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Abstract—Complication risk profiling is a key challenge in
the healthcare domain due to the complex interaction between
heterogeneous entities (e.g., visit, disease, medication) in clinical
data. With the availability of real-world clinical data such
as electronic health records and insurance claims, many deep
learning methods are proposed for complication risk profiling.
However, these existing methods face two open challenges. First,
data heterogeneity relates to those methods leveraging clinical
data from a single view only while the data can be consid-
ered from multiple views (e.g., sequence of clinical visits, set
of clinical features). Second, generalized prediction relates to
most of those methods focusing on single-task learning, whereas
each complication onset is predicted independently, leading to
suboptimal models. We propose a multi-view multi-task network
(MuViTaNet) for predicting the onset of multiple complications
to tackle these issues. In particular, MuViTaNet complements
patient representation by using a multi-view encoder to effectively
extract information by considering clinical data as both sequences
of clinical visits and sets of clinical features. In addition, it
leverages additional information from both related labeled and
unlabeled datasets to generate more generalized representations
by using a new multi-task learning scheme for making more accu-
rate predictions. The experimental results show that MuViTaNet
outperforms existing methods for profiling the development of
cardiac complications in breast cancer survivors. Furthermore,
thanks to its multi-view multi-task architecture, MuViTaNet also
provides an effective mechanism for interpreting its predictions
in multiple perspectives, thereby helping clinicians discover the
underlying mechanism triggering the onset and for making better
clinical treatments in real-world scenarios.

Index Terms—multi-view, multi-task, complication risk profil-
ing, attention, insurance claims, contrastive learning

I. INTRODUCTION

Cardiovascular diseases are widely known as the leading
causes of mortality in breast cancer survivors [1]–[4]. With
the recent substantial improvement of breast cancer survival
rates, predicting the onset of multiple cardiac complications
has become a critical task for enhancing patients’ life quality.
It is also a key to cost-effective disease management and
prevention. However, this task is highly challenging because
of the complex interactions between heterogeneous clinical
entities. Effectively capturing these interactions may lead to
more precise prediction and treatment for cancer survivors.

Over the past few decades, the rapid growth of real-
world clinical data such as electronic health record (EHR)
and insurance claims makes them valuable data sources used

Fig. 1: Visit-view (sequence of clinical visits (rows)) and
feature-view (set of clinical codes (columns)) of clinical data.

in data-driven (e.g., deep learning) systems for clinical risk
prediction, especially complication risk profiling [5]–[7]. As
shown in Figure 1, this data includes heterogeneous clinical
entities (e.g., visit, disease, medication) and can be considered
from multiple views (i.e., sequence of visits, set of features).
However, most existing studies consider each clinical outcome
prediction separately and extract information in clinical data
from a single view, thereby, making them not well-suited for
complication risk profiling and raising two challenges.

C1. Clinical data is highly complex due to its heterogeneous
and hierarchical structure. Thus, encoding patient records from
single-view cannot provide comprehensive representations of
these patients, and thereby cannot achieve superior prediction
performance. In particular, by considering patient records as
sequences of visits, previous works only learn the depen-
dencies among clinical visits but cannot explicitly capture
dynamic patterns of clinical features and their interaction at
the global (i.e., sequence) level.

C2. Treating each complication onset prediction indepen-
dently can lead to suboptimal models, especially in limited
datasets. This is because it cannot capture the dependencies
among complications that are manifestations caused by their
common underlying condition. Moreover, this approach can-
not exploit meaningful clinical patterns from unlabeled data,
which is much easier to collect and can be used to improve
prediction performance when labeled data is limited.
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To tackle the two aforementioned challenges, we propose
a new neural network-based framework named Multi-View
Multi-Task Network (MuViTaNet) for cardiac complication
risk profiling. This proposed model consists of a multi-view
encoder (dealing with C1) and a novel multi-task learning
(MTL) scheme (dealing with C2). In particular, the multi-view
encoder includes visit-view and feature-view encoders that
capture information from clinical visits and features simultane-
ously. The visit-view encoder considers a patient record as the
sequence of clinical visits and captures the temporal relation
among visits by Gated Recurrent Unit (GRU) network. The
feature-view encoder considers the patient record as the set of
temporal medical features, and then leverages convolutional
neural networks (CNN) to extract temporal patterns from
these features separately. Then, the max-pooling operation is
applied to extract the most significant signals from temporal
sequences. The MTL scheme utilizes an attention mechanism
to learn complication-specific representation from shared in-
formation generated by the multi-view encoder. This scheme
allows MuViTaNet to exploit additional information from
related complications and unlabeled data to generate more
generalized representations for the patient, which enables more
accurate predictions. Moreover, by leveraging the attention
mechanism associated multi-view encoder, the proposed model
provides an efficient way to interpret its predictions from
multiple perspectives, thereby helping clinicians discover the
underlying mechanism triggering the onset and making better
clinical treatments. We demonstrate that the proposed model
significantly outperforms current state-of-the-art approaches
for complication risk profiling task using multiple datasets
derived from the insurance claim database. In summary, our
contributions include the following:
• We design a multi-view multi-task neural network archi-

tecture (MuViTaNet1) that accurately predicts multiple
complication onsets and efficiently interprets its predic-
tions.

• We develop a multi-view encoder to explicitly capture
dependencies among clinical visits and clinical features
from multiple views of clinical data.

• We also introduce a new MTL scheme that utilizes a
complication-specific attention mechanism on top of the
multi-view encoder to capture additional clinical informa-
tion from related complications and unlabeled datasets.

• Finally, we conduct a comprehensive empirical study to
demonstrate the effectiveness of MuViTaNet in terms
of both prediction performance and interpretability com-
pared to a wide range of previous approaches for cardiac
complication risk profiling.

The remainder of the paper is organized as follows. Section
II summarizes related works on clinical risk prediction in
general and in particular, complication risk profiling. Section
III describes the technical details of the proposed model
(MuViTaNet). Section IV presents experimental results and
discussions. Finally, Section V concludes the paper.

1Code is available at https://github.com/pth1993/MuViTaNet

II. RELATED WORKS

In this section, we briefly review existing works related
to our study including patient representation learning and
MTL for clinical risk prediction, as well as complication risk
profiling.

