characteristics
depend on the services offered by a subnetwork, we con-
sider in our analyses two distinct traffic models that
are representative of workloads most commonly found
in modern cloud and datacenter networks: short and
long flows (in terms of flow duration) [14,49]. The ad-
versary must therefore calibrate the attack parameters
appropriately based on the environment. We validate
the attack algorithms with a virtual network testbed,
finding that through misreporting the adversary can
control traffic flow to a high degree by drawing a target
amount of load (e.g., +200%) to within a 2% error of
that target for short flows and within 10% error for long
flows (with reduced error by using suggested alternative
attack strategies). Thus our attack model is an effective
tool for defensive analysis but also provides a means of
planning attacks on real SDNs. This demonstrates that
misreporting extends to other services beyond those
discussed in prior work.

This is yet another example of how depending on col-
lecting faithful information from untrustworthy sources
leads to vulnerabilities, the results here being potentially
disastrous, besides being difficult to detect in real-time.
Our key contributions are:

— An attack model for analysis and planning of misre-
porting attacks against SDN-based load balancers.

— Development of two attacks against SDN load bal-
ancers that allow an adversary to control the volume
of traffic through a compromised switch.

— Evaluation of misreporting attacks against four widely
used load balancing algorithms and two distinct traf-
fic patterns.

Prior work has partially addressed the issue of com-
promised switches with regards to eavesdropping, mes-
sage integrity, and malicious link-discovery messages [55,
38,33]; however, they have not considered the effects of
malicious control messages in the context of load balanc-
ing. Here, we evaluate the performance of SDN-based
dynamic load balancers in the presence of compromised

switches who may misreport traffic loads (by under-
reporting them). Several questions are raised concerning
the performance of dynamic load balancers in adver-
sarial settings: (1) To what extent can an adversary
degrade the performance of load balancers by misreport-
ing? (2) When must the adversary misreport? And (3),
by how much must they misreport in order to accom-
plish their goal? We seek to address these key questions
to highlight and quantify adversarial capabilities with
regards to critical SDN services such as load balancers.

2 Background

Software-defined networks provide a framework that
allows a more reliable and scalable alternative to tra-
ditional hardware- and software-based load balancers
which sit in front of network resources. In the following,
we discuss how load balancing is typically realized in
SDNs.

2.1 Load-balancing Algorithms

Existing load balancing solutions for traditional net-
works come in two categories: static and dynamic. Static
solutions implement proactive techniques for splitting
incoming flows evenly across network resources (i.e.,
servers or links). Since the client mappings are known
ahead of time, these techniques cannot exploit run-time
knowledge of bandwidth utilization, often resulting in
a negative impact on network performance (e.g., un-
derutilization, increased latency). Common implemen-
tations of static load balancing include Randomized,
Round-Robin, and hash-based solutions like equal-cost
multipath (ECMP) [11,37,54]. In contrast, dynamic
solutions implement various reactive techniques for con-
nection assignment and provide a means for connection
affinity by maintaining a per-connection state. They
allow more flexible and favorable decision making by
exploiting knowledge about resource utilization learned
during normal operation of the network. Widely used
implementations of dynamic load balancers include least-
response-time, least-loaded, and least-connections, along
with their weighted counterparts [42,41,61,2].

2.2 Load-balancing Architecture in SDN

Dedicated software-based load balancers offer scalability
and reliability benefits over traditional hardware-based
load balancers, which are often expensive and suffer from
poor horizontal scalability [9]. Previous work has already

- .
+ Load Balancer,

é _." Controller 1\

44 / \

Core Layer

l ______________ Aggregation La
A
jr;rrlr;rr,ljjrrgglv Edge Layer
A A
g 8 8 8

Server Farm

Fig. 1 The SDN-based load balancing architecture showin
the pool members for balancing across (a) links or (b) server

demonstrated the ability of load balancers to be imple

mented as software running on commodity hardware [28,
44,1]. In SDNs, however, load balancing typically mani-
fests slightly differently. The load balancer is abstracted
from the physical infrastructure by moving the load
balancing logic to the control plane and distributing
decisions to network switches in the form of flow rules.

To enable dynamic load balancing in SDNs, the
network administrator defines a pool: a set of switch ports
connected to (aggregation or edge/access) links which
are being balanced (see Figure 1). The load balancer
then requests traffic load reports from each pool member
at each time epoch t. We refer to the epoch length, the
time between load-report collections, as the collection
interval, which may be one or more seconds long.

Under the OpenFlow [4] protocol, the reports come
in the form of switch statistics. The loads represent the
total activity at the switch ports since the last report,
and may be measured in terms of Kb, number of active
flows (or connections), etc., depending on the algorithm
in use. The loads are then used by the controller to
route new incoming flows (that are destined for the
resources offered by the pool) according to the load
balancing algorithm; for example, with a variant of
least-X selection. Note that end-hosts in general do not
run OpenFlow agents and therefore edge-switch load is
instead commonly used as a proxy for server load [39].

As shown in Figure 2, when a switch reports the
minimum load at any epoch, the load balancer will tem-
porarily route new flows through it. For example, switch
(3) reports 1Kb of activity in the first epoch, has new
flows routed through it to a backend server or link, and
reports 12Kb of activity in the following epoch. Impor-
tantly, in the general case of the considered algorithms,
all incoming flows are routed through the same pool

Load Reports over Time

=’ | [10Kb] [7Kb] [5kb] [4Kb] [IKb
(1)
o - 1Kb
g (2
£
c @ | [[Ke] [12kb] [okb] [6Kb] [3Kb]
)
(o]
“ & | [12k0] [8Kb] [6K0] [BRo
(4)
= | [5Kb 2Kkb] [10Kb] [7Kb] [4Kb]
(5) . ‘ . . ‘

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Time ——

Fig. 2 Load reports (R;) used for routing new incoming flows.
Bolded reports are where switches reported the minimum load
to the load balancer.

member until the next load report is collected!; as the
load balancer is removed from the data plane, it can
only respond to the information given in load reports.

2.3 Notation for Load Balancing

Consider a network composed of N pool members, where
the load balancer requests a load report R at each time
epoch t for each member 1 < ¢ < N. For the case of
least-loaded and least-connections [42], the load balancer
temporarily routes new flows through the member who
reported the minimum load (in bytes or number of
active flows/connections), until the next load report is
collected. More formally, the new flows will be routed
through some member m in epoch t if:

R;n = 1221]\, sz (1)
If multiple members report the minimum load, random
selection is done to choose between those members.

For weighted least-loaded and weighted least-connections,

an exponentially weighted moving average (EWMA [48])
of loads is used for balancing. Weights are applied to
the historical load values («, where 0 < a < 1) and
the current load value (1 — «), which are then summed
together to smooth out sudden bursts that may lead to
inefficient balancing. Then, the new load R%l computed
for each member at time ¢ is:

R'=aR! '+ (1 -)R], (2)

and new flows will be temporarily routed through the
member with the minimum load as in (1), with R and
R! replaced by R and Rf;/. Again, random selection is
applied in the case of multiple members with the same
minimum value.

1 We leave to future work analyzing more specialized vari-
ants of these algorithms.

Quinn Burke et al.

3 Attacking the Load Balancer

Misreporting switch statistics allows adversaries to di-
rectly control the volume of traffic flowing through a
compromised switch for larger-scale eavesdropping and
traffic analysis, which have been established as signifi-
cant threats in modern cloud networks (e.g., to uncover
browsing histories [29]). Here, we introduce two attack
methods against SDN-based load balancers.

3.1 Threat Model

We assume switches report aggregate (i.e., port-level)
statistics for themselves to a trusted load balancer, as
balancing is typically done at a coarser level than indi-
vidual flows [12]. Of these switches, we assume that one
becomes compromised (to evaluate a lower bound on
attacker capabilities, as several compromised switches
would naturally allow an attacker to launch more so-
phisticated attacks). If the pool members are just the
ports on the compromised switch, then load balancing
integrity is clearly lost. We therefore consider the situa-
tion where ports on multiple edge switches form a pool 2
and report for statistics for themselves (as edge switch
load is commonly used as a proxy for server load [39]).
We note that attacks against edge-switch-based load
balancing are independent of the actual internal net-
work structure (as the edge-load reports do not provide
insight on how load is to be distributed among inter-
nal links) and thus are not limited to just tree-based
datacenter networks.

