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Abstract

We investigate the robustness of stochastic ap-

proximation approaches against data poisoning

attacks. We focus on two-layer neural networks

with ReLU activations and show that under a spe-

cific notion of separability in the RKHS induced

by the infinite-width network, training (finite-

width) networks with stochastic gradient descent

is robust against data poisoning attacks. Interest-

ingly, we find that in addition to a lower bound

on the width of the network, which is standard

in the literature, we also require a distribution-

dependent upper bound on the width for robust

generalization. We provide extensive empirical

evaluations that support and validate our theoreti-

cal results.

1. Introduction

Machine learning models based on neural networks power

the state-of-the-art systems for various real-world appli-

cations, including self-driving autonmous vehicles (Grig-

orescu et al., 2020), speech recognition (Afouras et al.,

2018), reinforcement learning (Li, 2017), etc. Neural net-

works trained using stochastic gradient descent (SGD) per-

form well both in terms of optimization (training) and

generalization (prediction). However, with great power

comes great responsibility, and as several recent studies

indicate, systems based on neural networks admit vulnera-

bilities in the form of adversarial attacks. Especially in over-

parametrized settings (wherein the number of parameters is

much larger than training sample size), which is typical in

most applications, neural networks remain extraordinarily

fragile and amenable to depart from their expected behavior

due to strategically induced perturbations in data. One such

limitation is due to arbitrary adversarial corruption of data

at the time of training, commonly referred to as data poison-

ing. Such attacks present a challenging problem, especially
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in settings where an adversary can affect any part of the

training data. Therefore, in this paper, we are interested in

quantifying the maximal adversarial noise that is tolerable

by SGD when training wide ReLU networks.

One of the earliest works to consider provably tolerant algo-

rithms to a quantifiable error in training examples was that

of Valiant (1985), motivated by a need to understand the

limitations of the PAC learning framework. This was fol-

lowed by a series of works that considered computationally

unbounded adversaries and posed the question of bounding

the error rate tolerable by a learning algorithm in a worst

case model of errors (Kearns & Li, 1993; Guruswami &

Raghavendra, 2009). These hardness results were later com-

plemented by positive results (Klivans et al., 2009; Awasthi

et al., 2014; Diakonikolas et al., 2019a), which give learn-

ing algorithms that enjoy information theoretically optimal

noise tolerance. Much of this prior work focuses on learning

halfspaces (i.e., linear separators) in Valiant’s PAC learn-

ing model (Valiant, 1984). Instead, we consider Vapnik’s

general learning, and are interested in convex learning prob-

lems and over-parametrized neural networks with ReLU

activations. While our theoretical understanding of deep

learning has increased vastly in the last few years with sev-

eral results characterizing the ability of gradient descent to

achieve small training loss in over-parameterized regime,

our understanding of robustness of such methods to attacks

such as data poisoning remains limited.

Arguably, a simplest model of data poisoning is one in

which the input features are perturbed, additively, by norm-

bounded vectors. A more challenging scenario is where both

input features and labels can be corrupted – this is essen-

tially the noise model considered by Valiant (1985); Kearns

& Li (1993); Awasthi et al. (2014). A related model stud-

ied by Cesa-Bianchi et al. (2011) is one where the learner

observes only a noisy version of the data, in a streaming set-

ting, with noise distribution changing arbitrarily after each

round. A yet another poisoning attack, studied extensively

in the literature, is where the adversary can plant a fraction

of the training data; for example, consider movie ratings

contributed by malicious users in matrix completion. Recent

works have studied numerous other practical data poisoning

methods including backdoor attacks, data injection, clean

label attacks, and flip-label attacks (we discuss these further

in related work).
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While several defenses have been proposed, each tailored to

a specific data poisoning attack, there is no unified, robust

learning framework against such attacks. Furthermore, the

proposed defenses often depart significantly from the prac-

tice of modern machine learning, which increasingly relies

on stochastic approximation algorithms such as stochas-

tic gradient descent (SGD), stochastic mirror descent, and

variants. Therefore, it is natural to ask whether stochastic

approximation algorithms, such as SGD, impart robustness

to learning against adversarial perturbations of training data.