Patient representation learning. The abundance of real-
world data in recent years creates an unprecedented oppor-
tunity to apply machine learning and data mining methods
for clinical risk predictions. With the advancement of deep
learning theory and the acceleration in computational tech-
nologies, neural network-based architectures can significantly
improve prediction performance due to their ability to extract
rich representations from data. Because of the temporal nature
of clinical data, most existing methods rely on recurrent neural
network architectures to learn patient representations, which
are then used to make predictions for future clinical events
(e.g., diagnosis, mortality, readmission, etc.) [5]–[9]. These
works focused on designing attention mechanisms to capture
dependencies among clinical visits [5], [8], [9] and time-
aware mechanisms to incorporate temporal information [6],
[10], [11] into patient representation for making better predic-
tions. Nonetheless, these models cannot explicitly capture the
relationships among clinical features. Instead of considering
EHR data as sequences of clinical visits, Concare [12] treats
the record as the set of clinical features and extracts dynamic
patterns of these features separately. Then the predictions are
made by aggregating representations of all clinical features.
However, all the existing methods only extract information
from a single view of clinical data which makes the learned
patient representations suboptimal. In contrast, we propose
a multi-view model for capturing information from multiple
views of clinical data simultaneously.

Multi-task learning. Multi-task learning (MTL) has been
used widely across many applications of machine learning and
data mining. By sharing information among related tasks, the
prediction model can generalize better. In healthcare domain,
some existing works applied MTL techniques to leverage
information from related tasks to improve model performance
in clinical risk prediction. In particular, both classical machine
learning [13]–[15] and deep learning models [16]–[18] are
formulated as MTL frameworks and are applied on a wide
range of healthcare applications including disease progression
modeling [13], mortality prediction [16], disease onset predic-
tion [17], and diagnosis classification [18].

Complication risk profiling. Mitigating the risk of com-
plications is crucial for many disease management programs.
Despite its importance, there have not been many existing
methods designed for this task. Unlike a single clinical risk
prediction task, complication risk profiling requires multiple
predictions for onset of complications. Thus, capturing rela-
tionships among related complications is crucial to achieving
good prediction performances. Some methods have been pro-
posed to predict the onset of complications of some diseases
and clinical procedures. For example, multi-task logistic re-
gression has been used to predict complication risks for dia-

https://github.com/pth1993/MuViTaNet


(a) (b) (c)
Fig. 2: General schemes for learning from clinical data. (a)
single-view single-task learning, (b) single-view multi-task
learning, (c) multi-view multi-task learning. Our proposed
model belongs to multi-view multi-task learning with the
multi-view encoder (i.e., visit-view and feature-view) and
the task-specific attention mechanisms and decoders for both
labeled and unlabeled datasets.

betes care [14], [19]. Besides linear models, the deep learning
method is also used to predict complications of this chronic
disease [20] but this work considers each complication inde-
pendently. For breast cancer survivors, relationships between
cardiac complications and cancer were also investigated [3],
[4], [21] to show the correlation between these two diseases.

III. METHODOLOGY

In this section, we first give brief introduction about patient
records, complication risk profiling task and the corresponding
notations. Then, we present our proposed model MuViTaNet.

A. Definitions and Basic Notations

Definitions and notations used in this study are shown in
the following paragraphs and are summarized in Table I.

Patient Records. The heterogeneous and hierarchical struc-
ture of a patient record is defined as follows.
• Definition 1 (Clinical Code). C = {c1, c2, · · · , c|C|}

is the set of unique clinical codes including diagnosis,
procedure, and medication codes with |C| is the number
of these unique codes. Each code ci can be represented
by binary vector xi ∈ {0, 1}|C| where ith element of this
vector is 1 and other elements are 0.

• Definition 2 (Clinical Visit). An visit is a hospital stay
from admission to discharge. Each visit vj is a tuple of
(cj , tj) where cj = {cj1 , cj2 , · · · , cj|cj |} ∈ C

|cj | with
set of indexes {j1, · · · , j|cj |} ∈ {1, 2, · · · , |C|} and tj is
the timestamp of the visit. cj can be represented by binary
vector Vj ∈ {0, 1}|C| where the ith element is 1 if cj
contains the code ci. Besides vector representation, cj can
also be expressed as matrix Xj ∈ {0, 1}|cj |×|C| where
ith row of this matrix is the binary vector xji ∈ {0, 1}|C|
of code cji .

• Definition 3: (Patient Record). The patient record P
is a sequence of visits [v1,v2, · · · ,vT ] where T is the

TABLE I: Notation definition

Notation Description
C Set of clinical codes/features
P A patient record
ci ith clinical codes in set C
xi ∈ {0, 1}|C| vector representation of code ci
vj jth clinical visit in P
cj set of clinical codes in visit vj
tj timestamp of visit vj
Vj ∈ {0, 1}|C| vector representation of visit vi
Xj ∈ {0, 1}|ci|×|C| matrix representation of vj
Xvisit ∈ {0, 1}T×|C| visit-level representation of P
Xfeature ∈ T × ({0, 1}|ci|×|C|) feature-level representation of P
ddemo vector representation of demographics
α̂j ∈ R|cj | attention weights of codes in visit vj
β̂j ∈ R|ci| task-specific attention weights for features
γ̂j ∈ RT task-specific attention weights for visits
δi ∈ Rd temporal encoding vector of visit vi
Hv ∈ RT×2d representation learned by visit-view encoder
h∗ ∈ R2d patient representation
Hf ∈ R|C|×4d representation learned by feature-view encoder
gvk ∈ R2d visit-view task-specific representation for kth task
gfk ∈ R4d feature-view task-specific representation for kth task
ok ∈ R8d task-specific representation for kth task
yk ground-truth output for kth task
ŷk predicted output for kth task

number of visits. Like clinical visit representation, P
can be represented at the two different granularities. At
visit-level, P can be represented as a binary matrix
Xvisit ∈ {0, 1}T×|C| where jth row of this matrix is
binary vector Vj of visit vj . At feature-level, P can
be represented as the sequence of matrices Xfeature =
[X1,X2, · · · ,XT ].

• Definition 4: (Demographic Information). Besides clin-
ical information, a patient record can have demographic
information about the patient such as age, gender, region,
etc. It can be represented by binary vector ddemo ∈
{0, 1}ddemo , where ddemo is the number of demographic
attributes.

Clinical Risk Profiling. The aim of this task is to find a set
of functions F = {F1, F2, · · · , FN} that predicts the onset of
complications Y ∈ RN from patient record P , where N is
the number of complications. In MTL setting, F1, F2, · · · , FN

generally have some shared parameters to learn shared infor-
mation from related tasks for better predictions.