Switches may be compromised by insider or external
adversaries [24,10,50,16]; while methods for compro-
mising switches are outside the scope of this work, we
note that prior work has demonstrated how an adversary
may take control over a network switch—from exploiting
weakly protected admin web interfaces to bugs in the
switch operating system software and hardware back-
doors [52]. For example, many organizations leverage
open-source switch software such as Open vSwitch [45]
and an adversary could fuzz the source code to identify
exploitable bugs such as a buffer overflows, from which
they can achieve privilege escalation and thereafter as-
sume administrator control over the switch [53].

In the context of load balancing, we define the general
adversarial goal as drawing a large fraction of network
traffic to perform large-scale eavesdropping or denial-of-
service attacks. This would potentially enable the ad-
versary to access sensitive control-plane messages (e.g.,

2 Note that switches may have multiple pool members
(ports), but here we just consider a single pool member per
switch and use switch and pool member interchangeably.

topology discovery messages) or sensitive client traffic
in a multi-tenant datacenter network, besides causing
availability problems—which have been demonstrated to
be significant threats to SDNs [55,22,52]. The adversary
accomplishes this by misreporting to induce the load
balancer into sending a target volume of traffic (on aver-
age) through the compromised switch. The adversary’s
capabilities are limited to recording its own load reports
and sending misreports. Note that misreporting is nec-
essary to draw more traffic regardless of if packets on
the switch ports are actually dropped; nevertheless, the
adversary may drop an equivalent amount of traffic to
evade detection systems that may leverage downstream
switches to find inconsistencies in reports. We focus on
adversaries under-reporting their true load to obtain
an unfairly large proportion of traffic. We note that
over-reporting loads may be useful for denying service
to other switches in the pool, however, such an requires
a different attack formulation and therefore we defer it
to future work (see Section 5).

3.2 Overview

Studies of modern datacenter and cloud networks have
observed that datacenter network traffic can be mod-
eled by positive-skewed and heavy-tailed distributions
of network flow sizes and flow durations [14,15,49]. For
example, the flow distribution may consist of a majority
of small (in bytes) and short (in seconds) flows that
exist in the network only for a few seconds. This traffic
is representative of applications such as web servers. In
contrast, the flows may consist of a majority of relatively
longer and larger flows that persist in the network for
several seconds or minutes, for example, for applica-
tions like video streaming. Importantly, our preliminary
observations of these traffic patterns across a pool of
servers reveals a new threat vector for an adversary
to compromise the load balancer: since pool members
serve similar kinds of services, they observe similar traf-
fic characteristics, which agrees with observations from
prior work [14]. Therefore, the adversary can use their
observed behavior as an approximation for what other
switches in the pool observe (see Fig. 3), and tune their
attack strategy to meet specific goals.

In this context, in steady-state if the adversary re-
ports the minimum load (i.e., “wins” the epoch) for
X% of the time epochs, they will observe X% of the
total load in the system—as they draw X% of the total
flows that arrive. In terms of load balancing fairness,
we therefore formalize misreporting in terms of a tar-
get fraction of load in the system to draw through the
compromised switch (equivalently, a target fraction of
epochs to “win”). We will refer to this target as T. Note

Misreporting Attacks Against Load Balancers in Software-Defined Networking 5

1.0
0.8 1
2
E
@ 0.6 1
s
>
§0.4- —— Memberf[1] —— Member[6]
g Member[2] Member[7]
o 02 —— Member(3] —— Member[8]
’ —— Member[4] Member[9]
) —— Member(5] Member[10]
0.0

1000 1500 2000 2500 3000
Load (Kb)

0 500

Fig. 3 Distribution of load reports collected once per second
from switches in a 10-member load balancing pool over 10
minutes. Load distributions show small differences between
pool members, enabling an adversary to estimate the traffic
characteristics at other switches using their own observations.

that here the load in the system refers only to the client
traffic destined for the pool. We then introduce two
misreporting attacks with respect to T'. In the trivial
attack, the adversary’s goal is to maximize the prob-
ability of winning the epoch each time a misreport is
sent by reporting a load of zero. In the stealthy attack,
the adversary misreports to nonzero loads that still
have a high probability of being the minimum amount
reported, allowing them to reduce their likelihood of
being detected by an anomaly detection system while
still obtaining the target load.

The challenge here is determining the required fre-
quency of misreports (denoted by M) to draw the target
load (equivalently, to win the target fraction of epochs).
The adversary must therefore calibrate ¢, the misre-
ported amount (in Kb or number of flows) sent to the
load balancer. The choice of § affects the misreporting
success probability (i.e., if the load balancer immediately
begins routing new flows through the switch) and there-
fore the required frequency of misreports to accurately
draw the target load.

3.3 Attack Model

Here we introduce an attack model from which the
adversary will derive attack parameters M and ¢ for a
given target T, generalizing the model introduced in our
prior work [19].

8.8.1 Computing the Required Misreporting Frequency
There are two components that determine the expected

probability of winning an epoch: the probability of win-
ning when not sending a misreport (reporting honestly)

and the probability of winning when sending a misre-
port. At epochs when the adversary reports honestly,
our heuristic approach is to assume the adversary has a
fair chance, i.e., the probability of winning is 1/N.

When misreporting, guaranteeing a 100% misreport-
ing success rate is difficult unless simply sending a load
of zero in each misreport. However, sending a load of
zero in each misreport (i.e., the trivial attack) may likely
raise alarms, especially if the target load is very high
(e.g., 75% of the load in the system) which will nec-
essarily require misreporting more frequently. A more
elusive approach is for the adversary to simulate activity
at the switch by misreporting (setting 0) to very low
loads which have been observed previously and which
have probability of success comparable to sending a load
of zero. This is less likely to raise flags as it would be
difficult to discern a legitimate report from a falsified
one.

To this end, we approximate the load distribution
observed at other pool members by that observed by the
adversary before the attack. Without loss of generality,
we first denote the compromised switch by switch V.
If we let p denote a cumulative probability of the load
distribution (see Fig. 3), then there is an associated
load value pr, (in Kb or number of flows) with that
cumulative probability: a p fraction of observed loads
falls within [0, pr]. If the adversary simulates activity
at the port by misreporting to random loads within the
bottom pth percentile of previously observed loads (e.g.,
the bottom 10th percentile loads), then the probability
(approximately) of all other switches reporting a load
value higher than the adversary can be estimated as:

Pr(() (R; > RY)] ~ (1 —p)™ . (3)
i£N

Note that if the adversary has knowledge of the size
of the load balancing pool, they can directly evaluate the
expression. However, if they do not, they can estimate
it based on their own load reports. If we denote the
steady-state load in the system by L, the adversary
can compute from their own load reports the average
flow duration of t epochs, arrival rate of R flows at
winning epochs, and average flow rate of b bps. Then,
they can compute the steady-state load in the system
as: L =t x R x b. If under normal conditions, each pool
member observes approximately a fair share S = L/N
load, then the adversary can estimate the pool size by
dividing their fair share by the computed load in the
system: N = L/S. Other methods for estimating pool
size may leverage known techniques to map the load
balancing pool in SDNs (or the network in general),
such as probing the subnets identified in flow rules or
listening for ARP packets [6,35].

Quinn Burke et al.

Table 1 Parameter descriptions for the attack model.

Param Description

N Number of pool members

T Target fraction of load in the system

P Misreporting load upper threshold

M Misreporting frequency

) Chosen misreported load

w Attack length (in epochs)

R Load report for member 1 <7 < N at time ¢

At a misreporting frequency of M, we use the two
probabilities compute the expected fraction of load in
the system to observe at any epoch during the attack
(or equivalently, the expected winning probability):

Elload] = 1/N x (1= M) + (1 —p)& =Y x M. (4)

For the expected load to be the target load in the system
T, we can rearrange Eq. (4) to solve for the required
misreporting frequency M (where 0 < M < 1) for the
target:

T—-1/N)
= p) "D —1/N
We further denote the attack window as W epochs long
(e.g., from time epochs 500-1000), and can compute the

actual number of misreports sent as the product: M xW.
We provide parameter descriptions in Table 1.

