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Abstract—We model a dense wireless local area network
(WLAN) where the access points (APs) employ carrier sense
multiple access (CSMA)-type medium access control (MAC)
protocol. In our model, the spatial locations of the set of active
APs are modeled using the random sequential adsorption (RSA)
process, which is more accurate in terms of the density of active
APs compared to the Matérn hard-core point process of type-
II (MHPP-II) commonly used for modeling CSMA networks.
Leveraging the theory of the RSA process from the statistical
physics literature, we provide an approximate but accurate
analytical result for the medium access probability (MAP) of
the typical AP in the network. Further, we present a numerical
approach to determine the pair correlation function (PCF), which
is useful for accurate estimation of the interference statistics.
Using the PCF result, we derive the signal-to-interference-plus-
noise ratio (SINR) coverage probability of the typical link in
the network. We validate the accuracy of the theoretical results
through extensive Monte Carlo simulations.

Index Terms—Stochastic geometry, CSMA, random sequential
adsorption, medium access probability, coverage probability.

I. INTRODUCTION

Owing to their ubiquity, WLAN or Wi-Fi networks play
a pivotal role in meeting the ever-increasing global data
demands. Since these networks operate with minimal central
coordination, MAC protocols that rely on local information are
preferred. One such MAC protocol is the CSMA that enables
efficient spatial sharing of the frequency bands among the
WLAN APs. Hence, it has become the de facto MAC protocol
in the popular IEEE 802.11 standards. The capacity of such a
network not only depends on the probability of an AP access-
ing the medium but also the network interference generated
by all active APs. Since these quantities strongly depend on
the active AP locations in the network (which are an outcome
of complex spatio-temporal interactions across all APs), one
approach to analyzing such a network is to model these AP
locations using an accurate point process. Later leveraging the
known statistical properties of the process, different system
metrics can be reliably estimated. Indeed, this philosophy has
gained significant traction in recent years to study a variety
of wireless networks using various point processes from the
stochastic geometry literature [1]-[3]. However, in the case of
the CSMA network, the problem is more complicated as the
spatial inhibition among the active APs is modeled using hard-
core processes, which are notoriously challenging to analyze.

A popular hard-core process that has been used to model
the CSMA network is the MHPP-II [4]-[7]. Although the
derivation of exact results remains intractable using MHPP-
II, the knowledge of its second-order statistics in closed
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form provides a reasonable degree of tractability to obtain
approximate results. However, it is well understood that
MHPP-II underestimates the density of simultaneously active
transmitters that subsequently leads to an underestimation of
network interference [8]. To overcome this limitation of the
MHPP-II, the RSA process has been proposed to model the
CSMA network [8], [9]. In [8], the authors demonstrate the
accuracy of the RSA-based model over MHPP-II through
a simulation-based study. In [9], the authors present the
generating functional of the RSA process as a solution to a
differential equation. Since the exact solution of the equation
is numerically demanding, the authors present a few bounds on
network performance metrics that are rather loose. In contrast
to the limited works in the communications literature, the RSA
process has received significant attention from the statistical
physics community (cf. [10] and the references therein) where
this process is used to model real-world phenomenon such as
deposition of colloidal particles on the surface of a substrate.

In this work, we revisit the problem of modeling a dense
CSMA network using the RSA process. From the statistical
physics literature, we recover a few useful results correspond-
ing to the first and second-order statistics of the process and
apply them, albeit with suitable modifications, to analyze
the CSMA network. Since the exact expressions for different
metrics are intractable, we derive approximate but accurate
theoretical results, which are amenable to faster numerical
evaluations. Our main contributions are as follows:

1. Owing to the contention-based medium access in a
CSMA network, the knowledge of the MAP of the typical AP is
critical for network capacity estimation. Therefore, we extend
the circular void probability result of the RSA process from the
statistical physics literature to present an accurate theoretical
expression for the MAP of the typical AP. We also present the
result for the density of the active APs in the network.

