
Differentially Private Analysis on Graph Streams

Raman Arora Jalaj Upadhyay Sarvagya Upadhyay

Johns Hopkins University
Baltimore MD 21201
arora@cs.jhu.edu

Apple1

Cupertino CA 95050
jalaj@apple.com

Fujitsu Laboratories of America
Sunnyvale CA 94085

supadhyay@fujitsu.com

Abstract

In this paper, we focus on answering queries,
in a differentially private manner, on graph
streams. We adopt the sliding window model
of privacy, where we wish to perform analysis
on the last W updates and ensure that pri-
vacy is preserved for the entire stream. We
show that in this model, the price of ensuring
differential privacy is minimal. Furthermore,
since differential privacy is preserved under
post-processing, our results can be used as a
subroutine in many tasks, most notably solv-
ing cut functions and spectral clustering.

1 Introduction

Graph-based analysis has attracted considerable at-
tention in many areas, including computer science,
data analysis, physics, biology, and social sciences. A
recurring feature in graph analysis is partitioning the
vertices into distinct groups. For instance, partitioning
a graph into distinct groups exhibiting a strong com-
munity structure (Girvan and Newman, 2002; New-
man, 2004) has found applications in marketing anal-
ysis, supply chain modeling, and telecommunication
networks, to name a few. The seminal work of New-
man (2004) and subsequently (Frank et al., 2019)
showed that learning community structure and several
related statistical and learning tasks on graphs such as
Lipschitz learning on graphs, can be accomplished us-
ing spectral analysis of graphs. Spectral analysis is
also useful in randomized linear algebra (Cohen et al.,
2015), linear programming (Lee and Sidford, 2014),
and spectral clustering (Peng and Spielman, 2014).

1Work done while at Johns Hopkins University.

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

With such a powerful analytical tool at our disposal, it
is imperative to come up with mechanisms that allow
us to do analysis privately. This is especially impor-
tant in the wake of recent studies that showed that
even innocuous statistical analysis on graphs, if not
done properly, can lead to privacy leaks (Karwa et al.,
2011; Liu et al., 2008). Motivated by this, algorithms
have been proposed for estimating the spectrum of
graphs while preserving differential privacy (Arora and
Upadhyay, 2019; Blocki et al., 2012).

Differential privacy as a privacy tool has gained signif-
icant traction in the last decade. From a theoretical
viewpoint, it offers an intuitive, meaningful, and for-
mally rigorous notion of privacy that quantifies the
loss of privacy in an easy to understand measurable
fashion. The notion is adaptable to a large class of al-
gorithms where simpler differentially private subrou-
tines can be composed sequentially or in parallel to
yield complex algorithms without compromising too
much on privacy. This is a highly desirable feature,
and unsurprisingly, a plethora of techniques have been
developed that focus on preserving differential privacy.
They have also led to several large scale real-world de-
ployments for various tasks (Ding et al., 2017; Erlings-
son et al., 2014; Haney et al., 2017; Kenthapadi et al.,
2017; Thakurta et al., 2017a,b).

However, there is a gap between theoretical research
and practical implementation of differentially private
algorithms for estimating graph spectrum and analy-
sis. All the results in private graph analysis assume
that the graphs are static (Blocki et al., 2012; Eliáš
et al., 2020; Gupta et al., 2012; Upadhyay, 2013),
while many current implementations (of private and
non-private algorithms) assume that the underlying
data is dynamically updated. Moreover, recent up-
dates are given more significance for generating any
prediction model or analysis (Lee and Maggioni, 2011;
Tylenda et al., 2009). For instance, the differential
privacy overview of Apple states, “Apple retains the
collected data for a maximum of three months.” Given
the ubiquitous nature of graphs in statistical analysis

Differentially Private Analysis on Graph Streams

and learning theory, the aim of this paper is to give a
theoretical foundation to the heuristics and empirical
observations.

To do this formally, we consider the sliding window
model of privacy introduced by Bolot et al. (2013).
This model is parameterized by window size W and
the objective is to perform the required task using data
received in the lastW updates while using o(W) space.

As a motivating example of this set up, consider the
sceanrio where we are contact tracing a contagious dis-
ease with an incubation period of W . This can be
modeled as a graph G = (V,E), where vertex set V
corresponds to individuals and an edge (u, v) 2 E is
present between two nodes if individuals u and v have
come in contact. At a given time, suppose we learn
that a certain set of individuals (say S ✓ V) are tested
positive for the disease. A natural privacy requirement
would be to hide whether two individuals came in con-
tact (or presence/absence of an edge). A natural query
would be identify the total number of individuals that
have come in contact with anyone in the set S during
the last W time period. Another natural query could
be to understand the spread of the disease due to in-
fected individual set S or the set of individuals that
can lead to maximum number of possibly infected indi-
viduals. All these problems can be succintly answered
by studying the spectrum of the underlying graph.

Our main contribution is the first efficient differentially
private algorithm in the sliding window model that
outputs a graph approximating the spectrum of the
positive weighted input graph using o(W) space.

Notation. For a graph G := (V,E) with vertex set
V and edge set E, let w(u, v) denote the weight on
the edge between vertices u and v. If (u, v) /2 E, then
w(u, v) = 0. Given a graph, G, its Laplacian, denoted
LG , is the matrix with the following entries

LG [u, v] =

(
�w(u, v) if u 6= vP

v2V \{u} w(u, v) if u = v
.

We use Kn to denote an n-vertex complete graph with
all edge weights equal to 1 and G [H to denote the n
vertex graph formed by the union of edges in G and H.
For symmetric positive semidefinite matrices, A,B 2
R

n⇥n, we use A ⌫ B to denote the p.s.d. ordering, i.e.,
A � B ⌫ 0. The notation kAk2 denotes the spectral

norm of a matrix A. The asymptotic notation eO(f(n))
is equal to O(f(n) poly log(n)), where n is the number
of vertices in the graph.

2 Problem setup and main results

The dataset considered in this paper are graphs with n
vertices and positive edge weights formed by a stream

of (edge, weight) tuples,

S :=
⇣
e(1), w(1)

⌘
,
⇣
e(2), w(2)

⌘
, . . . ,

⇣
et), w(t)

⌘
, . . .

where e(t) is the edge to which the weight w(t) 2 [0, 1]
is added at time t. Our primary focus is graph analysis
on the graph formed by the last W updates such that
the privacy of the entire stream is preserved. These
are standard conditions considered by previous works
in this setting (Bolot et al., 2013; Chan et al., 2012).

We first define the privacy notion considered in this pa-
per. The definition relies crucially on what we consider
neighboring datasets. For applications in a stream-
ing model, it is typical to consider event-level pri-
vacy (Bolot et al., 2013; Dwork et al., 2010a,b), where
two streams are neighboring if they differed in a single
update. We adopt the same notion here for streaming
graphs. We say that two streams, S :=

�
e(t), w(t)

�
t�0

and S̄ :=
�
ē(t), w̄(t)

�
t�0

are neighboring if they differ

in a single update, i.e., an (edge, weight) tuple.