M =

8.8.2 Selecting a Load Value

The adversary will then randomly set § to a previously
observed load in [0, pr] for each misreport, to achieve
the expected winning probability. Note that it is up to
the attacker to assess the environment and decide what
an appropriate undetectable load would be, i.e., how
much load can they misreport before they are observable
to some detection system. Thus, what we provide here
is a method for configuring the attack such that the
adversary can target a specific load (to within reasonable
bounds) that they have decided as stealthy.

3.4 Launching the Attack

In this section, we present two attack strategies for the
adversary to draw the target load through the switch
port: the trivial attack and the stealthy attack.

8.4.1 Trivial Attack

In this attack, the goal of the adversary is to maxi-
mize the winning probability under a given target. To
maximize the probability that the misreported load will
be the minimum in Eq. (1), the adversary will select

p = 0, which corresponds in general to a load of zero (as
switches generally always observe some background traf-
fic), and thus the adversary will send a new load R " in
each misreport: RY "=5=0. They will then compute
the required misreporting frequency from Eq. (5) and
begin sending the misreports with zero load. Note that
misreports can be sent at a fixed period 1/M or at ran-
dom epochs during the attack with an average period
of 1/M. Moreover, the choice of a smaller p requires
a smaller misreporting frequency, which is generally
beneficial, however, consistent reports of zero load may
become readily observable.

8.4.2 Stealthy Attack

In this attack, the adversary relaxes the load values
to which they misreport to (i.e.,) in order to man-
age their detectability. After assessing the environment
to determine an appropriate threshold p, the first step
is to perform reconnaissance for a configurable period
of time (e.g., 600 seconds, or 10 minutes), from which
they record their load observations and prepare to send
misreports. Note that they may also estimate the pool
size during reconnaissance if necessary, as discussed in
Section 3.3. The adversary will select an appropriate
load for each misreport: Ri\ﬂ/ = 4, where 0 € [0,pz].
After the reconnaissance period is complete, the ad-
versary computes the required misreporting frequency
from Eq. (5) and begins sending the misreports with
an appropriate load value. Here, misreports can also be
sent at a fixed period 1/M or at random epochs during
the attack with an average period of 1/M. Further, the
choice of a smaller p will result in a higher misreporting
success probability and therefore require a smaller misre-
porting frequency. The inverse is also true, which leads
to limited parameter flexibility for the stealthy attack.
Thus, there is a natural tradeoff between misreporting
success and detectability (discussed in Section 4).

3.5 Assessing the Impact

To assess the effects of the proposed attacks, we first
want to measure the direct impact of misreporting. We
then evaluate the bounds on attacker capabilities under
both the trivial and stealthy attacks to understand the
extent to which an adversary can cause imbalance in
the load balancing pool.

3.5.1 Attack Effectiveness

To describe the direct impact of the attack with regards
to drawing more traffic through the switch, we define

Misreporting Attacks Against Load Balancers in Software-Defined Networking 7

a damage metric D. It represents the ratio of the aver-
age load on the compromised switch during the attack
window to the average load observed under normal con-
ditions. If we denote the average load during the attack
by L., and under normal conditions by L,, then the
relative damage is:

L,
D=— -1 6
. (6)
To concretely quantify misreporting effectiveness, we
introduce a potency metric P that represents the ratio
of damage per percent of misreported epochs:

P=—. 7
= (7)
We also measure the frequency, as well as the success
rate of misreporting, which describes how often a misre-
port resulted in more traffic being routed through the
compromised switch.

8.5.2 Capturing Victim Traffic

As the general adversarial goal is to draw more traffic
on which to eavesdrop, we also discuss the success of
our attack in the context of an adversary targeting a
specific flow (or traffic type) that they have knowledge of
existence (e.g., they know users are currently browsing
a specific website). If an X% proportion of the load
in the system (in number of flows or bits) is passing
through the switch, then an equivalent description is
that the adversary has an X% chance of capturing a
victim flow. We therefore assess the ability to capture
victim traffic by analyzing the flexibility in parameter
choice under a given target load and the bounds on
adversary capabilities under both attack strategies.

4 Evaluation

With the formulation of the attack model, here, we ex-
plore the effects on the performance of the load balancer
in several scenarios (shown in Table 2) and address the
last research question: to what extent can the adver-
sary degrade the performance of the load balancer? We
consider 4 widely used load-balancing algorithms: least-
loaded, weighted least-loaded, least-connections, and
weighted least-connections. We then provide analyses of
the effectiveness of the two attacks in each scenario, the
ability to capture victim traffic, and the detectability
against state-of-the-art SDN detection systems.

4.1 Experimental Setup
4.1.1 Network setup

For experimentation, we employ the latest version of
the widely used Floodlight [2] SDN controller, along
with its load balancing module. To configure the virtual
network, we use the popular Mininet emulator [25] to
create a similar topology of virtual switches and hosts to
that shown in Figure 1. New flows will originate from a
source connected to the “top-most” switch in the figure,
which represents a common gateway from which flows
split paths in the network (e.g., an aggregation switch
in a three-tiered network). Each switch runs the latest
version of Open vSwitch (v2.12.0) and is invoked to
connect to and receive forwarding instructions from the
Floodlight controller. The directly connected hosts act
as sinks for the incoming network flows. The attacks
are then carried out by designating one switch as the
adversary.

We configure the load balancer to have a single
pool consisting of 10 SDN-enabled switches, which is a
realistic pool size for small clusters based on real config-
urations used in the wild [46]. We note that our exper-
imentation with larger pool sizes yielded qualitatively
similar results, where the load is scaled proportionately.
The switches are directly connected to a single backend
resource (which can represent either servers, or more
switches). We also configure the load balancer to have a
load-report collection period of 1 second, which is suit-
able for providing reasonably low load-error rates [12,30,
23]. We set the attack window to W = 300 epochs, and
we set the misreporting percentile to p = 0.01 for the
stealthy attack and p = 0.0 for the trivial attack. Sim-
ulations are averaged over 10 independent executions.
Without loss of generality, the adversary is designated
by switch number N.

4.1.2 Traffic models

In evaluating our attacks, we draw from prior work to
generate packet traces for each of the short and long
traffic patterns. The sizes and durations of flows are ran-
domly distributed amongst the probability distribution
defined by two pareto curves, which are widely accepted
approximations for network traffic behavior [15,21]. The
average flow durations from the traces are ~ 1 second
for short flows and ~ 25 seconds for long flows. The
average flow data rate had no detectable effect on the
attack effectiveness, and we use 1500-byte packets for
each flow. We then consider an average arrival rate of
about 50 flows per second. Note that smaller or larger
arrival rates yielded qualitatively similar results.

8 Quinn Burke et al.
Short flows Long flows
LL WLL LC WLC LL WLL LC WLC
Control A e 141.4 141.8 10.9 11.2 1542.3 1535.9 142.2 138.9
Kb/s Kb/s flows/s flows/s Kb/s Kb/s flows/s flows/s
Average load % 10% 10% 10% 10% 10% 10% 10% 10%
Target load (T) 30% 30% 30% 30% 30% 30% 30% 30%
Average load % 32% 31% 32% 32% 23% 23% 22% 22%
Asyenegs o 450.9 445.4 34.6 35.8 3728.5 3556.6 316.3 310.3
Kb/s Kb/s flows/s flows/s Kb/s Kb/s flows/s flows/s
Trivial | Misreport frequency | 23% 24% 24% 26% 22% 23% 24% 24%
Misreport success 100% 100% 100% 100% 100% 100% 100% 100%
Damage +219% +214% +217% +220% +142% +132% +122% +123%
Potency +9.5% +8.9% +9.1% +8.4% +6.44% | +5.7% +5.1% +5.1%
Model Error +2% +1% +2% +2% -8% -7% -8% -8%
Target load (7)) 30% 30% 30% 30% 30% 30% 30% 30%
Average load % 33% 29% 31% 32% 24% 21% 21% 20%
s Togd 467.9 416.5 33.4 35.9 3667.1 3270.9 302.1 281.2
Kb/s Kb/s flows/s flows/s Kb/s Kb/s flows/s flows/s
Stealthy | Misreport frequency | 26% 22% 25% 24% 25% 23% 25% 24%
Misreport success 99% 99% 93% 97% 98% 98% 97% 97%
Damage +231% +194% +206% +221% +138% +113% +112% +102%
Potency +8.9% +8.8% +8.3% +9.2% +5.5% +4.9% +4.5% +4.3%
Model Error +3% -1% +1% +2% -6% -9% -9% -10%

Table 2 Experimental network results with the Floodlight [2] SDN controller. We evaluate the effectiveness of the attack
against four different load balancing algorithms and two traffic patterns. For a target of 30% across each attack scenario, we
observe that the adversary can misreport to draw the target volume of traffic to within a small error.