B. Proposed Model

Overview Architecture. This section presents our proposed
multi-view multi-task network (MuViTaNet) for predicting
onset of multiple complications from patient records. Mu-
ViTaNet is designed to explicitly capture the dependencies
among clinical visits and clinical features from patient records.
It leverages additional information from both related labeled
and unlabeled data in MTL to achieve accurate predictions and
efficient interpretation. In particular, MuViTaNet consists of
four main components as follows. (1) Feature-view Encoder.
This component considers a patient record as a set of tem-
poral clinical features and then encodes information of each
feature separately. (2) Visit-view Encoder. This component
formulates a patient record as a sequence of visits and then
learns a representation for each visit in the sequential context.
Specifically, this component is designed as a hierarchical
model that exploits patient records in the two levels, includ-



Fig. 3: The overall architecture of MuViTaNet. The proposed framework consists of four main components: feature-view
encoder, visit-view encoder, task-specific attention, and task-specific decoder. Given a patient record, MuViTaNet first extracts
information from clinical visits and features by looking at the record in two different ways: sequence of clinical visits and
set of clinical features. Then the shared representation learned by these two encoders is put into the task-specific attention to
learn the task-specific representation. Finally, the clinical predictions are generated by the task-specific decoders. Note that the
figure only shows the task-specific attention for one prediction task for simplicity.

ing feature-level and visit-level. (3) Task-specific Attention.
After learning the shared representation from feature-view
and visit-view encoders, an attention mechanism is employed
to extract task-specific representation for each task from the
shared representation. (4) Task-specific Decoder. The task-
specific representations are fed into the corresponding task-
specific decoders to predict clinical outcomes for patients in
complication datasets and to project representations to unit
hypersphere for patients in unlabeled dataset. Figure 3 shows
the overview architecture of MuViTaNet and technical details
of its components are presented as follows.

Feature-view Encoder. This component treats patient data
as a set C of clinical codes which are represented by the
set of temporal sequences (i.e., columns of matrix Xvisit ∈
{0, 1}T×|C|). In particular, given clinical code ci, its temporal
data can be represented by a binary vector fi ∈ {0, 1}T which
is ith column of Xvisit. Then, one-dimensional convolutional
neural networks (Conv1d) and max-pooling (MaxPool) op-
eration are employed to extract temporal patterns from each
clinical code separately. In particular, Conv1d with kernel size
k (i.e., k = 3 in our setting) takes as inputs the sub-sequences
of length k from vector fi to learn the representation of code
ci as follows.

Hf
i = Conv1d(fi) (1)

where Hf
i ∈ R4d×T are the output of Conv1d and 4d is

the number of filters used in convolution operations. Next, the

row-wise max-pooling is applied to Hf
i to generate vector

representation for clinical code ci.

hf
i = MaxPool(Hf

i ) (2)

Note that the weights of Conv1d are not shared between
clinical codes. The output of feature-view encoder is matrix
Hf = [hf

1 ,h
f
2 , · · · ,h

f
|C|] ∈ R|C|×4d.

Visit-view Encoder. This component formulates patient
data as a sequence of visits in which each visit can be seen as
a set of clinical codes. Due to the hierarchical characteristic
of this data structure, the visit-view encoder is also designed
hierarchically to capture information at different levels. Given
visit vj , we represent this visit by matrix Xj ∈ {0, 1}|cj |×|C|

which is jth element of the sequence Xfeature. Because
different clinical codes associated with the same visit can
have disparate impacts, instead of treating these clinical codes
uniformly when aggregating them to represent the visit, the
location attention mechanism is employed to learn the con-
tributions of these clinical codes to their visit representation.
In particular, given a binary representation xji ∈Xj of code
cji , 1-layer feed-forward neural network is applied to learn the
dense representation from sparse vector of this clinical code
as follows.

eji = FFNN1(xji) = ReLU(W1xji + b1) (3)



Algorithm 1: Training procedure for MuViTaNet

Input: Datasets {Dk}N+1
k=1 , set of clinical codes C,

batch sizes ns, nu
Output: Trained model parameters

θ = {θshared, {θtask−specifick }Nk=1}
1 Randomly initialize θ;
2 Calculate sampling rate for each dataset

λk = |Dk|/nk∑N
k′=1

|Dk′ |/nk′
(nk = nu if k = N + 1,

nk = ns otherwise);
3 for epoch = 1 to E do
4 repeat
5 Select dataset Dk ∼ λ;
6 Initialize loss Lk = 0;
7 Select sample batch b from dataset Di;
8 for patient Pi in batch b do
9 (Xfeature,Xvisit) = Pi;

10 Obtain feature-view representation Hf

from Xvisit using Eq. (1), (2);
11 Obtain visit-view representation Hv and

patient representation h∗ from Xfeature

using Eq. (3)-(11);
12 Calculate task-specific attention weights

β̂, γ̂ from Hf , Hv using Eq. (12);
13 Obtain task-specific representations using

Eq. (13);
14 if k ∈ {1, · · · , N} then
15 Calculate prediction ŷki using Eq. (14);
16 Calculate BCE loss Lki using Eq. (16);
17 else
18 Project multi-view representations to

unit hypersphere using Eq. (15);
19 Calculate CL loss Lki

using Eq. (17);
20 Lk = Lk + Lki ;
21 end
22 Update parameters θ using gradient of Lk;
23 Dk =Dk \ b;
24 until {Dk}N+1

k=1 = ∅;
25 end

where W1 ∈ Rd×|C| is the learned weight matrix of clinical
codes, b1 ∈ Rd is the bias vector, and ReLU is rectified
linear unit activation function. Then the 2-layer feed-forward
neural network FFNN2 with Tanh activation function is used
to generate the attention score αji for this clinical code as
follows.

αji = FFNN2(eji) (4)

The attention vector αj = [αj1 , αj2 , · · · , αj|cj |
] which rep-

resents the contributions of clinical codes in visit vj is fed
into the softmax layer to get the normalized vector α̂j =
[α̂j1 , α̂j2 , · · · , α̂j|cj |

] ∈ R|cj |.

α̂j = Softmax(αj) (5)

Then, the representation of visit vj are computed as the
weighted average of its clinical codes.

evj = (α̂j)
Tej (6)

where ej = [ej1 , ej2 , · · · , ej|cj | ] ∈ R|cj |×d denotes the jth

visit’s representation. To generate personalized representation
for each visit, demographic information including age and
region is incorporated into every clinical visit as follows.