We explore various possibilities of neighboring graphs
in our neighboring relation. Let G be the graph formed
by S and Ḡ be the graph formed by a neighboring
stream S̄. Recall these graphs are the one that would
have formed if we consider the entire stream. Then
our neighboring relation allows G to contain an edge
that is not present in Ḡ as long as the weight on that
edge is at most 1. However, in this case, all the other
edge weights are equal in both G and Ḡ. Another case
that is permissible in our neighboring relation are the
graphs G and Ḡ with the same edge set, but weight on
one single edge differ by at most 1. On the other hand,
we do not allow that G and Ḡ differ in two edges with
the sum of the difference of their weight at most 1, a
neighboring relation permissible in Sealfon (2016). We
next give a formal definition.

Definition 1. Let G be the set of graphs over n ver-
tices and positive edge weights. A randomized algo-
rithm M : G! R (where R is some arbitrary abstract
range) is (✏, �)-differentially private if for all pairs of
graphs G, Ḡ in G formed by neighboring streams and

8S ✓ R,Pr[M(G) 2 S]  exp(✏) Pr[M(Ḡ) 2 S] + �,

where the probability is taken over the private coin
tosses of M .

Note that privacy is with respect to the entire stream
while accuracy is with respect to the sliding window.
There are closely related privacy definitions: continual
release model (Dwork et al., 2010a) and pan-privacy
streaming model (Dwork et al., 2010b) are accurate
for entire stream and privacy with expiration (Bolot
et al., 2013) classify only the current window as pri-
vate. Our definition can be seen as a generalization of

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

continual release and privacy with expiration model.
Our algorithms can be extended seamlessly to these
models of privacy (see Remark 1 for more discussion).

We now briefly describe the main problem that we
solve. Let LW be the Laplacian of the graph formed
in the last W updates. We wish to find a graph eG
satisfying Definition 1 and

(1� ⇢)x>(LW � ⇣LKn
)x  x>LeGx

 (1 + ⇢)x>(LW + #LKn
)x.

for all x 2 R
n. Here, ⇣ and # can be thought of dis-

tortion in spectrum that we are willing to accept to
preserve privacy. Ideally, these parameters should be
as small as possible. Informally, we view adding LKn

as introducing plausible deniability pertaining to the
presence of an edge in the output; it could be coming
from either G or the complete graph.

If we restrict x to be only binary vectors, then we get
cut approximation. It has been also studied previously
in the literature (Eliáš et al., 2020; Gupta et al., 2012).
Both of these works consider the semi-definite program
of Alon et al. (2006) and give an efficient algorithm to
solve it. However, their algorithm does not extend to
the sliding window setting.

The choice of LKn
is for simplicity. It is motivated by

the fact that an n vertex unweighted complete graph
is the same irrespective of the input graph once the
number of vertices is fixed.

2.1 Main Results

Our privacy mechanism is the basic Gaussian mecha-
nism. That is, we overlay a weighted complete graph,
R, where the weight on R is sampled from a Gaussian
distribution with appropriate variance. We call this
algorithm Priv-Graph(G; ✏, �).

Theorem 1. Let G be an n vertex graph. Then
eG Priv-Graph(G; (✏, �)) satisfy (✏, �)-differential
privacy with respect to edge-level privacy.

Proof. Let G and G0 be two neighboring graphs that
differs in exactly one edge e := (i, j) by a weight � 2
(0, 1]. Let vec (AG) and vec (AG0) be the vectorization
of adjacency matrices of G and G0, respectively. Then

vec (AG)� vec (AG0) = �(ēi ⌦ ēj + ēj ⌦ ēi).

It follows from above that kvec (AG)� vec (AG0)k2 =

�
p
2. The proof of the theorem follows from the

privacy guarantee of Gaussian mechanism with � =
�
✏

p
2 log(1/�) (Dwork and Roth, 2014).

Since the graph spectrum identifies many useful graph
properties and differential privacy is preserved under

post-processing, we can use Theorem 2 to perform var-
ious graph analysis. For some applications, see Arora
and Upadhyay (2019).

Algorithm 1 Priv-Graph (G; (✏, �))

Input: An input graph G = (V,E), privacy parameter
(✏, �).

Output: A laplacian of graph LeG .

1: Set � :=
4
p

log(1/�)

✏
.

2: Sample gij ⇠ N (0,�2) for 1  i < j  n.
3: Define a matrix LR 2 R

n⇥n such that

LR[i, j] :=

8
><
>:

gij i < j

gji j < i

�
P

k 6=i gik i = j.

4: Compute the laplacian, LeG = LG + LR.

5: Output: eG.

Getting an accuracy that depends only on the window
size and not the length of the stream, while preserving
the privacy of the entire stream, brings a new chal-
lenge. Previous work on the sliding window model of
privacy considered decayed sum of bits (Bolot et al.,
2013), a simpler task than approximating the spec-
trum. So it is not clear if their approach directly
extends to our case (more details are in the supple-
mentary material). Our main contribution is a novel
algorithm, Sliding-Priv-Graph (see Algorithm 2),
which takes as input a stream of positive weighted
edges of a graph, and maintains a data structure Dpriv

satisfying certain spectral properties. The main result
is the following theorem.

Theorem 2. Let ✏ > 0, � > 0 be the privacy pa-
rameters and ⇢ 2 (0, 1/2) be the approximation pa-
rameter. Then Sliding-Priv-Graph maintains an
(✏, �)-differentially private data structure, Dpriv, us-

ing space complexity of O
⇣
min

n
W, n3 log(W)

⇢

o⌘
, and

runtime poly(n, log(W)). Furthermore, at any time
T > 0, Dpriv can be post-processed in O(1) time to out-

put a graph eG satisfying the following utility (spectral
approximation) guarantee with high probability:

(1� ⇢)LW + c1

r
log(n) log(W/�)

n✏2
LKn

� LeG

� (1 + ⇢)LW + c2

r
log(n) log(W/�)

n✏2
LKn

,

where 0 < c1 < c2 are absolute constants, LKn
and LeG

are Laplacians of the graphs Kn and eG, and LW is the
Laplacian of the graph given by edges and weights over
the last W updates.

The best known non-private algorithm for spectral ap-

Differentially Private Analysis on Graph Streams

proximation of graph in the sliding window model re-

quires O
⇣

n2 logW
⇢

⌘
space. However, these algorithms

fails with privacy since they use effective resistance
based sampling, which is not Lipschitz (Arora and
Upadhyay, 2019). Further, the sampling probabli-
ity can itself lead to privacy leak. We believe that

O
⇣

logW
⇢

⌘
dependence is necessary for the sliding win-

dow model even without privacy; however, we leave it
whether the dependence on n is cubic (as in this pa-
per) or quadratic (matching the non-private setting)
as a question for future research.

