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Abstract

We perform a rigorous study of private matrix
analysis when only the last W updates to matri-
ces are considered useful for analysis. We show
the existing framework in the non-private setting
is not robust to noise required for privacy. We then
propose a framework robust to noise and use it to
give first efficient o(W) space differentially pri-
vate algorithms for spectral approximation, prin-
cipal component analysis (PCA), multi-response
linear regression, sparse PCA, and non-negative
PCA. Prior to our work, no such result was known
for sparse and non-negative differentially private
PCA even in the static data setting. We also give
a lower bound to demonstrate the cost of privacy.

1. Introduction

Matrix analysis manifests itself in many walks of life such
as financial transactions, recommendation system, social
networks, machine learning, and learning kernels. In the re-
cent past, there has been a paradigm shift in matrix analysis
in the era of big data. Two aspects that have become increas-
ingly important are (i) protecting sensitive information and
(ii) the increasing frequency with which data is being contin-
uously updated. An example that illustrates the importance
of these two aspects arises in several investment strategies in
a financial firm. The strategies rely on matrix analysis (such
as principal component analysis) of financial data that get
continuously updated. Most of these strategies make use of
“recent data" as opposed to the entire history. This heuristic
is rooted in the empirical observation that recent data are
better predictors of the future behavior of assets than older
data (Moore et al., 2013; Tsay, 2005), a theme also found in
many other applications of matrix analysis (Campos et al.,
2014; Quadrana et al., 2018).

Moreover, the strategies are sensitive and have to be kept
private. It is well documented that performing statistical
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analysis, including matrix analysis, accurately can leak pri-
vate information (Narayanan & Shmatikov, 2006). As a re-
sult, privacy preserving algorithms for matrix analysis with
robust privacy guarantees such as differential privacy are
known (Amin et al., 2019; Blum et al., 2005; Dwork et al.,
2014; Kapralov & Talwar, 2013; McSherry & Mironov,
2009; Hardt & Price, 2014; Hardt & Roth, 2012; Upadhyay,
2018)). However, these algorithms are not amenable to the
scenario where a collection of the most recent updates on
data is pertinent for analysis. In contrast, the current prac-
tical deployment of private algorithms (Erlingsson et al.,
2014; Thakurta et al., 2017) favors using only recent data
for a variety of reasons.

In view of this, we focus on a rigorous and comprehensive
study of privacy-preserving matrix analysis in the sliding
window model of privacy (Bolot et al., 2013; Chan et al.,
2012; Upadhyay, 2019). The model is parameterized by
the window size W, and assumes that the data arrive in the
form of (possibly infinite) stream over time. An analyst is
required to perform the analysis only on the W most recent
streams of data (usually referred to as a sliding window)
using o(W) space. On the other hand, privacy is guaranteed
for the entire historical data, i.e., even if the data is not in
the current window, its privacy should not be compromised.

We give o(W) space differentially private algorithms for sev-
eral matrix analysis problems in the sliding window model
(see, Table 1). Here and henceforth, o(W) will ignore other
factors such as matrix dimensions and privacy parameters.

A brief overview of our main contributions are as follows
(and annotate each of the points below with the correspond-
ing appendix in the supplementary material).

1. (Limitations of known framework and algorithm).
We show that existing framework of spectral histogram
used in the non-private setting (Braverman et al., 2020)
is too stringent for privacy and algorithms in that frame-
work are not robust to perturbation required for privacy.
‘We show rigorously that the strict constraint imposed
by spectral histogram only permits sub-optimal accu-
rate private algorithms (Appendix B). That is, adding
appropriately scaled noise to the algorithm of (Braver-
man et al., 2020) does not suffice. This warrants a
robust framework for private matrix analysis.
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Privacy Additive error Space required Reference
n-spectral approximation (¢,6)-DP | O (w) 14 0] (T;‘;—d log W) Theorem 13
Principal component analysis (PCA) | (e, 6)-DP O (M) 0] (dni; log W) Theorem 16
Sparse and Non-negative PCA (e,6)-DP (0] (M) O (dnif log W) Theorem 17
Multiple linear regression (¢,60)-DP | O (d (d + M)) (@) <§ log W) Theorem 18
Directional variance query (,0)-DP | O (d (d + M)) (0] (‘i—; log W) Theorem 11

Table 1. Results presented in this paper (W: window size, k : target rank, d : dimension of streamed row, privacy parameters (¢, d), 14 is

a d x d identity matrix, 7: rank of streamed matrix).

2. (New framework and data structure). We introduce
a relaxation of spectral histogram property on a set
of positive semidefinite (PSD) matrices that is more
robust to noise and call it approximate spectral his-
togram property. We also design an update time ef-
ficient data structure that maintains the approximate
spectral histogram property on a set of PSD matrices
while preserving differential privacy (Appendix C).