In this paper, we investigate the robustness of SGD against

various data poisoning attacks for convex learning problems

as well as training two-layer over-parameterized neural net-

works with ReLU activations. Surprisingly, our results show

that SGD achieves optimal convergence rates on the excess

risk, despite data poisoning, with only a mild deterioration

in overall performance, even as the overall noise budget

of the adversarial attack grows with the sample size, albeit

sublinearly. Our main contributions in this paper are as

follows.

• In Section 2, we first consider the clean label attack,

where the adversary can additively perturb the input

features but not the target labels. In this setting, we

show that stochastic gradient descent robustly learns a

classifier as long as the overall perturbation is sublinear

in the sample size. We extend our results to a more

general class of data poisoning attacks and study them

in a unified framework of oracle poisoning.

• In Section 3, we extend our results to two-layer over-

parameterized neural networks with ReLU activations.

We discuss clean label attack and label flip attack sep-

arately, and establish guarantees for SGD in three

regimes under a data-dependent margin assumption.

Our bounds hold in the regime where neural networks

are moderately wide but not too wide, supporting the

conjecture that extreme over-parametrization may ren-

der learning susceptible to data poisoning. This is in

stark contrast to existing results in deep learning theory

that argue for wider networks for better generalization.

• We validate our theoretical results with empirical evalu-

ations on real datasets in Section 5. We confirm that the

clean-test accuracy exhibits an inverted U-curve when

the training data is poisoned in all of the noisy regimes

we consider. In the process, we also discover a new

loss function that yields stronger poisoning attacks,

which might be of independent interest in itself.

1.1. Problem Setup

We focus on the task of binary classification in presence of

data poisoning attacks. We denote the input and the label

spaces, respectively, by X ⊆ R
d and Y = {−1,+1}. We

assume that the data (x, y) are drawn from an unknown joint

distribution D on X × Y . In a general (clean-data) learning

framework, the learner is provided with n i.i.d. samples

S = {(xi, yi)}ni=1 ∼ Dn, and the goal is to learn a function

fw : X → Y , parameterized by w in some parameter space

W , with a small generalization error, i.e., small 0-1 loss with

resepct to the population, L(w) := P(x,y)∼D(yfw(x) ≤ 0).

We model the data poisoning attacks as a malicious adver-

sary who sits between the distribution and the learner. The

adversary receives an i.i.d. sample S := {(xi, yi)}ni=1 Dn

of size n, generates the poisoned sample S̃ := {(x̃i, ỹi)}ni=1,

and passes it over to the learner. For example, in clean label

attack, the adversary perturbs the input as x̃i = xi + δi,
where each perturbation δi belongs to a perturbation space

∆, and leaves the labels intact, i.e. ỹi = yi. Note that in

this model, no distributional assumptions are made on the

adversarial perturbations. Another example is the label flip

attacks, whereby the adversary does not poison the input, i.e.

x̃i = xi, but it flips the sign of the labels with probability β.

More precisely, ỹi = −yi with probability β and ỹi = yi
otherwise. We focus on the setting where the adversary

has access to the clean data S and is computationally un-

bounded. In other words, adversary chooses to attack the

optimal model (e.g., the empirical risk minimizer), given the

sample. However, the adversary has no knowledge of the

random bits used by the learner, e.g., when training using

stochastic gradient descent.

A common approach to the clean-data learning problem is

solving the stochastic optimization problem

min
w∈W

F (w) := ED[`(yf(x;w))],

where ` : R → R≥0 is a convex surrogate loss for the 0-1

loss. In practice, this is usually done using first-order op-

timization techniques such as stochastic gradient descent

(SGD) and its variants. The statistical and computational

learning theoretic aspects of such methods has been exten-

sively studied in the literature; however, their robustness to

data poisoning attacks is yet not well-understood. There-

fore, the central question we ask is the following: “can SGD

robustly and efficiently learn certain hypothesis classes?”

In full generality, of course, the answer to the above question

is negative – no learning is possible if we don’t impose any

restrictions on the perturbations, i.e., the set ∆. Therefore,

in this paper, we identify conditions on the perturbations

under which SGD can efficiently and robustly learn impor-

tant hypothesis classes such as linear models as well as

two-layer neural networks. In particular, our analysis cru-

cially depends on the following measures of perturbations:

1) the per-sample corruption budget B := maxi ‖δi‖; 2)

the overall corruption budget S :=
∑n

i=1 ‖δi‖; or 3) the

probability of label flip β.
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We denote scalars, vectors and matrices, respectively, with

lowercase italics, lowercase bold and uppercase bold Roman

letters, e.g. u, u and U. The `2 norm is denoted by ‖ · ‖.