ëvj =W2(Concat(e
v
j ,ddemo)) (7)

where Concat is the concatenation operation and W2 ∈
R(d+ddemo)×d is the weight matrix mapping concatenated
vectors to the original embedding space. Besides clinical
codes, each visit is also associated with its timestamp. In order
to capture the elapsed time between visits, we add the temporal
encoding vector to each visit as follows.

êvj = ëvj + δj (8)

where δj ∈ Rd is the temporal encoding vector whose design
is inspired by the positional encoding used in Transformer
architecture [22]. In particular, it is computed by trigonometric
functions as follows.

δj,2t = sin

(
tT − tj

100002t/d

)
δj,2t+1 = cos

(
tT − tj

100002t/d

) (9)

where 0 ≤ 2t < d − 1. From Equation (9), we can see that
temporal embedding encodes similar time intervals into similar
vectors in embedding space.

To generate the sequential representations for visits in the
sequential context, we put the independent representations for
visits learned from previous steps into the bidirectional GRU
layer. Specifically, the sequential representation for these visits
is computed as follows.

−→
hj = GRU(êvj ,

−−→
hj−1)

←−
hj = GRU(êvj ,

←−−
hj+1)

hv
j = Concat(

−→
hj ,
←−
hj)

(10)

where hv
j ∈ R2d. Then, the patient representation is computed

based on the last visit in the visit sequence.

h∗ = FFNN3(h
v
T ) (11)

In summary, the outputs of the visit-view encoder in-
clude the sequential representations of clinical visits Hv =
[hv

1,h
v
2, · · · ,hv

T ] ∈ RT×2d and the patient representation
h∗ ∈ R2d.

Task-specific Attention. Given the shared representations
generated by feature-view and visit-view encoders, attention
mechanisms are employed to generate the task-specific repre-
sentations for the patient. Specifically, the attention weights
of clinical features and visits for kth task are computed as
follows.



βki
= FFNNk

4(h
f
i )

γkj
= FFNNk

5(h
v
j )

β̂k = Softmax([βk1
, βk2

, · · · , βk|C||])

γ̂k = Softmax([γk1
, γk2

, · · · , γkT
])

(12)

where FFNNk
4 ,FFNN

k
5 are 2-layer feed-forward neural net-

works with Tanh activation function that compute the weights
of clinical features and visits from their representations. Then,
we obtain the task-specific representation ok ∈ R8d for kth

task as follows.
gfk = (β̂k)

THf

gvk = (γ̂k)
THv

ok = Concat(gfk , g
v
k ,h

∗)

(13)

Task-specific Decoder. For a patient in labeled dataset (i.e.,
complication dataset), the 2-layer feed forward neural network
with Sigmoid activation function at the last layer is employed
to predict the probability of complication onset for this patient.

ŷk = FFNNk
6(ok), k ∈ {1, · · · , N} (14)

For a patient in unlabeled dataset, the 2-layer feed forward
neural network with normalization operation (Norm) is used
to project the feature-view and visit-view representations of
this patient on the unit hypersphere.

zf = Norm(FFNNk
6(g

f
k )), k = N + 1

zv = Norm(FFNNk
6(Concat(g

v
k ,h

∗)))
(15)

Optimization. To train MuViTaNet in MTL setting, we
follow the alternating training strategy [23] in which each
task is selected randomly and then is optimized for a fixed
number of parameter updates before switching to other tasks.
In our setting, different tasks have datasets of different sizes,
so we select a task to optimize with probability λk =

|Dk|\nk∑N+1

k′=1
|Dk′ |\nk′

, where Dk and nk are the dataset and batch

size for kth task, and N is the number of complication
datasets.

For labeled datasets, the binary cross-entropy (BCE) loss
function is used to optimize the prediction based on ground-
truth labels. Specifically, for kth task with dataset Dk, the loss
function for this task is computed as follows.

Lk
L = − 1

|Dk|

|Dk|∑
i=1

(
yki

log(ŷki
)+(1−yki

) log(1−ŷki
)
)

(16)

where yk and ŷk are the ground-truth and predicted outputs
for kth task respectively. For unlabeled dataset, we leverage
the contrastive (CL) loss function [24] to pull together the
normalized representations of feature-view and visit-view of
the same patient and to push apart these representations from
representations of other patients.

LU = −
|Dk|∑
i=1

∑
zi∈{zf

i ,z
v
i }

log
exp(zfi · zvi )∑

zj∈A(zi)
exp(zi · zj)

(17)

where A(zi) ≡ Z \ zi in which Z = {zfi , zvi }
|Dk|
i=1 .

TABLE II: Cardiac complications in female breast cancer
cohort and their corresponding ICD codes and numbers of
positive instances.

complication Description ICD-10 Codes #subjects

Atrial Fibrillation
An irregular, often rapid heart
rate that commonly causes
poor blood flow

I48 322

Coronary Artery
Disease

Damage or disease in the
heart’s major blood vessels I20-I25 769

Heart failure
A chronic condition in which
the heart doesn’t pump blood
as well as it should

I11, I13
I42, I50 1124

Hypertension
A condition in which the force
of the blood against the artery
walls is too high

I10, I16 6787

Peripheral Arterial
Disease

A circulatory condition in
which narrowed blood vessels
reduce blood flow to the limbs

I70 340

Stroke Damage to the brain from
interruption of its blood supply I60-I69 592

IV. EXPERIMENTS

In this section, we evaluate the performances of MuViTaNet
on six real-world insurance claim datasets and compare its
results with state-of-the-art clinical risk prediction models
to demonstrate the effectiveness of our method. Besides
achieving accurate prediction, we also show the robustness
of MuViTaNet in terms of interpretability.

A. Datasets

Breast cancer cohort construction. We extract clinical
records of female breast cancer patients from the MarketScan
Commercial Claims and Encounter (CCAE) database provided
by Truven Health2 to construct cardiac complication risk
profiling datasets. According to the previous work [19], the
records from 2012 to 2017 of de-identified patients are selected
based on the following criteria.
• Ages of the selected patients are from 18 to 65 at the

initial diagnosis of breast cancer.
• The selected patients have at least six months of records

and ten clinical visits before being diagnosed with breast
cancer.

• There is no cardiac complication diagnosis until the initial
diagnosis of breast cancer of the selected patients.