The closest problem formulation to ours is that con-
sidered in Arora and Upadhyay (2019). Theorem 2
matches their additive error (measured in terms of the
weights on Kn) even though they work in a static
graph setting. In contrast, Blocki et al. (2012) and
Upadhyay (2013) output a synthetic matrix (and not
necessarily a Laplacian of positive weighted graph)
with same additive error measured in terms of scaling
of identity matrix. Our bound are interesting when
the singular values of LW is of order eO(

p
n/✏). This

happens, in particular, for very well connected graphs
with large edge weights. We leave it as a problem of fu-
ture research whether our accuracy bounds (as well as
previous results) for spectral approximation are tight.

Our accuracy analysis depends on a non-asymptotic
bound on the spectrum of graphs with Gaussian
weights. Using subadditivity of spectral norm and
non-asymptotic bounds on the spectrum of random
matrices with unit variance Gaussian entries, we show
the following result:

Theorem 3. Let H be an n vertex graph with
edge weights independently and identically distributed
copies of Gaussian random variable with zero mean
and unit variance. Then there are absolute constants
c1, c2, C > 0 such that

Pr[kLHk2 � C(
p

n log(n) + t)]  c1 exp(�c2t2).

Proof. First note that we can write the Laplacian of
graphs as LG = G � D + S, where G be the random
matrix whose entries are sampled i.i.d. from N (0, 1),
D and S are diagonal matrices formed in the following
manner:

D[i, i] = G[i, i], S[i, i] =
X

j 6=i

G[i, j].

Now, using subadditivity of spectral norm, we have
smax(LG)  smax(G) + smax(D) + smax(S). We know
that smax(G)  2

p
n with probability 1 � e�c1n for

Gaussian random variable (Tao, 2012). For the second

term, again using Tao (2012), we have

smax(D) = max
ei

|e>i Dei| = max
ei

|e>i Gei|

 max
v2Sn�1

|v>Gv| = smax(G)

with probability 1�e�c1n, where ei is the i-th standard
basis vector. Finally, for the last term, we note that

smax(S)  max
i

������

X

j 6=i

G[i, j]

������
.

The standard Chernoff-Hoefding bound for the sum
of random Gaussian variable gives that with probabil-
ity 1 � e�c2n, smax(S)  C

p
n log(n). The theorem

follows by using union bound.

The bound also gives us new results in representation
learning and signal recovery.

3 Proof of Theorem 2

We first describe why proving Theorem 2 requires new
techniques. Current algorithms for differentially pri-
vate graph analysis under edge level privacy (Blocki
et al., 2012; Eliáš et al., 2020; Gupta et al., 2012; Hay
et al., 2010) utilize various techniques, such as mul-
tiplicative weight updates (Gupta et al., 2012), ran-
dom projections (Blocki et al., 2012), private mirror
descent (Eliáš et al., 2020), and network flow (Ka-
siviswanathan et al., 2013). While these techniques are
provably efficient in the static setting, it is not clear
how to extend them to a dynamic setting such as a slid-
ing window model. It is also not clear if we can employ
existing techniques in the non-private sliding window
model – they are either limited to real-valued functions
that satisfies certain smoothness property (Braverman
and Ostrovsky, 2010) or tailor-made for specific func-
tions (Braverman et al., 2020, 2018).

In the sliding window setting, there has been no prior
work on problems arising in private graph analysis. To
the best of our knowledge, current private algorithms
are limited to either counting queries (Bolot et al.,
2013) or heavy hitters (Chan et al., 2012; Upadhyay,
2019) that do not extend to spectral approximation.

One of the main technical hurdles towards spectral
graph analysis in the sliding window model is that
one has to work with positive semidefinite matrices
instead of real-valued functions. Any real-valued func-
tion f satisfies the property that if f(x) 6 f(y) then
f(y) < f(x). This fact is non-trivially used in ex-
isting (non-private) algorithms in the sliding window
model (Braverman and Ostrovsky, 2010; Datar and
Motwani, 2007). However, A 6� B does not imply

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

B � A. The second challenge is that all existing algo-
rithms for private graph analysis (and spectral graph
analysis) use techniques for which it is unclear how to
update intermediate steps to reflect the deletion of an
edge that has expired (falls outside the sliding win-
dow). In what follows, we give a technical overview
of how we overcome these hurdles and describe the
proposed algorithm.

For ease of presentation, we cover the case when the
algorithm outputs only once and defer the continual
release case to the supplementary material.

To motivate the one-shot algorithm, we begin with
the setting when we have no space or privacy con-
straints. Let Hi be the graph formed from the edges
inserted to the graph in the last i updates. Then,
a simple FIFO list that stores the last W tuples,
{(H1, T), . . . , (HW , T �W + 1)} suffices. However,
the space required is n2W and can be prohibitive for
large graphs and large window size. Our key insight
is that, at any time T , we can efficiently find a small
subset of graphs G1, . . . ,G` such that for all Hi in the
FIFO list, there exists a Gj such that (1 � ⇢)LHi

�
LGj
� (1 + ⇢)LHi

.

The rest of the section is organized as follows. We
first describe the intuition behind our algorithm that
finds a small set of graphs, G1, . . . ,G`, for any time
T > 0 when privacy is not a concern (Section 3.1).
We then use Theorem 3 to provide privacy guaran-
tee (Section 3.2). We finally show how these two
steps can be combined to give a spectral approxima-
tion (Section 3.4). We will apply Theorem 3 using Kn

with Gaussian weights; therefore, without any loss of
generality, we assume that LH1

, . . . , LHW
have a sin-

gle connected component with all non-zero spectrum
bounded. For a streamed graph G, we use the notation
eG to denote the graph stored by the data structure.

3.1 Improving space

We consider the following data structure, Dspace,
which at any time T maintains a small list of graphs
and timestamps (that we refer to as checkpoints),
Dspace := {(G1, t1), . . . (G`, t`)} . The graph Gi is the
weighted graph given by edges and weights observed
during updates between times [ti, T]. The choice of
ti’s and size of the list are dictated by smooth Lapla-
cian property (more details in Section 3.3). At a high
level, the smooth Laplacian property requires that the
spectrum of graphs corresponding to successive check-
points are close enough. Let {�1(A), . . . ,�n(A)} de-
note the eigenvalues of an n ⇥ n symmetric matrix
A and let A 6� B denote that the matrix B � A
is not positive semidefinite (i.e., there exists at least
one j 2 {1, . . . , n} such that �j(A) > �j(B)). Then

smooth Laplacian property is defined as follows:

Definition 2 (Smooth Laplacian property). A data
structure D satisfies smooth Laplacian property if
there exists an ` = poly(n, log(W)) such that D satis-
fies the following conditions:

1. D consists of ` timestamps I := {t1, . . . , t`} and

graphs S := {eG1, . . . , eGs}.

2. At least one of the following holds:

(a) For 1  i  ` � 1, if ti+1 = ti + 1, then
(1� ⇢)LeGi

6� LeGi+1
.