2. For statistical characterization of network interference, we
resort to accurate approximation using the two-particle density
function of the RSA process. Inspired by the results from the
physics literature, we present a useful numerical approach to
obtain the PCF of the RSA process. To facilitate tractable anal-
ysis, we also provide a parametric closed-form expression for
the PCF, where the desired parameters can be obtained through
curve-fitting with respect to either the numerical or simulated
PCF. Using the PCF result, we approximate the conditional
RSA process as a non-homogeneous PPP. This approximation
helps us determine the SINR coverage probability.

II. SYSTEM MODEL

A. Network model: We consider the downlink (DL) of a
WLAN network where the locations of APs follow a homo-
geneous Poisson point process (PPP) ®4 = {x1,x3,...} with
density \,. Since deployment of WLAN APs are unplanned, a



PPP model is quite reasonable in this case. Further, we assume
that the set of users served by each AP is randomly and uni-
formly distributed within a circle of radius r;,, centered at the
corresponding AP. This assumption is motivated by the facts
that WLAN networks are usually closed-access systems and
the users are in the general vicinity of serving APs. Further,
this assumption is a generalization of the bipolar model used
for modeling serving distance in ad hoc networks. Our focus is
on a WLAN system with a single channel. Further without loss
of generality, the analysis is for a representative resource block
with flat frequency response. On the representative resource
block, considering a fixed AP transmit power P, the received
power at y € R? from an AP at x; is

Pr(y,xi) = Py, x:)l(ly — i),

where h(y,x;) is the multi-path gain of the link. Assuming
that multi-path fading follows Rayleigh distribution, we model
the gain as an independent and identically distributed (i.i.d.)
exponential random variable with unit mean for each link.
Further, I(]|ly — x;||) is the distance dependent path-loss be-
tween y and x;. For simplicity, we assume that [(||y —x;||) =
ly — x;||~*, where & > 2 is the path-loss exponent.

B. Contention-based medium access: As shown in Fig. 1,
we consider a slotted CSMA-type MAC protocol. The duration
of each slot is t; +t4 time units, where the maximum back-off
period is ¢; and the minimum data transmission duration is 4.
At the beginning of a slot, each AP enters a back-off period
that is uniformly distributed in (0, ¢;] and independent for each
AP as well as the history of the back-off times in the previous
slots. In case the back-off times of two APs are the same,
advanced protocols can be used to avoid packet collision. For
our construction of the back-off procedure, the probability of
such event is zero. Hence, we do not consider such events in
our analyses. Further, since there is no packet collision, we
also do not consider exponential back-off in our analyses. We
consider saturated traffic for each AP. Hence, during each slot,
all the APs in the network participate in channel contention. In
this period, an AP continuously senses the channel to register
the activity of nearby APs that may have smaller back-off
periods and may have started data transmission. If the AP
infers the channel to be active by the time the back-off period
ends, it waits for the next slot and then follows the same
process. In contrast, if the AP does not detect the presence
of other APs in its contention/inhibition region, it transmits
data until the end of the slot. The same process repeats at the
beginning of each slot. Note that during a slot, the duration of
the data transmission period for the typical AP in the network
is uniformly distributed in [t4,tq + t5). This is a consequence
of the random back-off period and having a fixed slot duration.

During the back-off period, the typical AP can detect the
presence of other active APs in its contention region through
energy detection and/or preamble detection. In this work, we
only consider preamble detection. To successfully decode the
preamble, we assume that the averaged received signal strength
needs to be above the sensing threshold 7.,. For the typical
AP located at xo € R?, the contention region is By, (Xo),
which is defined as a circular region of radius di,, centered
at the AP. We define this distance such that 7.; = Pyl(dinn)-

In Fig. 2, we depict the contention region for the typical AP
using a dotted black circle of radius d;,y. Further, we present
the service region of all the active APs through red circles
of radius riy;, = dinn/2. Note that each active AP can be
associated with a non-overlapping circular service region in

2 : 2
R of size wriy.

slot # n slot # (nt+1)
[ back-off window I data transmission window

Fig. 1: Example of two consecutive slots for the slotted CSMA considered
in this work. The slots are represented from the perspective of the AP, i.e., the
transmitter. During the gap between two consecutive slots, control signaling
such as acknowledgement of correct reception from the user takes place.