3. (Optimal algorithms for matrix analysis). We use
approximate spectral histogram property to efficiently
compute private spectral approximation. Using this,
we solve several matrix analysis problems in the slid-
ing window model while preserving privacy and opti-
mal accuracy in Appendix D: (i) principal component
analysis (PCA); (ii) directional variance queries; and
(iii) multi-response linear regression. We also give
algorithm for private constrained PCA (Cohen et al.,
2015). This generalizes many variants of PCA studied
in statistical machine learning such as sparse PCA and
non-negative PCA.

4. (Limitation of private sliding window algorithms).
Finally, to complete the picture, we exhibit limitations
of private matrix analysis by giving a lower bound on
differentially private algorithm for low-rank approxi-
mation in the sliding window model (Appendix E).

There is a known separation between what is achievable with
privacy and without privacy for real-valued functions in the
sliding window model (Upadhyay, 2019). Our work can
be seen as extending this study to matrix-valued functions
in a unified manner. Conceptually, approximate spectral
histogram property can be viewed as a generalization of sub-
space embedding property (Sarlds, 2006). This allows us to
use approximate spectral histogram property in the sliding
window model in the same way as subspace embedding is
employed in the streaming model of privacy (Upadhyay,
2018). Given the wide application of subspace embedding
in streaming algorithms, we believe that the notion of ap-
proximate spectral histogram will have further applications
in the sliding window model of privacy.

A natural question one may ask is why we need to intro-
duce approximate spectral histogram property in the sliding
window model of privacy. We end this section with a dis-
cussion on this (more details in Section 2). Let us consider
the spectral approximation of matrices. There is one private
algorithm (Blocki et al., 2012) which relies on subspace
embedding. They explicitly compute the singular value de-
composition of the matrix making it suitable only for static
data matrix. Furthermore, we cannot just take off-the-shelf
algorithm and add noise matrix to preserve privacy as well
as guarantee non-trivial utility and efficiency. To begin with,
standard noise mechanisms would result in a matrix that is
not positive semidefinite. This is, for example, the mecha-
nism in Dwork et al. (2014). If we instead use the projection
trick of Arora & Upadhyay (2019) on top of Dwork et al.
(2014), it would incur noise that scales with the dimension
and have an inefficient update time. Moreover, the existing
randomized space-efficient algorithm of Braverman et al.
(2020) performs sampling proportional to its leverage score.
As a result, the effect of a single row in the matrix formed
by this sampling procedure can be arbitrarily large, and
consequently, the sensitivity is high'.

Notations. For a natural number n, the notation [n] denotes
the set {1,...,n}. The Euclidean norm of a vector v € RY
is denoted by ||v||2. For a rank-r matrix A € R"*¢, we
let the tuple (s1(A), s2(A), ..., s-(A)) denote the non-zero
singular values of A arranged in decreasing order, AT to
denote transpose of A, and || A||r to denote its Frobenius
norm. The i-th row vector and the j-th column vector of a
matrix A are denoted by A[i :] and A[: j], respectively. We
use || A j]||, and || A[i :]||, to denote their Euclidean norms.
We use 1,4 to denote identity matrix of dimension d. If all
the eigenvalues of a symmetrix matrix S € R?*¢ are non-
negative, then the matrix is known as positive semidefinite
(PSD for short) and is denoted by .S > 0. For symmetric

!"There are counterexamples where leverage score for a row
can change arbitrarily depending on whether it is in the span of
the current matrix or not (see for example, (Arora & Upadhyay,
2019) in the context of graph sparsification). In fact, it is not clear
if we can even use the exponential mechanism because for most
natural score functions, one can construct counterexamples where
the sensitivity of the score function is also large.



A Framework for Private Matrix Analysis in Sliding Window Model

Appendix C

Appendix B Braverman et al. (2020)

Definition 6
7-approximate Spectral
spectral histogram Appondin C Theorem 1)y - -~~~ hlst(?gram
Spectral e 1 R
approximation \,/\ ! AN
- g 1 A
Appendix D.5 Theorem 18 - - e RN N "\p. Appendix D.1 Theorem 15

Multiple linear .27 [Appendix D2 Lemma1l] ~. i Directional
regression e Private proj ection AN : covariance

L preserving summary . N .

Y Y

Appendix D.4 Theorem 17
Constrained

Appendix D.3 Theorem 16
Traditional

PCA

PCA

Figure 1. Dependency graph of various results (bold lines shows optimal results and dashed lines shows suboptimal results, orange
boxes are datastructure). For example, a datastructure satisfying n-approximate spectral histogram implies an algorithm for spectral
approximation, and so on. All our algorithms extend to the streaming model as well by setting W = T'.

matrices 4, B € R4%4, the notations A < B implies that
B — AisPSDand A A B implies that B — A is not a PSD.
For any T',d > 0, we use Nt 4 to denote the following set
of T' x d matrices:

Nrg:={B e R"%: 3i e [T] such that || B[i :]||, < 1
and | B[j :]||], =0forall j # ¢}.

