
MetaSys: A Practical Open-Source Metadata Management System to
Implement and Evaluate Cross-Layer Optimizations

Nandita Vijaykumar? Ataberk Olgun§ℵ Konstantinos Kanellopoulos§ Nisa Bostanci§ℵ

Hasan Hassan§ Mehrshad Lotfi‡ Phillip B. Gibbons† Onur Mutlu§

?University of Toronto †Carnegie Mellon University §ETH Zürich
ℵTOBB ETÜ ‡Max Plank Institute

Abstract — This paper introduces the first open-source FPGA-
based infrastructure, MetaSys, with a prototype in a RISC-
V core, to enable the rapid implementation and evaluation
of a wide range of cross-layer techniques in real hardware.
Hardware-software cooperative techniques are powerful ap-
proaches to improve the performance, quality of service, and
security of general-purpose processors. They are however typi-
cally challenging to rapidly implement and evaluate in real hard-
ware as they require full-stack changes to the hardware, OS, sys-
tem software, and instruction-set architecture (ISA).

MetaSys implements a rich hardware-software interface and
lightweight metadata support that can be used as a common
basis to rapidly implement and evaluate new cross-layer tech-
niques. We demonstrate MetaSys’s versatility and ease-of-use by
implementing and evaluating three cross-layer techniques for:
(i) prefetching for graph analytics; (ii) bounds checking in mem-
ory unsafe languages, and (iii) return address protection in stack
frames; each technique only requiring ~100 lines of Chisel code
over MetaSys.

Using MetaSys, we perform the first detailed experimental
study to quantify the performance overheads of using a single
metadata management system to enable multiple cross-layer op-
timizations in CPUs. We identify the key sources of bottlenecks
and system inefficiency of a general metadata management sys-
tem. We design MetaSys to minimize these inefficiencies and
provide increased versatility compared to previously-proposed
metadata systems. Using three use cases and a detailed char-
acterization, we demonstrate that a common metadata manage-
ment system can be used to efficiently support diverse cross-
layer techniques in CPUs.

1. Introduction
Hardware-software cooperative techniques offer a powerful

approach to improve the performance and efficiency of general-
purpose processors. These techniques involve communicating
key application information from the software to the architec-
ture to enable more powerful optimizations and resource man-
agement in hardware. Recent research proposes many such
cross-layer approaches for various purposes, e.g., performance,
quality of service (QoS), memory protection, programmability,
security. For example, Whirlpool [1] identifies and commu-
nicates regions of memory that have similar properties (i.e.,
data structures) in the program to the hardware, where it is
used to more intelligently place data in a non-uniform cache
architecture (NUCA) system. RADAR [2] and EvictMe [3]
communicate which data blocks will no longer be used in the
program, such that cache policies can evict them. These are
just a few examples in an increasingly large space of cross-
layer techniques proposed in the form of hints implemented
as new ISA instructions to aid cache replacement, prefetching,
etc. [2–14], program annotations/directives to convey program
semantics [1, 6, 15–17], or interfaces to communicate an ap-
plication’s QoS requirements for efficient partitioning and
prioritization of shared hardware resources [18, 19].

While cross-layer approaches have been demonstrated to

be highly effective, such proposals are challenging to evaluate
on real hardware as they require cross-layer changes to the
hardware, operating system (OS), the instruction-set architec-
ture (ISA), and application software. Existing open-source
infrastructure for implementing cross-layer techniques in real
hardware include PARD [18, 19] for QoS and Cheri [20] for
fine-grained memory protection and security. Unfortunately,
these open-source infrastructures are not designed to provide
key features required for performance optimizations: (i) rich
dynamic hardware-software interfaces, (ii) low-overhead meta-
data management, and (iii) interfaces to numerous hardware
components such as prefetchers, caches, etc.

In this work, we introduce MetaSys (Metadata Manage-
ment System for Cross-Layer Performance Optimization), a
full-system FPGA-based infrastructure, with a prototype in
the Rocket RISC-V core [21], to enable rapid implementa-
tion and evaluation of diverse cross-layer techniques in real
hardware. MetaSys comprises three key components: (1) A
rich hardware-software interface to communicate a general
and extensible set of application information (metadata) to
the hardware architecture at runtime. The metadata that can
be communicated with this interface include memory access
pattern information for prefetching, data reuse information
for cache management, address bounds for hardware bounds
checking, etc. The interface is implemented as new instruc-
tions in the RISC-V ISA and is wrapped with easy-to-use
software library abstractions. (2) Metadata management
support in the OS and hardware to save the communicated
metadata. Hardware components performing optimizations
can then efficiently query for the metadata. We use a tagged
memory-based design for metadata management where each
memory address is tagged with an ID. This ID points to meta-
data that describes the data contained in the memory address
location. (3) Modularized components to quickly implement
various cross-layer optimizations with interfaces to the meta-
data management support, OS, core, and memory system.

Compared to the closest prior-work, XMem [22], MetaSys
uses a similar tagged memory-based metadata management
system. MetaSys however offers two key benefits over XMem:
First, MetaSys offers a richer interface that communicates a
flexible amount of metadata at runtime, rather than being lim-
ited to statically available program information. This enables
a wider set of use cases and more powerful cross-layer tech-
niques (as explained in §3.8). Second, MetaSys has a more
optimized system design that is designed to be lightweight
in terms of the hardware complexity and changes to the ISA,
without sacrificing versatility (§3.8). MetaSys incurs only a
small area overhead of 0.02% (including 17KB of additional
SRAM), 0.2% memory overhead in DRAM, and adds only 8
new instructions to the RISC-V ISA. Furthermore, XMem is
not an open-source infrastructure and was not implemented
nor evaluated in real hardware with full-system support.

ar
X

iv
:2

10
5.

08
12

3v
2

 [c
s.A

R
]

19
 M

ay
 2

02
1

Use cases. Cross-layer techniques that can be implemented
with MetaSys include performance optimizations such as
cache management, prefetching, memory scheduling, data
compression, and data placement; cross-layer techniques for
QoS; and lightweight techniques for memory protection (see
§7). To demonstrate the versatility and ease-of-use of MetaSys
in implementing new cross-layer techniques, we implement
and evaluate three hardware-software cooperative techniques:
(i) prefetching for graph analytics applications; (ii) bounds
checking in memory unsafe languages, and (iii) return address
protection in stack frames. These techniques were quick to
implement with MetaSys, each only requiring an additional
~100 lines of Chisel [23] code. In comparison, the hardware
components of MetaSys required ~1800 lines of code.

Characterizing a general metadata management sys-
tem. Using MetaSys, we perform the first detailed experi-
mental characterization and limit study of the performance
overheads of using a single common metadata management
system to enable multiple diverse cross-layer techniques in a
general-purpose processor. We make the following new obser-
vations from our characterization across 24 applications and 4
microbenchmarks that were designed to stress MetaSys.

First, the performance overheads from the cross-layer inter-
face and metadata system itself are on average very low (2.7%
on average, up to 27% for the most intensive microbenchmark).
Second, there is no performance loss from supporting multi-
ple techniques that simultaneously query the shared metadata
system. This indicates that the system can be designed to be a
scalable substrate. Third, the most critical factor in determin-
ing the performance overhead is the fundamental spatial and
temporal locality in the accesses to the metadata itself. This
determines the effectiveness of the metadata caches and the
additional memory accesses to retrieve metadata. Finally, an
important previously unidentified factor in performance over-
head is the additional TLB misses from the required address
translation when metadata is retrieved from memory.

Conclusions from characterization. From our detailed
characterization and implemented use cases on real hardware,
we make the following conclusions: Using a single general
metadata management system is a promising low-overhead
approach to implement multiple cross-layer techniques in fu-
ture general-purpose processors. The significance of using a
single framework is in enabling a wide range of cross-layer
techniques with a single change to the hardware-software
interface [18, 22] and consolidating common metadata man-
agement support; thus, making the adoption of new cross-layer
techniques in future processors significantly easier. We demon-
strate that a common framework can simultaneously and scal-
ably support multiple optimizations. For our implemented
use cases, we observe low performance overheads from using
the general MetaSys system: 0.2% for prefetching, 14% for
bounds checking, and 1.2% for return address protection.

This work makes the following major contributions.
• We introduce MetaSys, the first full-system open-source
FPGA-based infrastructure, with a prototype in a RISC-V
core, of a lightweight metadata management system with a
rich hardware-software interface that can be used to implement
a diverse set of cross-layer techniques. MetaSys provides
the required support in the hardware, OS, and the ISA to

enable quick implementation and evaluation of new hardware-
software cooperative techniques in real hardware.
• MetaSys comprises a new expressive hardware-software
interface with a streamlined system design that enables a richer
set of cross-layer optimizations than prior work.
• We present the first detailed experimental characterization
of the performance and area overheads of a general hardware-
software interface and lightweight metadata management sys-
tem designed to enable multiple and diverse cross-layer perfor-
mance optimizations. We identify key sources of inefficiencies
and bottlenecks of a general metadata system on real hardware,
and we demonstrate its effectiveness as a common substrate
for enabling cross-layer techniques in CPUs.
• We demonstrate the versatility and ease-of-use of the Meta-
Sys infrastructure by implementing and evaluating three
hardware-software cooperative techniques: (i) prefetching for
graph analytics applications; (ii) efficient bounds checking for
memory-unsafe languages; and (iii) return address protection
for stack frames. We highlight other use cases that can be
implemented with MetaSys.
2. Background and Related Work

Hardware-software cooperative techniques in CPUs.
Cross-layer performance optimizations communicate addi-
tional information across the application-system boundary
and we refer to this information as metadata. Metadata that is
typically useful for performance optimization include program
properties such as access patterns, read-write characteristics,
data locality/reuse, data types/layouts, data "hotness", and
working set size. This metadata enables more intelligent hard-
ware/system optimizations such as cache management, data
placement, thread scheduling, memory scheduling, data com-
pression, and approximation [22, 24]. For QoS optimizations,
metadata includes application priorities and prioritization rules
for allocation of resources such as memory bandwidth and
cache space [18, 19]. Memory safety optimizations may com-
municate base/bounds addresses of data structures [25, 26].