C. Point process of the active APs: In this work, we analyze
the system performance for a single representative slot. From
the description of the back-off process, one can interpret that
the APs arrive in the system at random times within a slot
based on their back-off times. Further, the arriving locations
are random in R? based on the underlying PPP ® 4. An AP
is allowed to access the medium if at its time of arrival there
are no APs in its contention domain. Let us denote the set of
active APs at time to(< t,) by Uy,, which is defined as

v, = {Xi 1x; € Py, t; < to, |\I/ti N Bdmh(xi)\ = O},
where the last condition captures that for the AP at x; with
a back-off time ¢; to transmit, there should be no active APs
in its circular contention region By, (x;). The point process
that exactly models WV, is the RSA process [8], [9] as will be

clear from its definition presented in the next section.

Now, let us denote 7 as the medium access indicator of the
typical AP with a back-off time ¢. If the AP gets to transmit
in the slot then Zy = 1, otherwise Zy = 0. We define

Zo = H 1 (doj > dim),

x; €Wy,
where d;; = ||x; — x;||. Using the above definition, at the
end of the back-off period, the set of all active APs is
\I/tb:\ll:{xiEQA:Iizl}. (D

For the rest of the paper, we consider ¢, = 1.

D. Performance metrics: Conditioned on the event that the
typical AP at x( gets to transmit, the DL SINR for its serving
user at ug is given as

Pih(ug, x0)I(||lx0 — uo|)
>, cwo Peh(x;, w0)l([[x; — uol]) + 0%
where W0 = W\ {x(} and o2 is the noise power over the
system bandwidth. Let us denote the random distance |xo —
ug|| = Rop. Based on our earlier assumption, the PDF of R is

fro(10) = 2r0/T3m, 0 <70 < Trim, 3)
where 7ipn = dinn/2. Note that the coverage probability

analysis is valid for any other distance distribution as long
as the closed-access system assumption in maintained.

SINRy = 2

In this work, we limit our focus to the following two
metrics. It is straightforward to extend the derived theoretical
results for other metrics such as average spatial throughput.



Fig. 2: A representative illustration of the system. Each red circle is centered
at an active AP illustrated by cross mark. APs that did not win contention are
denoted by black-dots. A few representative user locations are illustrated by
dark rectangles. The inhibition region of the typical AP at xq is Bgq, , (X0)
that is illustrated by the dotted black circle of radius dinn. For the typical AP,
the serving users are uniformly distributed in By, (X0)-

1) Medium access probability: The MAP of the typical AP
at xg € ®4 is defined as

Mo=P[Ly=1=E H 1 (do; > dinh)} 4)
x; €Wy,

2) SINR coverage probability: As explained in Sec. IL.B, if
the typical AP is active, then the data transmission window
is a random variable that is uniformly distributed in [t4, t4 +
tp). Assuming the back-off time of the typical AP to be to,
the number of active interfering APs keeps increasing during
(to, tp] and does not change during (¢, tp+t4]. Since the latter
window corresponds to the worst-case interference scenario,
we define the SINR coverage probability of the typical link for

this window. For a threshold f, it is given as

- Pthol(’l“o)
PO =R e mhiy w2 2P O
‘I’\{Xo}

where r; = ||x; — ug||, h; = h(x;,10), and VO =

Remark 1. To analytically quantify these metrics, we need to
use the statistical properties of Wy, which is an RSA process.
Since the exact characterization of the process is intractable,
we focus on deriving approximate results exploiting the first
and second-order statistics, namely density and PCF of the
process. The density result helps derive the MAP. Further, to
obtain the coverage probability result, we approximate U° as
a non-homogeneous PPP due to its unparalleled tractability.
This requires information regarding the density as well as the
PCF of the RSA process that are derived next.