A comprehensive overview of preliminaries and notations is
presented in Appendix A.

1.1. Sliding window, privacy, and matrix analysis

We start by defining some additional notations pertinent to
studying matrix analysis in the sliding window model. The
matrix formed by d-dimensional row vectors streamed be-
tween time stamps ¢1 and Z2 is denoted A, ;,). We define
Aw (T') := Air_w 1,4 for any current timestamp 7" where
W is used to denote the window size and A7 := Ao 7).
The matrix Ap can be obtained by setting W = T and
gives us the insertion only streaming model (Muthukrish-
nan, 2005). The matrix Ay (7)) € R4 is formed incre-
mentally through a stream of d-dimensional row vectors
{a; : T —W +1<i<T} as follows:

arT—w41

e RW>d, (1)
ar—1
ar

At start, the matrix Ay (0) is an all zero matrix (with
a; = 04 if i < 0). At any time T, we are interested in
performing various analysis on the matrix Ay (7). Our
results are independent of the current time stamp 7', and we
will slightly abuse the notation by letting Ay = Aw (T') as
the matrix formed by rows streamed in the last 1/ updates.

We now formalize the privacy model. We adhere to the
neighboring relation employed in existing literature study-

ing matrix analysis in static setting (Blocki et al., 2012;
Hardt & Roth, 2012; Dwork et al., 2014; Sheffet, 2019) and
streaming setting (Upadhyay, 2018).

In privacy literature, there are two well-studied levels of
granularity when the data arrives in an online manner (Bolot
et al., 2013; Chan et al., 2011; 2012; Dwork et al., 2010;
Dwork & Roth, 2014; Upadhyay, 2018; 2019): (i) user-level
privacy, where two streams are neighboring if they differ
in a single user’s data; and (ii) event-level privacy, where
two streams are neighboring if they differ in one-time epoch.
We follow previous works on private analysis in the sliding
window model (Bolot et al., 2013; Chan et al., 2012; Huang
et al., 2021) and consider event-level privacy. We say that
two streams are neighboring if, at any time T' > 0, they
form matrices Ar and A/ such that Ay — AL, € Npg4.
We now define the privacy notion that extends the privacy
notion of Bolot et al. (2013); Chan et al. (2012); Huang et al.
(2021); Upadhyay et al. (2021) and Upadhyay (2019) to
general matrices.

Definition 1 (Differential privacy under sliding window
model). Fore > 0,8 € [0,1], we say a randomized algo-
rithm M with range Y is (e, §)-differentially private in the
sliding window model if for all T > 0, for every two matri-
ces At and A’ formed by neighboring streams, and for all
S CY, PriM(Ar) € S] < exp(e) Pr[M(A%) € S| + 4,
where the probability is over the private coin tosses of M.

Note that the privacy guarantee is for the entire stream, i.e.,
even if the data has expired, its privacy is not lost. However,
accuracy is required only for the last W updates. This is in
accordance with previous problem formulation (Bolot et al.,
2013; Chan et al., 2012; Upadhyay, 2019).

The central algebraic concept underlying all analysis of in-
terest in this paper is the spectrum of a matrix (see Figure 1).
Therefore, we focus on privately computing (7, )-spectral
approximation, i.e., given parameters 77, ¢ > 0 and a matrix
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Ay € RW*4 find a matrix C' € R%*9, such that
(1—mApAw —vlg 2 C = (1+n) Ay Aw + vl

Here the parameter v > 0 is the cost of privacy in the terms
of distortion in the spectrum. Our goal is to keep 7 as small
as possible so that they are useful in subsequent tasks, like
PCA, multiple regression, etc. We show the following:

Theorem 1 (Informal version of Theorem 14). Let Ay €
RY X4 be a rank-r matrix formed by the current window.

Then for v = £log€& where £ = O (M) there

e2n
is an efficient (e, 0)-differentially private algorithm under

sliding window model that uses O (‘f;—; log W) space and

outputs a matrix C at the end of the stream such that

(1—n)AyAw —vig < C < (14 n)AlAw + v,

A special case when the matrix is the edge-adjacency
matrices was considered by Upadhyay et al. (2021). In
the static setting, using the result of Sarlés (2006) and
Blocki et al. (2012), we get an O(d?) space private algo-
rithm which guarantees (1), v, v)-spectral approximation for

v=0 ((“0527(71/6)). Non-privately, there is an algorithm in

the sliding window model that uses O (Tn—d log W) space

if the matrix has a bounded condition number (Braverman
et al., 2020). In many practical scenarios, the rank is con-
stant. In this scenario, the privacy overhead is only a con-
stant factor. Our algorithm is also flexible in the sense that
we can also guarantee that the output is a PSD matrix.