Throughout, we use the standard O-notation (O and Ω).

Further, we use . and O interchangeably. We use Õ to hide

poly-logarithmic dependence on the parameters.

1.2. Related Work

In this section, we survey related prior work on data poi-

soning attacks and defense strategies, and on convergence

analysis of gradient descent based methods for training wide

networks.

Data poisoning attacks and defenses. A data poisoning

attack, or causative attack, aims at manipulating training

samples or model architecture, which leads to misclassifi-

cation of subsequent input data associated with a specific

label (a targeted attack) or manipulate predictions of data

from all classes (an indiscriminate attack). A popular data

poisoning attack is backdoor attack, where the adversary

injects strategically manipulated samples (referred to as a a

backdoor pattern, with a target label into the training data.

At prediction time, samples that do not contain the trigger

pattern can be categorized correctly, but samples that carry

the trigger are likely misclassified as belonging to the target

label class (Gu et al., 2017; Liu et al., 2017; Chen et al.,

2017). One of the shortcomings of the standard backdoor

attack is that the poisoned samples are clearly mislabeled,

which can arouse suspicion if subjected to human inspec-

tion. This lead to what are known as clean label attacks

research (Koh & Liang, 2017; Shafahi et al., 2018; Zhu

et al., 2019), which focus on adding human imperceptible

perturbations to input features without flipping labels of the

corrupted inputs. Another attack category is that of label-flip

attacks, where the adversary can change labels of a constant

fraction of the training sample (Biggio et al., 2011; Xiao

et al., 2012; Zhao et al., 2017).

Several defense mechanisms have been proposed to counter

the data poisoning attacks described above. For the label-

flip attacks, (Awasthi et al., 2014) focus on malicious noise

model and construct an algorithm to find the optimal halfs-

pace that achieves ε error while tolerating Ω(ε) noise rate for

isotropic log-concave distributions. Recently, (Diakonikolas

et al., 2019a) proposes a poly (d, 1/ε) time algorithm to

solve the same problem under Massart noise. For backdoor

attacks, (Liu et al., 2018; Tran et al., 2018) propose strate-

gies to identify the trigger pattern and target the poisoned

samples. Several other works have followed up on this idea

of data sensitization (outlier removal) (Barreno et al., 2010;

Suciu et al., 2018; Jagielski et al., 2018; Diakonikolas et al.,

2019b; Wang et al., 2019). For certified defense, (Steinhardt

et al., 2017) analyze oracle defense and data-dependent de-

fenses by constructing an approximate upper bound on the

loss. Recently (Rosenfeld et al., 2020) apply randomized

smoothing to build certifiable robust linear classifier against

label-flip attack.

Convergence analysis of gradient descent for wide net-

works. Our analysis builds on recent advances in theoreti-

cal deep learning literature, which focuses on analyzing the

trajectory of first-order optimization methods in the limit

that the network width goes to infinity (Li & Liang, 2018;

Du et al., 2019b;a; Allen-Zhu et al., 2018; Zou et al., 2018;

Cao & Gu, 2019). The main insight from this body of work

is that when training a sufficiently over-parameterized net-

work using gradient descent, if the initialization is large and

the learning rate is small, the weights of the network remain

close to the initialization; therefore, the dynamics of the

network predictions is approximately linear in the feature

space induced by the gradient of the network at the initializa-

tion (Li & Liang, 2018; Chizat et al., 2018; Du et al., 2019b;

Lee et al., 2019). We are particularly inspired by a recent

work of (Ji & Telgarsky, 2019), which studies the setting

where the data distribution is separable in this feature space,

an assumption that was first introduced and studied in (Ni-

tanda & Suzuki, 2019). While our assumptions and proof

techniques are similar to this line of work, we are distinct

in that – to the best of our knowledge – none of these prior

works study the robustness of SGD to adversarial perturba-

tions. Furthermore, while the existing results suggest that

generalization error decreases as the width of the network

increases, curiously, we find that robust generalization error

exhibits a U-curve as a function of the network width. Our

guarantees, accordingly, involve a lower bound and an upper

bound on the size of over-parametrization of the network.