A general framework is a promising approach as it en-
ables many cross-layer techniques with a single change to
the hardware-software interface and enables reusing the meta-
data management support across multiple optimizations. Such
systems were recently proposed for performance [22, 24],
memory protection and security [20, 25], and QoS [18, 19].

A general framework to support a wide range of cross-layer
optimizations—specifically for performance—requires: (i) a
rich and dynamic hardware-software interface to communi-
cate a diverse set of metadata at runtime and (ii) lightweight
and low-overhead metadata management [22]. Even small
overheads imposed as a result of the system’s generality may
overshadow the performance benefits of a cross-layer tech-
nique. General metadata systems may also impose significant
complexity, performance, and power overheads to the proces-
sor. While prior work has demonstrated the significant benefits
of cross-layer approaches, no previous work has characterized
the efficiency and capacity limits of a general metadata system
for cross-layer optimizations in CPUs.

Tagged architectures. MetaSys is inspired by the meta-
data management and interfaces proposed in XMem [22] and
the large body of work on tagged memory [25, 27–30] and

2

capability-based systems [20, 31–33]. We qualitatively com-
pare against the closest work, XMem, in §3.8 and quantita-
tively in §5. Unlike all above works, our goal is to provide an
open-source framework to implement and evaluate cross-layer
approaches in real hardware and to perform a characterization
of such metadata systems for performance optimizations.

Infrastructure for evaluating cross-layer techniques.
Evaluating the overheads and feasibility of a newly-proposed
cross-layer technique is non-trivial. Fully characterizing the
performance and area overheads either with a full-system
cycle-accurate simulator or an FPGA implementation requires
implementing: (i) Hardware support to implement the mecha-
nism; (ii) OS support for OS-based cross-layer optimizations
and to characterize the context-switch and system overheads
of saving and handling a process’ metadata; and (iii) Com-
piler support and ISA modifications to add and recognize new
instructions to communicate metadata.

Recent works propose general systems that are designed to
enable cross-layer techniques for QoS (PARD [18, 19]) or fine-
grained memory protection and security (Cheri [20]). PARD
enables tagging of components and applications with IDs that
are propagated with memory requests and enforce QoS require-
ments in hardware. Cheri [20] is a capability-based system
that provides hardware support and ISA extensions to enable
fine-grained memory protection. Neither system supports the
(i) communication of diverse metadata at runtime, (ii) flexible
granularity tagging of memory to enable efficient metadata
lookups from multiple components, or (iii) interfaces to nu-
merous hardware components such as the prefetcher, caches,
etc., needed for performance optimization.

Our Goal. Our goal in this work is twofold. First, we aim to
develop an efficient and flexible open-source framework that
enables rapid implementation of new cross-layer techniques
to evaluate the associated overheads performance, area, and
power overheads, and thus their feasibility, in real hardware.

Second, we aim to perform the first detailed limit study
to characterize and experimentally quantify the overheads
associated with general metadata systems to determine their
practicality for performance optimization in future CPUs.
3. MetaSys: Enabling and evaluating cross-

layer optimizations
To this end, we develop MetaSys (Metadata Management

System for Cross-Layer Performance Optimization), an open-
source full-system FPGA-based infrastructure to implement
and evaluate new cross-layer techniques in real hardware.
MetaSys includes: (i) a rich hardware-software interface to
dynamically communicate a flexible amount of metadata at
runtime from the application to the hardware, using new RISC-
V instructions; (ii) a tagged memory-based [27–30] implemen-
tation of metadata management in the system and OS; and
(iii) flexible modules to add new hardware optimizations with
interfaces to the metadata, core, memory, and OS. We build a
prototype of MetaSys in the RISC-V Rocket [21] core.

We choose an FGPA implementation as opposed to a full-
system simulator as: (i) This enables focus on feasibility as all
components need to be fully implemented (e.g., ports, wires,
buffers) and its impact on area, cycle time, power, and scala-
bility is quickly visible. (ii) FPGAs are much faster, running

full application simulations in a few minutes/hours as opposed
to many days on a full-system simulator, making it a better
fit for quick experimentation. (iii) The RTL generated can be
used for more accurate area and power calculation.

Fig. 1 depicts an overview of the major hardware compo-
nents in MetaSys and their operation: The metadata lookup
unit ½, the mapping management unit ¶, and the optimization
component ·.

TLB

Physical
Address ID

Metadata
Mapping Cache

Mapping Management Unit 1

Metadata
Mapping
Table 3

4

Private Metadata
Table

Trigger

Optimization
Client 2

5

8
Metadata

Lookup Unit

Create(ID,

Component,

Properties)

Map(Virtual address,

Mapping range)
6

7

9

10

M
em

o
ry

MMC miss

Figure 1: MetaSys hardware components and operation.

3.1. Tagged memory-based metadata management
Similar to prior systems for taint-tracking, security, and

performance optimization, MetaSys implements tagged mem-
ory-based [27–30] metadata management. MetaSys associates
metadata with memory address ranges of any size by tagging
each memory address with an 8-bit (configurable) ID or tag.
Each tag is a unique pointer to metadata that describes the
data at the memory address. Hardware optimizations (e.g.,
in the cache, memory controller, or core) can query for the
tag associated with any memory address and the metadata
associated with the tag.

The mapping between each memory address and the cor-
responding ID is saved in a table in memory referred to as
Metadata Mapping Table (MMT): ¸ in Fig. 1. This table is
allocated by the OS for each process and is saved in mem-
ory. In MetaSys (similar to XMem [22] and Cheri [20]), we
tag physical addresses. As a result, any virtual address has
to be translated before indexing the MMT to retrieve the tag
ID. To enable fast retrieval of IDs, we implement a cache for
the MMT in hardware that stores frequently accessed map-
pings, referred to as the Metadata Mapping Cache (MMC) ¹.
MMC misses lead to memory accesses to retrieve mappings
from the MMT in memory. MetaSys can be configured to
tag memory at flexible granularities. In §9.1, we evaluate the
performance impact of the tagging granularity. The size of the
MMT depends on the tagging granularity. For a 512B map-
ping granularity, the MMT requires 0.2% of physical memory
(16MB in a 8GB system). The MMC holds 128 entries, where
each entry stores a physical-address-to-tag mapping, and is
608B in size (8 bit entry and 30 bit tag).

The actual metadata associated with any ID is saved in
special SRAM caches that are private to each hardware com-
ponent or optimization. For example, the prefetcher would
separately save access pattern information, while a hardware
bounds checker would privately save bounds information. We
refer to these stores as Private Metadata Tables (PMTs) º.
The PMTs are saved near each component (private to each
component) and are loaded/updated by MetaSys. The meta-

3

data (e.g., locality/”hotness”) is encoded such that it can be
directly interpreted by the component, e.g., prefetcher.
3.2. The Hardware-Software Interface

Communicating application information with MetaSys re-
quires (i) associating memory address ranges with a tag or
ID of configurable bit width (8 bits by default) and (ii) as-
sociating each ID with the relevant metadata. The metadata
could include program properties that describe the memory
range, such as data locality/reuse, access patterns, read-write
characteristics, data "hotness", and data types/layouts. We use
two operators (described below) that can be called in programs
to dynamically communicate metadata.

To associate memory address ranges with an ID, we provide
the MAP/UNMAP interface » (similar to XMem [22]). MAP and
UNMAP are implemented as new RISC-V instructions that are
interpreted by the MetaSys hardware support to map a range of
memory addresses (from a given virtual address up to a certain
length) to the provided ID. These mappings are saved by the
hardware in the MMT. We also implement 2D and 3D versions
of MAP to efficiently map 2/3-dimensional address ranges in a
multi-dimensional data structure with a single instruction.

To associate each ID with metadata, we provide the CREATE
interface. CREATE¼ takes 3 inputs from the application: the tag
ID, the 8-bit ID for the hardware component (i.e., prefetcher,
bounds checker, etc., called Module ID), and 512B of meta-
data. CREATE directly populates the PMT of the appropriate
hardware component with the 512 bytes (or less) of metadata.
All CREATE and MAP instructions are associated with the next
load/store instruction in program order to avoid inaccuracies
due to out-of-order execution. In other words, an implicit
dependence is created in hardware between these instructions
and the next load/store, and they are committed together.

Table 1 lists the new instructions along with their arguments.
Table 1: MetaSys instructions.