Before giving a technical overview of our private algo-
rithm, we begin by arguing why the existing private al-
gorithms in the static setting fail in the sliding window
model. Blocki et al. (2012) gave the first privacy preserv-
ing approximation of matrices. Their approach is to first
compute the singular value decomposition of the given ma-
trix A = USV'", and then output Cggps = A" @A,
where A := U+/S2? + 0214V T for a perturbation parame-
ter o chosen appropriately, and ® is a random Gaussian ma-
trix. Since, the algorithm requires computing the SVD, one
cannot extend this approach in the sliding window model.
Another approach, due to Dwork et al. (2014), computes
Cbr1z = ATA + N, where N is a symmetric Gaussian
matrix with appropriate variance. In this case, we cannot
revert the effect of the rows outside of the window.

Private principal component analysis has been extensively
studied (Amin et al., 2019; Blum et al., 2005; Dwork et al.,
2014; Hardt & Roth, 2012; Upadhyay, 2018; Dwork et al.,
2014; Hardt & Price, 2014; Kapralov & Talwar, 2013; Sing-
hal & Steinke, 2021), and matching lower and upper bounds
are known on achievable accuracy in the static setting. With
the exception of Arora et al. (2018); Upadhyay (2018),

these algorithms perform at least two passes over the matrix.
Dwork et al. (2014) gave an online algorithm for PCA using
regularized follow-the-leader framework; however, online
model is very different from the sliding window model.
Finally, the algorithm of Arora et al. (2018) and Upadhyay
(2018) does not extend to the sliding window model because
we cannot revert the effect of the rows that are outside of
the current window.

2. Main lemma and overview of techniques

One-shot vs Continual release. In this section, we focus
only on the case when the output is produced just once at
the end of the stream for the ease of presentation. Such
algorithms are known as one-shot algorithm in the literature
of differential privacy and used as a building block for algo-
rithms that continually release statistics. We cover the case
of continual release (Dwork et al., 2010) in Appendix F,
where we propose two data structures that allow continual
release depending on whether space is more important or
accuracy. The first approach uses the binary tree method
introduced by Bentley & Saxe (1980) and used in Dwork
et al. (2010) and Chan et al. (2011). However, unlike them,
we build the binary tree only over the current window. This
uses space linear in W but incur error that only grows poly-
logarithmically. In the second approach, we reduce the
space requirement to be sublinear in W at the cost of in-
creasing the error. We subdivide each window in to v/ TV
sub-windows, each of size /W . We then run an instance of
our algorithm for each of these sub-windows.

We now focus our attention to design a one-shot algorithm.
Algorithmically, our approach is closest to Smith et al.
(2020). They present a one-shot space-optimal algorithm for
distinct element count in a data-stream by showing that the
celebrated Flajolet-Martin sketch initiated with some ran-
dom “phantom” elements (guaranteed to be not in the data
set) is differentially private. Similar approaches has been
used for computing low-rank approximation of a matrix
formed in a streaming manner (Upadhyay, 2018).

One-shot algorithm. Our one-shot algorithms (on which
the continual release algorithms is based) can be seen as a
generalization of the technique of Smith et al. (2020) from
real-valued functions to matrix-valued functions. We inject
an appropriate random matrix to the data stream. However,
this would only allows us to perform the analysis on the
entire data stream and not just on the current window. That
is, we need to resolve the following two related questions:

’The online learning model is a game between a decision-maker
and adversary. The decision-maker makes decisions iteratively.
After committing to a decision, it suffers a (possible adversarially)
loss. The goal is to minimize the total loss in retrospect to the best
decision the decision-maker should have taken.
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1. (Question 1). How to account only for only the rele-
vant part of the streamed data, i.e., one in the window?

2. (Question 2). What distribution of random matrices is
to be used to inject phantom random matrices?

One naive candidate algorithm, Ay, for private spectral
approximation is as follows: store a set of w = min {W, T’}
positive semidefinite matrices at any time 7', where the -
th matrix in this set is a sanitized version of the matrix
formed by the last 7 updates. In this case, question 1 is
answered by just removing any matrix that is out of the
window, and question 2 is answered by using Wishart matrix
of appropriate scale. However, Ay, requires prohibitively
large O(Wd?) space.

To answer question 1, while using significantly less space
(as in Smith et al. (2020)) requires a conceptual contribution.
To this end, we introduce n-approximate spectral histogram
property for a set of PSD matrices and timestamps. We will
occasionally refer to such a set as a data structure.

n-approximate spectral histogram property. For a ma-
trix S > 0, denote by .S a matrix such that

(1—2)5555(1+2)§.

Let the current window of our matrix analysis be from times-
tamp T'— W + 1 to T and S(%) be the covariance matrix of
the matrix formed by rows streamed between timestamps ¢;
and 7. In other words,

Let © be a data structure comprised of a collection of /
timestamps and PSD matrices {(¢1, S(1)),..., (t¢, S(¥))}
for some ¢ € N. Forall i € [(], S; is an (/4, 0)-spectral
approximation of the matrix S;. Roughly speaking, such a
data structure ® satisfies n-approximate spectral histogram
property if following two listed properties are satisfied..