4.2 Attack Effectiveness

In the first part of the evaluation, we measure the effec-
tiveness of the attack for both traffic types. In Table 2,
compared to the average load observed under normal
conditions (the control experiment), running the trivial
attack against the load balancer was able to effectively
draw on average 31.7% (for short flows) and 22.5% (for
long flows) of the load in the system toward the com-
promised switch. In fact, the trivial attack proved to
be successful across all four of the considered load bal-
ancing algorithms, always drawing > 200% additional
load for short flows and > 120% additional load for
long flows, than under normal conditions. The misre-
porting frequency was on average 24% (with a required
M = 22% for the specified target) of the attack window,
and since the misreported load was zero (and loads must
be non-negative), the misreporting success rate was also
maximal (i.e., each misreport resulted in arriving flows
for the next epoch being scheduled through the com-
promised switch). The resulting effect was a potency of
8.9% for short flows and 5.6% for long flows, to within
a 3.5% error and 6.8% error for short and long flows,
respectively.

The stealthy attack showed similar results with re-
spect to misreporting success. The misreporting fre-
quency was on average 24.2% (with a required M = 25%
for the target), with an average success rate of 97.3%
across all algorithms and traffic types. The adversary

maintained on average 31.2% (for short) and 21.5% (for
long) of the load in the system, to within a 2% error of
the target for short flows and 10% error for longer flows.
It follows that the potency of misreports was on average
8.9% for short flows and 4.8% for long flows, revealing
that stealthy misreporting (i.e., simulating activity on
the switch port) still does in fact have a non-negligible
effect on load balancing fairness as simply reporting a
load of zero does with the trivial attack, and almost
double the effectiveness compared to when the average
flow duration is much longer.

Interestingly, the misreporting success remained the
same even in the case of weighted load balancing. Even
with a significantly high weight factor o for weighted
balancing (e.g., & = 0.5) [13], where the misreported
load only has half the significance toward the smoothed
value, the adversary was able to misreport low enough
for the load balancer to consider it the minimum and
begin routing flows through it. Certainly, a much higher
« would place more weight on the historical load value
and thus dampen the effects of misreporting.

Takeaway: Stealthily attacking the load balancer proved
to be just as effective as trivially reporting a load of
zero, without having to misreport at a much higher fre-
quency than the trivial attack would require (although,
that difference increases as p does). Neither algorithm
proved to be more or less resistant to the stealthy nor
trivial misreporting attack, and the results show that

Misreporting Attacks Against Load Balancers in Software-Defined Networking 9

even for short attacks (here, 5 minutes), the adversary
can control traffic flow to within a reasonable error.

4.3 Capturing Victim Traffic

In the second part of the evaluation, we explore the
parameter flexibility under a specified target load and
the bounds on attacker capabilities.

4.3.1 Parameter Flexibility

As discussed in Section 3.3, the probability (approx-
imately) of all other switches reporting a load value
higher than the adversary can be estimated as (1 —
p)(N —1 . Independent of the traffic pattern, higher choices
of the misreporting threshold p (to reduce detectability)
will cause the adversary to misreport to within a large
range of values. Then, the misreporting success rate (the
expected load when misreporting to the pth percentile
loads) decreases with a power-law relationship to the
threshold p. Hence, misreporting within a larger range
requires a significantly higher misreporting rate for the
same target load.

For example, Eq. (5) from our attack model demon-
strates in Fig. 4 that relaxing p to even the p = 0.1
percentile already requires a misreporting frequency
of almost 60% for an expected load (target) of ~25%,
which is nearly 3x that required when p = 0.01 (requires
~ 19%). Similarly, in general for any target load, relax-
ing p to anything higher than the 20% percentile load
requires effectively misreporting every time epoch. Thus,
we observe that for an effective attack, the flexibility in
parameter choice is limited. While still able to (approxi-
mately) draw the target load, too-frequent misreporting
is unsustainable from an attacker’s perspective. However,
this observation is critical for future defense systems
that protect the fairness in load balancing, as poten-
tial attackers must maintain somewhat-static behavior
to have an effective attack (i.e., adaptivity is limited,
especially for higher targets).

4.83.2 Bounds on Attacker Capabilities

This flexibility is further limited by an artifact of the
network traffic behavior: Fig. 5 describes (at a misreport-
ing frequency of 100%) how the perceived pth percentile
that the adversary misreports to for long flows is shifted
to a higher percentile (from the perspective of an honest
switch) once the adversary begins to draw traffic away
from the honest switches. As the adversary misreports
more, the distribution at an honest switch changes more
(as they see more relatively lower loads) and thus the pth
percentile load is in fact larger than expected, leading

1.0 - W L L > - - - 0 o
| ~ll- T=10% of load in system

T=15% of load in system
+ T=25% of load in system
=@— T=50% of load in system
=>—= T=100% of load in system

N S o
IS =N)

Required misreporting frequency (M)

e
o

00-—S=—== == = &= = & = & = =
0.0 0.2 0.4 0.6 0.8 1.0
Misreporting threshold (p)

Fig. 4 Required misreporting frequency M as a function
of the misreporting threshold p (from the attack model in
Eq. (4)). Slight relaxations on p (to potentially reduce de-
tectability) require significantly more misreporting.

0.40 1

0.0 02 0.4 0.6 0.8 1.0

Percentile (p)
Fig. 5 The percentile shift from the perspective of an honest
switch. As the adversary draws more traffic, the distribution
at the honest switch changes, where they see more low load
values. Thus, the pth percentile is in fact much higher than
the adversary expects, resulting in a lower winning probability
than expected (e.g., the 10th percentile shifts to the 35th
percentile).

to lower misreporting success rates and therefore a less
load gained by the adversary. For example, the 10th
percentile shifts by 35% when under attack (i.e., to the
45%th percentile), and thus the perceived misreporting
success probability (1 —0.1)V=D = 0.9(N=1) s in fact
(1 —0.45)N=1 = 0.55(N=1) in steady-state.

In Fig. 6, we show how the load obtained during
the attack begins to diverge from the attack/analytical
model in certain scenarios. Note that we observed quan-
titatively similar results for the least-connections and
weighted algorithms. First, the analytical model accu-

10

Quinn Burke et al.

rately describes the trivial attack to within a 2% error for
short flows and 8% error for long flows (and approaches
0% error as the misreporting frequency increases). More-
over, as shown in the top figure for short flows and small
p (i.e., p = 0.01), the model is very accurate to within 2%
error. For longer flows, the model is accurate to within
8% error (for p = 0.01) and 2% error (for p = 0.1) up
to a misreporting rate of 25%. However, the nonlinear
change in distribution (i.e., percentile shifts) from misre-
porting causes the adversary to overestimate how much
load they will obtain at higher misreporting frequencies.

However, for short flows, when p = 0.1, while there
is no loss (i.e., the model only underestimates how much
load the adversary truly obtains), the nonlinear change
in distribution also plays a role in the higher model
prediction error. We hypothesize that the average flow
duration (and therefore the average amount of load in
the system) has differing effects on the probability of
successful misreporting (and therefore expected load).
For example, eventual starvation of other pool members
may naturally mitigate misreporting attacks (a feature
which may not generalize across other SDN services).
Thus, while the proposed attack model can capture
the effects of misreporting for the trivial scenario, it
does not accurately capture the phenomena when the
adversary attempts to be very stealthy (at p = 0.1) at
higher misreporting frequencies. Accounting for these
effects is the subject of future work. Nevertheless, the
model itself is still useful for defensive analysis of as it
describes the upper bounds of a potential attack by the
most aggressive adversaries (i.e., when p = 0.0).