(b) For some constant 0 < ⇢ < 1, both of the
following properties for 1  i  `� 2:

i. Property1: (1� ⇢)LeGi
� LeGi+1

.

ii. Property2: (1� ⇢)LeGi
6� LeGi+2

.

3. t1  T �W +1  t2, where T is the current time.

This is a generalization of smooth histogram prop-
erty (Braverman and Ostrovsky, 2010) from real-
valued functions to graph Laplacians. It is easy to
show that Definition 2 allows us to prove a bound
on the space requirement. For this, note that Def-
inition 2 guarantees that the spectrum of graphs in
the data-structure decreases exponentially: for ev-
ery i 2 [`], there exists a j 2 [n] such that the
�j(LGi+2

) < (1 � ⇢)�j(LGi
)  �j(LGi+1

). Since the
spectrum of the graph in any window is polynomially
bounded (we justify this a little later), any eigenvalue
can decrease by a (1� ⇢) factor at most

O
⇣
log(1�⇢) W

⌘
= O

✓
log(W)

log (1� ⇢)

◆
= O

✓
1

⇢
log(W)

◆

times for small ⇢. Since there are at most n � 1 such
eigenvalues, we get the desired bound on ` and that

the total space required is O
⇣

n3 log(W)
⇢

⌘
.

3.2 Incorporating privacy

The data structure Dspace does not preserve privacy.
Moreover, we cannot just invoke Priv-Graph for ev-
ery time epoch as the resulting graph Laplacians may
not be positive semi-definite; therefore, the smooth
Laplacian property will not hold. We modify Dspace

to get a data structure, Dpriv, that is differentially pri-
vate. The basic observation behind our construction
is as follows. Let R be the graph with edge weights
sampled from a zero-mean Gaussian distribution with

variance 4 log(1/�)
✏2

. Then the following hold for any
constant � � 1:

� kLRk2
n

LKn
� LR ⌫ 0, and

� kLRk2
n

LKn
+ LR ⌫ 0.

Differentially Private Analysis on Graph Streams

Algorithm 2 Sliding-Priv-Graph(Dpriv; (et, wt))

Input: A new edge-weight pair (et, wt) andDpriv con-

taining ` tuples
n
(eG1, t1), . . . , (eG`, t`)

o
.

Output: Updated Dpriv.
1: On input an edge-weight pair (et, wt) at time t,

2: eDpriv Include-Edge(Dpriv; (et, wt)).

3: Dpriv Maintain(eDpriv; (et, wt)).

This follows from the fact that LKn
= n1n � ēē> and

LRē = 0, where ē denotes vector of all 1’s and 1n is
the n⇥ n identity matrix. Equivalently, LKn

and LR

commute and the strictly positive eigenvalues of ⌫LKn

dominate the singular values of LR for ⌫ � 1
n kLRk2.

Since

kLRk2 
c

✏

s
n log(n) log

✓
W

�

◆
,

we have

LR + C

s
log(n)

n✏2
log

✓
W

�

◆
LKn

⌫ 0 (1)

for large enough C > 3c. Now suppose the current
data structure Dpriv consists of timestamps t1 < t2 <

· · · < t` and graphs eG1, . . . , eG`. Let Ht be the single
edge graph formed by streamed (et, wt) pair at time
t. Then Dpriv is updated by first including the times-
tamp, t`+1 = t, and a graph,

eG`+1 := Ht [R [

C

s
log(n)

n✏2
log

✓
W

�

◆
Kn

!
, (2)

whereR and C are as in equation (1). This justifies the
assumption we made earlier about the connected graph
with polynomially bounded eigenvalues. We then up-
date eGi eGi [Ht for i 2 [`]. The privacy proof
follows from Theorem 1 and that we are outputting a
graph only at the very end of the stream.

3.3 Maintaining smooth Laplacian property

The utility guarantee of our algorithm relies crucially
on the fact that Dpriv satisfies the smooth Laplacian
property no matter how the graph in the current win-
dow is formed. This is maintained by an algorithm
Sliding-Priv-Graph (see Algorithm 2). The algo-
rithm can be divided in two stages: Stage 1 (Include-
Edge) and Stage 2 (Maintain).

Stage 1: This includes the effect of the new edge
in the data structure. In this stage, the algorithm
checks if the second checkpoint has expired. If so, it
deletes the first checkpoint in line 5. This ensures that
the starting index of the window lies between the first

Algorithm 3 Include-Edge(Dpriv; (et, wt))

Input: A new edge-weight pair (et, wt) andDpriv con-

taining ` tuples
n
(eG1, t1), . . . , (eG`, t`)

o
.

Output: Updated eDpriv.

1: eDpriv Dpriv

2: if t2 < t�W + 1 then

3: For 1  j  `� 1,
4: Set tj = tj+1, eGj = eGj+1.
5: Update ` `� 1.
6: end if

7: Construct a complete graph R`+1 with edge

weights sampled i.i.d. from N
⇣
0, 8 log 1/�

✏2

⌘
.

8: Privatization step. Define Ht be a single-edge
graph with weight wt on the edge et. Set t`+1 = t
and

eG`+1 := Ht [R`+1 [

C

s
log(n)

n✏2
log

✓
W

�

◆
Kn

!
.

9: Update eDpriv eDpriv [(eG`+1, t`+1).
10: ` = `+ 1.
11: for i = 1, . . . , `� 1 do

12: Update eGi Ht [eGi. . Update the graphs with
new edge.

13: end for
14: Return eDpriv

two checkpoints as required. Thereafter, it creates a
new checkpoint with a complete weighted graph and
the streamed edge in line 8 of Sliding-Priv-Graph.
This checkpoint is then added to Dpriv. Finally, it
updates all the other checkpoints in Dpriv by adding
new edge to the current graphs in lines 11 to 13 of
Sliding-Priv-Graph.

Stage 2: Once a new set of graphs are produced,
some graphs in Dpriv may violate the smooth Lapla-
cian property. This stage ensures that these graphs
are removed in Maintain. In particular, Maintain

performs a sequential check over all the checkpoints to
find if the spectrum of adjacent checkpoints becomes
too close (and can be safely removed). If so, it finds all
such adjacent checkpoints and remove them in lines 4
and 5 of Maintain. Note that we only delete graphs
up to indices j � 1 in line 5 of Maintain. This is
crucial in maintaining the smooth Laplacian property.
The data structure is then updated to store rest of the
graphs and corresponding timestamps in lines 6 to 12.

The proof that Sliding-Priv-Graph preserves
smooth Laplacian property is intricate. We prove it
by exhaustive case analysis. In particular, we con-
sider whether a checkpoint is deleted in line 5. If it
is deleted, then the result follows because line 5 of

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Algorithm 4 Maintain(Dpriv; (et, wt))

Input: A data structure eDpriv containing ` tuplesn
(eG1, t1), . . . , (eG`, t`)

o
and pair (et, wt).