Cardiac complication datasets construction. After con-
struing the breast cancer cohort, we create a distinct dataset for
each cardiac complication onset prediction task. In our setting,
we focus on profiling the risk of developing cardiac compli-
cations in a six-month window after the initial diagnosis of
breast cancer, and the positive instances are defined as patients
who have cardiac complications in this window. Following
previous clinical research [3], [4], we identify six cardiac
complications including atrial fibrillation (AF), coronary artery
disease (CAD), heart failure (HF), hypertension, peripheral
arterial disease (PAD), and stroke. Descriptions, ICD codes,
and the corresponding numbers of positive instances of these
complications are shown in Table II. The negative instances

2https://truvenhealth.com/markets/life-sciences/products/data-tools/
marketscan-databases

 https://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases
 https://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases


TABLE III: Comparison of prediction performance measured by AU-ROC scores on six complication risk profiling tasks. We
report the average AU-ROC scores and their corresponding standard deviation. (AF: Atrial Fibrillation, CAD: Coronary Artery
Disease, HF: Heart Failure, PAD: Peripheral Arterial Disease).

Method AF CAD HF Hypertension PAD Stroke Average

Si
ng

le
-t

as
k

Classical
LR 0.6133± 0.0437 0.6402± 0.0165 0.6982± 0.0088 0.7901± 0.0088 0.5700± 0.0341 0.6150± 0.0128 0.6545± 0.0208

RF 0.7159± 0.0434 0.7187± 0.0260 0.7863± 0.0147 0.8066± 0.0090 0.6880± 0.0525 0.7172± 0.0262 0.7388± 0.0286

Recurrent-

based

GRU 0.6701± 0.0425 0.7218± 0.0116 0.7805± 0.0033 0.8122± 0.0084 0.6884± 0.0368 0.7213± 0.0103 0.7324± 0.0188

Bi-GRU 0.6620± 0.0533 0.7295± 0.0079 0.7845± 0.0058 0.8155± 0.0098 0.6967± 0.0172 0.7291± 0.0088 0.7362± 0.0171

Time-aware T-LSTM 0.6739± 0.0518 0.7052± 0.0133 0.7651± 0.0156 0.8024± 0.0118 0.6802± 0.0239 0.6994± 0.0203 0.7210± 0.0228

Attention-

based

Dipole 0.6804± 0.0661 0.7287± 0.0120 0.7791± 0.0026 0.8157± 0.0081 0.6839± 0.0320 0.7247± 0.0040 0.7354± 0.0209

RETAIN 0.6493± 0.0465 0.6780± 0.0196 0.7360± 0.0139 0.8078± 0.0086 0.6731± 0.0224 0.6770± 0.0112 0.7035± 0.0126

Transformer 0.6516± 0.0563 0.7021± 0.0155 0.7502± 0.0069 0.8107± 0.0076 0.6721± 0.0392 0.6981± 0.0135 0.7141± 0.0183

LSAN 0.6069± 0.0556 0.6910± 0.0135 0.7567± 0.0180 0.8163± 0.0085 0.6464± 0.0464 0.6897± 0.0206 0.7012± 0.0271

M
ul

ti-
ta

sk

Recurrent-

based

GRU 0.7915± 0.0475 0.7759± 0.0144 0.8186± 0.0136 0.8143± 0.0096 0.7524± 0.0253 0.7458± 0.0222 0.7831± 0.0221

Bi-GRU 0.7984± 0.0524 0.7824± 0.0121 0.8279± 0.0125 0.8189± 0.0100 0.7503± 0.0189 0.7462± 0.0237 0.7873± 0.0216

Time-aware T-LSTM 0.7944± 0.0466 0.7591± 0.0093 0.8134± 0.0124 0.8106± 0.0087 0.7382± 0.0285 0.7419± 0.0232 0.7763± 0.0214

Attention-

based

Dipole 0.7823± 0.0620 0.7814± 0.0213 0.8239± 0.0095 0.8210± 0.0092 0.7554± 0.0350 0.7611± 0.0194 0.7875± 0.0261

RETAIN 0.7686± 0.0485 0.7554± 0.0083 0.8024± 0.0165 0.8029± 0.0066 0.7312± 0.0263 0.7376± 0.0254 0.7661± 0.0219

Transformer 0.7697± 0.0649 0.7738± 0.0110 0.8049± 0.0164 0.8092± 0.0106 0.7484± 0.0423 0.7643± 0.0083 0.7784± 0.0256

LSAN 0.7775± 0.0576 0.7788± 0.0225 0.8082± 0.0150 0.8226± 0.0061 0.7599± 0.0319 0.7533± 0.0147 0.7834± 0.0246

Ours MuViTaNet 0.8120± 0.0457 0.8070± 0.0147 0.8408± 0.0177 0.8462± 0.0089 0.7986± 0.0199 0.7914± 0.0174 0.8160± 0.0117

are randomly selected from the breast cancer cohort with a
ratio of 3:1 compared to positive instances.

Unlabeled dataset construction. The negative patients that
are not selected for complication datasets are used to construct
a dataset for contrastive learning. MuViTaNet leverages this
dataset as additional information to improve the prediction
performances of complication onset prediction tasks.

Feature selection. We use the following information to
profile cardiac complications for breast cancer patients.

• Demographics including age and region information. We
cluster patients into three age groups (i.e., 18− 44, 45−
54, 55− 65) and five region groups.

• Clinical codes including diagnosis, procedure, and med-
ication codes. For diagnosis codes, all ICD-9 codes are
converted to ICD-10 codes. To alleviate data sparsity, we
group all diagnosis and procedure codes based on their
first three characters and remove codes that appear in
less than 200 patients. For medication codes, we group
them by their therapeutic classes. This preprocessing step
results in 1188 features.

B. Experimental Setup

Baseline Models. To validate the performance of the pro-
posed model for cardiac complication risk profiling task, we
compare it with several state-of-the-art models. Based on
their architectures, these models are categorized into four
main groups including classical model, recurrent-based model,
attention-based model, and time-aware model. The details of
these models are presented as follows.

• Logistic Regression (LR). A classical model used in
binary classification. To deal with insurance claim data,
a patient record is converted to the count vector ∈ Z|C|
whose ith element is the frequency of ith clinical code
in that record, and is then fed into LR.