1. The timestamps satisfy the following two require-
ments:

t1<---<tp=T and t; <T —-W+1<t,.
2. These two sets of matrices {S(i) };c[q and {S’v(i>}i€[5]
satisfy the following three conditions:
Viell—1],S(i+1) < S(i);
Vi € [6—2],(1— g) S) 2 5(i+2).
When it is clear from context, we call a set of matrices

{51, Sy 55} as the one satisfying the n-approximate spec-
tral histogram property. In contrast, spectral histogram

Algorithm 1 PHASE 2(M,, = {A(1),--- ,A(L+1)})

LIfto <T—W+1,set A(i) = A(i+1),t; = tiss
foralli e [ —1]. Set{ =¢—1
Define S(i) = A(i) T A(i) forall 1 <i < ¢+ 1.
Fori=1,---/—2
Find j = max {u >i: (1 - 2)5(i) < S(u)}.
Set My = My \{AGE+1),---  A(G -1}
Reorder the indices of remaining matrices.
Update ¢ :==¢+i—j5+ 1.
Output gﬁT-&-l = Smifﬂ.

in Braverman et al. (2020) requires S(i) = S(i) and
uses the condition (1 —17)S(i) 2 S(i+2) instead of
(1-3)S6) 25 +2).

The properties in Equation 2 are required to get the desirable
space bound. Likewise, the second condition in Equation 2
and the restriction t; < T'— W 4 1 < ¢, are required to
demonstrate the accuracy guarantee (see proof sketch of
Theorem 1). Before proving the accuracy guarantee, we
answer how to maintain such a set of matrices. For brevity,
we introduce the following notation for matrices in the rest
of this section: for any time T, we write A(%) to denote the
i-th matrix stored in the current data-structure.

Lemma 1. Let My = {A(1),...,A({)} be the set of
matrices such that {A(1)T A(1),...,A)" A(0)} sat-
isfies m-approximate spectral histogram property at time
T. Then there is an efficient algorithm, UPDATE, that
takes Mr and a row ary; € R as input and out-
puts a set of matrices Mry; = {B(1),...,B(m)},
such that {B(1)" B(1),...,B(m)" B(m)} satisfy the
n-approximate spectral histogram property for some m <
+1.

When a new row ar,; € R? is streamed, an algorithm
is invoked that updates the data structure. It works in
two phases: privatization and maintenance. Privatization
is accomplished by (i) adding a linear sketch of ar4; to
all ¢ matrices in 97 to obtain a new set M/, (ii) priva-
tizing ar41 to get a matrix A (¢ + 1), and (iii) defining
M7 := ML UA (£ + 1). For privacy (or answering Ques-
tion 2), adding a noise matrix that is a PSD matrix would
incur additive error linear in dimension. Moreover, it will
not maintain structural properties of matrices such as low-
rank, which are one of the reasons why matrix analysis have
such a wide array of applications. Therefore, just adding ap-
propriately scaled noise is not an option (see Appendix B for
details). As it turns out, a variant of Johnson-Lindenstrauss
mechanism (Blocki et al., 2012) used in Upadhyay (2018)
suffices for our purpose.

Now the set {ATA : A € 9., } may not satisfy 7-
approximate spectral histogram property. The maintenance
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phase (high-level description of this phase is provided in
Algorithm 1) ensures that the final set of matrices satisfies
n-approximate spectral histogram property. In this phase,
we greedily remove matrices if they do not satisfy any of
the desired properties of n-approximate spectral histogram
property (Algorithm 7 in supplementary material). The com-
putationally expensive part in Algorithm 1 is Step 3. For
this step, we can use known PSD testing algorithms (Bakshi
et al., 2020).

Our greedy approach is reminiscent of the potential barrier
method to compute spectral sparsification of a W x d ma-
trix (Batson et al., 2012). In the potential barrier method,
we remove a large subset of rank-one matrices and show
that only storing © (dn_Q) rank-one matrices suffices for
(1, 0)-spectral sparsification. This approach does not extend
over to streaming matrices. In fact, two key technical fea-
tures distinguish our method from theirs. In their setting,
all PSD matrices are rank-one matrices corresponding to a
row of the matrix; whereas we have W positive semidefinite
matrices that may have different ranks (not necessarily rank-
one). The second crucial point is that we aim to significantly
reduce the number of matrices stored for our application.
This makes maintaining our data structure much more com-
plicated than the potential barrier method.

