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Abstract: This project aims to motivate research in competitive human-robot in-
teraction by creating a robot competitor that can challenge human users in certain
scenarios such as physical exercise and games. With this goal in mind, we in-
troduce the Fencing Game, a human-robot competition used to evaluate both the
capabilities of the robot competitor and user experience. We develop the robot
competitor through iterative multi-agent reinforcement learning and show that it
can perform well against human competitors. Our user study additionally found
that our system was able to continuously create challenging and enjoyable inter-
actions that significantly increased human subjects’ heart rates. The majority of
human subjects considered the system to be entertaining and desirable for improv-
ing the quality of their exercise.
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1 Introduction

Competition is ubiquitous in the natural world [1, 2] and in human society [3, 4, 5]. Despite its
universality, competitive interaction has rarely been investigated in the field of Human Robot Inter-
action, which has mainly focused on cooperative interactions such as collaborative manipulation,
mobility assistance, feeding, and so on [6, 7, 8, 9, 10]. In some ways it is not surprising that com-
petitive interaction has been overlooked: of course everyone wants a robot that can assist them; who
would want a robot that thwarts their intentions? Yet, we also accept that human-human competition
can be healthy and productive, for example in structured contexts such as sports. In this paper we
explore the idea that human-robot competition can provide similar benefits.

We believe that physical exercise settings such as athletic practice, fitness training, and physical
therapy are scenarios in which competitive HRI can benefit users. Physical exercise is essential to
our physical and mental health. In addition, the quality of some physical rehabilitation is closely
related to patients’ commitment to exercising regularly. However, the major cause of poor adherence
to physical exercise is due to a lack of motivation [11, 12, 13]. It has been shown that enjoyment,
competition, and challenges are important motivational factors for the practice of physical exercise
[14, 12]. In this project, our goal is to create a robot that can provide these motivations to human
users via adversarial behaviors. The main contributions of this paper are listed below:

Motivating Competitive-HRI Research. We discuss how competitive interaction can influence
people in a positive manner and the technical difficulties competitive-HRI tasks represent. This
discussion motivates our proposed Fencing Game, a competitive physically interactive game, as an
evaluation environment for competitive-HRI algorithms and user study.

System Design and Implementation. A highly generalizable robotic system is created to support
our competitive-HRI research. A multi-agent reinforcement learning(RL) method is used to train a
robot to play competitive games with multiple gameplay styles.

Two User Studies. Our first user study found that more than 80% of subjects found competitive
interaction with our robot to be entertaining and desirable. Our system was able to provide chal-
lenging gameplay experiences that significantly increase human players’ heart rates. Furthermore,
we observed that human subjects who constantly explore different strategies tend to achieve higher
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rewards in the long run. A second user study demonstrated that an RL-trained policy made it signifi-
cantly more challenging for subjects to make quantitative improvement in a long sequence of games
compared to a carefully designed heuristic baseline policy. The RL-trained agent also appeared to
be more intelligent to the human subjects.

Figure 1: Competitive fencing games between a PR2 robot and human subjects. The detailed game
rules are described in Sec. 2. Please refer to this link for example gameplay videos.

2 Competitive Interaction

In this section, we discuss the significance of competitive interaction and justify why we believe that
it deserves increased attention in the robotics community. We will first discuss how competition can
influence people in a positive manner from a psychological perspective. Afterward, we will discuss
the technical challenges in competitive-HRI tasks and propose the use of the Fencing Game as the
main task that this project will focus on.

Positive Influences of Competitive Interaction. Competition between players provides motivation
and can foster improvement in performance at a given task. Plass et al. [15] compared competitive
versus cooperative interactions in an educational mathematics video game. The results revealed that,
compared to working individually, the subjects performed significantly better when working com-
petitively. In particular, competitive players demonstrated higher effectiveness in problem solving
compared to non-competitive players. This study also observed that subjects experienced a higher
level of enjoyment via an increased tendency to engage in the game [16]. Furthermore, they also
displayed higher situational interest, i.e. the subject paid more attention and had more interaction
during the game [17]. Viru et al. [18] showed that competitive exercises can improve athletic per-
formance in a treadmill running test. Subjects’ average running duration was increased by 4.2%.
During cycling and planking exercise, Feltz et al. [4] were also able to inspire higher performance
from subjects by placing them in competition with a manipulated virtual partner.