III. A BRIEF OVERVIEW OF THE RSA PROCESS

In the two-dimensional (2D) space, the RSA process is
defined as a stochastic space-time process, where circles of
a certain radius sequentially arrive at random locations in
R? such that any arriving circle cannot overlap with already
existing circles. To be specific, let @ be a homogeneous space-
time PPP on R? x [0, 1] that contains the centers of circles of
radius ri. These circles arrive at the rate of A\g per unit
area. At an arbitrary time ¢ € (0,1), a circle arriving at
x € R? is retained if there are no other circle centers in its

inhibition region By, , (x). Let ®(¢) be the point process that
contains all the centers (both retained and discarded) of ® at
an arbitrary time 0 < ¢ < 1. From the definition of ®, ®(¢)
is a homogeneous PPP with density Agt. Let U(¢)(C @(t))
be the corresponding RSA process that has all the retained
points and its density be p(t). If Ag is high enough, then
beyond a certain time there will be no more empty space left
to accommodate a new circle. In the RSA literature, this is
known as the jamming limit, where the fraction of area covered
by the circles is p(1)mr2, ~ 0.547 as A — oo and the
corresponding density p(1) is the jamming density [10].

A. Density of the RSA process: Due to the infinite memory
of the RSA process, characterizing its density is challenging.
Nevertheless, many works in the statistical physics literature
provide accurate approximation results [11]-[13]. In the fol-
lowing lemma, we present one such result for the density
estimation of W(t).

Lemma 1. The density p(t) of the point process U(t) is
obtained by solving the following equation [11] with the initial

condition p(0)
e

where k = mr?,, is the unique area covered by a circle, kp(t)
is the fraction of the area that is covered by the retained circles
at time t, ¢(kp(t)) is the probability that a circle arriving at
an arbitrary location in R* is retained at time t, and C' is
the integration constant. The series expansion of the retention
probability in terms of the density p(t) is given as [11, Eq. 30]

—t +C, (6)
K

5 2dinn
B(kp(t)) =1 — dndimp(t) + p(;) / dmr Ao (r)dr
dinn
3 2dinn
+ p(;) / 2rr A(r)dr — S5+ O(p(t)"),  (7)
dinn
where S5t = p(t 7 (V3m — L) S, As(r) is the area of

intersection of rwo circles of radius din, whose centers are
separated by distance 7.

Proof: For the proof, please refer to [11]. [ ]
While the above result is accurate until intermediate cov-
erage (35%-40% occupied area by the admitted circles), the
results for the jamming limit are well-known thanks to the ex-
isting simulation-based studies [14]. Using the above Lemma
along with the knowledge of jamming limit coverage, authors
in [11] present a fitting function for the fraction of covered
area that is fairly accurate for the entire coverage range. This
unified equation is given as ¢rrr(kp(t)) =
(14 b1z(t) + box(t)? + bsz(t)*) (1 —2(t)®),  (®)
where x(t) = kp(t)/0.5474. The coefficients by, bs and bs are
obtained by matching the order of p(t) in (7) and (8). The
density at time 0 < ¢ < 1 can be obtained by solving (6).

B. PCF of the RSA Process: Informally, the PCF denoted
as go(ry,ro;t) describes the likelihood of finding a point of
the process at ro given that there is a point at ry. Since
RSA is a motion-invariant process, the PCF is a function of
distance between two locations and independent of absolute
locations [1]. Hence, we define go(ri,ro;t) = go(|ra —



ri|;t) = g(r;t). Similar to the derivation of the density
result, approximated PCF result can be obtained using the
differential equation framework. Since RSA is a stationary
process, the second-moment density or the two-particle density
is given as po(ry,ro;t) = p(t)2ga(ry,re;t). By definition,
p2(r1,ro;t)dridrs is equal to the probability that the center
of one unspecified point can be found in dr; at r; and another
unspecified point in dro at ro. Creation of a new pair of
particles in an infinitesimally small time window (¢,¢ + dt]
can occur either by (1) addition of a circle at ro conditioned
on already existing circle at ry, or (2) vice-versa. Hence, the
rate of increase of the two-particle density is
2 .