The proof of Lemma 1 is subtle. While it is tempting to
use the analysis of the deterministic algorithm by Braver-
man et al. (2020) in our setting, their analysis is highly
susceptible to noise. Their proof relies heavily on the fact
that for all ¢ € [¢], S(i) = S(i), i.e., matrices are exact
covariance matrices corresponding to the streamed rows.
In contrast, our analysis deals with the spectral approxi-
mation of the streamed matrix along with the perturbation
required to preserve privacy. That is, each of the matrices
S(1),---,S(¥) is an approximation of the input matrix and
has both multiplicative approximation as well as additive
term. We give an arguably simpler analysis than Braver-
man et al. (2020) and crucially use the slack of (1 — g)
factor in the third condition of approximation spectral his-
togram property (Equation 2). A detail proof of Lemma 1 is
presented in Appendix C.

Spectral approximation. Now that we have an algorithm
to maintain n-approximate spectral histogram property, we
show how to use it to compute an (7, v/)-spectral approxima-
tion of Ay. Let S (1),..., 5 (¢) be the set of matrices sat-
isfying n-approximate spectral histogram property. The al-
gorithm outputs S = S(1) — o214, where o is the perturba-
tion posit in the mechanism of Upadhyay (2018). Using the
first condition of Equation 2 and thatt; < T — W +1 < 1o,
S(2) < AJ,Aw =< S(1). The second condition of Equa-
tion 2 implies that (1 — 1) (1) =< S(2). Since S(1) and
5(2) are a (1/4,0)-spectral approximation of S(1) and
5(2), respectively, this allows us to prove that 5(1) is a

spectral approximation of Ay .

Proof sketch of Theorem 1. For space bound, properties in
equation (2) imply that there is at least one singular value
that decreases by a factor of (1 — %) in every successive
timestamp. We will see later that our privacy mechanism
ensures that the spectrum of any matrix .S; is lower bounded
by a constant. Since updates have bounded entries, there can
be at most £ := O (7" loglfg(W)) =0 (% log(W)> ma-
trices satisfying n-approximate spectral histogram. For pri-
vacy, we use the Johnson-Lindenstrauss mechanism (Blocki
et al., 2012). In this mechanism, we first perturb the matrix
to raise its singular value and then multiply it with a random
Gaussian matrix. The choice of perturbation used here is the
one described in Upadhyay (2018) because it can account
for the streamed data.

Now we give a proof sketch of the accuracy guarantee.
At any time T, let A(7) be the matrix formed between
the time interval [t;, T]. Let {A(1),---, A({)} be the set
of matrices obtained by applying Johnson Lindenstrauss
mechanism on the streamed matrices { A(1),--- , A(¢)} and
{E( 1), g(ﬁ)} be the set of perturbed matrices before
applying the Johnson-Lindenstrauss transform. Fix the fol-
lowing notations for covariance matrices:

C(j) = AG)TAG), S@) = AG)TAy)
S(j) = AQG)TA@) = C() + 0?14

The perturbation parameter o is as chosen in Sheffet (2019).
Since t; <T — W + 1 < t5, we have C(2) < A;VAW =<
C(1). By design of our algorithm and the second property
of n-approximate spectral histogram property, we have (1 —
7)S(1) = S(2). We pick the dimension of the Johnson-
Lindenstrauss transform so that S(j) is an (/4, 0)-spectral
approximation of S(j) for all j € [¢] using Sarl6s (2006)’s
result. Therefore, for i € {1,2},

(1- g) s(i) < 8 = (1+ Z) S().
This implies that (1 — 1) (C(1) + 0%1,4) < S(1). Since
adding positive semidefinite matrices preserves the Loewner
ordering and A, Ay < C(1), we get the following:
(1 - g) (A, Aw + 0%1y) < (1 - Z) (C(1) + 01)
< 5(1).
Similarly, for the upper bound, we have from the definition,

5(1) < (1 + Z) S(1) < 511 t ;)) 5(2)

n
- ((11:47)) (C(2) + 0?1,

A
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Using the fact that C'(2) < Ay, A, scaling 7 and setting
the value of o completes the proof. O

3. Applications

We present three main applications of n-approximate spec-
tral histogram property for matrix analysis.

Applications I: Principal component analysis. Principal
component analysis is an extensively used subroutine in
many applications like clustering (Cohen et al., 2015), rec-
ommendation systems (Drineas et al., 2002), and learning
distributions (Achlioptas & McSherry, 2005). In these ap-
plications, given a matrix A € R"*¢ and a target rank k,
the goal is to output a rank-k orthonormal projection matrix
P € R4*4 guch that

| A~ APy < (1+7) min

A-X .
aniin_ I I+ ¢

The goal here is to minimize ¢ for a given k, d, and pri-
vacy parameters € and §. In many applications, instead
of optimizing over all rank-k projection matrices, we are
required to optimize over a smaller set of projection ma-
trices, such as one with only non-negative entries. In par-
ticular, let IT be any set of rank-% projection matrices (not
necessarily set of all rank-k projection matrices). Then
the constrained principal component analysis is to find
P* = argminp.y [|A — AP|%..