2. Warm-up: Convex Learning Problems

In convex learning problems, the parameter space W is a

convex set, and the loss function `(·) is convex in w. This

framework includes a simple yet powerful class of machine

learning problems such as support vector machines and ker-

nel methods. Here, we seek to understand the robustness

of SGD based on corrupted (likely biased) gradient esti-

mates ∇`(ỹf(x̃;w)) computed on poisoned data (x̃, ỹ). We

begin with a simple observation that under standard regu-

larity conditions, a bounded perturbation in the input/label

domain translates to a bounded perturbation in the gradi-

ent domain; for example, in the clean label attacks, when

f(x;w) = 〈w, x〉 is a linear function, the following holds.

Proposition 2.1. Assume ‖w‖ ≤ D for all w ∈ W ⊆ R
d,

‖x‖ ≤ R for all x ∈ X ⊆ R
d, and the loss function `(·) is

L-Lipschitz and α-smooth. Then, for any linear function

f(x;w) = 〈w, x〉, w ∈ W , the following holds for any

(x, y) ∈ X × Y, and δ ∈ R
d.

‖∇`(yf(x + δ;w))−∇`(yf(x;w))‖ ≤ (αDR+ L)‖δ‖.
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In fact, other poisoning attacks such as label flip attack

can also be viewed in terms of poisoning of the first or-

der information about the stochastic objective. In other

words, various data poisoning attacks can be studied in a

unified framework of oracle poisoning which we define

formally, next.

Definition ((G,B)-PSFO). Given a function F : W → R,

a poisoned stochastic first-order oracle for F takes w ∈ W
as input and returns a random vector g̃(w) = ĝ(w) + ζ,

where E[ĝ(w)] ∈ ∂F (w), E‖ĝ(w)‖2 ≤ G2, and ζ is an

arbitrary perturbation that satisfies ‖ζ‖ ≤ B.

Given a step size η > 0 and an initial parameter w0 ∈
W , SGD makes T queries to the PSFO, receives poisoned

stochastic first-order information g̃t := g̃(wt) = ĝ(wt) +
ζt, and generates a sequence of parameters w1, . . . ,wT ,

where wt+1 = ΠW(wt − ηg̃t) for t ∈ {1, . . . , T}, and ΠW
projects onto the convex set W . With this introduction, we

prove the following robustness guarantee for SGD.

Theorem 2.2 (Robustness of SGD). Let F : W → R

be a convex function. Assume that all w ∈ W satisfy

‖w‖ ≤ D. Let w̄ := 1
T

∑T
t=1 wt be the average of the SGD

iterates after T calls to a (G,B′)-PSFO for F , with step

sizes η = D√
T (G+B′)

, starting from arbitrary initialization

w0 ∈ W . Then it holds that

E[F (w̄)]− F (w∗) ≤
5D(G+B′)

2
√
T

+
2D
∑T

t=1 ‖ζt‖
T

.

The proof of Theorem 2.2 can be found in Appendix B.1.

Theorem 2.2 implies that SGD can robustly learn convex

learning problems as long as the cumulative perturbation

norm due to the PSFO is sublinear in the number of oracle

calls. In particular, when
∑T

t=1 ‖ζt‖ = O(
√
T ), the poison-

ing attack cannot impose any significant statistical overhead

on learning problem.

Furthermore, the upper bound presented in Theorem 2.2 is

tight in an information-theoretic sense.

Theorem 2.3 (Optimality of SGD). There exists a function

F : [−1, 1] → R, and a (1, 1)-PSFO for F , such that any

optimization algorithm making T calls to the oracle incurs

an excess error of

E[F (w̄)]− F (w∗) ≥ Ω

(

1√
T

+

∑T
t=1 ‖ζt‖
T

)

.

We note that inexact first-order oracles has been studied

in several previous papers (Schmidt et al., 2011; Honorio,

2012; Devolder et al., 2014; Hu et al., 2016; Dvurechensky,

2017; Hu et al., 2020; Ajalloeian & Stich, 2020). Most of

these works, however, make strong distributional assump-

tions on the perturbations, which are impractical in real

adversarial settings. In a closely related line of work, (Hu

et al., 2016; 2020; Amir et al., 2020; Ajalloeian & Stich,

2020) focus on biased SGD, and give convergence guar-

antees for several classes of important machine learning

problems. However, we are not aware of any previous work

studying robustness of SGD in neural networks, which is

the subject of the next section.