However, we perform a quadratic regression analysis
to understand the diminishing effect of misreporting
as the frequency increases. We arrive at the formulas
shown in Fig. 6, which accurately fit the experimental
results, and demonstrate that for larger p and longer
duration flows, attacker capabilities exhibit a slower
growth and lower limit on how much load can be ob-
tained. Combined with the already limited parameter
flexibility, this further establishes that an adversary is
confined to limited parameter choice in launching a suc-
cessful attack (i.e., very small p); any relaxations on p
will require misreporting effectively every time epoch.
Thus, the adversary’s behavior might reveal patterns
that may be feasibly detected.

The key insight here is that a fixed misreporting
frequency becomes less effective as p is relaxed or the
average flow duration increases. However, trivially re-
porting a load of zero is generally always effective. A
stealthy adversary may temporarily resort to the trivial
strategy if they detect unsuccessful misreports. More-
over, this does not take away from the fact that an
adversary can take an adaptive approach to misreport-

short/Least-loaded (in bytes)

—B— Analytical (p=0.0)
—— Experimental (p=0.0) R*=10.9982
0.8 { —B— Analytical (p=0.01)
—»— Experimental (p=0.01)
—H— Analytical (p=0.1)
——

Experimental (p=0.1)

£
g
Z 061
g
=
<
2
S 041
=
F'=-0.0153x>+ 0.7x +0.097
0.2 1 R2=0.9973
y=-0.0613x* + 0.8624x + 0.1145
R2=0.9993
0.0 1 — ; ; ; : :
0.0 02 0.4 0.6 038 1.0

Misreporting frequency

Analytical (p=0.0) y =0.3046x> + 0.5571x+ 0.09

E

—%— Experimental (p=0.0) R?=0.9994
0.8 4 —B— Analytical (p=0.01)

—»— Experimental (p=0.01)

—B— Analytical (p=0.1)

e

Experimental (p=0.1)

o
=N

y =-0.3464x> + 0.6018x+ 0.1019
R2=10.9989

% of load in system

0.4

0.2 1
y =-0.0721x + 0.242x+ 0.1008
R2=0.997

0.0

0.0 02 0.4 06 08 10
Misreporting frequency

Fig. 6 Drawn load as a function of misreporting frequency
(from the attack model in Eq. (4)) for the least-loaded algo-
rithm against short flows (top) and long flows (bottom). The
experimental results deviate from the model at higher misre-
porting frequencies, but are still accurate at lower frequencies
(i.e., more stealthy, yet effective attacks).

ing by simply increasing the misreporting frequency
until they achieve their desired load. Any attacker must
understand however that there is a ceiling on how much
load they can obtain (for non-zero p) as the misreport-
ing frequency increases. Regardless, the adversary can
achieve the same effect in realistic settings, as detecting
misreporting attacks in SDN remains largely an open
problem (see Section 4.4).

Takeaway: The trivial attack can be accurately mod-
eled, but misreporting tends to have diminishing returns
at higher misreporting frequencies for other choices of p,
and we resort to a regression analysis to understand the
complexities in these scenarios. An adversary can how-
ever take a dynamic strategy by analyzing the effects
of misreporting and re-calibrating p and M to directly

Misreporting Attacks Against Load Balancers in Software-Defined Networking 11

manage their detectability or increase the accuracy in
approximating the target load.

4.4 Detectability

In the third part of the evaluation, we examine state-
of-the-art detection systems in SDN, and we apply two
change detection techniques (the Kolmogorov-Smirnov
two-sample test and the Median test [7,20]) to identify
how detectable the attack may be by solely examining
load reports.

4.4.1 Sphinz

The Sphinx [26] detection system addresses attacks fo-
cused on corrupting network topology and data-plane
forwarding state. It leverages logical network flow graphs
to validate network state updates (e.g., validate that a
new link-discovery message is legitimate). With respect
to forwarding state, the core of the system relies on a
proposed similarity index: a metric used to compare
flow-statistics reports along a flow path. For example, if
a switch along a flow path reports too low of a value in
the flow statistics, Sphinx raises an alert for the switch
(i.e., consider it to be dropping traffic).

The first problem (as explicitly stated in the paper)
is that the system is unable to validate the accuracy of
load reports from ingress or egress switches (i.e., edge
switches), which is where our misreporting attack is
staged. A second problem relates to load balancing: the
system operates at flow-level, while load balancing is
typically done at a coarser granularity (i.e., at port-
level). This is a design limitation of Sphinx that makes
it not applicable to the proposed attacks. Moreover, the
similarity test cannot be applied equivalently to port-
level statistics as flow paths combine and split at the
switches and therefore no single path can be traced back
to compare a set of port statistics under the current
design.

4.4.2 FlowMon

The FlowMon [34] system addresses packet droppers
and packet swappers (adversaries who send packets out
of the wrong switch ports). With respect to misreporting
(packet droppers), the authors introduce a threshold-
based test to identify if a switch is transmitting a differ-
ent number of packets than it is receiving:

|ZViePk T,i - ZViGPk R?c
where P, is the set of all ports on switch k, T is the
number of packets transmitted from port i of switch k

| >0 (8)

in the last time epoch, and RF is the number of packets
received at switch k port 4 in the last time epoch. A
difference indicates packet dropping, and the system
raises an alert if the dropping percentage is greater than
an allowed threshold 8. A critical aspect of FlowMon is
that it relies on the statistics information in the load
reports being accurate (otherwise the adversary can
always modify the load reports to equate the number
of transmitted and received packets). They introduce a
second detector using a neighboring switch along a link
to validate the accuracy of a load report:

T3y + Tji — Rij — Rji| > o|Tij + Ty 9)

where Tj; is the number of packets transmitted from
switch S; to S; in the last time epoch (at a specified
switch port), R;; is the number of packets received by
switch S; from S; in the last time epoch (at the associ-
ated switch port), and an alert is raised if the inequality
holds. As with Sphinx, the underlying problem here is
that the detector cannot be applied to edge links (i.e.,
those connecting the edge switch to the server, where
the adversary is dropping traffic) as one side of the link
(the host) does not provide statistics reports in the com-
mon SDN load balancing paradigm. Although in general,
we posit that it may be possible to leverage a similar
strategy to narrow the search for potential malicious
switches to those connected by problematic links (as the
discounted load in a misreport may be greater than «).

4.4.8 OpenWatch

The OpenWatch system [60] leverages volume-based
detectors to identify when a switch’s change in load is
abnormal over an extended period of time or between
consecutive load reports. They consider an anomalous
event to be either a report that is greater than the
mean + 3 X std of the load values, or consecutive re-
ports that have an increase in load that is greater than
mean + 3 X std of all increasing load changes. The fun-
damental limitation with the system is that (as with one
of the FlowMon strategies) it relies solely on an indi-
vidual switch’s reports to determine whether the switch
is exhibiting anomalous behavior or not. A malicious
switch can break either of these detectors by simply
ensuring that any load report it sends does not deviate
from normal behavior (i.e., is within 3 std of the switch’s
mean load), and yet achieve the same effect. Since the
misreports are to set previously observed values, the
intended non-misreporting epochs could simply be set to
the higher load values to not stray from normal behavior
(from the perspective of the load balancer).

Without resorting to misreporting every epoch to
evade suspicion, however, we ran experiments resembling

12

Quinn Burke et al.

—»%— ks, window_size=60
~>— ks, window_size=300

0.4 4

031 Attack

p-value

0.14 . |

\,
T T T T T T T
400 600 800 1000 1200 1400 1600

Window start time (s)

0.0 1

Fig. 7 We use the p-value as a proxy for identifying anoma-
lous events. We show how the p-value of the Kolmogorov-
Smirnov (KS) two-sample test changes as a function of the
detection window starting time. At several points in time, it
shows sudden drops that indicate a change in distribution
(i.e., a potential anomalous event).

a most extreme case (the trivial attack, where p = 0.0)
for long flows, with an aggressive misreporting frequency
of = 60% over a 5-minute attack, and the adversary
drawing = 55% of the load in the system. We observed
over a 20-minute snapshot of load values that the two
OpenWatch detectors were only able to correctly identify
23% and 2% of the 60% misreported epochs, respectively.
In fact, we observed significantly high false negative
rates by the detectors, at 12.5% and 31.1%, respectively.
Thus, due to the nature of datacenter network traffic,
simple threshold-based detectors are cannot effectively
identify misreporting attacks.