• Random Forest (RF) [25]. A classical ensemble model
whose prediction is the average computed from predic-
tions of a number of decision tree classifiers. Inputs for
RF are similar to LR.

• Gated Recurrent Unit (GRU) [26]. A variant of recur-
rent neural network (RNN) that uses gating mechanism.

• Bidirectional GRU (Bi-GRU) [20]. An improved version
of GRU by employing an additional GRU model to learn
the sequence data in reverse order.

• Dipole [5]. An attention-based model that utilizes atten-
tion mechanism over the sequence generated by Bi-GRU
to learn the dependencies between visits.

• RETAIN [8]. An attention-based model that first employs
a reverse RNN to process clinical records in reverse order
to mimic physicians’ decisions. Then two attention mod-
ules are used to identify significant visits and variables.

• T-LSTM [6]. A time-aware model designed for handling
irregularity visits in clinical records. The memory cell of
LSTM is modified to capture time intervals between two
consecutive visits.

• Transformer [22]. A fully attention-based model that
uses multi-head attention mechanisms to learn the de-
pendencies among elements in sequential data.

• LSAN [27]. An attention-based model that uses Trans-
former to capture global information and CNN to capture
local information.

• MTL Models: We develop the MTL version for each
of the aforementioned neural network-based models by
employing task-specific attention and decoder over the
output generated by these models.

• MuViTaNet-visit-view: A variant of MuViTaNet by remov-
ing the visit-view encoder.

• MuViTaNet-feature-view: A variant of MuViTaNet by re-
moving the feature-view encoder.

• MuViTaNet-task-specific: A variant of MuViTaNet by re-



TABLE IV: Top 10 most important clinical features (i.e., with the highest attention weights) for each cardiac complication as
identified by MuViTaNet.

Atrial Fibrillation Coronary Artery Disease Heart Failure
Nonrheumatic mitral valve disorders (I34) Other cardiac arrhythmias (I49) Other cardiac arrhythmias (I49)
Other cardiac arrhythmias (I49) Nonrheumatic mitral valve disorders (I34) Varicose veins of lower extremities (I83)
Complications and ill-defined heart disease (I51) Varicose veins of lower extremities (I83) Diseases of capillaries (I78)
Paroxysmal tachycardia (I47) Diseases of capillaries (I78) Other disorders of veins (I87)
Diseases of capillaries (I78) Type 2 diabetes mellitus (E11) Embolism and thrombosis (I82)
Embolism and thrombosis (I82) Other peripheral vascular diseases (I73) Type 2 diabetes mellitus (E11)
Other conduction disorders (I45) Embolism and thrombosis (I82) Complications and ill-defined heart disease (I51)
Varicose veins of lower extremities (I83) Hypotension (I95) Nonrheumatic mitral valve disorders (I34)
Nonrheumatic aortic valve disorders (I35) Other disorders of veins (I87) Other peripheral vascular diseases (I73)
Other disorders of veins (I87) Angina pectoris (I20) Overweight and obesity (E66)

Hypertension Peripheral Arterial Disease Stroke
Other cardiac arrhythmias (I49) Other cardiac arrhythmias (I49) Other cardiac arrhythmias (I49)
Abnormal blood-pressure reading, without diagnosis (R03) Varicose veins of lower extremities (I83) Nonrheumatic mitral valve disorders (I34)
Type 2 diabetes mellitus (E11) Diseases of capillaries (I78) Varicose veins of lower extremities (I83)
Nonrheumatic mitral valve disorders (I34) Nonrheumatic mitral valve disorders (I34) Other peripheral vascular diseases (I73)
Varicose veins of lower extremities (I83) Other disorders of veins (I87) Embolism and thrombosis (I82)
Overweight and obesity (E66) Nonspecific lymphadenitis (I88) Type 2 diabetes mellitus (E11)
Diseases of capillaries (I78) Other peripheral vascular diseases (I73) Other disorders of veins (I87)
Other peripheral vascular diseases (I73) Embolism and thrombosis (I82) Hypotension (I95)
Other disorders of veins (I87) Other noninfective disorders of lymphatic vessels (I89) Pain in throat and chest (R07)
Pain in throat and chest (R07) Type 2 diabetes mellitus (E11) Complications and ill-defined heart disease (I51)

TABLE V: Average performances of MuViTaNet variants over
6 complication datasets (F: Feature-view, V: Visit-view, L:
Labeled, U: Unlabeled).

Models
Multi-view Multi-task

AU-ROC
F V L U

MuViTaNet-task-specific 3 3 7 7 0.7385± 0.0239

MuViTaNet-feature-view 7 3 3 7 0.7906± 0.0286

MuViTaNet-visit-view 3 7 3 7 0.7942± 0.0248

MuViTaNet-unlabeled 3 3 3 7 0.8102± 0.0136

MuViTaNet 3 3 3 3 0.8160± 0.0117

moving the task-specific attention and decoder for single-
task learning (STL) setting.

• MuViTaNet-unlabeled: A variant of MuViTaNet trained
with labeled datasets only.

Implementation Details. All neural network-based archi-
tectures are implemented by PyTorch3. For classical models
including LR and RF, we use their Python implementations
from Scikit-Learn [28]. We use ADAM algorithm [29] to
optimize the prediction performances for neural network-based
models. The batch size is set as 16 for labeled datasets and 256
for unlabeled dataset, and the initial learning rate is 0.0001.

Evaluation Metric. We conduct experiments under 5-fold
cross-validation setting. 10% instances from the training set
are used to construct the validation set, and the results on
the testing set are determined based on the best results on
the validation set. The area under the receiver operating
characteristic (AU-ROC) is used to measure the performances
of prediction models for cardiac complication risk profiling.

C. Results

We conduct experiments to answer the following questions.
• Q1. How accurate is MuViTaNet for cardiac complication

risk profiling task comparing to previous works?
• Q2. How each component of MuViTaNet contributes to

its prediction performance?

3https://pytorch.org/

• Q3. How to effectively interpret the predictions made by
MuViTaNet?

Cardiac complication risk profiling. As shown in Ta-
bles III, MuViTaNet achieves the best performances compared
to other baselines for cardiac complication risk profiling task
measured by AU-ROC score. Generally, it achieves an average
(i.e., over six datasets) AU-ROC score of 0.8102, which is
11% better than the best previous method. Looking into each
complication dataset, we also observe that MuViTaNet consis-
tently outperforms other methods in terms of AU-ROC score.
Such improvements indicate the advantage of MuViTaNet
by using (1) multi-view encoder to extract comprehensive
information and (2) MTL scheme to leverage information from
both related labeled and unlabeled datasets to improve its
prediction performance.