Inspired by these studies, we envision that a personal robot can become a competitive partner that
provides enjoyment, increases motivation, and motivates improvement in activities such as physical
exercise. For this reason, we initiate our competitive-HRI research by focusing on creating a physical
exercise companion.

Technical Challenges. Creating an actual robot that can compete with a human physically is chal-
lenging. The robot needs to constantly reason about the human’s intent via their actions, and strategi-
cally control its high degree-of-freedom body to counteract the opponent’s adversarial behavior and
maximize its own return. Therefore, a big part of our competitive-HRI research focuses on solving
these technical challenges to create a robotic system with real-time decision making capability and
body agility that is comparable to that of humans.

The Fencing Game. Based on the expected technical challenges, we designed a two-player zero-
sum physically interactive game. The Fencing Game is an attack and defense game where the human
player is the antagonist with the goal of maximizing their game score. The robot is the protagonist
who aims to minimize the antagonist’s score. Fig. 1 shows three images of human subjects playing
the game, and Algo. 2 in Appendix A.1 summarizes the scoring mechanism for this game. The
orange spherical area located between the two players denotes the target area of the game. The
antagonist on the right earns 1 point for every 0.01 seconds that their bat is placed within the target
area without contacting the opponent’s bat. The antagonist will lose 10 points if the antagonist’s
bat is placed within the target area and makes contact with the protagonist’s bat simultaneously.
Moreover, the antagonist will get 10 points of reward if the protagonist’s bat is placed within the
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target area, waiting for the antagonist to attack, for more than 2 seconds. Each game will last for 20
seconds. The observation space for both agents includes the Cartesian pose and velocity of the two
bats, as well as the game time in seconds. For the sake of simplicity, both agents in this project are
non-mobile. Yet, mobility can be easily integrated into future iterations of this game.

3 Related Work

Reinforcement Learning in Competitive Games. Competitive games have been used as bench-
marks to evaluate the ability of algorithms to train an agent to make rational and strategic deci-
sions [19, 20, 21]. Multi-agent reinforcement learning methods allow agents to learn emergent and
complex behavior by interacting with each other and co-evolving together [22, 23, 24, 25, 26, 27].
Many recent efforts have used multi-agent RL methods to learn continuous control polices that can
achieve high complexity tasks. Bansal et al. [28] created control policies for simulated humanoid
and quadrupedal robots to play competitive games such as soccer and wrestling. Lowe et al. [29]
has extended DDPG [30] to multi-agent settings by employing a centralized action-value function.

Human-Robot Competition. There are a few studies focusing on human-robot interaction in com-
petitive games. For instance, Kshirsagar et al. [31] studied the affect of “co-worker” robots on
human performance when they are performing in the same environment and competing for a mon-
etary prize. This study showed that humans were slightly discouraged when competing against a
high performing robot. On the other hand, humans exhibited a positive attitude towards the low per-
forming robot. Mutlu et al. [32] showed that male subjects were more engaged in competitive video
games when they played with an ASIMO robot. However, the majority of the subjects preferred
cooperative games when they played with this robot. Short et al. [33] analysed the “rock-paper-
scissors” game and found that human subjects were more socially and mentally engaged when the
robot cheated during the game.

Robots in Physical Training. In the context of using robots to assist humans in physical exercises,
a robot developed by Fasola and Mataric [34] was able to provide real-time coaching and encour-
agement for a seated arm exercise. Süssenbach et al. [35] developed a motivational robot for indoor
cycling exercise that employed a set of communication techniques in response to the subject’s phys-
ical condition. The results showed that the robot sufficiently increased the users’ workout efficiency
and intensity. Sato et al. [36] created a system capable of imitating the motion and strategy of top
volleyball blockers for assisting vollyball training.

These works are typically limited to a few competitive scenarios that require simple and repeti-
tive motions. In this work, we leverage reinforcement learning to create a robotic system that can
potentially play various physically competitive games against human players.