3. Neural Networks

Next, we focus on two-layer neural networks with ReLU

activation function and characterize sufficient conditions

under which SGD can efficiently and robustly learn the

network. A two-layer ReLU net, parameterized using a pair

of weight matrices (a,W), computes the following function:

f(x; a,W) :=
1√
m

m
∑

s=1

asσ(w
>
s x).

Here, m corresponds to the number of hidden nodes, i.e.,

the network width, W = [w1, . . . ,wm], a = [a1, . . . , am],
and σ(z) := max{0, z} is the ReLU. We initialize the top

layer weights, as ∼ unif({−1,+1}), and keep them fixed

through the training. The bottom layer weights are ini-

tialized as ws,0 ∼ N (0, Id) and are updated using SGD

on the logistic loss `(z) := log(1 + e−z). We denote

the weight matrix at the tth iterate of SGD as Wt and the

incoming weight vector into the sth hidden node at iter-

ation t as ws,t. Since a is fixed during the training, for

the simplicity of presentation, we denote the network out-

put on the ith clean and perturbed sample, respectively, as

fi(W) := f(xi; a,W) and f̃i(W) := f(x̃i; a,W). There-

fore, at time t, the network weights are updated according

to Wt+1 = Wt − ηt∇`(ỹtf̃t(Wt)).

In this section, we assume that the data is normalized so that

‖x‖ = 1. This assumption is standard in the literature of

over-parameterized neural networks (Du et al., 2019b; Allen-

Zhu et al., 2018; Cao & Gu, 2019; Ji & Telgarsky, 2019);

however, the results can be extended to the setting where the

norm of the data is both upper- and lower-bounded by some

constants. Moreover, following Ji & Telgarsky (2019), we

assume that the distribution is separable by a positive margin

in the reproducing kernel Hilbert space (RKHS) induced by

the gradient of the infinite-width network at initialization.

Assumption 1 ((Ji & Telgarsky, 2019)). Let z ∼ N (0, Id)
be a d-dimensional standard Gaussian random vector. There

exists a margin parameter γ > 0, and a linear separator v̄ :
R

d → R
d satisfying (A) Ez[‖v̄(z)‖2] < ∞; (B) ‖v̄(z)‖2 ≤

1 for all z ∈ R
d; and (C) yEz[〈v̄(z), x1[z>x ≥ 0]〉] ≥ γ for

almost all (x, y) ∼ D.

We note that the assumption above pertaining the linearly

separability of data after mapping it into a high-dimensional

non-linear feature space is mild and reasonable – this very
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idea has been the cornerstone of kernel methods using the

radial basis function (RBF) kernel, for example, and for

learning with neural networks.

Next, we specify three data poisoning regimes under which

SGD can efficiently and robustly learn two-layer ReLU

networks under Assumption 1. Recall that the misclas-

sification error due to f(·; a,W) is denoted by L(W) :=
PD(yf(x; a,W) ≤ 0) – note that a is fixed after the initial-

ization and hence is dropped from the arguments of L.

3.1. Regime A (clean label attacks): large per-sample

perturbation, small overall perturbation

Our first result concerns the setting where each individual

sample can be arbitrarily poisoned as long as the overall

perturbation budget is small compared to the sample size.

Theorem 3.1 (Regime A). Under Assumption 1, for any

δ ∈ (0, 1), with probability at least 1 − δ over random

initialization and the training samples, the iterates of SGD

with constant step size η = 1
(1+B)2

√
n

satisfy

1

n

∑

i<n

L(Wi) .
ln2(

√
n/4) + ln(24n/δ)√

nγ2
,

provided that B ≤ Õ(γ/
√
d) and

ln(nδ ) + ln2(n)

γ8
. m .

n ln4(n) + n ln2(nδ )

γ4S2
.

We note that both the generalization error rate as well as

the lower- and upper-bounds on the width depend on B, the

per-sample perturbation budget; we refer the reader to the

detailed expressions in Theorem B.8 in the appendix. For

the width lower- and upper-bounds in Theorem 3.1 to be

consistent, i.e. allowing a non-empty range for the width,

the overall perturbation budget S needs to be . γ2
√
n (thus,

small cumulative perturbation). This requirement is indeed

the same as what we observed in convex learning problems,

i.e. S = O(
√
n), given by Theorem 2.2 in Section 2. No-

tably, the per-sample perturbation budget can be large since

it is independent of the width, and the sample size.