9p(t) gz(fl’rQ’t) =)o [Q’i(rl,rQ, t) + @(rz,rl,t)] , (9
where & (r;, r¢ rj; ;1) is the probability of finding a circle centered
at r; and empty space at r; for addltlon of another circle.
Again due to motion-invariance, ¢(r;, r? r;;t) is only a function
of the relative distance |r; — rj|. Based on already existing
results [15], [16], one can express @(ri7r?; t) =

[ +Zp S+1/---/fjk1-~-fjks

Gs+1(Tiy Thyy oo Tp 3 t)drg, .. drks] , (10)

(1 + fij)p(rp

where f;; = f(jr; —r;|) = —1if |r; — rj| < dim and
fij = 0if |r; —r;| > dinn. gn(-) is the n-particle correlation
function. In the 2D space, the sum over s can be reduced to six
terms as a circle can have maximum six neighboring circles.
The PCF can be exactly characterized by substituting (10) in
(9). However, as evident from (10), without the knowledge
of the n-particle correlation function for n < 7, this is not
possible. Therefore, in [17], a numerical approach based on
first order density approximation of @(r,,r t) is presented
to estimate the PCF that is outlined in the Appendlx For a
better understanding of the technical arguments presented int
the Appendix, the readers may refer to [16].

1) Exponential regression-based curve-fitting For tractable
analysis, it is convenient to approximate the PCF in closed-
form, as has been commonly done in the stochastic geometry
literature, e.g., for the cellular uplink analysis [18]. We use
the following parametric function for this:

g(r;p(t)) =14 crexp (—co (r/dipn — 1)) , 7 > dipn, (11)
where c; and co are functions of RSA density/time that can
be obtained by curve-fitting with respect to the numerically
obtained PCF. This choice of exponential function is moti-
vated by the super-exponential decay of the PCF of the RSA
process [19]. Since for the RSA process, the PCF is scale-
invariant, the values for ¢; and ¢y need to be determined
only once for different densities and later can be reused.
Further, note that the numerically obtained PCF as outlined
in the Appendix is accurate for low to intermediate coverage
(< 40%) owing to the first order density approximation in (14).
Therefore, to obtain more accurate estimates of ¢; and co, we
curve-fit (11) with respect to simulated data using exponential
regression. These values are reported in Table 1.

C. The RSA process as a non-homogeneous PPP: As
mentioned in Remark 1, using the density and PCF results,

we approximate the RSA process as a non-homogeneous PPP.

Proposition 1. Conditioned on the location of the typical
point of the RSA process V(t), it can be approximated as
a non-homogeneous PPP O (t) with the following distance-
dependent density function:

Ag (1, p(t)) = p(t)g(r; p(t)).
Proof For any function f : R? — R*,
> f9= % 1w=ow) [ s
xeW(t) x€WO(t) xER?2
= [ eonallixl o),
xER?

where the second step follows from the application of Camp-
bell’s theorem and replacing the intensity measure by the
reduced second factorial moment measure [1]. We obtain the
final result using the fact that the PCF of the RSA process is

scale-invariant. Hence, g(r+/p(t); p(t)) = g(r; p(t)). [ |

IV. APPLICATION TO THE CSMA NETWORK ANALYSIS

g(Ixlvp(t); p(t))

As mentioned in Sec. II, we have two quantities of interest:
(1) the MAP of the typical AP in &4 and (2) the SINR
coverage probability conditioned on the fact that the typical
AP transmits. Next, we begin our discussion with the MAP.

A. The MAP of the typical AP: The MAP of the typical AP
can be determined using the results from Lemma 1 that is
presented in the following proposition.

Proposition 2. The MAP of the typical AP is given as
1
Moy = / P(rp(to))dto,
0

where ¢(rkp(to)) and p(ty) are obtained using the results in
Lemma 1 with dipn = (Pt/Tcs)l/a.

Proof: Let the typical AP at x( has a back-off time t.
The MAP of this AP as defined in (4) is

Mo = E[T,] = [ H 1( d0]>dmh)}

X G‘I’fo

At time tg, the set of active transmitting APs the network is
W,,. If there are no active APs in the contention domain of
the typical AP, i.e. | ¥y, N By, (x0)| = 0, then the typical AP
transmits. Hence, the probability of the event that the typical
AP transmits is equivalent to the probability of finding a empty
circular region of diameter din, in W . This probability is
essentially captured by ¢(kp(tg)) given in Lemma 1 and (8).
Since % is uniformly distributed over (0, 1], we get the final
expression in the proposition by deconditioning over ;. N

B. SINR Coverage probability: In the following proposition
we present the SINR coverage probability of the typical link.

Proposition 3. Conditioned on the fact that the typical AP
transmits, the SINR coverage probability of the typical link in
the network for a threshold 3 is given as

Pelf) = /—0 P ( Pﬁ?m))

N

r=060=0

n(r,ro, 0 2rg
i) d0rdr ——dro,

+ Bitr) Tinn




TABLE I: Values of c¢; and c; used in the PCF for different fractions of the total occupied area.