4 System Design and Implementation

Humans are highly efficient at recognizing patterns and learning skills from just a small number of
examples [37]. Existing research also shows that human subjects can adapt to robots and improve
their performance in just a few trials in physical HRI tasks [38, 39]. However, games against a robot
competitor are less challenging if a human player can easily predict its behavior and quickly find an
optimal counter-strategy. We hypothesized that human players can quickly learn to improve their
performance against a given robot policy, but a change in the robot’s gameplay style could interrupt
this learning effect and keep the games challenging. A gameplay style is characterized by patterns
in the agent’s end-effector motion trajectories. For example, one antagonist may prefer using more
stabbing movements, while another antagonist may prefer slashing movements. Therefore, there are
two primary objectives that govern the generation of robot control policies. First, a policy should
allow the robot to play the Fencing Game sufficiently well, such that the games are intense and
engaging to the human users. Second, we propose to obtain three policies with unique gameplay
styles for our user study. A multi-agent reinforcement method created the robot control policies that
are used in the user study. We designed and implemented the physical system based on a PR2 robot.
Extra discussions on the physical system implementation and the technical details of the learning
algorithm can be found in Appendix A.2.
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Figure 2: The antagonist’s average game score during one complete round of phase one and two
training. The two iterations of phase one training enabled two agents to interact according to the
game rules. The phase two training performed 35 small updates resulting in random characteristics
for both agents. Appendix A.2 contains extra interpretation for this figure.

Figure 3: Visualization of quantified gameplay style of the four policies used in the user study. Error
bars indicate the standard deviation of the feature values among the population.

4.1 Learning to Compete

To generate robot control policies that comply with the two aforementioned requirements, we formu-
late the Fencing Game as a multi-agent Markov game problem [40]. Both the antagonist agent and
the protagonist agent are represented by a PR2 robot model in a Mujoco simulation environment.
Both agents are trained in a co-evolving manner by playing games against each other. We break
down the multi-agent proximal policy optimization method proposed by Bansal et al. [28] into two
separate training processes, which reduces the computational processing needed to obtain multiple
pairs of agents with acceptable performance. As a result, we were able to complete all sampling
and training processes on a desktop computer (cpu: 1 ⇥ i7, gpu: 1 ⇥ GTX970). Our version of
multi-agent PPO, the two-phase iterative co-evolution algorithm, is presented in Algo. 1.

Learning to Move and Play. The first phase of the training can be seen as a pre-training process,
which aims to allow both agents to quickly learn the motor skills required for joint control and the
rules of the game. The agents are rewarded by both the weighted sum of a continuous reward and
the game score at each timestep. The continuous reward encourages the agents’ exploration in the
task space. The policy of the antagonist µ with parameters ✓µi will first be trained by collecting
trajectories that result from playing against the protagonist with its most recent policy. This process
continues until timeout or µ has converged. The protagonist’s policy ⌫ with parameter ✓⌫i will then be
trained against the antagonist with its most recent policy. We acquired robot policies that exhibited
competent (but still imperfect) gameplay by only running this training sequence twice (Niter = 2).
The pair of resulting policies from phase one will be called the warm-start policies.

Creating Characterized Policies. It has been shown that by using different random seeds to guide
policy optimization toward different local optima, an agent can learn different behaviors and ap-
proaches to complete the same task [41, 26]. The highly variable nature of multi-agent systems
enhances this random effect. The agents in multi-agent systems are more likely to learn drastically
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different strategies and emergent behaviors when they continuously learn by competing with each
other [28, 42, 43, 44]. The second phase of training generates a policy with random characteristics
by exploiting this fact. Both agents are initialized with their warm-start policies from phase one
and trained in the same iterative scheme shown in Algo. 1. Now the agents are solely rewarded
by the game scores. When training each of the agents, instead of having an agent face against the
opponent’s latest policy, one of the previous versions of the opponent’s policy in the history will be
randomly selected in phase two. We created a policy library that contains six pairs of randomly char-
acterized policies that resulted from six different rounds of phase two training. Fig. 2 demonstrates
the change of game scores during the two-phase training process.