4.4.4 Change Detection

In the last part of the evaluation, we apply two widely

used change detection techniques, the Kolmogorov-Smirnov

(KS) two-sample test and the Median test, to identify
potential differences in the load distributions of the hon-
est pool members from the compromised switch (which
may indicate anomalous behavior). We assume that a
detection system operates as a sliding window across
load reports (for a 1-minute and 5-minute detection win-
dow). Note that here we consider window sizes close in
length to the attack window, as the attacks could easily
be hidden in the noise when using very large detection
windows. For simplicity, we use the p-value as a proxy
for identifying anomalous events, where a very small
p-value indicates abnormal behaviors.

We show in Fig. 7 and Fig. 8 how the p-value of
either test changes as a function of the starting position
of the detection window—i.e., it begins to drop as the

| —¢ median, window_size=60
~>¢ median, window_size=300

> ff\w\]j\\; (

>

T T T T T T T
400 600 800 1000 1200 1400 1600
‘Window start time (s)

Fig. 8 We show how the p-value of the Median test changes
as a function of the detection window starting time. At several
points in time, it shows sudden drops that indicate a change
in distribution (i.e., a potential anomalous event), with a large
spike during the attack that indicates a missed detection for
a period of time.

detection window becomes more aligned in time with
the attack window. For an attack occurring between
time 900-1200s, we observe for a detection window of
60s (and 300s, respectively) that the p-value for the
KS two-sample test drops rapidly when beginning at
time 800s (and 600s, respectively). Here, we consider a
p-value less than 0.05 to be within an acceptable range
to reject the null hypothesis of the KS test, in confidence
that the adversary’s load reports are in fact abnormal.
In other words, for either window size it would have
taken only a few seconds for the detector to begin to
identify a potential change in load distribution.

We observed similar results for the median test for
a window size of 300s. We, however, observed a spike
when the window start time approaches the attack start
time at 900s, which implies a missed detection for a
period of time. For a window size of 60s we found that
it would have taken the detector ~ 5 minutes from the
attack start to reach a similar conclusion (i.e., after
the 5-minute attack completed). Thus, we find here
that in general statistical measures of difference have
the potential to identify inconsistencies among pool
members. However, window size plays an important role
in detection accuracy: too short windows might take
too long to identify a potential attack, and too long
windows might miss transient attacks.

Takeaway: Prior work on SDN defenses do not com-
prehensively address the problem of misreporting (e.g.,
cannot detect inconsistencies in aggregate load reports).
Statistical methods commonly used for anomaly detec-
tion thus far provide the strongest grounds for further

Misreporting Attacks Against Load Balancers in Software-Defined Networking 13

development of defenses. However, such a system cannot
use the load reports as a source of truth in identify-
ing anomalous behavior, and therefore the statistical
measures should be supplemented by other techniques
(e.g., probing-based techniques or systematic load report
collection) to reduce the potential for false negatives or
late detection.

5 Discussion

We have demonstrated that an adversary can control
to a high degree the amount of imbalance caused in a
load balancing pool by misreporting traffic loads. Al-
though specialized load balancing algorithms may be
more or less robust to misreporting than others, the fact
stands that validating load reports in SDN is largely an
unsolved problem.

While the focus of our work is on under-reporting
traffic load statistics, how to leverage over-reporting to
undermine load balancing remains an open question.
However, there are several unique challenges in craft-
ing an effective over-reporting attack strategy. Since
over-reporting causes the load balancer to divert traffic
away from the compromised switch and toward other
switches, the effects of misreporting become less severe
(as the diverted load is distributed to other switches
over time according to some unknown distribution). The
distribution changes at other pool members then need to
be accurately modeled to understand the direct effects
of misreporting (in contrast, under-reporting induces
direct effects at the compromised switch that can be
easily measured and provide feedback for the attacker).
Modeling the load distributions on the rest of the pool
and crafting an effective attack strategy (that balances
the misreporting frequency vs. damage tradeoff) in this
setting would therefore require significantly more ad-
ditions to the current attack framework and thus we
consider this to be future work.

We have demonstrated the limitations in existing sys-
tems and here discuss potential mitigations against this
class of misreporting attacks. Modern datacenter net-
work traffic is characterized by several dynamic network
events, including traffic bursts, link failures, and migrat-
ing hosts. Quarantining a potential malicious switch
incurs a performance and monetary cost to the network
and business, and it is therefore necessary that a de-
fense system cross-validate reports with multiple points
(including other switch load reports and other types
of reports) before deciding that an event is anomalous
and taking a switch offline to investigate. As discussed,
current systems cannot account for adversaries (or po-
tentially colluding ones) dropping traffic on edge links,
where one end of the link is not SDN-enabled (the host).

A possible solution is to collect statistics from upstream
switches/links and use those to indirectly validate the
accuracy of the edge load report (i.e., enhancing the
FlowMon method).

Another potential solution is to aggregate load re-
ports to identify noticeable changes in traffic volume
and use that information to validate the accuracy of
the changes claimed by a (compromised) switch’s load
reports. However, it has already been shown that collect-
ing statistics too frequently or from too many sources
causes significant overhead and is impractical [12]. Thus,
finding optimal strategies for collecting statistics that
are tuned to the purpose of validating load reports re-
mains an open problem. Moreover, quantifying the direct
and indirect effects of intelligent misreporting attacks
(i.e., those leveraging a reconnaissance stage to attack
more effectively) against other SDN-based services will
be useful in developing more comprehensive defenses.

6 Related Work

The work presented in this paper relates to three well-
studied areas of research: network load balancing, SDN
control-plane security, and distributed trust in networked
environments. In Section 2, we discussed how load bal-
ancers operate and are realized in SDNs, and in this
section we focus on the latter two areas.

6.1 SDN Control-plane Security

Our work focuses on modeling and evaluating misreport-
ing attacks against load balancers in SDN. In designing
the attacks, we draw from prior work studying the secu-
rity of other SDN services to identify vulnerable points at
which to attack the load balancer. Dridi et. al [27] found
that adversaries can directly launch denial-of-service
attacks against the control plane to saturate various
network services at the controller, for example, the ser-
vice that computes routes for newly arriving flows. Yoon
et. al [55] performed a comprehensive analysis of the
SDN control plane and found that most controllers have
several vulnerabilities, including overflowing of switch
tables to evict rules and/or exhaust resources and induce
a disconnect, and spoofing switch or host identities to
enable eavesdropping attacks. Further, Hong et. al [33]
demonstrated that an adversary can inject malicious
control messages (specifically, malicious link-discovery
messages) to cause the topology discovery service to
either eliminate links from the minimum spanning tree
or direct traffic through specific links for eavesdropping
attacks. Other works [24,10,50,6,16,57,5] also demon-
strated that an adversary can compromise the control

14

Quinn Burke et al.

plane through man-in-the-middle attacks over control
messages (e.g., modifying other switches’ link-discovery
packets) and lack of access control at controller applica-
tion interfaces, among others. The inherent vulnerability
the attacks exploit is the fact that the network services
are out-of-band and thus lack visibility into the true
state of the network, instead relying on untrustworthy
sources of information to make control decisions.

A related body of research has partially addressed
the vulnerabilities but, as we demonstrated in Sec-
tion 4.4, are not a fit for all types of network services.
The state-of-the-art detection system Sphinx [26] ad-
dresses attacks focused on corrupting network topology
and data-plane forwarding state. With respect to de-
tecting packet dropping, the core of the system rests on
the assumption that edge switches are reporting accu-
rate traffic loads, which breaks down in the case of our
misreporting attacks, among others launched from edge
switches. Related systems such as Spiffy [36] and Open-
Watch [60] specifically target short-term volume-based
attacks by malicious hosts, but lack the necessary ar-
chitectural features that monitor (potentially malicious)
switches and/or account for noisy datacenter traffic.
While change-detection techniques have been an effec-
tive tool for various purposes including offline analysis
of data to identify network intrusions [7], anomaly de-
tection in SDN control messages (including load reports)
is an online problem with tight time constraints, as a
non-trivially long attack against core network services
may impose a great cost the network operator.