Occupied area (kp(t)) | 0.1 | 0.15| 02 | 025] 03 [ 035| 04 | 045 | 0.5 | 0.547
¢ 0.14 | 02 | 028 | 041 | 047 | 0.66 | 0.87 | 142 | 1.83 | 2.5
C2 2 2.8 | 225 4 34 | 396 | 438 | 592 | 6.78 | 7.24

where 1(r,10,0) = g(1/r2 + 12 — 2r7r( cos(6)).

Proof: Using Proposition 1, ¥Y can be approximated as
a non-homogeneous PPP with density Ago(r) = Agg(r) =
Aw (1 +crexp(—cz (r/dian — 1)), 7= dim,
where Ay (= p(1)) is determined using Lemma 1. Further, ¢;

and ¢, are obtained from Table I depending on Ay. Now, the
coverage probability can be expressed as

Pthol(ro) :|
P.(8) = P >
8) {zw\{xo} Pl ¥ o2 =

_ nl(ll) | B0’
—pf> 3 sl

x w0 Pil(ro)
o2 3 LXK

OF {>]E[ 11 En [( } }

x; €WO

Bo2
O, |t |g| T a+ st/ ],
x; EWO
where (a) follows from using the CDF of the exponential fading
random variable hg, (b) follows from the moment generating
function of an exponential random variable, and the final result
follows from applying the PGFL of a PPP and deconditioning
over the serving distance 7o of the typical link. ]

V. RESULTS AND CONCLUSION

In this section, we validate the accuracy of the theoretical
results by comparing them with NS-2 simulations and exten-
sive Monte Carlo simulations.

A. Validation of the VAP result: First, we validate the
accuracy of modeling a CSMA network with the RSA process
by comparing the theoretical MAP result with NS-2 simulations.
We use the simulation results reported in [4]. The NS-2
simulation setup that is used to generate the MAP result is
as follows: the simulation area is considered to be 4 x 4
km?. The AP locations are selected randomly and uniformly
in the simulation area and each AP is associated with user data
protocol (UDP) flows of constant rate 1 Mbps to emulate the
saturated traffic condition. Further, all flows start to transmit
at the same time. For this simulation, the propagation model
is selected to be TwoRayGround and the inhibition distance
dinn 1S 550 m. To obtain the MAP, the fraction of APs that
transmit without collision is obtained during several epochs
of a simulation run. In Fig. 3 (left), for the above-mentioned
setup, the MAP after 50 simulation runs is presented. To
validate the accuracy of Proposition 2 that corresponds to the
MAP obtained from the RSA-based approach, we compare it
with the NS-2 simulations. Further, to highlight the improved
accuracy of the RSA-based approach over MHPP-II-based
approach, we also plot the MAP of the MHPP-II-based approach
that is given as [4]

Moy = 1 — exp(=mNadin)

’ W)\adfnh

(12)

From Fig. 3 (left), we conclude that the RSA-based approach
more accurately describes the CSMA network compared to the
MHPP-II-based approach.

We further validate the accuracy of the theoretical MAP
results for denser networks using Monte Carlo simulations.
Using the stationarity property of the PPP, we consider the typ-
ical AP is located at the origin. For this simulation setup, we
consider a circular service region of radius 1500 m centered at
the typical AP. Rest of the AP locations are dropped uniformly
at random in this service region. Each AP is associated with
a back-off time that is uniformly distributed in (0, 1]. Based
on its back-off time, if the typical AP gets to transmit, we say
that the AP has successfully accessed the medium. We repeat
this process for 10* times to generate the MAP result reported
in Fig. 3 (center) for a given density A\,. As observed from
the figure, the theoretical results (from Proposition 2) and the
simulation results are remarkably close. We also compare the
MAP result of MHPP-II based modeling using (12). From Fig. 3
(left and center), we observe that RSA-based modeling of the
CSMA network is more accurate compared to the MHPP-II
based modeling used in the literature.