4.2 Selecting Agents With Distinct Gameplay Styles

Algorithm 1: Iterative Co-evolution
Input: Environment E ; Stochastic policies µ
and ⌫; Instantaneous Reward Function r(·)
Initialize: Parameters ✓µ0 for µ and ✓⌫0 for ⌫
for i = 1, 2, ..Niter do

if phase one training then
✓⌫i  ✓⌫i�1

else
✓⌫i  ✓⌫random from history

end
for j = 1, 2, ..Nµ do

rollout roll(E , µ✓µ
i
, ⌫✓⌫

i�1
, r(·))

✓µi  PPO Update(rollout)
end
if phase one training then

✓µi  ✓µi
else

✓µi  ✓µrandom from history

end
for j = 1, 2, ..N⌫ do

rollout roll(E , µ✓µ
i
, ⌫✓⌫

i
, r(·))

✓⌫i  PPO Update(rollout)
end

end

In order to identify the most distinctive protag-
onist policies in the library described in the last
subsection, each agent’s gameplay style needs
to be quantified and compared. We first gen-
erate trajectories for all protagonist policies in
a tournament [45], where each agent plays 100
games with each of the six opponents. Eight
end effector trajectory features are selected to
quantify agent’s gameplay styles: total dis-
placement change on x, y, and z axis, average
velocity, average acceleration, average jerk, to-
tal kinetic energy, and trajectory smoothness.
These features are calculated for each of the
games played by each of the protagonists. The
quantified style of a protagonist agent is the
averaged features across 600 games. The fea-
tures of all protagonists are then compared via
their three most significant principal compo-
nents (less than 2% of information loss)[46],
and the three most separable policies are se-
lected for the user study. The protagonist’s
gameplay style for the warm-start policy and
the three selected characterized policies are vi-
sualized in Fig. 3.

4.3 Sim2Real

Due to the kinematic and dynamic mismatch between simulation and reality, policies that are trained
solely on simulated data can perform poorly in reality. We use a combination of a Jacobian Trans-
pose end-effector controller and a system identification (systemID) process to solve this problem.
Instead of specifying the torque values for each joint, the policy outputs an offset from the cur-
rent end-effector pose. The new desired pose is executed by the end-effector controller. We used
the CMA-ES algorithm to optimize the following objective over the parameter space of both the
controller and the robot model in the simulation.

(✓⇤m, ✓⇤c ) = arg min
(✓m,✓c)

TP
t=0

(str � sts)
2

Where ✓m represents the simulated robot model parameters: damping, armature, and friction loss.
✓c represents the proportional gains and derivative gains of the end-effector controller. Tr and Ts

are trajectories sampled from the real robotic system and simulation respectively that result from
the same control sequence. str 2 Tr and sts 2 Ts are the robot’s end-effector pose in reality and
simulation at time t respectively. As a result, the difference in end-effector dynamics between the
simulated robot and the real PR2 robot is reduced. The maximum controller output is bounded
conservatively to prevent possible human injury.
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Table 1: Subjective Ratings of the Modified TAM Questions

1-Strongly
Disagree 2-Disagree 3-Neutral 4-Agree 5-Strongly

Agree
Perceived Usefulness 0% 6.25% 25% 37.5% 31.25%
Perceived Ease of Use 0% 18.75% 18.75% 62.5% 0%
Attitude 0% 6.25% 37.5% 25% 31.25%
Intention to Use 0% 18.74% 18.75% 25% 37.5%
Perceived Enjoyment 0% 6.25% 6.25% 31.25% 56.25%
Desirability 0% 6.25% 12.5% 31.25% 50%
Increase Engagement 6.25% 6.25% 31.25% 18.75% 37.5%

5 Experiments and Analysis

We performed two in-lab user studies in this work. The first user study performed a broad explo-
ration on the idea of competitive-HRI under the fencing game setting. Sixteen human subjects were
asked to play five games with each of the four RL trained policies that resulted from Sec. 4. Subjects’
game scores, heart rates, arm movements, and their responses to a modified technology acceptance
model (TAM)[47] were used to evaluate our system from the following three perspectives: 1. Is a
competitive robot accepted by human users under the scenarios of physical games and exercise? 2.
Can our system effectively create challenging and intense gameplay experience? 3. Can the robot
interrupt the human learning effect by switching its gameplay style?

The second user study compared characterized policy 1 with a carefully designed heuristic-based
policy. By placing its bat in between the target area and the point on the human’s bat that is closest
to the target area, the robot exploits embedded knowledge of the game’s rules in order to execute a
strong baseline heuristic policy. Action noise was added to the heuristic policy to create randomness
in the robot’s behavior. Ten human subjects were asked to play 10 games with each robot policy.
This experiment compared the two policies via game scores, subjects’ TAM responses, subjects’
perception of difficulty, enjoyment, and robot intelligence. Details about the heuristic baseline policy
design, experiment procedures, subjective question design, and the demographic information for
both user studies are discussed in Appendix A.3.