6.2 Distributed Trust in Networked Environments

The problem that enables the discussed attacks is the
controller’s lack of visibility into network events. There
is an inherent trust assumption between the controller
and each switch, as well as among the switches them-
selves. This problem has been well-studied in other con-
texts such as wireless communications networks, where
a node might similarly report false messages in order
to gain additional utility for itself at the expense of
others [56]. For example, nodes in mobile ad hoc net-
works (MANETS) cooperate in forwarding packets from
sources to destinations, and thus might report false rout-
ing information to blackhole traffic or otherwise avoid
having to expense energy to route packets [51]. Nodes in
a vehicle ad hoc network (VANET) might falsely report
road conditions to clear roads for their own use [58].
Similarly, nodes in wireless sensor networks cooperate
in collecting accurate measurements, and thus might
report false measurements to corrupt sensor data (e.g.,
to fabricate physical events) [40].

Trust and reputation management (TRM) systems
have been developed alongside anomaly detection sys-
tems to allow the network to systematically identify and
respond to such misbehaving nodes [18]. These systems
use methods for iteratively updating trust and repu-
tation scores to identify malicious behavior, and use
methods for filtering out likely-falsified reports (e.g., a
node deliberately flooding the network with bad feed-
back about its peers) and gradually building trust among
peers in order to deter attacks.

While SDN is considered to be centralized, the ser-
vices still require a distributed form of trust to operate,
and therefore may be able to leverage known techniques
to comprehensively address the problem of misreporting.
Recent work [17,8] proposed frameworks for establishing
trusted control-plane operations based on trust values as-
signed to controllers (that form a distributed controller)
or controller applications. However, these systems do
not address the core of the misreporting problem: trust
between the control and data plane elements. Therefore,
validating control messages in SDN is still largely an
unsolved problem, and the extent to which an adversary
can exploit control applications from a malicious switch
is unknown.

7 Conclusion

As load balancers are a key feature of modern networks,
protecting the integrity of their decisions is critical. To
provide this, it is necessary that traffic measurements ac-
curately reflect the true state of the network. While prior
work has addresses malicious control messages in the
context of other services (for example, link discovery),
here we proposed an attack model against SDN-based
load balancers to control the volume of traffic flowing
toward a compromised switch. We found that the ad-
versary could launch an effective misreporting attack
(with configurable attack parameters), being able to ob-
tain targeted (unfair) proportions of load in the system.
We then observed that the adversary had diminishing
returns when misreporting at higher frequencies when
flows are generally longer, with no noticeable effect when
flows are very short. Further, we found that existing de-
fense systems have several limitations them render them
unable to detect such misreporting attacks in practice,
although statistical measures combined with systematic
approaches to collecting load reports are a potential
solution to the misreporting problem. We hope that our
results will provide insight into how adversaries might
exploit the control/data plane relationship to launch
more calculated attacks and lead to the development of
more comprehensive defenses.

Misreporting Attacks Against Load Balancers in Software-Defined Networking 15

Acknowledgements This research was sponsored by the
U.S. Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooper-
ative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or
implied, of the Combat Capabilities Development Command
Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation here on. This work was also supported in part by the
National Science Foundation under award CNS-1946022.

References

10.

11.

12.

. The netfilter.org project (1998).

. Openflow

netfilter.org/

. Project floodlight. http://www.projectfloodlight.org/

floodlight/ (2011). [Online; accessed 19-October-2018]

. Opendaylight project. https://www.opendaylight.org/

(2013). [Online; accessed 19-October-2018]
switch specification.
opennetworking.org/software-defined-standards/
specifications/ (2015). [Online; accessed 19-October-
2018]

. Achleitner, S., Burke, Q., McDaniel, P., Jaeger, T., Porta,

T.L., Krishnamurthy, S.: MLSNet: A Policy Comply-
ing Multilevel Security Framework for Software Defined
Networking. Tech. Rep. INSR-500-TR-0500-2019, In-
stitute of Networking and Security Research, Depart-
ment of Computer Science and Engineering, Pennsylva-
nia State University, University Park, PA, USA (2019).
Http://patrickmcdaniel.org/papers-ct.html

. Achleitner, S., La Porta, T., Jaeger, T., McDaniel, P.:

Adversarial network forensics in software defined net-
working. In: Proceedings of the Symposium on SDN
Research, SOSR ’17, pp. 8-20. ACM, New York, NY,
USA (2017). DOI 10.1145/3050220.3050223. URL http:
//doi.acm.org/10.1145/3050220.3050223

. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network

anomaly detection techniques. Journal of Network and
Computer Applications 60, 19-31 (2016)

. Aliyu, A.L., Bull, P., Abdallah, A.: A trust management

framework for network applications within an sdn envi-
ronment. In: 2017 31st International Conference on Ad-
vanced Information Networking and Applications Work-
shops (WAINA), pp. 93-98. IEEE (2017)

. Aradjo, J.T., Saino, L., Buytenhek, L., Landa, R.: Balanc-

ing on the edge: Transport affinity without network state.
In: 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), pp. 111-124
(2018)

Arbettu, R.K., Khondoker, R., Bayarou, K., Weber, F.:
Security analysis of opendaylight, onos, rosemary and
ryu sdn controllers. In: 2016 17th International Telecom-
munications Network Strategy and Planning Symposium
(Networks), pp. 37-44 (2016). DOI 10.1109/NETWKS.
2016.7751150

Aslam, S., Shah, M.A.: Load balancing algorithms in
cloud computing: A survey of modern techniques. In:
2015 National Software Engineering Conference (NSEC),
pp. 30-35. IEEE (2015)

Aslan, M., Matrawy, A.: On the impact of network state
collection on the performance of sdn applications. IEEE
Communications Letters 20(1), 5-8 (2016)

URL https://www.

https://wuw.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Aweya, J., Ouellette, M., Montuno, D.Y., Doray, B.,
Felske, K.: An adaptive load balancing scheme for web
servers. International Journal of Network Management
12(1), 3-39 (2002)

Benson, T., Akella, A., Maltz, D.A.: Network traffic char-
acteristics of data centers in the wild. In: Proceedings of
the 10th ACM SIGCOMM conference on Internet mea-
surement, pp. 267-280. ACM (2010)

Benson, T., Anand, A., Akella, A., Zhang, M.: Under-
standing data center traffic characteristics. In: Proceed-
ings of the 1st ACM workshop on Research on enterprise
networking, pp. 65-72. ACM (2009)

Benzekki, K., El Fergougui, A., Elbelrhiti Elalaoui, A.:
Software-defined networking (sdn): a survey. Security and
communication networks 9(18), 5803-5833 (2016)
Betgé-Brezetz, S., Kamga, G.B., Tazi, M.: Trust support
for sdn controllers and virtualized network applications.
In: Proceedings of the 2015 1st IEEE Conference on Net-
work Softwarization (NetSoft), pp. 1-5. IEEE (2015)
Buchegger, S., Le Boudec, J.Y.: Performance analysis of
the confidant protocol. In: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking &
computing, pp. 226-236 (2002)

Burke, Q., McDaniel, P., Porta, T.L., Yu, M., He, T.:
Misreporting Attacks in Software-Defined Networking. In:
EAI SecureComm 2020 — 16th EAT International Confer-
ence on Security and Privacy in Communication Networks,
pp. 1519-1528. EAT (2020)

Caberera, J., Ravichandran, B., Mehra, R.K.: Statisti-
cal traffic modeling for network intrusion detection. In:
Proceedings 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommuni-
cation Systems (Cat. No. PR00728), pp. 466-473. IEEE
(2000)

Chandrasekaran, S.S.: Understanding traffic characteris-
tics in a server to server data center network. Rochester
Institute of Technology (2017)

Chica, J.C.C., Imbachi, J.C., Vega, J.F.B.: Security in
sdn: A comprehensive survey. Journal of Network and
Computer Applications 159, 102595 (2020)

Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula,
P., Sharma, P., Banerjee, S.: Devoflow: Scaling flow man-
agement for high-performance networks. In: ACM SIG-
COMM Computer Communication Review, vol. 41, pp.
254-265. ACM (2011)

Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., Conti,
M.: A survey on the security of stateful sdn data planes.
IEEE Communications Surveys & Tutorials 19(3), 1701—
1725 (2017)

De Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A.,
Prete, L.R.: Using mininet for emulation and prototyping
software-defined networks. In: 2014 IEEE Colombian Con-
ference on Communications and Computing (COLCOM),
pp. 1-6. IEEE (2014)

Dhawan, M., Poddar, R., Mahajan, K., Mann, V.: Sphinx:
detecting security attacks in software-defined networks.
In: Ndss, vol. 15, pp. 8-11 (2015)

Dridi, L., Zhani, M.F.: Sdn-guard: Dos attacks mitigation
in sdn networks. In: 2016 5th IEEE International Con-
ference on Cloud Networking (Cloudnet), pp. 212-217.
IEEE (2016)

Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C., Kononov,
R., Mann-Hielscher, E., Cilingiroglu, A., Cheyney, B.,
Shang, W., Hosein, J.D.: Maglev: A fast and reliable soft-
ware network load balancer. In: 13th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 16), pp. 523-535 (2016)

https://www.netfilter.org/
https://www.netfilter.org/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://www.opendaylight.org/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
http://doi.acm.org/10.1145/3050220.3050223
http://doi.acm.org/10.1145/3050220.3050223

16

Quinn Burke et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Feghhi, S., Leith, D.J.: A web traffic analysis attack using
only timing information. IEEE Transactions on Informa-
tion Forensics and Security 11(8), 1747-1759 (2016)
Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim,
C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: V12:
a scalable and flexible data center network. In: ACM
SIGCOMM computer communication review, vol. 39, pp.
51-62. ACM (2009)

Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S.,
Chao, H.J.: Improving the performance of load balancing
in software-defined networks through load variance-based
synchronization. Computer Networks 68, 95-109 (2014)
Handigol, N., Seetharaman, S., Flajslik, M., McKeown,
N., Johari, R.: Plug-n-serve: Load-balancing web traffic
using openflow. ACM Sigcomm Demo 4(5), 6 (2009)
Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning network
visibility in software-defined networks: New attacks and
countermeasures. In: NDSS, vol. 15, pp. 8-11 (2015)
Kamisiriski, A., Fung, C.: Flowmon: Detecting malicious
switches in software-defined networks. In: Proceedings of
the 2015 Workshop on Automated Decision Making for
Active Cyber Defense, pp. 39-45. ACM (2015)
Kampanakis, P., Perros, H., Beyene, T.: Sdn-based solu-
tions for moving target defense network protection. In:
Proceeding of IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks 2014, pp.
1-6. IEEE (2014)

Kang, M.S., Gligor, V.D., Sekar, V., et al.: Spiffy: Induc-
ing cost-detectability tradeoffs for persistent link-flooding
attacks. In: NDSS, vol. 1, pp. 53-55 (2016)

Kang, N., Ghobadi, M., Reumann, J., Shraer, A., Rex-
ford, J.: Niagara: Scalable load balancing on commod-
ity switches. Tech. rep., Technical Report (TR-973-14),
Princeton (2014)

Khan, S., Gani, A., Wahab, A.W.A., Guizani, M., Khan,
M.K.: Topology discovery in software defined networks:
Threats, taxonomy, and state-of-the-art. IEEE Commu-
nications Surveys & Tutorials 19(1), 303-324 (2016)

Li, J., Chang, X., Ren, Y., Zhang, Z., Wang, G.: An
effective path load balancing mechanism based on sdn.
In: 2014 IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications,
pp. 527-533. IEEE (2014)

Lopez, J., Roman, R., Agudo, 1., Fernandez-Gago, C.:
Trust management systems for wireless sensor networks:
Best practices. Computer Communications 33(9), 1086—
1093 (2010)

Mahmood, A., Rashid, I.: Comparison of load balancing
algorithms for clustered web servers. In: ICIMU 2011:
Proceedings of the 5th international Conference on Infor-
mation Technology & Multimedia, pp. 1-6. IEEE (2011)
Mesbahi, M., Rahmani, A.M.: Load balancing in cloud
computing: a state of the art survey. International Journal
of Modern Education and Computer Science 8(3), 64
(2016)

Neghabi, A.A.; Jafari Navimipour, N., Hosseinzadeh, M.,
Rezaee, A.: Load balancing mechanisms in the software
defined networks: A systematic and comprehensive review
of the literature. IEEE Access 6, 14159-14178 (2018).
DOI 10.1109/ACCESS.2018.2805842

Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg,
A., Maltz, D.A., Kern, R., Kumar, H., Zikos, M., Wu,
H., et al.: Ananta: Cloud scale load balancing. ACM
SIGCOMM Computer Communication Review 43(4), 207—
218 (2013)

Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A.,
Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

P., et al.: The design and implementation of open vswitch.
In: 12th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15), pp. 117-130
(2015)

Qian, H., Medhi, D.: Server operational cost optimization
for cloud computing service providers over a time horizon.
In: Hot-ICE (2011)

Qilin, M., Weikang, S.: A load balancing method based
on sdn. In: 2015 Seventh International Conference on
Measuring Technology and Mechatronics Automation, pp.
18-21. IEEE (2015)

Raghavan, B., Vishwanath, K., Ramabhadran, S., Yocum,
K., Snoeren, A.C.: Cloud control with distributed rate
limiting. In: ACM SIGCOMM Computer Communication
Review, vol. 37, pp. 337-348. ACM (2007)

Rao, A., Legout, A., Lim, Y.s., Towsley, D., Barakat, C.,
Dabbous, W.: Network characteristics of video streaming
traffic. In: Proceedings of the Seventh COnference on
emerging Networking EXperiments and Technologies, pp.
1-12 (2011)

Scott-Hayward, S., O’Callaghan, G., Sezer, S.: Sdn secu-
rity: A survey. In: 2013 IEEE SDN For Future Networks
and Services (SDN4FNS), pp. 1-7. IEEE (2013)

Tan, S., Li, X., Dong, Q.: Trust based routing mechanism
for securing oslr-based manet. Ad Hoc Networks 30, 84-98
(2015)

Thimmaraju, K., Schiff, L., Schmid, S.: Outsmarting net-
work security with sdn teleportation. In: 2017 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P),
pp. 563-578. IEEE (2017)

Thimmaraju, K., Shastry, B., Fiebig, T., Hetzelt, F.,
Seifert, J.P., Feldmann, A., Schmid, S.: Taking control
of sdn-based cloud systems via the data plane. In: Pro-
ceedings of the Symposium on SDN Research, pp. 1-15
(2018)

Wang, R., Butnariu, D., Rexford, J., et al.: Openflow-
based server load balancing gone wild. Hot-ICE 11, 12-12
(2011)

Yoon, C., Lee, S., Kang, H., Park, T., Shin, S., Yeg-
neswaran, V., Porras, P., Gu, G.: Flow wars: Systemizing
the attack surface and defenses in software-defined net-
works. IEEE/ACM Transactions on Networking (TON)
25(6), 3514-3530 (2017)

Yu, H., Shen, Z., Miao, C., Leung, C., Niyato, D.: A
survey of trust and reputation management systems in
wireless communications. Proceedings of the IEEE 98(10),
1755-1772 (2010)

Yu, M., He, T.; McDaniel, P., Burke, Q.K.: Flow Table Se-
curity in SDN: Adversarial Reconnaissance and Intelligent
Attacks. In: IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pp. 1519-1528. IEEE (2020)
Zhang, J.: A survey on trust management for vanets.
In: 2011 IEEE International Conference on Advanced
Information Networking and Applications. IEEE (2011)

Zhang, J., Yu, F.R., Wang, S., Huang, T., Liu, Z., Liu, Y.:
Load balancing in data center networks: A survey. IEEE
Communications Surveys & Tutorials 20(3), 2324-2352
(2018)

Zhang, Y.: An adaptive flow counting method for anomaly
detection in sdn. In: Proceedings of the ninth ACM con-
ference on Emerging networking experiments and tech-
nologies, pp. 25-30. ACM (2013)

Zhou, Y., Zhu, M., Xiao, L., Ruan, L., Duan, W., Li,
D., Liu, R., Zhu, M.: A load balancing strategy of sdn
controller based on distributed decision. In: 2014 IEEE
13th International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 851-856.
IEEE (2014)

	Introduction
	Background
	Attacking the Load Balancer
	Evaluation
	Discussion
	Related Work
	Conclusion