Output: Updated Dpriv.
1: Mantain PSD ordering. That is, find

j := min
�
p : LGp

6⌫ LG`

and delete LGj
, . . . , LG`�1

.
2: Set LGp

= LG`
, ` = p.

3: for i = 1, . . . , `� 2 do

4: Find eGi+1, . . . , eGj such that

(1� ⇢)LeGi
� LeGj

and

(1� ⇢)LeGi
6� LeGj+1

.

5: Delete eGi+1, . . . , eGj�1 and set k = 1.
6: while j + k < ` do . Reorder the indices
7: Update eGi+k = eGj+k�1.
8: Update ti+k = tj+k�1.
9: Update k := k + 1.

10: end while

11: ` = `+ i� j + 1. . Update #checkpoints.
12: end for

13: Output: Dpriv :=
n
(eG1, t1), . . . , (eG`, t`)

o
.

Sliding-Priv-Graph maintains that we delete only
up to index j� 1. If it is not deleted, then it might be
the case that an update can result in a temporary vi-
olation of the properties. To prove this cannot be the
case is more involved. It uses how updates occur in
line 5 and the fact that graph Laplacians are positive
semidefinite. In particular, we use the following facts:
(i) the properties were maintained before the update,
(ii) the checkpoint became a successor at some point in
the past; and (iii) adding a fixed positive semidefinite
matrix to a sequence of positive semidefinite matrices
preserves the partial order.

3.4 Smooth Laplacian property implies

spectral approximation

Recall that eG is the graph stored by the data struc-
ture when the underlying streamed graph is G. Let
LW be the Laplacian of the graph streamed in the cur-
rent window of size W and LGi

be the one streamed
during the time interval [ti, T] for 1  i  `. Then
the accuracy of the algorithm follows by the invari-
ants maintained by our data structure and the rela-
tion between the tuple {LG1

, LG2
} and their private

versions
n
LeG1

, LeG2

o
. By construction, the window is

sandwiched between the first and second timestamp.
This implies that LG2

� LW � LG1
. By smooth Lapla-

cian property, (1 � ⇢)LeG1
� LeG2

, where eG1 and eG2

are the graphs maintained by Sliding-Priv-Graph

in the data structure Dpriv. Moreover, by the defini-

tion of eG1 and eG2 and Theorem 3, we have

LG1
+ (C � c)⌧LKn

� LeG1
� LG1

+ (C + c)⌧LKn

LG2
+ (C � c)⌧LKn

� LeG2
� LG2

+ (C + c)⌧LKn
.

It follows that

(1� 2⇢)LW + c1⌧LKn
� LeG1

� (1 + 2⇢)LW + c2⌧LKn

for some ⇢ 2 (0, 1/2) and constants c1 and c2. Defining
eG := eG1 at the end of the stream, we have the desired
accuracy bound of Theorem 2 by scaling ⇢. The pri-
vacy guarantee follows from the Gaussian mechanism
and that we just output the graph once. Finally, for
the efficiency guarantee, the most expensive step is
Step 4. This can be done efficiently using the recent
work on testing PSD ordering (Bakshi et al., 2020).

Remark 1. In this section, we have concentrated on
one-shot algorithm as per the definition of (Dwork
et al., 2010a). That is, we publish results only at the
end of the stream based on the graph formed in the
last W updates. Our algorithm can be easily extended
to continually release (Dwork et al., 2010a) a graph at
every time epoch and pan-privacy model (Dwork et al.,
2010b) using standard techniques. We cover it in more
details in the supplementary material.

4 Other applications of Theorem 3

Other consequences of Theorem 3 is simple to describe
efficient algorithms for private graph analysis that also
provides better accuracy. Simplicity and adaptability
are highly desirable features from a practical viewpoint
and we believe that our algorithms can be employed on
a large scale. We explore this with respect to cut func-
tion. For the privacy notion, we consider the standard
edge-level privacy (Blocki et al., 2012; Dwork et al.,
2014; Eliáš et al., 2020; Gupta et al., 2012).

Cut queries. We first consider cut queries, one of the
most widely studied problems in private graph analy-
sis. For two disjoint subsets of vertices, S and T , of
an n vertex weighted graph G, the size of (S, T)-cut,
denoted by ΦS,T (G), is the sum of weights of edges
crossing between S and T . Let |S| denotes the number
of nodes in S. Our algorithm, Priv-Graph(G; ✏, �),
outputs a synthesized graph : (i) sample a graph, R,
whose edges are sampled i.i.d. from a Gaussian dis-
tribution with variance required for (✏, �)-differential

privacy, and (ii) overlay R on G to get eG. In other
words, LeG = LG + LR. We show the following result:

Theorem 4. Let G be the input graph. Then Priv-

Graph is an (✏, �)-differentially private algorithm

Differentially Private Analysis on Graph Streams

(S, V \S)-cut (S, T)-queries Run-time
McSherry and Talwar (2007) n/✏ n/✏ �

Gupta et al. (2012) n3/2/✏
p

n|S||T |/✏ n2

Blocki et al. (2012) ⇢ΦS(G) +
p
n|S|/⇢2✏ � n2.37

Upadhyay (2013) ⇢ΦS(G) +
p
n|S|/⇢2✏ � n2+o(1)

Dwork et al. (2014) |S|
p
n/✏ � n2

Eliáš et al. (2020)
p

n
✏

P
e2E we

p
n
✏

P
e2E we poly(n)

This work |S|
p
n/✏ 1

✏
p

|S|+|T |
|S||T | n2

Table 1: Comparison of algorithms for answering cut query for � = Θ(n� log(n)). Bounds ignore multiplicative
constants and log(n) term. G := (V,E) denotes a graph with weights {we}e2E , S, T ✓ V are disjoint subsets,
ΦS(G) is the size of cut (S, V \S), and ⇢, ✏ > 0 are small constants.

such that for any S ⇢ V , the output eG Priv-Graph

(G; (✏, �)) satisfy:

���ΦS,T (eG)� ΦS,T (G)
���  O

 p
log(n) log(1/�)|S||T |

✏
p
|S|+ |T |

!
.

This improves upon the result of Gupta et al. (2012)
for all possible sizes of S and T and match their
bound when |S| and |T | are both O(n). In a re-
cent work, Eliáš et al. (2020) gave an algorithm to
answer cut queries with running time that has large
polynomial dependence on n and additive error of
eO
�p

n
✏

P
e2E we

�
even on a sparse graph, i.e., with

eO(n) edges. Our bound is instance-dependent but in-
dependent of the weights on the edges – we achieve
better bound whenever |S|2 = o(

P
e2E we). As an ex-

ample, for unweighted graph, we improve their result
for all (S, V \S) queries if |S| = o(

p
|E|). In particular,

even for sparse unweighted graph with constant degree
bound, we get better result whenever |S| = o(

p
n).