MetaSys Operator MetaSys ISA Instructions

CREATE CREATE ModuleID, TagID, Metadata

(UN)MAP
(UN)MAP TagID, start_addr, size
(UN)MAP2D TagID, start_addr, lenX, sizeX, sizeY
(UN)MAP3D TagID, start_addr, lenX, lenY, sizeX, sizeY, sizeZ ;

3.3. Metadata Lookup ½

Each optimization component is triggered by a hardware
event ¾ (e.g., a cache miss). It then retrieves the physical
address from the TLB ¿ and queries the MMC with the physi-
cal address to retrieve the associated tag ID. On a miss in the
MMC, the mapping is retrieved from the MMT in memory.
The optimization component uses the retrieved tag ID to ob-
tain the appropriate metadata from the PMT. The optimization
module is designed to flexibly implement a wide range of use
cases and can be designed based on the optimization in ques-
tion. This module has the required interfaces to the prefetcher,
caches, memory controller, and TLBs to make this easier.
3.4. Operating System Support

We add OS support for metadata management in the RISC-
V proxy kernel [34], which can be booted on our Rocket
RISC-V prototype. This includes support to manage the MMT
in memory and flush the PMTs during a context switch. If

the OS changes the virtual to physical address mapping of a
page, then to ensure consistency of the metadata, the MMT
is updated by the OS to reflect the correct physical-address-
to-tag-ID mapping and the corresponding MMC entries are
invalidated. If the application changes metadata before a vir-
tual address has a page mapping, the OS is forced to allocate
a physical page to it. In addition, we also provide support
to implement optimizations performed by the OS or with OS
cooperation. MetaSys enables trapping into the OS to perform
customized checks or optimizations (e.g., protection checks
or altering virtual-to-physical mappings) based on specific
hardware trigger events. We describe one such use case in §6.
3.5. Coherence/Consistency of Metadata in Multicore

MetaSys can be flexibly extended to multicore processors.
Metadata is maintained at a process-level, therefore, threads
within the same process cannot have different metadata for
the same data structure. The MMC is a per-core structure,
while the Private Metadata Tables (PMTs) are per-component
structures (e.g, at the memory controller, LLC, prefetcher).
The two dynamic operators (CREATE and MAP) may cause chal-
lenges in coherence and consistency of metadata in multicore
systems. CREATE directly updates metadata associated with the
per-process tag ID, which is saved at the per-component PMTs.
The PMTs are shared by all cores when the optimization com-
ponent is also shared (and thus any updates by CREATE are
automatically coherent). The PMTs for private components
(e.g., L1 cache) are not coherent and can only be updated by
the corresponding thread. MAP updates the address to tag ID
mapping in the MMC, which is private to each core. To ensure
coherence of the MMC mappings, a MAP update invalidates the
corresponding MMC entry (if present) in other MMCs. If the
use case requires consistency of the metadata, i.e., ordering be-
tween a CREATE/MAP instruction and when it is visible to other
cores, barriers and fence instructions are used to enforce any
required ordering between threads for updates to metadata.
3.6. Timing Sensitivity of Metadata

MetaSys supports three modes: (i) Force stall, where the in-
struction triggering a metadata lookup cannot commit until the
optimization completes (e.g., for security use cases); (ii) No
stall, where metadata lookups do not stall the core but are
always resolved (e.g., for page placement, cache replacement),
and (iii) Best effort, where lookups may be dropped to mini-
mize performance overheads (e.g., for prefetcher training).

Library Call Description

CREATE(ModuleID, TagID, *meta) ModuleID -> PMT[TagID] = *metadata

MAP(start*, end*, TagID) MMT[start...end] = TagID

UNMAP(start*, end*) MMT[start...end] = 0

Table 2: The MetaSys software library.
3.7. Software Library

We develop a software library which can be included in user
programs to facilitate the use of MetaSys primitives CREATE
and MAP (summarized in Table 2). The library exposes three
functions: (i) CREATE populates an entry indexed by the tag ID
(TagID) in the PMT of a hardware optimization module (Mod-
uleID) with the corresponding metadata; (ii) MAP updates the
MMT by assigning tag IDs to memory addresses of the range

4

(start, end); (iii) UNMAP resets the tag IDs of the corresponding
address range in the MMT.
3.8. Comparison to the XMem [22] framework

MetaSys implements a tagged-memory-based system with
a metadata cache similar to XMem [22]. MetaSys however
has three major benefits. First, MetaSys enables communi-
cating metadata at runtime using a more powerful CREATE
operator that is implemented as a new instruction. In XMem,
metadata is communicated only statically at compile time
(CREATE is hence a compiler pragma). MetaSys thus enables a
wider set of optimizations including in memory safety, protec-
tion, prefetching, etc., and enables communicating metadata
that is input-data dependent and metadata that can only be
known at runtime (e.g., access patterns, data "hotness", etc.).
MetaSys was designed to efficiently handle these dynamic
metadata updates. Second, the dynamic and more expressive
CREATE operator obviates the need for additional interfaces
(ACTIVATE/DEACTIVATE) to track the validity of statically com-
municated metadata. This enables a more streamlined meta-
data system in MetaSys with fewer tables and lookups. Third,
MetaSys allows the application programmer to directly select
which cross-layer optimization to enable/disable and com-
municate metadata to, via the CREATE operator. XMem, on
the other hand, does not allow control of hardware optimiza-
tions from the application. Table 3 summarizes the operators
and compares to the corresponding operators in XMem. Of
the three evaluated use cases, only return address protection
(§6.2) can be implemented with XMem.
Table 3: Comparison between MetaSys and XMem’s interfaces.

Operator XMem [22] MetaSys

CREATE
Compiler pragma to commu-
nicate static metadata at load
time.

Selects a hardware optimization,
dynamically associates metadata
with an ID, and communicates
both to hardware at runtime (imple-
mented as new instructions).

(UN)MAP
Associate memory ranges
with tag IDs (implemented as
new instructions).

Same semantics and implementa-
tion as XMem.

(DE)ACTIVATE

Enable/disable optimizations
associated with a tag ID (im-
plemented as new instruc-
tions).

Removed as the same functionality
can now be done with CREATE.

3.9. FPGA-based infrastructure
We build a full system prototype of MetaSys on an FPGA

with the Rocket [21] RISC-V core and add the necessary sup-
port in the compiler, libraries, OS, ISA, and hardware. The
modularized MetaSys components can also be ported to other
RISC-V cores. We used the RoCC accelerator [21] in the
Rocket chip to implement the metadata management system.
The RoCC is a customizable module that enables interfacing
with the core and memory. The hardware support implemented
in the ROCC comprises (i) the control logic to handle MAPs
and CREATEs, (ii) control logic to perform metadata lookups
by components that implement optimizations, and (iii) the
SRAM metadata caches (MMC and PMTs). We extended
the RISC-V ISA with 8 instructions (6 for MAP/CREATE and 2
for OS operations). To implement all the hardware modules
of MetaSys, we modified/added 1781 lines of Chisel code in
the Rocket Chip. As we demonstrate later, since the Meta-

Sys hardware modules can be flexibly reused across multiple
hardware-software optimizations, the techniques in our use
cases only required 87-103 additional lines of Chisel code.
3.10. Implementing a hardware-software cooperative

technique with MetaSys
To implement a new hardware technique with the baseline

MetaSys code, we provide a flexible module (¶ in Fig. 2)
with a PMT and interfaces to the metadata lookup unit, to
the core (to receive triggers), and templated interfaces to the
cache controller, memory controller, etc. The interface to the
lookup unit · provides dynamic access to the metadata com-
municated by the CREATE and MAP operators. The interfaces to
the core ¸ and the memory system ¹ can be used as trigger
events for optimization and lookups (e.g., a cache miss). The
different components within the MetaSys logic itself (i.e., the
metadata caches, logic to access the Metadata Mapping Table
in memory, and the lookup logic) can be flexibly reconfigured.
3.11. Dynamically-typed or managed languages

MetaSys relies heavily on function calls/libraries that ab-
stract away low level details that call the MetaSys instructions
even in C/C++. With managed and dynamically-typed lan-
guages, the additional metadata associated with data struc-
tures/objects would be provided by the user with additional
class/object member functions. The metadata could also be
directly embedded within object/class definitions (e.g., a list
or map in Python would by definition have certain access prop-
erties). Other properties (e.g., data types) would be provided
by the interpreter (in the case of dynamically-typed languages)
and the mapping/remapping calls to memory addresses would
be handled by the runtime during memory (de)allocation.

Rocket
Core

Optimization
Component

MetaSys
Lookup Unit

L1 Cache

1

2

3 4

Figure 2: MetaSys Optimization Module.
4. Methodology

Baseline system. We use the in-order Rocket core [21] as
the baseline CPU and conduct our experiments on the Zed-
Board Zynq-7000 [35] FPGA board. Table 4 lists the parame-
ters of the core and memory system. 1

CPU: 25 MHz; in-order Rocket core [21]; TLB 16 entries DTLB; LRU policy;

L1 Data + Inst. Cache: 16 KB, 4-way; 4-cycle; 64 B line; LRU policy; MSHR size: 2

MMC: NMRU Policy; 128 entries; 38bits/entry; Tagging Granularity: 512B;

Private Metadata Table: 256 entries; 64B/entry; DRAM: 533MHz; Vdd : 1.5V;

Workloads: Ligra [36]: PageRank(PR), Shortest Path (SSSP), Collaborative
Filtering (CF) Teenage Follower (TF), Triangle Counting (TC), Breadth-First
Search (BFS) Radius Estimation (Radii), Connected Components (CC);
Polybench [37]; µBenchmarks

Table 4: Parameters of evaluated system.

1Since DRAM is disproportionately faster than the CPU clock rate possible
on FPGAs, we added logic in the memory controller to proportionately scale
the rate at which memory requests are issued. The resulting average memory
latency and bandwidth in core cycles were validated with microbenchmarks
against a real CPU.

5

5. Use Case 1: HW-SW Cooperative Prefetching
Hardware-software cooperative prefetching techniques have

been widely proposed to handle challenging access patterns
such as in graph processing [38–45], pointer-chasing [46–49],
linear algebra computation [50] and other applications [51–
54]. In this section, we demonstrate how MetaSys can be
flexibly used to implement and evaluate such prefetching tech-
niques. We design a new prefetcher for graph applications
that leverages knowledge of the semantics of graph data struc-
tures using MetaSys. Graph applications typically involve
irregular pointer-chasing-based memory access patterns. The
data-dependent non-sequential accesses in these works are
challenging for traditional heuristic-based hardware prefetch-
ers, e.g., stride [55] and stream [56], or even sophisticated
prefetchers that rely on repeated patterns [57–59].

To implement the hardware support for our prefetcher, we
only needed to add 87 lines of Chisel code to the baseline
MetaSys codebase, all within the provided module for new
optimization components.
5.1 Hardware-Software Cooperative Prefetching for
Graph Analytics with MetaSys. Vertex-centric graph an-
alytics typically involves first traversing a work list containing
vertices to be visited (¶ in Fig. 3). For each vertex, the vertex
list · is indexed to retrieve the neighboring vertex IDs from
the edge list ¸. To perform computation on the graph, the
application then operates on the data properties of these neigh-
boring vertices (retrieved from the property list ¹). Graph
processing thus involves a series of memory accesses that
depend on the contents of the work, vertex and edge lists.