5.1 User Study One Result: A Broad Exploration

Our first experiment demonstrates that participants highly accept the use of a competitive robot as
an exercise partner. The majority of the subjects considered competitive games with our robot to be
useful, entertaining, desirable, and motivating. Our system was able to provide a challenging and
intensive interactive experience that significantly increased subjects’ heart rates. While competing
against our RL trained robot, most subjects struggled to significantly improve their performance
over time. Yet, a subset of subjects who constantly explored different strategies achieved higher
scores in the long run.

User Acceptance. Table 1 summarizes the subjects’ responses to the technology acceptance model.
The majority of the subjects (i.e. 68.75%) agreed that a competitive robot could improve the qual-
ity of their physical exercise. Moreover, 87.5% of subjects agreed that competitive human-robot
interactive games are entertaining, and 81.25% of subjects agreed that a competitive robot exer-
cise companion would be desirable in the future. Interestingly, the intention to use (62.5% agree +
strongly agree) and increased engagement (56.25% agree + strongly agree) metrics are not as high
as the vast agreement on perceived enjoyment and desirability. Some subjects who didn’t have a
strong intention to use our system explained their reasons in the open-ended question. They stated
that it is not immediately clear how competitive robots can play a role in their routine exercises, such
as jogging, and weight training. On the other hand, most subjects (i.e., 71%) who exercise less than
three hours per week agreed that a competitive robot partner will increase their engagement with
physical exercise. Therefore, our competitive robot is more effective in motivating people who do
relatively little exercise. Future research should explore how to effectively apply competitive-HRI
to common exercises.
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Increased Heart Rate. Most of the gameplay with our competitive robot increased the human
subjects’ heart rates significantly. Subjects’ peak heart rates were higher than their resting heart
rates in more than 99% of the games, and their peak heart rates in 92.6% of the games were higher
than their walking baseline heart rates. Since the subjects were asked to keep their feet planted on
the ground during a game, their body maneuverability was very limited. Despite this movement
limitation, subjects’ peak heart rates were significantly higher (i.e., 20% to 58%) than their walking
baseline in 29% of the games. We found that, other than physical effort, subjects’ cognitive effort
and reported emotions also corresponded to a rise in heart rate. Figure 4. b. shows that sections with
higher average heart rate corresponded to people feeling cognitive demand, motivated, frustrated,
and intimidated by the robot. In short, playing competitive games with our robot can be cognitively
demanding and can trigger noticeable emotional reactions.

Figure 4: a. The 16 points in each subplot represent the 16 subjects. The variance of subjects’
game scores is positively correlated to their achieved maximum and mean scores. b. Comparison
of subjective descriptions between sections with low, medium, high, and ultra-high averaged heart
rates. The definition of each group is detailed in Appendix A.5. The x-axis of each subplot shows
the adjective describing each section of games (Exciting, Joyful, Frustrating, Motivating, Amusing,
Intimidating, Physically Demanding, Cognitively Demanding, Boring, Others). The y-axis indicates
the percentage of subjects in the corresponding group who selected the corresponding answer. c.
Each subplot shows the average game scores of all subjects on the five games against each robot
policy. The error bars indicate the standard errors over the samples. The red horizontal lines indicate
the best mean score achieved by one of the subjects against the corresponding robot policy.

The Human Learning Effect. As mentioned in Sec. 4, we wanted to test if changing the robot’s
gameplay style interrupts the human learning process and keeps the interaction challenging through-
out the whole experiment. This hypothesis was based on our assumption that most human players
can make significant improvement within five games against a fixed robot policy. Surprisingly,
this assumption was invalidated by our user study data. Fig. 4. c. shows the average game scores
and standard deviation of all subjects in the five consecutive games against each of the four robot
policies. An analysis of variance (ANOVA) suggests that subjects have no significant performance
increase between the five games for a given policy (Warm-start Policy: p = 0.96, Characterized
Policy 1: p = 0.74, Characterized Policy 2: p = 0.85, Characterized Policy 3: p = 0.43). The
red horizontal dashed line in each subplot of Fig. 4. c. represents the best mean score achieved
by a subject, which approximates the performance of an observed best human policy. The average
performance of all subjects were lower than (i.e., much lower in most cases) the performance of the
best human policies, and most subjects still have much room for performance improvement. Our
assumption on human learning was based on evidence from noncompetitive HRI experiments. In
contrast, our competitive setting creates a much more dynamical environment and resulted in a more
challenging learning environment for the human. Since no significant performance variance was
observed across the four sections either (ANOVA F = 1.51, p = 0.26), our system was able to
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remain challenging to users throughout the whole experiment. However, more studies are needed to
analyze how changes in gameplay style interrupt human learning.