A specical case of cut queries when T = V \S has been
also studied (Blocki et al., 2012; Dwork et al., 2014).
We improve Blocki et al. (2012) over all parameters.
To compare our result with Dwork et al. (2014), let
us consider their output C = LG + N . Here N is
a Gaussian matrix with appropriate noise to preserve
differential privacy. For a set of q cut queries (S, V \S),
standard concentration bounds on Gaussian distribu-
tion implies that their approach incur an additive error
of order O(|S|

p
log(q)/✏). In particular, if we wish to

answer all possible cut queries, it leads to O(|S|
p
n/✏)

additive error. We refer to Table 1 for a succinct com-
parison.

Spectral sparsification of graphs. Spectral sparsi-
fication was recently studied by Arora and Upadhyay
(2019). They gave a polynomial-time differentially
private algorithm to output spectral sparsification of
graphs by estimating the effective resistance privately
and then sampling edges from a graph overlayed with
an appropriately weighted complete graph. While effi-

cient, their technique is arguably complicated and less
implementation friendly. We give a significantly sim-
pler algorithm.

Our idea is to use Priv-Graph and then apply a non-
private spectral sparsification algorithm on its output.
However, known non-private algorithms require a pos-
itively weighted graph. To ensure that, we use a semi-
definite program that outputs a graph with only posi-
tive edge weights and achieves asymptotically the same
loss in accuracy. To do this, we define the following
convex set that will be used in Algorithms 5 and 6:

L
n(%) =

(
X : X[i, j]  0 8i, j 2 [n] : i 6= j

and 0 
nX

j=1

X[i, j]  % 8i 2 [n]

)
.

(3)

We show the following result.

Theorem 5. Let G be the input graph on n ver-
tices. Then Priv-Sparsify(G; (✏, �)) is a polynomial-
time (✏, �)-differentially private algorithm. Moreover,
eG Priv-Sparsify(G; (✏, �)) has O

�
n/⇢2

�
edges such

that, with probability at least 9/10,

(1� ⇢)LG + ⌧LKn
� LḠ � (1 + ⇢)LG + ⌧LKn

,

where ⌧ := O

✓q
log(n) log(W/�)

n✏2

◆
.

Optimization problems on graphs. Finally, we
study three popular optimization problems related to
cut functions of the graph: Max-Cut, Sparsest-

Cut, and Edge-Expansion. We show the following:

Theorem 6. There is a polynomial-time (✏, �)-
differentially private algorithm, Priv-Comb-Opt,
that, for an n-vertex graph G := (V,E), outputs a par-
tition of nodes (S, V \S), such that, if flag = 0, then it

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Algorithm 5 Priv-Sparsify (G; (✏, �))

Input: An input graph G = (V,E), privacy parameter
(✏, �), non private algorithm for spectral sparsifi-
cation of a graph, Sparsify(·).

Output: A sparse graph, eG.
1: Compute bG Priv-Graph (G; (✏, �)). Let��LbG � LG

��
2

= 4c
✏

p
n log(n) log (1/�) for some

constant c.

2: Compute L eH LbG +
q

2C log(n) log(1/�)
n✏2 LKn

for

a positive constant C > 3c.
3: Solve the following semidefinite program to obtain

the optimal solution pair
�
�̄, L̄G0

�
:

minimize: �

subject to: L eH � LG0 � �1n,

LG0 � L eH � �1n,

� � 0,

LG0 2 L
n(1/n),

where L
n(·) be as defined in equation (3).

4: Construct Ḡ from L̄G0 by setting weights for each
edge (u, v) of Ḡ as �L̄G0 [u, v].

5: Output eG Sparsify (Ḡ).

solves Max-Cut with the following guarantee:

ΦS(G) � (0.87856� ⇢) ·max
S✓V

ΦS(G)

�O

 p
n log(n) log(1/�)

��S̄
��

✏

!
.

and if the flag = 1, then it solves Sparsest-Cut with
the following guarantee

ΦS(G)

|S|(n� |S|)
 O(

p
log n) · min

S✓V

✓
ΦS(G)

|S|(n� |S|)

◆

+O

0
@
s

log2 n log(W/�)

✏2n

1
A .

Since Edge-Expansion is a constant factor of
Sparsest-Cut (Arora et al., 2009), the above re-
sult also gives an approximation algorithm for Edge-
Expansion. Moreover, we get optimal multiplicative
approximation, improving upon the result of Arora
and Upadhyay (2019).

5 Conclusion and big picture

In this paper, we lay the foundation of private graph
analysis in the sliding window model, a preferred
model of computation for various real-world imple-
mentations. Our result shed some theoretical light

Algorithm 6 Priv-Comb-Opt (G; (✏, �); flag)

Input: An input graph G = (V,E), privacy pa-
rameter (✏, �), flag : 0 for Max-Cut and 1 for
Sparsest-Cut, non-private approximation algo-
rithms Max(·) and Sparsest(·).

Output: A partition of nodes, S.
1: Compute bG Priv-Graph (G; (✏, �)). Let��LbG � LG

��
2
= c�

p
n log(n) for some constant c

and � = 4
✏

p
log (1/�).

2: Compute L eH LbG +
q

2C log(n) log(W/�)
n✏2 LKn

for

a positive constant C > 3c.
3: Solve the following semidefinite program to obtain

the optimal solution pair
�
�̄, L̄G0

�
:

minimize: �

subject to: L eH � LG0 � �1n,

LG0 � L eH � �1n,

� � 0,

LG0 2 L
n(1/n).

4: Construct Ḡ from L̄G0 by setting weights for each
edge (i, j) of Ḡ as �L̄G0 [i, j].

5: if flag = 0 then

6: S̄ Max(Ḡ)
7: else

8: S̄ Sparsest(Ḡ).
9: end if

10: Output: S̄.

on the empirical observations by setting ✏!1; these
observations suggest that recent data are more predic-
tive of recent trends in dynamic social graph (Tylenda
et al., 2009). Given the prevalence of graphs in big
data analysis, and more specifically spectral analysis,
we believe that our work would lead to more future
work and more substantiation of similar empirical ob-
servations in many other areas such as modern rec-
ommendation systems (Campos et al., 2014), collab-
orative filtering (Koren, 2009), and financial transac-
tions (Tsay, 2005). Two major open problems left by
our work are lower bounds on the space and accuracy
of private spectral approximation of a graph.

Acknowledgements. This research was supported,
in part, by NSF BIGDATA award IIS-1838139, NSF
CAREER award IIS-1943251, and DARPA award
W911NF1820267. This work was done when JU was
a postdoctoral researcher at the Johns Hopkins Uni-
versity and visiting Simons Institute for the Theory of
Computing. Authors would like to thank Adam Smith,
Michael Dinitz, and Cynthia Steinhardt for insightful
discussions during the early stages of the project.

Differentially Private Analysis on Graph Streams

References

Agrawal, A., Raskar, R., and Chellappa, R. (2006).
What is the range of surface reconstructions from
a gradient field? In European Conference on Com-
puter Vision, pages 578–591. Springer.