Work List

Vertex List

Edge List

Property

0 0 3 9 10 15 21 33

0 1 2 3 4 5 6 7

.. .. 21 35 67 12 3 65 99 14

21 35 67

11

22

33

44

Figure 3: Data-dependent accesses in graph processing.
In this use case, we design a prefetcher that can interpret the

contents of each of the above data structures and appropriately
compute the next data-dependent memory address to prefetch.
To capture the required application information for each data
structure, we use MetaSys’s CREATE interface to communicate
the following metadata (i) base address of the data structure
that is indexed using the current data structure’s contents (64
bits); (ii) base address of the current data structure (64 bits);
(iii) data type (32 bits) and size (32 bits) to determine the
index of the next access; and (iv) the prefetching stride (6 bits).
MAP then associates the memory address range of each data
structure with the appropriate tag.

We then design a hardware prefetcher that: (i) snoops every
memory request from the core and retrieves the associated tag
ID using MetaSys; (ii) queries the Private Metadata Table to
retrieve the communicated metadata (listed above); and (iii) di-
rectly interprets the metadata to compute the data-dependent
memory address of the data that is indexed by the current
memory address content. In Fig. 3, when the prefetcher sees
a memory request to the work list at index 0, it looks ahead

(depending on the prefetching stride) to retrieve the contents
of the work list at index 1. At this point, it also prefetches
the contents of the vertex, edge, and property lists based on
the computed index at each level. In graph applications where
the work list is ordered, the prefetcher is configured to simply
stream through the contents of the vertex and edge lists to
prefetch the data dependent memory locations in the property
list. The prefetcher can hence be flexibly programmed based
on the specific properties associated with any data structure,
algorithm, as well as the desired aggressiveness of prefetcher.
5.2 Evaluation and Methodology. We evaluate the MetaSys-
based prefetcher using 8 graph workloads from the Ligra
framework [36] using the Rocket-based prototype of MetaSys
with the system parameters listed in Table 4. We evaluate
three configurations: (i) the baseline system with a hardware
stride prefetcher [60]; (ii) GraphPref, a customized hardware
prefetcher that implements the same idea described above with-
out the generalized MetaSys support; and (iii) the MetaSys-
based graph prefetcher. Fig. 4 depicts the corresponding
speedups, normalized to the baseline. We observe that the
MetaSys graph prefetcher improves performance by 11.2% on
average (up to 14.3%) over the baseline by accurately prefetch-
ing data-dependent memory accesses. It also significantly
outperforms the stride prefetcher which is unable to capture
the irregular access patterns in graph workloads. Compared
to a similar prefetcher implemented as customized hardware,
GraphPref, the MetaSys-based prefetcher performs almost as
well: within 0.2% on average (only up to 0.8% for BFS).

PR SSSP TF CF TC Radii BFS CC AVG
0.8

1.0

1.2

Sp
ee

d
up

Stride GraphPref MetaSys

Figure 4: Performance speedup with the MetaSys prefetcher.

We conclude that MetaSys can be used to flexibly imple-
ment and evaluate hardware-software cooperative techniques
for prefetching by leveraging MetaSys’s metadata support and
interfaces, incurring only small overheads from MetaSys’s
general metadata management.
6. Use Case 2: Memory Safety and Protection

We describe two hardware-software cooperative mecha-
nisms for memory safety/protection that can be directly imple-
mented with MetaSys. To implement both use cases, we only
add 103 lines of Chisel code to the baseline MetaSys code, all
within the provided module for new optimization components.
6.1. Hardware Bounds Checking

Unmanaged languages such as C/C++ provide great flex-
ibility in memory management but an important challenge
with these languages is memory safety. The pointer casting
and pointer arithmetic supported by these languages allow
buffer overflows and potentially hazardous writes to arbitrary
memory locations. Prior work has demonstrated a range of
software approaches [61–75] to increase memory safety in
the form of static or dynamic checks, such as CCured [63],
Cyclone [67], and Softbound [69]. These approaches are how-
ever known to incur significant runtime overheads in perform-

6

ing numerous checks in software [76]. Hardware-based ap-
proaches offer a promising opportunity to alleviate these over-
heads. Prior work [20, 26, 77–82] including HardBound [26],
ShaktiT [82] and Cheri [20] investigate enabling hardware-
software cooperative bounds checking. These approaches
however require architectures that are entirely specialized for
bounds checking [26, 77, 82] or more heavyweight metadata
management systems tailored for memory security and protec-
tion [20, 78–81]. In this section, we demonstrate how MetaSys
can be used to implement hardware-based bounds checking in
a lightweight and general metadata system.
6.1.1. Implementing bounds checking with MetaSys. To
implement bounds checking with MetaSys, we use the MAP
operator to tag each data structure to be protected with a
unique ID. For dynamically allocated nodes (which may not be
contiguously located), each node is tagged with the same ID as
other nodes in the same data structure. Every memory access
in the program then needs to then be verified in hardware to
be going to the correct data structure. To do this, we add the
CREATE operator before every load or store to a protected data
structure. The CREATE operator in this case only communicates
the tag ID of the desired data structure. These instructions are
added using software libraries for pointers. In hardware, we
simply check whether there is a match between CREATE’s tag
ID and the ID of the load/store address that follows the CREATE
instruction. To perform this check, we perform a lookup to
the Metadata Management Cache to retrieve the associated
tag ID. On a mismatch, using its interface to the OS, MetaSys
terminates the program.
6.1.2. Methodology and Evaluation. We evaluate MetaSys-
based bounds checking on our prototype with the parameters
listed in Table 4 (tagging granularity is set to 64B). We use the
Olden [83] benchmarks (commonly used for bounds checking
and stack protection research [20, 26, 69, 75, 84] due to its
focus on pointer-based data structures) for both use cases.

We evaluate 3 designs: (i) the Baseline system without Meta-
Sys; (ii) software bounds checking, based on prior work [61];
and (iii) MetaSys-based bounds checking. Fig. 5 depicts the
execution time normalized to the Baseline. We observe that
on average the software bounds checking design incurs a sig-
nificantly high overhead of 36% (up to 82%). This overhead
comes from executing more instructions to check bounds (64%
on average). In contrast, MetaSys-based bounds checking only
incurs a 14% overhead on average (up to 40%). MetaSys only
requires a 32% increase in the number of executed instructions.
Workloads such as em3d, power, and mst, are highly compute
intensive and hence do not incur significant overheads with
either bounds checking technique.

We conclude that MetaSys provides a lightweight substrate
to implement and evaluate hardware-software cooperative
bounds checking. MetaSys can be flexibly extended to imple-
ment more sophisticated memory protection techniques.
6.2. Return Address Protection

The program’s call stack is a known source of many se-
curity vulnerabilities in low-level, memory-unsafe languages
such as C/C++. For example, the control flow in the program
can be hijacked by overwriting the return addresses saved
in the stack. Existing defenses such as ExecShield [85] and

bis
ort em

3d
hea

lth mst

pe
rim

ete
r
po

we
r

tre
ead

d tsp AV
G

1.0

1.5

2.0

N
o
rm

al
iz
ed

 E
xe

cu
ti
o
n
T
im

e

SW Bounds Check HW Bounds Check

Figure 5: Performance overheads with bounds checking.
stack canaries [86] do not protect against sophisticated attack
techniques [87–89]. Stack canary protection is a software
check that involves writing an additional randomly gener-
ated value in the stack and a duplicate is saved separately in
memory. This value in the stack is checked against the du-
plicate to detect stack overwriting by the canary code before
returning to the saved return address. Protecting return ad-
dresses with more powerful software checks [90–94] incurs
significant runtime overheads and are hence difficult to use in
practice [76, 95]. Prior work has proposed a range of hardware
techniques [20, 25, 96–99] to enable return address protection
more efficiently. These approaches however require dedicated
hardware support for stack protection (e.g., RAGuard [96],
PAC-it-up [97], CET [99]) or more heavy-weight metadata
systems for memory protection (e.g., SDMP [98], Cheri [20],
PUMP [25]). In this section, we implement and evaluate re-
turn address protection with MetaSys’s lightweight metadata
support and cross-layer interfaces.
6.2.1. Return address protection with MetaSys. To enable
return address protection with MetaSys, we first tag each
return address using MAP as id="1". In hardware, we add
support to simply disallow writes to any address tagged with
id="1". The application can then unmap the return address
when it is retrieved again from the stack. This ensures that
once a memory location within the stack has a return address
saved, it cannot be overwritten via attacks that hijack control
flow such as buffer overflow attacks. To check in hardware
whether any memory address is tagged as "1" (i.e., contains
a return address), we simply issue a lookup to the Metadata
Mapping Cache. Any store to a tagged memory address causes
the hardware to invoke the OS to terminate the program.
6.2.2. Evaluation and Methodology. We evaluate MetaSys-
based return address protection using our FPGA prototype
with system parameters listed in Table 4 (the tagging granu-
larity set to 64B). We evaluate 3 designs using the Olden [83]
benchmarks: (i) the Baseline system with no overheads; (ii) ca-
nary [86] stack protection in the GCC RISC-V compiler; and
(iii) MetaSys-based return address protection.

Fig. 6 depicts the execution time normalized to the Baseline.
We observe that the canary approach incurs a performance
overhead of 5.5% (up to 20%), while MetaSys incurs a dimin-
ished overhead of 1.2% (up to 6.2%). The major overheads
for the stack canaries come from executing extra instructions
(5.5% on average) to perform software checks. The overheads
for MetaSys are low due to the high MMC hit rate which leads
to few additional memory accesses. In addition to providing
less overhead, MetaSys-based return address protection can
also protect against more sophisticated attacks that exploit
write-what-where [100] gadgets and, unlike canaries, is im-
mune to information leaks [101]. Protecting additional mem-
ory locations beyond return addresses (e.g., function pointers)
with software approaches would incur even higher instruc-

7

bis
ort em

3d
hea
lth ms

t

pe
rim
ete
r
po
we
r

tre
ead
d tsp AV

G

1.00

1.25

N
o
rm
al
iz
ed

 E
xe

cu
ti
o
n
T
im

e

Canaries Return Address Protection

Figure 6: Performance overheads for return address protection.
tion overhead. However, the above MetaSys overheads would
largely remain the same as it already involves checking each
store.