Human Performance. Despite the fact that no significant learning effect was found in the subject
population, we observed that some subjects tried multiple strategies in the experiment, which could
be interpreted as exploration within a learning framework. This observation motivated us to analyze
the relationship between strategy exploration and performance, which we first quantified as variance
in game scores, and then as the featurized gameplay styles from Sec. 4. As shown in Fig 4. a., a larger
variance in score corresponds to better performance in terms of maximum and mean scores. We then
compared the variance of the gameplay style between the five subjects with the highest maximum
scores and the five subjects with the lowest maximum scores. For the sake of simplicity, we only
compared the end-effector displacement change on x, y, and z axes and the averaged velocity. The
variance of each selected feature for subjects with high performance were at least 29% higher than
subjects with low performance. This suggested that subjects who have high variance in score tend
to take risks by constantly exploring different strategies, resulting in better rewards in the long run.
Future research could examine whether a robot can help human users achieve better performance by
verbally or implicitly encouraging them to explore different strategies.

5.2 User Study Two Result: Baseline Comparison

This experiment compared an RL trained policy (characterized policy 1) to a strong heuristic base-
line policy in a long gameplay sequence setting (10 games per policy). Compared to the baseline,
the RL trained policy has a slightly better game score performance. In contrast to the first exper-
iment, the human learning effect was observed in both policies. However, the RL trained policy
was significantly better at suppressing human subjects from learning to make progress even without
switching gameplay styles during the experiment. While the responses to the TAMmodel were very
similar for both policies, the subjects considered the RL policy to be more intelligent because of its
“defensive” and “diverse” behavior.

Game Scores: When playing against the baseline policy, the subject population’s average game
scores (Baseline mean: 383.5, RLmean: 349.1), the maximum game score (Baseline max: 929.0,
RL max: 744.0), and the minimum game score (Baseline min: -291.0, RL min: -320.0) are
higher than those against the RL policy. Instead of switching policies every five games, we used a
longer sequence of game-plays to evaluate each policy in this study. We were able to find a positive
correlation between game scores and the amount of game-play experience against a specific policy.
A linear regression over the Baseline method data (slope=30.0, coefficient=0.56, p value=9.3e-10)
has a larger positive slope, stronger correlation coefficient, and a smaller statistical significant p
value compared to that of the RL policy (slope=15.7, coefficient=0.34, p value=0.0005).

Subjective Responses: Subjects’ responses to most of the modified TAM questions for the two
policies are very similar as shown in Table 3. However, 70% of the population considered the
RL policy to be more intelligent. In the responses for short questions 2, 3, and 4 in Table 2, the
Baseline policy was described as “fast” by 2 subjects, “follows my movement” by 4 subjects, and
has “repetitive/predictable” behavior by 4 subjects. Meanwhile, the RL policy was considered to be
“defensive” by 5 subjects, “strategic” by 2 subjects, and to have “diverse behavior” by 2 subjects.

6 Conclusion

This work motivated research in competitive-HRI by discussing how competition can be beneficial
to people and the technical difficulties competitive-HRI tasks represent. The Fencing Game, a physi-
cally interactive zero-sum game is proposed to evaluate system capability in certain competitive-HRI
scenarios. We created a competitive robot using an iterative multi-agent RL algorithm, which is able
to challenge human users in various competitive scenarios, including the Fencing Game. Our first
user study found that human subjects are very accepting of a competitive robot exercise companion.
Our competitive robot provides entertaining, challenging, and intense gameplay experiences that
significantly increases the subject’s heart rate. In our second user study, one of the policies resulting
from the proposed RL method was compared to a strong heuristic baseline policy. The RL-trained
policy were significantly better at suppression of the human learning affect, and appeared to be more
intelligent to 70% of the population.
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