For baseline methods, we can observe that formulating
complication risk profiling as MTL significantly improves
the prediction performances of these methods. The improve-
ments are more noteworthy for small datasets, including AF
(31%), CAD (19%), PAD (22%), and stroke (13%). These
results demonstrate the importance of leveraging task-related
information for predicting the onset of complications. We
also see that GRU-based models achieve slightly improved
performances compared to other neural network models. For
STL setting, the averaged prediction performances of deep
learning models are on par with RF and are much better
than LR. To investigate more, we zoom into the prediction
performance for each dataset and observe that RF outperforms
deep learning models for AF, CAD, PAD, and stroke datasets
whose sizes are relatively small compared to HF and hyperten-
sion datasets. This result is reasonable because deep learning
methods generally require large training data to achieve good
prediction performance.

Ablation study. To investigate the contribution of
each component in MuViTaNet, we conduct an abla-
tion study by comparing MuViTaNet with its simpler
variants including MuViTaNet-visit-view, MuViTaNet-feature-view,

https://pytorch.org/


TABLE VI: Top 5 most important clinical visits and features
(i.e., with the highest attention weights) for the 2 patients
illustrated in Figure 4.

Positive patient from heart failure dataset

Visits Visit 9 (0.11) Visit 3 (0.11) Visit 11 (0.10) Visit 8 (0.09) Visit 6 (0.09)
Features 796.2 (0.26) 250.00 (0.25) 278.00 (0.12) 882.0 (0.05) 19083 (0.04)

Negative patient from hypertension dataset

Visits Visit 9 (0.11) Visit 11 (0.11) Visit 7 (0.10) Visit 4 (0.10) Visit 3 (0.09)
Features M-174 (0.56) 250.00 (0.22) S0612 (0.13) J3010 (0.02) 82043 (0.02)

MuViTaNet-task-specific, and MuViTaNet-unlabeled on the six afore-
mentioned datasets. The AU-ROC scores of these models are
shown in Table V. We can observe that encoding clinical
data solely by a single-view encoder is not as good as a
multi-view encoder. AU-ROC score of MuViTaNet decreases
to 0.7906 (resp. 0.7942) when only using visit-view (resp.
feature-view) encoder. This result demonstrates the necessity
of aggregating information from multiple views. The perfor-
mance of MuViTaNet also drops significantly when we remove
the task-specific attention mechanism and decoder, which
further confirms the importance of formulating complication
risk profiling task as MTL with both labeled and unlabeled
datasets.

Model interpretability. The deployment of data-driven
systems to healthcare applicants in real-world requires not only
models with good prediction performance but also efficient
mechanisms to interpret the automated decision to clinicians.
By leveraging the multi-view multi-task architecture, our pro-
posed model can interpret the prediction for each complication
in multiple perspectives, thereby helping clinicians understand
which clinical entities contribute most to the prediction.

To characterize cardiac complications, we find the most
important features for each of these cardiac complications by
averaging the feature-view attention weights over all positive
patients for clinical features in each complication dataset. Due
to the varied number of features across patients, we rescale
attention weights by multiplying them with the number of fea-
tures appeared in the corresponding records before averaging.
Then top-10 clinical features for 6 cardiac complications are
shown in Table IV. We observe that these complications share
many common features such as I34 (Nonrheumatic mitral
valve disorders), I49 (Other cardiac arrhythmias), etc. This
result is reasonable because all of these complications belong
to cardiovascular disease class. Moreover, many important
features determined by our model are known to be clinically
associated with the corresponding complications. For example,
patients with type II diabetes are two to four times more likely
to develop heart diseases than someone without diabetes [30].
Obesity is another major known risk factor for heart failure and
hypertension patients [31], [32]. Angina pectoris is the type
of chest pain caused by reduced blood flow to the heart and
is considered as a symptom of coronary artery disease [33].

Case study. To further investigate the interpretability of
MuViTaNet, we look at two case studies to visualize the
learned attention weights for finding risk factors of each
complication. The case studies include a positive patient from

(a) Positive patient from heart failure dataset

(b) Negative patient from hypertension dataset
Fig. 4: Visualization of 2 patient records (i.e., positive patient
from heart failure dataset and negative patient from hyper-
tension dataset) from breast cancer cohort. We only show
important visits in clinical records due to limited space.

heart failure dataset and a negative patient from hypertension
dataset. Their clinical records are illustrated in Figure 4.
The most important visits and features determined by their
associated attention weights from visit-view and feature-view
task-specific attention components are shown in Table VI. For
the positive patient (Figure 4a), the predicted probability for
heart failure onset is 0.7790. As shown in Table VI, the visit-
view attention focuses more on visits 3 and 9, which include
clinical codes 250.00 (Type II diabetes mellitus) and 278.00
(Obesity) and these codes are also determined as the most
important features by the feature-view attention. This result is
also consistent with clinical research in which type II diabetes
mellitus and obesity have been shown as the common risk fac-
tors for heart failure disease [30], [32], thereby demonstrating
the effectiveness of MuViTaNet in capturing the correlation
between risk factors and corresponding diseases. To further
investigate the robustness of our model, we remove important
visits and features indicating heart failure’s risk factors from
the patient record and predict the probability of heart failure
onset based on the modified records for capturing the changes
in model output. Figure 4a shows that the predicted score
decreases to 0.5284 and 0.4834 when removing visits (3 and
9) and codes (250.00, 278.00, and 796.2) respectively. Thus,
MuViTaNet is capable to focus on clinical-related visits and
features when predicting onset of complications.

Figure 4b shows a clinical record of the negative patient
who has type II diabetes mellitus but is also treated by M-
174 (Metformin). Tables VI indicates that MuViTaNet pays
more attention on M-174 and 250.00 when predicting onset
of hypertension. To verify whether our model can capture the
relationship between disease and treatment, we remove these
codes from the patient record as we did for the positive patient.
Figure 4b shows that the predicted probability increases from
0.2330 to 0.3380 when removing Metformin (diabetes medi-
cation) and decreases to 0.0373 when removing code 250.00
(diabetes). This result indicates that MuViTaNet considers



the impact of both disease and treatment on complication
development when making predictions.