We conclude that MetaSys enables easy implementation
and evaluation of lightweight memory protection mechanisms
using the provided interfaces and metadata management with
low performance overhead.
7. Other Use Cases of MetaSys

We briefly discuss other cross-layer techniques that can
be implemented with MetaSys (but would be challenging to
implement with XMem).

Performance optimization techniques. MetaSys provides
a low-overhead framework and a rich cross-layer interface to
implement a diverse set of performance optimizations includ-
ing cache management, prefetching, page placement in mem-
ory, approximation, data compression, DRAM cache man-
agement, and memory management in NUMA and NUCA
systems. MetaSys can flexibly implement the range of cross-
layer optimizations supported by XMem [22]. MetaSys’s
dynamic interface for metadata communication enables even
more powerful optimizations than XMem including memory
optimizations for dynamic data structures such as graphs.

Techniques to enforce cross-layer quality of service
(QoS). MetaSys can be used to implement cross-layer tech-
niques to enforce QoS requirements of applications in shared
environments [18, 19, 102, 103]. MetaSys allows communi-
cating an applications’ QoS requirements to hardware compo-
nents (e.g., the last-level cache, memory controllers) to enable
optimizations for partitioning and allocating shared resources
such as the cache and memory bandwidth.

Hardware support for debugging and monitoring.
MetaSys can be used to implement cross-layer techniques
for performance debugging and bug detection by providing ef-
ficient mechanisms to track memory access patterns using the
memory tagging and metadata lookup support. This includes
efficient detection of memory safety violations [81, 104] or
concurrency bugs [105–110] such as data races, deadlocks, or
atomicity violations.

Security and protection. MetaSys provides a substrate
to implement low-overhead hardware techniques for secu-
rity/protection: the tagged memory support can be used to
implement protection for spatial memory safety [80], cache
timing side-channels [111] and stack protection [98]. For ex-
ample, using MetaSys, software can tag memory accesses as
security-critical or safe. Based on the metadata received for
every access, MetaSys can activate/deactivate (for the specific
access) the corresponding side-channel defense technique at
runtime (e.g., protect from/undo speculation [112–114]). We
demonstrate two security techniques in §6.

Garbage collection. MetaSys offers an efficient mecha-
nism to track dead memory regions, unreachable objects, or

young objects in managed languages. MetaSys is hence a
natural substrate to implement hardware-software coopera-
tive approaches (such as prior work [115–117]) for garbage
collection. For example, HAMM [115], a hardware-software
technique for reference counting, tracks the number of ref-
erences to any object in hardware. It has many of the same
metadata management components as MetaSys. HAMM uses
a multi-level metadata cache to manage the large amounts of
metadata associated with reference counting for each object.
MetaSys was designed with modular interfaces that enable
adding more levels to the metadata cache for such use cases.

OS optimizations. MetaSys can be used to implement OS
optimizations that require hardware performance monitoring
of memory access patterns, contention, reuse, etc. The meta-
data support in MetaSys can used to implement this monitoring
and then inform OS optimizations like thread scheduling, I/O
scheduling, and page allocation/mapping.
8. Limitations of MetaSys

Our goal of providing a low-overhead and general system
largely tailored for cross-layer performance optimization leads
to two major limitations in MetaSys:

Instruction and register tagging. MetaSys does not cur-
rently support tagging of instructions or registers and thus
cannot easily support techniques such as taint-tracking and
security mechanisms that require rule-checking at the instruc-
tion/register level.

Fine-granularity memory tagging. While MetaSys sup-
ports memory tagging at flexible granularity, the system is
optimized for the larger granularities typically required for
performance optimization (>=64B) or fine granularities for
only some data (e.g., return addresses). Byte/word granularity
tagging for the entire program data may lead to high MMC
miss rates and may thus incur higher overheads with MetaSys.
9. Characterizing general metadata manage-

ment systems for cross-layer optimizations
Our goal in this section is to perform a detailed characteriza-

tion of the overheads of using a single common metadata sys-
tem and interface for multiple cross-layer techniques. Three
major challenges and sources of system overhead include:
(1) Handling dynamic metadata: Communicating metadata at
runtime requires execution of additional instructions in the pro-
gram. This incurs performance overheads in the form of CPU
processing cycles and data movement to communicate the
metadata to hardware components or to save them in memory.

(2) Efficient metadata management and lookups: The com-
municated metadata must be saved in memory or specialized
caches (the MMC in MetaSys) that overflow to memory. Dif-
ferent components in the system must then be able to effi-
ciently look up the metadata for performance optimization.
Storing and retrieving metadata may incur expensive memory
accesses and consume memory bandwidth.

(3) Scaling to multiple components: A general cross-layer
interface and metadata system must be able to serve multiple
client components implementing different optimizations in
the caches, the prefetchers, the memory controller, etc. Mul-
tiple components accessing shared metadata support during
program execution poses significant scalability challenges.

8

All the above challenges may impose significant area and
performance overheads in the CPU making the feasibility
of a common metadata system and interface (as opposed to
per-use-case specialized interfaces and systems) for cross-
layer techniques questionable. In this section, we set out
to experimentally quantify these overheads and identify the
key bottlenecks and insights on how these challenges affect
different workloads and how they can be alleviated.
9.1. Analysis

We perform our characterization using the Polybench [37]
and Ligra [36] benchmark suites along with a set of mi-
crobenchmarks. Polybench contains building block kernels
frequently used in linear algebra, scientific computation, and
machine learning. Ligra contains widely used graph analytics
workloads. The microbenchmarks are designed to intensely
stress the MetaSys system and identify worst-case overheads.
• Stream. This memory-bandwidth-intensive microbench-
mark streams through a large amount of data, accessing it
only once. It hence has high spatial locality and no data reuse.
• Linked List Traversal. The microbenchmark mimics typical
linked list creation, insertion, and traversal and emulates the
widely-seen memory-intensive pointer-chasing operation.
• Random Access. This microbenchmark accesses memory
locations within a large array at random indices and is designed
to test the worst-case (and a largely unrealistic) scenario—no
pattern in accesses, no reuse, and no spatial locality.
• 3-dimensional array traversal (3D Array). This microbench-
mark mimics the access pattern and locality seen in applica-
tions with multi-dimensional arrays. It traverses a 3D array
first along the third dimension, and then along the second and
first (data is contiguously placed in the first dimension). The
access pattern is highly regular but with no spatial locality.

§4 describes the parameters of our baseline system. We
summarize our key findings in §9.3. In all evaluations in this
section, since we aim to characterize the overheads of the sys-
tem itself, we do not implement any cross-layer optimization
that improves performance. We simply implement lookups to
the metadata system that an optimization would make. Since
our goal is to stress the system, we perform lookups for ev-
ery memory access. In typical use cases, the lookup trigger
would be less frequent, e.g., lookups on every cache miss for
prefetching or on every store for return address protection.
9.1.1. Performance Overhead Analysis. The performance
overheads in MetaSys come from two major sources: (i) the dy-
namic instructions (MAP and CREATE) and (ii) metadata lookups
when a component retrieves the tag ID associated with any
memory address (from the MMT, cached in the MMC) and
then the corresponding metadata (in the PMT).

0.9

1

1.1

1.2

1.3

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o

rr

D
C

T

D
SY

R
2

K

D
SY

R
K

D
yn

p
ro

g

FD
TD

-1
D

Fl
o

yd

G
e

su
m G
S

Ja
co

b
i1

D

Ja
co

b
i2

D LU

M
V

T

Tr
is

o
lv

e

TR
M

M

M
M

3
D

 A
rr

ay LL

R
an

d
o

m

St
re

am

A
V

G

Ligra Polybench μBenchmarks

N
o

rm
al

iz
e

d
Ex

e
cu

ti
o

n
 T

im
e Miss-Only All-Access

Figure 7: Normalized performance overheads.
Fig. 7 depicts the execution time normalized to the base-

line system (without MetaSys) for two scenarios: (i) when

0.5

1

1.5

2

2.5

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o

rr

D
C

T

D
SY

R
2

K

D
SY

R
K

D
yn

p
ro

g

FD
TD

-1
D

Fl
o

yd

G
e

su
m G
S

Ja
co

b
i1

D

Ja
co

b
i2

D LU

M
V

T

Tr
is

o
lv

e

TR
M

M

M
M

3
D

 A
rr

ay LL

R
an

d
o

m

St
re

am

A
V

G

Ligra Polybench μBenchmarks

N
o

rm
al

iz
e

d
M

e
m

o
ry

 A
cc

e
ss

e
s Miss-Only All-Access

Figure 8: Additional memory accesses introduced by lookups.

0
0.2
0.4
0.6
0.8

1

B
FS C
C C
F

R
ad

ii

SS
SP TC P
R TF

C
o

rr

D
C

T

D
SY

R
2

K

D
SY

R
K

D
yn

p
ro

g

FD
TD

-1
D

Fl
o

yd

G
es

u
m G
S

Ja
co

b
i1

D

Ja
co

b
i2

D LU

M
V

T

Tr
is

o
lv

e

TR
M

M

M
M

3
D

 A
rr

ay LL

R
an

d
o

m

St
re

am

A
V

G

Ligra Polybench μBenchmarks

M
M

C
 H

it
 R

at
e

Miss-Only All-Access

Figure 9: Metadata Mapping Cache (MMC) hit rate.