3.2. Regime B (clean label attacks): small per-sample

perturbation, large overall perturbation

Our next result shows that SGD can still succeed even if the

overall budget grows linearly with the sample size, provided

that the per-sample perturbations are small.

Theorem 3.2 (Regime B). Under Assumption 1, for any

δ ∈ (0, 1), with probability at least 1 − δ over random

initialization and the training samples, the iterates of SGD

with constant step size η = (1 +B)−2 satisfy

1

n

∑

i<n

L(Wi) ≤
ln2(

√
n/4) + ln(24n/δ)

nγ2

for m=Ω

(

1
γ8

(

ln(n/δ)+ ln2(n)
)

)

, provided

B . min{ 1√
md+

√

m ln(mδ )
,

γ

γ +
√
d+

√

ln(mn
δ )

}.

In this regime, we only allow a small per-sample perturba-

tion . 1/
√
md; however, the cumulative perturbation can

grow linearly with the sample size, i.e. S = Θ(n).

3.3. Regime C (label flip attacks)

Next, we show that SGD can withstand label flip attacks in

small amounts.

Theorem 3.3 (Regime C). Under Assumption 1, for any

δ ∈ (0, 1), with probability at least 1 − δ over random

initialization and the training samples, the iterates of SGD

with constant step size η = 1/
√
n satisfy

1

n

∑

i<n

L(Wi) .
ln2(

√
n/4) + ln(16n/δ)√

nγ2
,

provided that β .
ln(n/δ)+ln2(n)

(
√

ln(n/δ)+ln( γ2√
n

ln(n/δ)+ln2(n)
))γ

√
n

, and

m = Ω

(

1
γ8

(

ln(n/δ) + ln2(n)
)

)

.

We conclude this section with a couple of remarks.

First, note that the generalization bounds obtained in

Regimes A and C, given in Theorems 3.1 and 3.3, are es-

sentially of the same rate of O(1/
√
n). While the nature of

the clean label attacks and label flip attacks corresponding

to Regimes A and C are very different, the effective over-

all perturbation budget in both regimes are almost of the

same order of Õ(
√
n). We emphasize that there is a tension

between the generalization error rate and the perturbation

budget, and that different trade-offs can be obtained where

faster or slower error rates correspond to smaller or larger

perturbation budgets, respectively. On the contrary, The-

orem 3.2 in regime B allows a larger overall perturbation

budget of order O(n), and offers faster generalization error

rate of Õ(1/n). We note, however, that the per-sample per-

turbation budget in this regime is significantly smaller than

regimes A, especially for high-dimensional inputs. There-

fore, the results above cover substantially different practical

settings and are not directly comparable.

Second, note that in Theorem 3.3, we require β ≤ O(1/m)
(ignoring other terms) which bounds m from above in terms

of other parameters. Similarly, there is an implicit upper

bound on m in terms of B in Theorem 3.2. In other words,

in all three regimes that we consider, the generalization

bounds hold if the width is bounded from both above and

below.
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4. Proof sketch

Our analysis is motivated by recent advances in the litera-

ture of over-parameterized neural networks. In particular, a

nascent view of the modern over-parameterized models sug-

gests that infinitely wide neural networks behave like linear

functions in the reproducing kernel Hilbert space induced by

the gradient of the network at the initialization, i.e. the fea-

ture map φ : x 7→ ∇f(x;w0) (Jacot et al., 2018; Lee et al.,

2019; Du et al., 2019a). Therefore, the dynamics of SGD are

approximately linear and are governed by the neural tangent

kernel (NTK): k(x, x′) := 〈∇f(x;w0),∇f(x′;w0)〉.
It is easy to see that the feature map φx : z 7→ x1[z>x ≥ 0]
is closely related to the gradient of network at initializa-

tion through
∂f(x;W0,a)

∂ws,0
:= 1√

m
asφx(ws,0). Define Ū =

[ū1, · · · , ūm] where ūs :=
1√
m
asv̄(ws,0), and observe that:

y〈Ū,∇f(x;W, a)〉 = y · 1

m

m
∑

s=1

〈v̄(ws,0), x1[x>ws,0 ≥ 0]〉

which is a finite-width estimation of the margin quantity in

part (C) of Assumption 1.