A naive application of approximate spectral histogram prop-
erty to solve PCA leads to an additive error that depends
linearly on the rank of the streamed matrix. To solve these
problems with optimal accuracy, we introduce an interme-
diate problem that we call private projection preserving
summary (Definition 8). This problem can be seen as a pri-
vate analogue of PCP sketches (Cohen et al., 2015). Solving
this problem ensures that the additive error scales with the
parameter k£ and not with the rank of the matrix.

To remove the dependency on the rank of the streamed ma-
trix, we consider the first k/7n spectrum of the streamed
matrix and show that it suffices for our purpose. That
is, let Ay, -+, Ay be matrices such that their covariance
matrices Si,---,Sy satisfy n-approximate spectral his-
togram property. We show that random projections of
Ay,---, Ay to a k/n dimensional linear subspace suffice.
Let 7y, /,, (A1), -, ﬂ'k/n(;{g) be the projected matrices. We
show that the set of covariance matrices corresponding to
/(A1) -+, Ty (Ag) satisfy the approximate spectral
histogram property. Using this, we show that the first matrix
in this set, A := 7/, (A1), is a private projection preserv-
ing summary for Ay, with a small additive error. For this,
we make use of the private version of one of the character-
izations of projection preserving summary due to (Cohen
et al., 2015). This characterization is crucial as it defines

the multiplicative approximation as well as additive error.

Lemma 2 (Informal version of Lemma 11). Let k be the de-
sired rank, 1) be the approximation parameter, and (e, §) be
the privacy parameter. Let 11 be the set of all rank-k projec-
tion matrices. Then there is an efficient (¢, §)-differentially
private algorithm under sliding window model that for a
given matrix Ayy formed by the current window, outputs a
matrix A such that for any P € 1],

Hmd - P>HF < (1 +m)[Aw(La = P)llp

+0 (Oi\/kd log(d) log? (?)) .

This lemma allows us to show the first result to solve con-
strained PCA.

Theorem 2 (Informal version of Theorem 17). Let Ay be
the matrix formed by last W updates and 11 be a given
set of rank-k projection matrices. Then there is an (¢, 0)-
differentially private algorithm that outputs a matrix Aat
the end of the stream, such that if ||A(14 — P)||lr < v -
minyxer |A(lg — X)|| ¢ for some v > 0 and P € 11, then

4w (La = P)llp <(1+m) 7 min | Aw (1a = X)l|

+0 <Oi\/kdlog(d) log? (t‘;)) .

The matrix P in the above result can be computed by run-
ning any known non-private algorithm on A. There are
existing results for structured projection matrices, such as
Asteris et al. (2014); Yuan & Zhang (2013). In particular,
if II is a set of sparse or non-negative projection matri-
ces, then Theorem 17 gives a way to solve these problems
privately. Moreover, Theorem 17 also implies a private algo-
rithm for PCA by using any algorithm for PCA that achieves
v = 1 (Eckart & Young, 1936).

For traditional PCA, Corollary 4.5 in Hardt & Roth (2012)
gives a rank-p projection matrix for p > 2k with a large

constant multiplicative approximation and O( ’“52‘1) additive
error. The underlying reason for this large constant factor
is because they use Markov inequality after using the ex-
pectation bound of Halko et al. (2011). We avoid this by
appealing to the results that use the concentration property

of random Gaussian matrices (Kane & Nelson, 2014).

We finally remark that we do not violate the lower bound
of Dwork et al. (2014). Their lower bound holds when
there is no multiplicative approximation. They show similar
upper bound as Theorem 17 when matrices has a singu-
lar value gap of Q(v/d). In contrast to their O(d?) space

algorithm, we make use of O (dn—kf log W) space in the
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Additive Error | Multiplicative Space Required Comments
Hardt & Roth (2012) | O(kVd/€e?) Oo(1) O(d?) rank-2k, static data
Dwork et al. (2014) O (eilk\/@ — 0 (d2) Static data
Upadhyay (2018) 0] (e’ﬂ/ﬁ) (1+mn) O (n~'dk) Streaming data
Lower Bound Q (\/ﬁ) (1+1n) Q (n~'dklogW) | Sliding window
This Paper 0 (e*‘ m) (1+n) O (n~*dk*log W) | Sliding window

Table 2. Comparison of (e, © (d~ '°#%))-Differentially private PCA results (our results are in red).

sliding window setting, which is an improvement whenever
klog(W) = o(n3d). We also note that Dwork et al. (2014)
studied PCA in the online learning model (Hazan, 2019),
which is incomparable to the sliding window model.

Application II: Multi-response linear regression. An-
other application of Theorem 1 is solving multi-response lin-
ear regression (also known as generalized linear regression)
in the sliding window model. It is a widely studied gen-
eralization of the standard /5-regression (Woodruff, 2014).
Formally, given two matrices A € R"*¢ and B € R"*? as
input, the multi-response linear regression is defined as the
minimization problem, min x cgax» || AX — BH; .