0.9
1

1.1
1.2
1.3
1.4

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o
rr

D
C
T

D
SY
R
2
K

D
SY
R
K

D
yn
p
ro
g

FD
TD

1
D

Fl
o
yd

G
e
su
m

Ja
co
b
i1
D

Ja
co
b
i2
D LU

M
M

M
V
T

TR
M
M TS G
S

3
D
 A
rr
ay LL

R
an

d
o
m

St
re
am

A
V
G

Ligra Polybench μbenchmarks

N
o
rm

al
iz
e
d

Ex
e
cu
ti
o
n
 T
im

e

Bandwidth .5x Bandwidth 1x Bandwidth 2x

Figure 10: Impact of memory bandwidth on overhead.
performing metadata lookups for every access to the L1 cache
(All-Accesses) and (ii) when performing metadata lookups
only on every L1 cache miss (Miss-Only). These studies were
conducted with our baseline 128-entry MMC with a tagging
granularity of 512B (as in XMem [22]). Fig. 9 plots the cor-
responding MMC hit rates and Fig. 8 plots the number of
memory accesses, normalized to baseline (the additional mem-
ory accesses come from misses in the MMC).

We make two major observations from the figure. First,
the overall overheads from the metadata management system
for both designs are low in most workloads with an average
overhead of 2.7% (ranging from ∼0% up to 14%), excluding
the microbenchmarks. The highest overheads observed in
the microbenchmarks is 27% for Random and represents the
absolute worst-case overhead. Workloads with the highest
overheads (Random, GS, PR, TF) are highly memory-intensive
and have low spatial and temporal locality, which leads to low
hit rates in the MMC (e.g., ∼0% in Random and 24% in GS).
This causes a significant increase in accesses to memory and
thus higher performance overheads.

Second, the number of metadata lookups has a minimal
impact on the overall performance overhead. All-Access per-
forms on average 75.2% more lookups than Miss-Only, but
incurs an additional overhead of only 0.05%. Miss-Only has
lower MMC hit rates due to lower locality in lookups than
All-Access. Thus, the number of additional memory accesses
is largely the same for both designs.

Since the major overheads are from additional memory ac-
cesses, we evaluate the impact of available memory bandwidth.
Fig. 10 depicts the performance overhead of All-Access with
0.5× and 2× the memory bandwidth as the baseline system.
We observe that, except for GS, more memory bandwidth sig-
nificantly reduces any lookup overheads: the average overhead
is only 0.5% with 2× the bandwidth. Conversely, in workloads
with higher MMC miss rates (e.g, DSYR2K), the overheads in-
crease with a reduction in available memory bandwidth.

9

1.54 2.60 2.28 2.43 9.00 2.79 4.81 2.11 1.77 1.47 1.79 3.93 2.79 3.52 1.38 1.33 1.32 1.52 5.32 2.29

0.9

1

1.1

1.2

1.3

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o
rr

D
C
T

D
SY
R
2
K

D
SY
R
K

D
yn
p
ro
g

FD
TD

1
D

Fl
o
yd

G
e
su
m

Ja
co
b
i1
D

Ja
co
b
i2
D LU

M
M

M
V
T

TR
M
M TS G
S

3
D
 A
rr
ay LL

R
an

d
o
m

St
re
am

A
V
G

Ligra Polybench μbenchmarks

N
o
rm

al
iz
e
d

Ex
e
cu
ti
o
n
 T
im

e
No MMC 8Entry 16Entry 32Entry 64Entry 128Entry

Figure 11: Impact of Metadata Mapping Cache (MMC) size on performance overhead.

0.9

1

1.1

1.2

1.3

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o
rr

D
C
T

D
SY
R
2
K

D
SY
R
K

D
yn
p
ro
g

FD
TD

1
D

Fl
o
yd

G
es
u
m

Ja
co
b
i1
D

Ja
co
b
i2
D LU

M
M

M
V
T

TR
M
M TS G
S

3
D
 A
rr
ay LL

R
an

d
o
m

St
re
am

A
V
G

Ligra Polybench μbenchmarks

N
o
rm

al
iz
e
d

Ex
ec
u
ti
o
n
 T
im

e

64 128 256 512 1024 2048 4096

Figure 12: Impact of tagging granularity on performance overhead.

We conclude that (i) the performance overheads are directly
correlated to the MMC hit rates; (ii) the metadata lookup
hardware can be frequently queried with no direct observ-
able impact on performance; and (iii) the overall performance
overheads are minimal when the MMC provides high hit rates.
9.1.2. Effect of the Metadata Mapping Cache (MMC). In
Fig. 11, we evaluate the impact of the size of the MMC on
performance overhead. We evaluate 6 sizes for All-Access
and Fig. 11 presents the resulting execution time (normalized
to the baseline system). We make two observations. First,
in most workloads 128 entries is sufficient to obtain minimal
overheads. This is because with a 512B tagging granularity, we
can hold tag IDs for 64KB of memory in the MMC (compared
to 16KB of L1 cache space). Second, workloads with poor
spatial and temporal locality (e.g., Random, GS), are largely
insensitive to the MMC sizes we evaluated. These overheads
cannot hence be easily addressed by increasing its size.
9.1.3. Effect of Metadata Granularity. The granularity at
which memory is tagged plays a critical role in determining
the reach of the MMC. More MMC entries are needed when
memory is tagged at small granularities to hold tag IDs for
the same amount of memory, but enables more optimizations
(e.g., bounds checking). Fig. 12 presents execution time for
different granularities of tagging, normalized to the baseline
system without MetaSys. For most workloads, even the small-
est granularity we evaluated (64B) has a minimal impact on
performance. High granularities minimize overheads for all
but Random and GS by significantly increasing the MMC hit
rate. A secondary effect in irregular workloads, such as PR
and SSSP, is that low granularities increase the number of TLB
misses (by 11% and 13% respectively), depicted in Fig. 13.
The additional MMC misses cause accesses to the Metadata
Mapping Table in memory which requires address translation.

To evaluate the effect of the TLB, we implement a design
which does not require address translation to access the MMT

(i.e., it is addressed directly in physical memory). Fig. 14
presents the resulting normalized execution time without ad-
dress translation. We observe a decrease in overhead with this
design in the irregular workloads: BFS, CC, Random, and LL
(by 1.9%, 1.8%, 14%, and 1% respectively).
9.1.4. Effect of Contention. To evaluate the scalability of the
system with multiple components accessing the same metadata
support, we evaluate the overheads of two components per-
forming frequent metadata lookups: one component at every
memory access (with the corresponding memory address) and
another at every TLB miss (with the page table entry address).
Since each design performs lookups with different memory ad-
dresses, they do not share entries in the MMC and this creates
a worst-case scenario for the shared MMC.

Fig. 15 depicts the resulting execution time for both de-
signs normalized to the baseline system. We observe that
for all workloads except the microbenchmarks, increasing the
number of client components only trivially impacts the per-
formance overhead (on average the increase is 0.3%). This is
because the MMC can sufficiently capture the tag ID working
set for both components. The microbenchmarks designed to
stress the system have a significant performance degradation
(up to 60%) as a result of more misses in the MMC.

To investigate mechanisms to alleviate the contention over-
heads seen in the microbenchmarks we evaluate three designs
in Fig. 16: (i) Partitioning the MMC equally between the two
clients; (ii) Prioritized Insertion, where we insert mappings for
the client with better locality at a higher priority in the MMC
(they are evicted last); and (iii) No stall, where we do not stall
the core on an MMC miss (the optimization performed by the
client will be delayed). We observe that Partitioning reduces
the overhead for 3D Array and LL by 9% and 4% by avoiding
cache thrashing. Prioritized Insertion helps reduce the over-
heads in LL (by 8.5%) and Random (by 6%), where one client
has more locality than the other in lookups. No Stall signifi-

10

0.5

1

1.5

2

2.5

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC T
F

C
o
rr

D
C
T

D
SY
R
2
K

D
SY
R
K

D
yn
p
ro
g

FD
TD

1
D

Fl
o
yd

G
e
su
m

Ja
co
b
i1
D

Ja
co
b
i2
D LU

M
M

M
V
T

TR
M
M TS G
S

3
D
 A
rr
ay LL

R
an

d
o
m

St
re
am

A
V
G

Ligra Polybench μbenchmarks

N
o
rm

al
iz
ed

T
LB
 M

is
se
s 64 128 256 512 1024 2048 4096

Figure 13: Impact of tagging granularity on TLB misses.

0.9

1

1.1

1.2

1.3

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o
rr

D
C
T

D
SY
R
2
K

D
SY
R
K

D
yn
p
ro
g

FD
TD

1
D

Fl
o
yd

G
e
su
m

Ja
co
b
i1
D

Ja
co
b
i2
D LU

M
M

M
V
T

TR
M
M TS G
S

3
D
 A
rr
ay LL

R
an

d
o
m

St
re
am

A
V
G

Ligra Polybench μbenchmarks

N
o
rm

al
iz
e
d

Ex
e
cu
ti
o
n
 T
im

e Default No Translation

Figure 14: Performance overhead with no address translation
for metadata.

0.9

1

1.1

1.2

1.3

B
FS C
C C
F

P
R

R
ad

ii

SS
SP TC TF

C
o
rr

D
C
T

D
SY
R
2
K

D
SY
R
K

D
yn
p
ro
g

FD
TD

1
D

Fl
o
yd

G
e
su
m

Ja
co
b
i1
D

Ja
co
b
i2
D LU

M
M

M
V
T

TR
M
M TS G
S

3
D
 A
rr
ay LL

R
an

d
o
m

St
re
am

A
V
G

Ligra Polybench μbenchmarks

N
o
rm

al
iz
e
d

Ex
ec
u
ti
o
n
 T
im

e One Client Two Clients 1.61

Figure 15: Performance overhead with multiple clients.
cantly reduces the overhead in Random (by 40%) by mitigating
the latency overhead of additional memory accesses.