We denote the instantaneous loss on the clean sample and

the poisoned sample as Ri(W) := `(yi〈∇fi(Wi),W〉) and

R̃i(W) := `(ỹi〈∇f̃i(Wi),W〉), respectively. Therefore, in

the tth iterate of SGD, the network weights are updated

according to Wt+1 = Wt − ηt∇R̃t(Wt).

4.1. Proof sketch of Theorem 3.1 and Theorem 3.2

1. Let Qi(W) := −`′(yi〈∇fi(Wi),W〉) be the deriva-

tive of the instantaneous loss Ri(W). An interesting

property of Qi(W) is that it upperbounds the zero-

one loss, and is upperbounded by Ri(W). This prop-

erty has been used in several previous works (Cao &

Gu, 2020; Ji & Telgarsky, 2019) to upperbound the

average misclassification error as 1
n

∑

i<n L(Wi) <
1
n

∑

i<n Q(Wi). Using a martingale concentration ar-

gument we then show that 1
n

∑

i<n Qi(Wi) is close

to 1
n

∑

i<n Q(Wi), where Q(Wi) is the expectation of

Qi(Wi) with respect to data distribution. Finally, since

the instantaneous loss upperbounds its derivative, we

arrive at 1
n

∑

i<n L(Wi) <
8
n

∑

i<n Ri(Wi) + ε.

2. To bound 1
n

∑

i<n Ri(Wi), we argue that under the

perturbation budgets considered in our theorems,

Ri(Wi) is close to R̃i(Wi). In regime A, we appeal

to convexity of the loss function and Lipschitzness of

the network to bound the difference Ri(Wi)− R̃i(Wi)
as O(

√
md‖δi‖), which gives sufficient conditions on

the perturbation budget in Regime A. For regime B, we

use the convexity of the loss and the fact that Qi(W) ≤
Ri(W) to show that (1 − O(

√
mdB))Ri(Wi) ≤

R̃i(Wi). Therefore, as long as O(
√
mdB) is not

small, we can bound 1
n

∑

i<n Ri(Wi) in terms of
1
n

∑

i<n R̃i(Wi).

3. We then follow (Ji & Telgarsky, 2019) to bound
1
n

∑

i<n R̃i(Wi). The separability assumption 1 is

crucial for this step.

4.2. Proof sketch of Theorem 3.3

1. We first observe that the zero-one loss of (x, y)
is the same as the zero-one loss of the ex-

pectation of (x, ỹ) with respect to the random-

ness of label flips, i.e. 1
n

∑

i<n L(Wi) =
P(Eỹf(x;Wi) ≤ 0), and is upperbounded by

−2E(x,y)∈D`
′(Eỹf(x;W)). Using a martingale con-

centration argument, we arrive at 1
n

∑

i<n L(Wi) ≤
− 8

n

∑

i<n `
′(Eỹifi(Wi)) + ε, which can be fur-

ther bounded by 8
n

∑

i<n `(Eỹifi(Wi)) + ε because

−`′(·) ≤ `(·). Since ` is convex, using Jensen’s in-

equality, we further bound the generalization error as
1
n

∑

i<n L(Wi) <
8
n

∑

i<n E`(ỹifi(Wi)) + ε.

2. We leverage an interesting property of the logistic

loss, the fact that `(−z) − `(z) = z, to reduce the

expected instantaneous loss above to E`(ỹifi(Wi)) =
`(yi〈∇f̃i(Wi),W〉) + βyi〈∇f̃i(Wi),W〉. While the

first term can be bounded using the proof techniques

in (Ji & Telgarsky, 2019), the second term requires β
to be sufficiently small, which gives the required upper-

bound on the probability of label flips in the statement

of the theorem.

5. Experimental Results

The goal of this section is to provide experimental support

for our theoretical findings in Section 2 and Section 3. Code

is available on Github 1. First, we describe the experimental

setup.

Datasets. We utilize the MNIST and the CIFAR10

datasets for the empirical evaluation. MNIST is a dataset

of 28 × 28 greyscale handwritten digits, containing 70K
samples in 10 classes, with 60K training images and 10K
test images. CIFAR10 is a dataset of 32× 32 color images,

containing 60K samples in 10 classes, with 50K training

images and 10K test images.