Allen-Zhu, Z., Liao, Z., and Orecchia, L. (2015). Spec-
tral sparsification and regret minimization beyond
matrix multiplicative updates. In Proceedings of the
forty-seventh annual ACM symposium on Theory of
computing, pages 237–245. ACM.

Alon, N., Makarychev, K., Makarychev, Y., and Naor,
A. (2006). Quadratic forms on graphs. Inventiones
Mathematicae, 163(3):499–522.

Arora, R. and Upadhyay, J. (2019). On differentially
private graph sparsification and applications. In Ad-
vances in Neural Information Processing Systems,
pages 13378–13389.

Arora, S., Rao, S., and Vazirani, U. (2009). Expander
flows, geometric embeddings and graph partitioning.
Journal of the ACM (JACM), 56(2):5.

Bai, Z. and Yin, Y. (2008). Limit of the smallest
eigenvalue of a large dimensional sample covariance
matrix. In Advances In Statistics, pages 108–127.
World Scientific.

Bakshi, A., Chepurko, N., and Jayaram, R. (2020).
Testing positive semi-definiteness via random sub-
matrices. In Foundations of Computer Science
(FOCS), 2020 IEEE 61st Annual Symposium on,
pages 1191–1202. IEEE.

Bansal, N., Blum, A., and Chawla, S. (2004). Corre-
lation clustering. Machine learning, 56(1-3):89–113.

Blocki, J., Blum, A., Datta, A., and Sheffet, O. (2012).
The johnson-lindenstrauss transform itself preserves
differential privacy. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Sympo-
sium on, pages 410–419. IEEE.

Blocki, J., Blum, A., Datta, A., and Sheffet, O. (2013).
Differentially private data analysis of social net-
works via restricted sensitivity. In Proceedings of the
4th conference on Innovations in Theoretical Com-
puter Science, pages 87–96. ACM.

Bolot, J., Fawaz, N., Muthukrishnan, S., Nikolov, A.,
and Taft, N. (2013). Private decayed predicate sums
on streams. In Proceedings of the 16th Interna-
tional Conference on Database Theory, pages 284–
295. ACM.

Boyd, S. and Vandenberghe, L. (2004). Convex Opti-
mization. Cambridge University Press.

Braverman, V., Drineas, P., Musco, C., Musco, C.,
Upadhyay, J., Woodruff, D. P., and Zhou, S. (2020).
Near optimal linear algebra in the online and sliding

window models. In 2020 IEEE 61st Annual Sympo-
sium on Foundations of Computer Science (FOCS),
pages 517–528. IEEE.

Braverman, V., Grigorescu, E., Lang, H., Woodruff,
D. P., and Zhou, S. (2018). Nearly optimal dis-
tinct elements and heavy hitters on sliding windows.
In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM, pages 7:1–7:22.

Braverman, V. and Ostrovsky, R. (2010). Effective
computations on sliding windows. SIAM J. Com-
put., 39(6):2113–2131.

Campos, P. G., Dı́ez, F., and Cantador, I. (2014).
Time-aware recommender systems: a comprehen-
sive survey and analysis of existing evaluation proto-
cols. User Modeling and User-Adapted Interaction,
24(1-2):67–119.

Chan, T. H., Shi, E., and Song, D. (2011a). Private
and continual release of statistics. ACM Trans. Inf.
Syst. Secur., 14(3):26:1–26:24.

Chan, T. H., Shi, E., and Song, D. (2011b). Private
and continual release of statistics. ACM Trans. Inf.
Syst. Secur., 14(3):26:1–26:24.

Chan, T.-H. H., Li, M., Shi, E., and Xu, W.
(2012). Differentially private continual monitoring
of heavy hitters from distributed streams. In In-
ternational Symposium on Privacy Enhancing Tech-
nologies Symposium, pages 140–159. Springer.

Charikar, M. and Wirth, A. (2004). Maximizing
quadratic programs: extending grothendieck’s in-
equality. In 45th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 54–60. IEEE.

Cohen, M. B., Lee, Y. T., Musco, C., Musco, C., Peng,
R., and Sidford, A. (2015). Uniform sampling for
matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer
Science, pages 181–190. ACM.

Cohen, M. B., Musco, C., and Musco, C. (2017). In-
put sparsity time low-rank approximation via ridge
leverage score sampling. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1758–1777.

Datar, M. and Motwani, R. (2007). The sliding-
window computation model and results. In Aggar-
wal, C. C., editor, Data Streams - Models and Algo-
rithms, pages 149–167. Springer.

Ding, B., Kulkarni, J., and Yekhanin, S. (2017).
Collecting telemetry data privately. In Advances
in Neural Information Processing Systems, pages
3571–3580.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I.,
and Naor, M. (2006a). Our data, ourselves: Privacy

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

via distributed noise generation. In Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 486–503. Springer.

Dwork, C., McSherry, F., Nissim, K., and Smith, A.
(2006b). Calibrating Noise to Sensitivity in Private
Data Analysis. In TCC, pages 265–284.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N.
(2010a). Differential privacy under continual obser-
vation. In Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 715–724.

Dwork, C., Naor, M., Pitassi, T., Rothblum, G. N.,
and Yekhanin, S. (2010b). Pan-private streaming
algorithms. In ICS, pages 66–80.

Dwork, C., Nikolov, A., and Talwar, K. (2015). Ef-
ficient algorithms for privately releasing marginals
via convex relaxations. Discrete & Computational
Geometry, 53(3):650–673.

Dwork, C. and Roth, A. (2014). The algorithmic
foundations of differential privacy. Foundations and
Trends R� in Theoretical Computer Science, 9(3–
4):211–407.

Dwork, C., Talwar, K., Thakurta, A., and Zhang, L.
(2014). Analyze gauss: optimal bounds for privacy-
preserving principal component analysis. In Pro-
ceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 11–20. ACM.

Eliáš, M., Kapralov, M., Kulkarni, J., and Lee, Y. T.
(2020). Differentially private release of synthetic
graphs. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 560–578. SIAM.

Erlingsson, Ú., Pihur, V., and Korolova, A.
(2014). Rappor: Randomized aggregatable privacy-
preserving ordinal response. In Proceedings of the
2014 ACM SIGSAC conference on computer and
communications security, pages 1054–1067. ACM.

Frank, M. R., Wang, D., Cebrian, M., and Rahwan, I.
(2019). The evolution of citation graphs in artificial
intelligence research. Nature Machine Intelligence,
1(2):79.

Girvan, M. and Newman, M. E. (2002). Commu-
nity structure in social and biological networks.
Proceedings of the national academy of sciences,
99(12):7821–7826.

Goemans, M. X. and Williamson, D. P. (1995).
Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM),
42(6):1115–1145.