We conclude that the metadata support is scalable to mul-
tiple components with no observable impact on performance
overheads (except in microbenchmarks). The overheads seen
in microbenchmarks are a result of poor MMC hit rates that
can be mitigated via techniques such as partitioning, priori-
tized insertion, and by not stalling the core on an MMC miss.
Since optimizations are triggered by loads/stores in MetaSys,
it can be expected to scale to more than two clients as most
clients will query the MMC with the same addresses, which
are aggregated, and will not lead to more lookups.
9.2. Hardware Area Overhead

We synthesized the baseline MetaSys system using the Syn-
opsys DC [118] at 22nm process technology to estimate the
area overhead. MetaSys incurs small area overhead: 0.03mm2

(0.02% of a 22nm Intel CPU Core [119]).
9.3. Summary of Findings
(1) Despite stressing the metadata support, the overall over-
heads of the system are very low (2.7% on average, excluding
the microbenchmarks). This indicates that using metadata sys-
tems that are general enough to support a range of use cases
is a promising approach for cross-layer performance optimiza-
tions in real-world applications. The higher overheads seen in
microbenchmarks indicate that the worst-case overheads are
however substantially higher (up to 27%).

(2) Our studies indicate that the metadata management is
scalable in supporting multiple client components that have
high frequencies of querying. There was no observable impact
of the number of queries, indicating that the same system can

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

3D Array LL Random Stream AVG

μbenchmarks

N
o
rm

al
iz
e
d

Ex
ec
u
ti
o
n
 T
im

e

One Client

Two Clients

Partitioning ALB

Prioritized Insertion

5.32 2.36

Figure 16: Alleviating MMC contention in microbenchmarks.
support multiple cross-layer optimizations at the same time.
We proposed simple techniques to alleviate contention in the
MMC from multiple clients.

(3) The most critical factor that impacted performance over-
head was the effectiveness of the MMC. Workloads with low
locality in metadata lookups incur performance overheads
from additional memory accesses. The reach of the MMC is
also affected by the granularity at which memory is tagged
and hence the MMC hit rate can be improved with larger gran-
ularities. Thus efficient caching of metadata tags is critical.
(4) In irregular workloads, accesses to tag ID mappings in
memory require address translation and cause additional TLB
misses, leading to higher performance overhead. We demon-
strate that this can be mitigated by addressing mappings di-
rectly in physical memory or by using a separate TLB for
mappings.
10. Conclusion

This work introduces MetaSys, an open-source full-system
FPGA-based infrastructure to rapidly implement and evaluate
diverse cross-layer optimizations in real hardware. We demon-
strate MetaSys’s versatility and ease-of-use by implementing
and evaluating three new cross-layer techniques. We believe
and hope MetaSys can enable new ideas and their rigorous
evaluation on real hardware.

Using MetaSys, we present the first detailed experimental
characterization to evaluate the efficiency and practicality of a
single metadata system for cross-layer performance optimiza-
tion. We demonstrate that the associated performance and area
overheads are small, identify key performance bottlenecks,
and propose simple techniques to alleviate them. Our charac-
terization thus indicates that a general hardware-software inter-
face with lightweight metadata management support offers a
promising approach towards enabling cross-layer performance
optimization in CPUs.

11

References
[1] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving

dynamic cache management with static data classification,” in ASPLOS,
2016.

[2] M. Manivannan, V. Papaefstathiou, M. Pericas, and P. Stenstrom,
“RADAR: Runtime-assisted dead region management for last-level
caches,” in HPCA, 2016.

[3] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C. Weems, “Using
the compiler to improve cache replacement decisions,” in PACT, 2002.

[4] P. Jain, S. Devadas, D. Engels, and L. Rudolph, “Software-assisted
cache replacement mechanisms for embedded systems,” in ICCAD,
2001.

[5] R. Ravindran, M. Chu, and S. Mahlke, “Compiler-managed partitioned
data caches for low power,” in LCTES, 2007.

[6] X. Gu, T. Bai, Y. Gao, C. Zhang, R. Archambault, and C. Ding, “P-opt:
Program-directed optimal cache management,” in LCPC, 2008.

[7] J. Brock, X. Gu, B. Bao, and C. Ding, “Pacman: Program-assisted
cache management,” in ISMM, 2013.

[8] K. Beyls and E. H. D’Hollander, “Generating cache hints for improved
program efficiency,” JSA, 2005.

[9] J. B. Sartor, S. Venkiteswaran, K. S. McKinley, and Z. Wang, “Cooper-
ative caching with keep-me and evict-me,” in INTERACT-9, 2005.

[10] H. Yang, R. Govindarajan, G. R. Gao, and Z. Hu, “Compiler-assisted
cache replacement: Problem formulation and performance evaluation,”
in LCPC, 2003.

[11] J. B. Sartor, W. Heirman, S. M. Blackburn, L. Eeckhout, and K. S.
McKinley, “Cooperative cache scrubbing,” in PACT, 2014.

[12] A. Pan and V. S. Pai, “Runtime-driven shared last-level cache manage-
ment for task-parallel programs,” in SC, 2015.

[13] V. Papaefstathiou, M. G. Katevenis, D. S. Nikolopoulos, and D. Pnev-
matikatos, “Prefetching and cache management using task lifetimes,”
in ICS, 2013.

[14] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A modified
approach to data cache management,” in MICRO, 1995.

[15] N. Agarwal, D. W. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler, “Page placement strategies for GPUs within heterogeneous
memory systems,” in ASPLOS, 2015.

[16] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, “Data tiering in heterogeneous memory
systems,” in EuroSys, 2016.

[17] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM refresh-power through critical data partitioning,” in
ASPLOS, 2011.

[18] J. Ma, X. Sui, N. Sun, Y. Li, Z. Yu, B. Huang, T. Xu, Z. Yao, Y. Chen,
H. Wang, L. Zhang, and Y. Bao, “Supporting differentiated services in
computers via programmable architecture for resourcing-on-demand
(PARD),” in ASPLOS, 2015.

[19] B. Huang, X. Jin, H. Wang, Y. Zhou, Z. Chang, Y. Cao, and Y. Bao,
“Labeled RISC-V: A new perspective on software-defined architecture,”
in CARVV, 2017.

[20] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in ISCA,
2014.

[21] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Ce-
lio, H. Cook, P. Dabbelt, J. R. Hauser, A. M. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Mag-
yar, H. Mao, M. Moretó, A. Ou, D. A. Patterson, B. H. Richards,
C. Schmidt, S. M. Twigg, H. Vo, and A. Waterman, “The rocket chip
generator,” ser. Technical Report No. UCB/EECS-2016-17, 2016.

[22] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko,
E. Ebrahimi, N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A Case
for Richer Cross-layer Abstractions: Bridging the Semantic Gap with
Expressive Memory,” in ISCA, 2018.

[23] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in DAC, 2012.

[24] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu,
“The Locality Descriptor: A Holistic Cross-Layer Abstraction to Ex-
press Data Locality in GPUs,” in ISCA, 2018.

[25] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F.
Knight, Jr., B. C. Pierce, and A. DeHon, “PUMP: A programmable
unit for metadata processing,” in Proceedings of the Third Workshop on

Hardware and Architectural Support for Security and Privacy, 2014.
[26] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-

bound: architectural support for spatial safety of the c programming
language.” in ASPLOS, ser. ASPLOS XIII, 2008.

[27] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,”
in ASPLOS, 2002.

[28] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury,
H. Xia, R. N. M. Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala,
J. Baldwin, K. Gudka, P. G. Neumann, A. Mazzinghi, A. Richardson,
S. Son, and A. T. Markettos, “Efficient tagged memory,” in 2017 IEEE
International Conference on Computer Design (ICCD), 2017.

[29] E. A. Feustel, “On the advantages of tagged architecture,” TC, 1973.
[30] N. Zeldovich et al., “Hardware enforcement of application security

policies using tagged memory.” in OSDI, 2008.
[31] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for

fast capability-based addressing,” in ACM SIGPLAN Notices, vol. 29,
no. 11. ACM, 1994, pp. 319–327.

[32] H. M. Levy, Capability-based computer systems. Digital Press, 2014.
[33] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Cap-

sicum: Practical capabilities for UNIX,” in Proceedings of the 19th
USENIX Conference on Security, 2010.

[34] RISC-V, “RISC-V proxy kernel.” [Online]. Available: https:
//github.com/riscv/riscv-pk

[35] AVNET, “Zynq®-7000 zedboard.” [Online]. Available: http:
//zedboard.org/product/zedboard

[36] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’13.

[37] L. Pouchet, “Polybench: The polyhedral benchmark suite.” [On-
line]. Available: http://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/

[38] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for graph
processing workloads,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2019.

[39] D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Minnow: Lightweight
offload engines for worklist management and worklist-directed
prefetching,” in Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18.

[40] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “Imp: Indirect memory
prefetcher,” in 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2015.

[41] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-51, 2018.

[42] K. Nilakant, V. Dalibard, A. Roy, and E. Yoneki, “Prefedge: Ssd
prefetcher for large-scale graph traversal,” in Proceedings of Interna-
tional Conference on Systems and Storage, ser. SYSTOR ’14.

[43] S. Ainsworth and T. M. Jones, “Graph prefetching using data structure
knowledge,” in Proceedings of the 2016 International Conference on
Supercomputing, ser. ICS, 2016.

[44] S. Ainsworth and T. M. Jones, “An event-triggered programmable
prefetcher for irregular workloads,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS, 2018.

[45] N. Talati et al., “Prodigy: Improving the Memory Latency of Data-
Indirect Irregular Workloads Using Hardware-Software Co-Design,”
in HPCA 2021.

[46] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based prefetching
for linked data structures,” in Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’98.

[47] H. Al-Sukhni, I. Bratt, and D. A. Connors, “Compiler-directed content-
aware prefetching for dynamic data structures,” in Proceedings of the
12th International Conference on Parallel Architectures and Compila-
tion Techniques, ser. PACT ’03.

[48] Chi-Keung Luk and T. C. Mowry, “Cooperative prefetching: compiler
and hardware support for effective instruction prefetching in modern
processors,” in Proceedings. 31st Annual ACM/IEEE International
Symposium on Microarchitecture, 1998.