Model specification. We utilize four different models: a

linear model trained on MNIST, an AlexNet model trained

on CIFAR10, and two convolutional neural networks, with

width ranging from 10 to 100, 000, trained on MNIST and

CIFAR. For the MNIST dataset, we use a model with two

1https://github.com/bettyttytty/robust_

learning_for_data_poisoning_attack
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loss “wastes” a lot of the budget on making a few samples

“more wrong”.

Convex learning problems. We first train a linear model

on the clean MNIST dataset and denote it with w∗. We

then train several linear models under poisoning attacks for

various sample sizes in range n ∈ [500, 60000], which we

denote by w∗
n. Figure 2 shows the excess loss F (w∗

n) −
F (w∗) as well as the excess error L(w∗

n) − L(w∗) as a

function of sample size n, for different corruption rates

C ∈ {50, 100, 200, 300, 400, 500}.

It is not surprising that both the excess loss as well as the

excess error are smaller for larger sample sizes or smaller

corruption rates, as predicted by Theorem 2.2. More inter-

estingly, the plots suggest a phase transition between the

convergence behavior of the curves at C ≈ 250 ≈ √
n,

which corresponds to the maximum corruption rate under

which Theorem 2.2 still yields a non-trivial (decaying with

sample size) generalization error bound.

Wide neural networks. Recall that our theoretical results

in Section 3 guarantee a small generalization error for net-

works trained with poisoned data only when the network

width falls in a certain range specified in the theorems.

While it is not clear whether these bounds are necessary,

we observe that the clean test accuracy of models trained

on poisoned data exhibits an inverted U curve. In other

words, the generalization accuracy decreases if the models

are not wide enough or if they are too wide. In Figure 3, we

see that for clean data training corresponding to the green

curves, the accuracy improves monotonically with the net-

work width. However, in presence of data poisoning attacks,

in both left (MNIST) and right (CIFAR10) panels, we ob-

serve that the test accuracy is non-monotonic in terms of

the network width. In each of the regimes A, B, and C, we

see that the accuracy improves as we initially increase the

network width. It then hits a plateau and eventually starts

to fall as we further increase the width. This observation

challenges the nascent view in the deep learning literature

that larger models generalize better (Neyshabur et al., 2014;

Zhang et al., 2016), at least under adversarial perturbations.

6. Discussion and Future Work

In this paper we study the robustness of SGD to data poi-

soning attacks in two-layer neural networks. In particu-

lar, under a separability assumption in the feature space

induced by the gradient of the infinite-width network at

initialization, we characterize several practical data poison-

ing scenarios where SGD efficiently learns the network,

provided that the network width is sufficiently but not ex-

cessively large. In sharp contrast with clean-data training

where the generalization error decreases as the width of

the network increases (Zhang et al., 2016; Neyshabur et al.,

2014), curiously, our empirical findings indicate that robust

generalization error exhibits a U-curve as a function of the

network width.

There are several natural directions for future work. First,

although we observe in practice that ultra-wide neural net-

works are more vulnerable to data poisoning attacks, our

theoretical results do not directly imply that too large of a

network width can actually hurt the generalization perfor-

mance under data poisoning attacks. Therefore, a natural

question that remains open is to prove that SGD fails at

robustly learning ultra-wide neural networks in presence of

adversarial perturbations such as those considered in this

work. We would like to highlight that in a very recent work,

Bubeck et al. (2020) conjecture that over-parameterization

may be necessary for robustness; while our results do not

contradict theirs, it certainly calls for further investigation

into the role of over-parameterization in imparting or de-

grading robustness.

Second, our theory heavily depends on the separability as-

sumption and cannot be trivially extended to deeper archi-

tectures; yet, our empirical findings go beyond two-layer

networks, and hold for natural datasets where the separabil-

ity assumption is no longer true. It remains to be seen if we

can relax the margin assumption and generalize our results

to richer network architectures.

Third, our paper focuses on the role of the width; however,

it is not immediately clear from our results if the U-curve

phenomena is specific to the network width, or if it can more

broadly happen for ultra-large networks. It would be inter-

esting to explore the role of other architectural parameters,

such as the network depth, in robust learning.
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