Gupta, A., Hardt, M., Roth, A., and Ullman, J.
(2013). Privately releasing conjunctions and the sta-

tistical query barrier. SIAM Journal on Computing,
42(4):1494–1520.

Gupta, A., Ligett, K., McSherry, F., Roth, A., and
Talwar, K. (2010). Differentially private combinato-
rial optimization. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 1106–1125. Society for Industrial and
Applied Mathematics.

Gupta, A., Roth, A., and Ullman, J. (2012). Iterative
constructions and private data release. In Theory of
cryptography conference, pages 339–356. Springer.

Haney, S., Machanavajjhala, A., Abowd, J. M., Gra-
ham, M., Kutzbach, M., and Vilhuber, L. (2017).
Utility cost of formal privacy for releasing national
employer-employee statistics. In Proceedings of the
2017 ACM International Conference on Manage-
ment of Data, pages 1339–1354. ACM.

Hardt, M. and Rothblum, G. N. (2010). A multi-
plicative weights mechanism for privacy-preserving
data analysis. In Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium on,
pages 61–70. IEEE.

Hay, M., Rastogi, V., Miklau, G., and Suciu, D.
(2010). Boosting the accuracy of differentially pri-
vate histograms through consistency. Proceedings of
the VLDB Endowment, 3(1-2):1021–1032.

Javanmard, A., Montanari, A., and Ricci-Tersenghi,
F. (2016). Phase transitions in semidefinite relax-
ations. Proceedings of the National Academy of Sci-
ences, 113(16):E2218–E2223.

Kapralov, M., Nouri, N., Sidford, A., and Tardos,
J. (2019). Dynamic streaming spectral sparsifica-
tion in nearly linear time and space. arXiv preprint
arXiv:1903.12150.

Karp, R., Elson, J., Estrin, D., and Shenker, S. (2003).
Optimal and global time synchronization in sensor-
nets. Technical report, UCLA.

Karwa, V., Raskhodnikova, S., Smith, A., and
Yaroslavtsev, G. (2011). Private analysis of graph
structure. Proceedings of the VLDB Endowment,
4(11):1146–1157.

Kasiviswanathan, S. P., Nissim, K., Raskhodnikova,
S., and Smith, A. (2013). Analyzing graphs with
node differential privacy. In Theory of Cryptography,
pages 457–476. Springer.

Kenthapadi, K., Ambler, S., Zhang, L., and Agar-
wal, D. (2017). Bringing salary transparency to the
world: Computing robust compensation insights via
linkedin salary. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Manage-
ment, pages 447–455. ACM.

Differentially Private Analysis on Graph Streams

Khot, S., Kindler, G., Mossel, E., and ODonnell, R.
(2007). Optimal inapproximability results for max-
cut and other 2-variable csps? SIAM Journal on
Computing, 37(1):319–357.

Koren, Y. (2009). Collaborative filtering with tem-
poral dynamics. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 447–456.

Kyng, R., Pachocki, J., Peng, R., and Sachdeva, S.
(2017). A framework for analyzing resparsification
algorithms. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 2032–2043. SIAM.

Lee, J. D. and Maggioni, M. (2011). Multiscale
analysis of time series of graphs. In International
Conference on Sampling Theory and Applications
(SampTA).

Lee, Y. T. and Sidford, A. (2014). Path finding meth-
ods for linear programming: Solving linear programs
in o (vrank) iterations and faster algorithms for
maximum flow. In Foundations of Computer Sci-
ence (FOCS), 2014 IEEE 55th Annual Symposium
on, pages 424–433. IEEE.

Lee, Y. T. and Sun, H. (2015). Constructing linear-
sized spectral sparsification in almost-linear time.
In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 250–269.
IEEE.

Liu, K., Das, K., Grandison, T., and Kargupta, H.
(2008). Privacy-preserving data analysis on graphs
and social networks.

McSherry, F. and Talwar, K. (2007). Mechanism de-
sign via differential privacy. In null, pages 94–103.
IEEE.

Newman, M. E. (2004). Detecting community struc-
ture in networks. The European Physical Journal B,
38(2):321–330.

Nikolov, A., Talwar, K., and Zhang, L. (2013). The
geometry of differential privacy: the sparse and ap-
proximate cases. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing,
pages 351–360. ACM.

Peng, R. and Spielman, D. A. (2014). An efficient par-
allel solver for sdd linear systems. In Proceedings of
the forty-sixth annual ACM symposium on Theory
of computing, pages 333–342. ACM.

Raskhodnikova, S. and Smith, A. (2016). Lipschitz
extensions for node-private graph statistics and the
generalized exponential mechanism. In 2016 IEEE
57th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 495–504. IEEE.

Sealfon, A. (2016). Shortest paths and distances with
differential privacy. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Princi-
ples of Database Systems, pages 29–41.

Singer, A. (2011). Angular synchronization by eigen-
vectors and semidefinite programming. Applied and
computational harmonic analysis, 30(1):20–36.

Song, S., Little, S., Mehta, S., Vinterbo, S., and
Chaudhuri, K. (2018). Differentially private con-
tinual release of graph statistics. arXiv preprint
arXiv:1809.02575.

Spielman, D. A. and Srivastava, N. (2011). Graph
sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926.

Spielman, D. A. and Teng, S.-H. (2011). Spectral spar-
sification of graphs. SIAM Journal on Computing,
40(4):981–1025.

Tao, T. (2012). Topics in random matrix theory, vol-
ume 132. American Mathematical Soc.

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,
Kapoor, G., Freudiger, J., Sridhar, V. R., and
Davidson, D. (2017a). Learning new words. US
Patent 9,594,741.

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,
Kapoor, G., Freudinger, J., Prakash, V. V., Leg-
endre, A., and Duplinsky, S. (2017b). Emoji fre-
quency detection and deep link frequency. US
Patent 9,705,908.

Tropp, J. A. (2015). An introduction to matrix con-
centration inequalities. Foundations and Trends R�
in Machine Learning, 8(1-2):1–230.

Tsay, R. (2005). Analysis of financial time series.
Wiley series in probability and statistics. Wiley-
Interscience.

Tylenda, T., Angelova, R., and Bedathur, S. (2009).
Towards time-aware link prediction in evolving so-
cial networks. In Proceedings of the 3rd workshop on
social network mining and analysis, pages 1–10.

Upadhyay, J. (2013). Random Projections, Graph
Sparsification, and Differential Privacy. In ASI-
ACRYPT (1), pages 276–295.

Upadhyay, J. (2019). Sublinear space private algo-
rithms under the sliding window model. In Inter-
national Conference on Machine Learning, pages
6363–6372.

Vershynin, R. (2012). Introduction to the non-
asymptotic analysis of random matrices, page
210268. Cambridge University Press.

Vershynin, R. (2018). High-dimensional probability:
An introduction with applications in data science,
volume 47. Cambridge University Press.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Xiao, Q., Chen, R., and Tan, K.-L. (2014). Differ-
entially private network data release via structural
inference. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 911–920. ACM.