V. CONCLUSIONS

Complication risk profiling is a crucial problem in health-
care prediction domain. In this paper, we propose a novel
multi-view multi-task network (MuViTaNet) that leverages
clinical data to profile multiple complications for patients. To
tackle the issues of existing methods, MuViTaNet considers
the record as the sequence of clinical visits and the set of
clinical features, and then employs the multi-view encoder to
effectively extract meaningful information from both feature-
view and visit-view of the patient record. Due to the related-
ness among different complications, we organize MuViTaNet
as the MTL architecture in which the shared representation
learned from the multi-view encoder is put into multiple task-
specific attention components to learn task-specific represen-
tations for patients in both labeled and unlabeled datasets.
Finally, the predicted probability for each complication onset
is generated from the task-specific representation by the cor-
responding decoder. We evaluate the prediction performance
of MuViTaNet on the insurance claim database which consists
of 6 cardiac complication datasets for breast cancer survivors.
The experimental results demonstrate that our proposed model
outperforms other state-of-the-art models for the complication
risk profiling task. More importantly, MuViTaNet provides
an efficient mechanism to interpret their prediction from
multiple perspectives, thereby helping clinicians to make better
decisions in real-world scenarios.

ACKNOWLEDGMENT

This work was funded in part by the National Science
Foundation under award number CBET-2037398.

REFERENCES

[1] C. Schairer, P. J. Mink, L. Carroll, and S. S. Devesa, “Probabilities of
death from breast cancer and other causes among female breast cancer
patients,” Journal of the National Cancer Institute, vol. 96, no. 17, 2004.

[2] J. L. Patnaik, T. Byers, C. DiGuiseppi, D. Dabelea, and T. D. Denberg,
“Cardiovascular disease competes with breast cancer as the leading cause
of death for older females diagnosed with breast cancer: a retrospective
cohort study,” Breast Cancer Research, vol. 13, no. 3, 2011.

[3] H. Abdel-Qadir, P. Thavendiranathan, K. Fung, E. Amir, P. C. Austin,
G. S. Anderson, and D. S. Lee, “Association of early-stage breast cancer
and subsequent chemotherapy with risk of atrial fibrillation,” JAMA
network open, vol. 2, no. 9, 2019.

[4] H. Strongman, S. Gadd, A. Matthews, K. E. Mansfield, S. Stanway, A. R.
Lyon, I. dos Santos-Silva, L. Smeeth, and K. Bhaskaran, “Medium and
long-term risks of specific cardiovascular diseases in survivors of 20
adult cancers: a population-based cohort study using multiple linked uk
electronic health records databases,” The Lancet, vol. 394, no. 10203,
2019.

[5] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole: Diagnosis
prediction in healthcare via attention-based bidirectional recurrent neural
networks,” in KDD’17, 2017.

[6] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou,
“Patient subtyping via time-aware lstm networks,” in KDD’17, 2017.

[7] J. Gao, C. Xiao, Y. Wang, W. Tang, L. M. Glass, and J. Sun, “Stagenet:
Stage-aware neural networks for health risk prediction,” in WWW’20,
2020.

[8] E. Choi, M. T. Bahadori, J. A. Kulas, A. Schuetz, W. F. Stewart, and
J. Sun, “Retain: An interpretable predictive model for healthcare using
reverse time attention mechanism,” in NIPS’16, 2016.

[9] H. Song, D. Rajan, J. Thiagarajan, and A. Spanias, “Attend and diagnose:
Clinical time series analysis using attention models,” in AAAI’18, vol. 32,
no. 1, 2018.

[10] T. Bai, S. Zhang, B. L. Egleston, and S. Vucetic, “Interpretable represen-
tation learning for healthcare via capturing disease progression through
time,” in KDD’18, 2018.

[11] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon,
J. Sun, and J. Choo, “Retainvis: Visual analytics with interpretable and
interactive recurrent neural networks on electronic medical records,”
IEEE transactions on visualization and computer graphics, vol. 25,
no. 1, 2018.

[12] L. Ma, C. Zhang, Y. Wang, W. Ruan, J. Wang, W. Tang, X. Ma,
X. Gao, and J. Gao, “Concare: Personalized clinical feature embedding
via capturing the healthcare context,” in AAAI’20, vol. 34, no. 01, 2020.

[13] J. Zhou, L. Yuan, J. Liu, and J. Ye, “A multi-task learning formulation
for predicting disease progression,” in KDD’11, 2011.

[14] B. Liu, Y. Li, Z. Sun, S. Ghosh, and K. Ng, “Early prediction of
diabetes complications from electronic health records: A multi-task
survival analysis approach,” in AAAI’18, vol. 32, no. 1, 2018.

[15] J. Wiens, J. Guttag, and E. Horvitz, “Patient risk stratification with
time-varying parameters: a multitask learning approach,” The Journal
of Machine Learning Research, vol. 17, no. 1, 2016.

[16] N. Nori, H. Kashima, K. Yamashita, H. Ikai, and Y. Imanaka, “Simul-
taneous modeling of multiple diseases for mortality prediction in acute
hospital care,” in KDD’15, 2015.

[17] N. Razavian, J. Marcus, and D. Sontag, “Multi-task prediction of disease
onsets from longitudinal laboratory tests,” in MLHC’16. PMLR, 2016.

[18] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose
with LSTM recurrent neural networks,” in ICLR’16, 2016.

[19] B. Liu, Y. Li, S. Ghosh, Z. Sun, K. Ng, and J. Hu, “Complication risk
profiling in diabetes care: A bayesian multi-task and feature relation-
ship learning approach,” IEEE Transactions on Knowledge and Data
Engineering, vol. 32, no. 7, 2019.

[20] B. Ljubic, A. A. Hai, M. Stanojevic, W. Diaz, D. Polimac, M. Pavlovski,
and Z. Obradovic, “Predicting complications of diabetes mellitus using
advanced machine learning algorithms,” Journal of the American Med-
ical Informatics Association, vol. 27, no. 9, 2020.

[21] A. Guo, K. W. Zhang, K. Reynolds, and R. E. Foraker, “Coronary heart
disease and mortality following a breast cancer diagnosis,” BMC medical
informatics and decision making, vol. 20, 2020.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS’17,
2017.

[23] D. Dong, H. Wu, W. He, D. Yu, and H. Wang, “Multi-task learning for
multiple language translation,” in ACL’15, 2015.

[24] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML’20. PMLR,
2020.

[25] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, 2001.
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