Theorem 3 (Informal version of Theorem 18). Let Ay, €
RW*d and B € RW*P be the matrix streamed dur-
ing the window of size W formed as defined in equa-
tion (1), €,0,n be as before. Then there exists an T =
(d+ Hlog(3)) log®(W) and (e, 8)-differentially private
algorithm in the sliding window model that output a matrix
X € R¥P such that

~ 2
AwX — B H <(1+ in AwX — B|?
H w wi|, < @ +n) min Ay e

co(lrptistren)

€

This is the first result for multiple-response regression and
matches the bound achieved in Sheffet (2019) when p = 1
even though we are in a more restrictive setting.

Application III: Directional variance queries. The direc-
tional variance queries has the following form: the analyst
gives a unit-length vector 2 € R? and wish to know the
variance of Ay, along z. Theorem 1 gives an algorithm to
answer directional covariance queries (and cut queries when
the matrix is the edge-adjacency matrix of a graph).

Theorem 4 (Informal version of Theorem 15). Let Ay be
the matrix formed by last W updates as defined in equa-
tion (1) and €, 6, be as before. Given a bound q on the num-
ber of queries that can be made, there is an efficient (¢, 0)-
differentially private algorithm that outputs a matrix C such
that for any set of q unit vector queries x1,--- ,xq € R¢,

we have for all i € [q]

B clogqlogd

T AT T
z; A Awz; <z, Cz;

€

1 logd

Even though we are in a more restrictive setting of sliding
window, this matches the bound achieved in Blocki et al.
(2012) after we apply the improvement in Sheffet (2019).

4. Concluding remarks

We believe that our approach will find applications beyond
what is covered in this paper and will pave way for further
research in the intersection of differential privacy and sliding
window model. We focus on the model where every data in
the current window is considered equally useful to explain
the heuristics used in recent deployments. However, one
can consider other variants of the sliding window model
as far as privacy is concerned. As an example, one can
consider a model where the privacy of a data decays as a
monotonic function of time lapse. More so, there are more
concrete questions to be asked and answered even in the
model studied in this paper.

As we mentioned earlier, one can see n-approximate spec-
tral histogram property as a generalization of subspace em-
bedding property. We believe that any improvement in
designing a more efficient data structure for maintaining a
set of matrices satisfying n-approximate spectral histogram
property will have a profound impact on large-scale deploy-
ment of privacy-preserving algorithms in the sliding window
model. For example, we believe that space requirements
can be reduced using randomization. This randomization
can be either oblivious or may depend on the current set
of positive semidefinite matrices. Since our set of positive
semidefinite matrices are generated using a privacy mecha-
nism, any such sampling can be viewed as post-processing
and hence privacy preserving. Hence, our main conjectures
are concerning the space required by any privacy-preserving
algorithm. We elaborate them next.

The lower bound of €2 (d?) space for spectral approxima-
tion is required even in the static setting. We conjecture that
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there should be % log W factor due to the sliding window
requirement. This is because, if the spectrum of a matrix is
polynomially bounded, then one can construct a sequence
of updates that requires at least % log W matrices such that
successive matrices are (1 — ) apart in terms of their spec-
trum. For an upper bound, we believe randomization can
help reduce a factor of d. This is achieved in the non-private
setting using online row sampling. It was shown by Upad-
hyay (2018) that one can design private algorithms with
space-bound comparable to a non-private algorithm in the
streaming model of computation. The situation in the slid-
ing window model is more complicated, but we believe it is
possible to achieve a matching upper bound. In view of this,
we conjecture the following.

Conjecture 1. The space required for differentially private
spectral approximation is © (d—; log W ).

We believe that the bound on the additive error is optimal.
A positive resolution to this conjecture would imply that the
price of privacy is only in terms of the additive error.

Our second conjecture is for principal component analysis.
We believe that our space-bound for principal component
analysis is tight up to a factor of % A lower bound of
Q(dk) is trivial as one requires O(dk) space just to store the
orthonormal matrix corresponding to the rank-k projection
matrix. As before, a factor of % log W would be incurred

due to the sliding window model. The factor of % comes

from the fact that to extract the top-k subspace, we need %
dimensional subspace.

Conjecture 2. The space required for differentially private
PCA is Q (% log W)

We believe that proving such a lower bound would require
new techniques. This is because, in PCA, we only have
access to an orthonormal projection matrix, while in the case
of low-rank approximation, we have far more information to
solve the underlying communication complexity problem.

Our work identifies another application of the Johnson-
Lindenstrauss and Wishart mechanisms. Before our results,
it was not even clear whether the JL mechanism can be used
to compute PCA (see Section V in Blocki et al. (2012))!
They consider their output matrix C' as a “test” matrix to
test if the input matrix has high directional variance along
some direction z € R?. However, they do not give any
guarantee as to how the spectrum of C relates to that of the
input covariance matrix.
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