B. Validation of the SINR coverage probability result: In
order to validate the coverage probability result, we follow the
same Monte Carlo simulations method as described above. In
addition, in each drop, we consider that the location of the
user served by the typical AP is uniformly distributed within
the circular region B, (0). We consider P, = 20 dBm over
a 10 MHz system bandwidth and the carrier sense threshold
Tes = —65 dBm. We run the Monte Carlo simulations 10*
times. The DL user SINR( is calculated using (2) with the
condition that the typical AP gets access to the channel. The
simulation-based coverage probability is obtained by taking
the ratio of the number of times we get SINRg > [ and
the total number drops. We compare the simulation results
with the theoretical coverage probability result obtained using
Proposition 3. As observed in Fig. 3 (right), the coverage
result is more accurate for a dense network. We also com-
pare the coverage probability result using the MHPP-II-based
approach. We observe that the MHPP-II model significantly
overestimates the coverage probability for a denser network.
This is not surprising as the MHPP-II process attains the
saturation density, which is the maximum density of active
transmitter, at a lower value of \,. Hence, it does not represent
the actual density of active transmitter in a CSMA network as
A increases. As a consequence, it significantly underestimates
the total network interference.

C. Conclusion: In conclusion, this paper models a dense
WLAN system with CSMA-type medium access protocol
using the RSA process. Leveraging the rich theoretical results
from the statistical physics literature, we present approximate
analytical results to estimate two key metrics, namely the
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Fig. 3: (Left) Validation of the accuracy of the RSA-based approach for modeling of CSMA network using NS-2 simulations. (Center) MAP as a function of
AP density A\,. Markers represent Monte Carlo simulations, solid lines represent theoretical MAP of the RSA-based approach using Proposition 2, and dashed
lines represent the MAP of the MHPP-II-based approach using (12). (Right) Coverage probability as a function SINR threshold for different A,. For the Center
and Right figures, Py = 20 dBm/10 MHz, o = 4. For the Right figure, 7. = —65 dBm/10 MHz.

MAP of the typical AP and the SINR coverage probability of
the typical link. The derived results can be readily extended
to analyze more sophisticated metrics such as the average
spatial throughput of the system. Further, these results are
also useful in modeling a wireless network that has orthogonal
spatial reuse of radio resources, such as frequency reuse in a
traditional cellular system. Moreover, the analysis presented
in this work is for a single channel CSMA network. Hence,
another interesting direction of future work is to extend the
analysis for a multi-channel CSMA network.

APPENDIX
NUMERICAL APPROXIMATION OF THE RSA PCF [17]

Let us define a function Ya(ry,r9; p(t)) that represents the
conditional probability of finding a point at r; given there is a
circular gap centered at ry. Further, there is no constraint on
the distance between r; and r,. Hence, we write

D(r1,19:8)/S(kp(t)) = p(t)(1 + fr2)Ya(r1,x35p(t)), (13)
where
o0 t s
Vater, o) <1+ 30 28 [ [ fa
s=1
9s+1(Tiy Thyy oo T3 t)dry, - drg, .
A first order approximation for Ya(r1,13; p) is [20]

Ya(r1,r9;p) = Ya(r12,p) = 1 + P/ C(r13, p)h(rs2, p)drs
r3

=14 p [ Cllea = ral (2 v, s, (19
r3

where C(r12,p) is the mixed direct correlation function at
system density p and h(ri2, p) = g(r12, p) — 1 is the (generic)
total pair correlation function. With the above approximation,
instead of solving (9) with (10), we can solve (9) along with
(14). However, since there are three unknown functions, the
following additional equation is needed for unique solution

C(ri2,p) = f12Ya(r12,p). (15)

This relationship directly follows from the definition of
C(r12, p) and Ya(ri2, p). Using (15) in (9), we get

1 0p%h(riz,
%% =C(r12,p) + P/rB C(r13, p)h(raz, p)drs. (16)

Simultaneously solving (14), (15), and (16), we get the PCF.
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