[49] Zhenlin Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C.

12

Weems, “Guided region prefetching: a cooperative hardware/software
approach,” in 30th Annual International Symposium on Computer
Architecture, 2003. Proceedings., 2003.

[50] Tzi-cker Chiueh, “Sunder: a programmable hardware prefetch archi-
tecture for numerical loops,” in Supercomputing ’94:Proceedings of
the 1994 ACM/IEEE Conference on Supercomputing.

[51] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in Pro-
ceedings of the 42Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’15.

[52] M. Annavaram, J. M. Patel, and E. S. Davidson, “Data prefetching by
dependence graph precomputation,” in Proceedings of the 28th Annual
International Symposium on Computer Architecture, ser. ISCA ’01.

[53] Z. Wang, K. S. Mckinley, and D. Burger, “Combining cooperative
software/hardware prefetching and cache replacement,” in In IBM
Austin CAS Center for Advanced Studies Conference, 2004.

[54] Z. Wang and T. Nowatzki, “Stream-based memory access special-
ization for general purpose processors,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.

[55] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in 10th International Symposium on High Performance
Computer Architecture (HPCA’04), 2004.

[56] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial Memory Streaming,” in ISCA, 2006.

[57] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address
patterns,” in 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2015.

[58] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “Dspatch: Dual
spatial pattern prefetcher,” in Proceedings of the 52Ndsd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MI-
CRO ’19.

[59] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2019.

[60] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” in MICRO, 1992.

[61] W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and backwards-
compatible transformation to ensure memory safety of c programs,” in
Proceedings of the 12th ACM SIGSOFT Twelfth International Sympo-
sium on Foundations of Software Engineering, ser. SIGSOFT ’04/FSE-
12, 2004.

[62] S. H. Yong and S. Horwitz, “Protecting c programs from attacks via
invalid pointer dereferences,” in Proceedings of the 9th European Soft-
ware Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-11, 2003.

[63] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Trans. Pro-
gram. Lang. Syst., 2005.

[64] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all
pointer and array access errors,” in Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’94, 1994.

[65] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “De-
pendent types for low-level programming,” in Proceedings of the 16th
European Symposium on Programming, ser. ESOP’07, 2007.

[66] D. Dhurjati and V. Adve, “Backwards-compatible array bounds check-
ing for c with very low overhead,” in Proceedings of the 28th Interna-
tional Conference on Software Engineering, ser. ICSE ’06, 2006.

[67] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c,” in Proceedings of the Gen-
eral Track of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’02, 2002.

[68] H. Patil and C. N. Fischer, “Efficient run-time monitoring using shadow
processing,” in AADEBUG, 1995.

[69] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’09, 2009.

[70] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks
and access errors,” in In Proc. of the Winter 1992 USENIX Conference,
1991.

[71] D. Dhurjati and V. Adve, “Backwards-compatible array bounds check-
ing for c with very low overhead,” in Proceedings of the 28th Interna-
tional Conference on Software Engineering, ser. ICSE ’06, 2006.

[72] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow
detector,” in NDSS, 2004.

[73] D. Midi, M. Payer, and E. Bertino, “Memory safety for embedded
devices with nescheck,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ser. ASIA
CCS ’17, 2017.

[74] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer,
“Intel MPX explained: A cross-layer analysis of the Intel MPX system
stack,” in Abstracts of the 2018 ACM International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’18, 2018.

[75] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi, “Checked c: Making c
safe by extension,” in 2018 IEEE Cybersecurity Development (SecDev),
2018.

[76] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in Proceedings of the 2013 IEEE Symposium on Security
and Privacy, ser. SP ’13, 2013.

[77] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. De-
Hon, “Low-fat pointers: Compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-based
security,” in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ser. CCS ’13, 2013.

[78] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdoglite:
Hardware-accelerated compiler-based pointer checking,” in Proceed-
ings of Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, ser. CGO ’14, 2014.

[79] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog: Hard-
ware for safe and secure manual memory management and full memory
safety,” in Proceedings of the 39th Annual International Symposium
on Computer Architecture, ser. ISCA ’12, 2012.

[80] D. Y. Deng and G. E. Suh, “High-performance parallel accelerator for
flexible and efficient run-time monitoring,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), 2012.

[81] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access moni-
toring and debugging,” in 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, 2007.

[82] A. Menon, S. Murugan, C. Rebeiro, N. Gala, and K. Veezhinathan,
“Shakti-T: A RISC-V processor with light weight security extensions,”
in Proceedings of the Hardware and Architectural Support for Security
and Privacy, ser. HASP ’17, 2017.

[83] A. Rogers, M. Carlisle, J. Laboratories, and L. Hendren, “Support-
ing dynamic data structures on distributed-memory machines,” ACM
Transactions on Programming Languages and Systems, vol. 17, 2000.

[84] M. S. Simpson and R. K. Barua, “Memsafe: Ensuring the spatial and
temporal memory safety of c at runtime,” in 2010 10th IEEE Working
Conference on Source Code Analysis and Manipulation, 2010.

[85] A. van de Ven, “New security enhancementsin red hat enterprise
linuxv.3, update 3.” [Online]. Available: https://static.redhat.com/
legacy/f/pdf/rhel/WHP0006US_Execshield.pdf

[86] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98, 1998.

[87] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, ser. CCS ’10, 2010.

[88] T. Bletsch, X. Jiang, V. Freeh, and Z. Liang, “Jump-oriented program-
ming: a new class of code-reuse attack.” 01 2011, pp. 30–40.

[89] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the expressiveness of return-into-libc attacks,” in Proceedings of
the 14th International Conference on Recent Advances in Intrusi-flon
Detection, ser. RAID’11, 2011.

[90] A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense
against stack smashing attacks,” in Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference, ser. ATEC ’00,
2000.

[91] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer

13

and Communications Security, ser. CCS ’05, 2005.
[92] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi: Cryp-

tographically enforced control flow integrity,” in Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, 2015.

[93] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in NDSS, 2015.

[94] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014.

[95] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIA CCS ’15, 2015.

[96] J. Zhang, R. Hou, J. Fan, K. Liu, L. Zhang, and S. A. McKee, “Ra-
guard: A hardware based mechanism for backward-edge control-flow
integrity,” in Proceedings of the Computing Frontiers Conference, ser.
CF’17, 2017.

[97] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “Pac it up: Towards pointer integrity using arm pointer
authentication,” in USENIX Security Symposium, 2018.

[98] N. Roessler and A. Dehon, “Protecting the stack with metadata policies
and tagged hardware,” in 2018 IEEE Symposium on Security and
Privacy (SP), 2018.

[99] Intel, “Control-flow Enforcement Technology Specification,” 2019.
[Online]. Available: www.intel.com/content/dam/www/public/us/en/
documents/white-papers/virtualization-enabling-intel-virtualization-
technology-features-and-benefits-paper.pdf

[100] C. MITRE, “Cwe-123: Write-what-where condition,” September 2019.
[Online]. Available: https://cwe.mitre.org/data/definitions/123.html

[101] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System Security, ser. EUROSEC
’09, 2009.

[102] J. Chang and G. S. Sohi, Cooperative caching for chip multiprocessors.
ACM, 2006, vol. 34, no. 2.

[103] B. Li, L.-S. Peh, L. Zhao, and R. Iyer, “Dynamic qos management for
chip multiprocessors,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 3, p. 17, 2012.

[104] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and J. Torrellas,
“iwatcher: efficient architectural support for software debugging,” in
Proceedings. 31st Annual International Symposium on Computer Ar-
chitecture, 2004., 2004.

[105] B. Lucia, L. Ceze, and K. Strauss, “Colorsafe: Architectural sup-
port for debugging and dynamically avoiding multi-variable atomicity
violations,” SIGARCH Comput. Archit. News.

[106] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: Detecting atomicity
violations via access interleaving invariants,” in Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XII, 2006.

[107] A. Muzahid, N. Otsuki, and J. Torrellas, “Atomtracker: A comprehen-
sive approach to atomic region inference and violation detection,” in
2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, 2010.

[108] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, “Atom-aid: Detect-
ing and surviving atomicity violations,” ACM SIGARCH Computer
Architecture News, vol. 36, no. 3, pp. 277–288, 2008.

[109] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict
exceptions: Simplifying concurrent language semantics with precise
hardware exceptions for data-races,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10,
2010.

[110] P. Zhou, R. Teodorescu, and Y. Zhou, “Hard: Hardware-assisted
lockset-based race detection,” in 2007 IEEE 13th International Sympo-
sium on High Performance Computer Architecture, 2007.

[111] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Proceedings of the 16th Annual In-
ternational Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’96, 1996.

[112] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An “undo” approach
to safe speculation,” in MICRO 2019.

[113] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in MICRO 2018.

[114] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“MI6: Secure Enclaves in a Speculative Out-of-Order Processor,” in
MICRO 2019.

[115] J. A. Joao, O. Mutlu, and Y. N. Patt, “Flexible reference-counting-based
hardware acceleration for garbage collection,” in ACM SIGARCH
Computer Architecture News, vol. 37, no. 3. ACM, 2009, pp. 418–
428.

[116] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware accelerator
for tracing garbage collection,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture. IEEE Press,
2018, pp. 138–151.

[117] M. Maas, K. Asanovic, and J. Kubiatowicz, “Grail quest: A new
proposal for hardware-assisted garbage collection,” in Workshop on
Architectures and Systems for Big Data, 2016.

[118] Synopsys, “Synopsys design compiler.” [Online]. Avail-
able: https://www.synopsys.com/support/training/rtl-synthesis/design-
compiler-rtl-synthesis.html

[119] A. L. Shimpi, “Dual core/gt2 ivy bridge die measured: 121mm2.”
[Online]. Available: https://www.anandtech.com/show/5875/dual-
coregt2-ivy-bridge-die-measured-121mm2

14

