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Modeling of Dense CSMA Networks using Random

Sequential Adsorption Process
Priyabrata Parida and Harpreet S. Dhillon.

Abstract—We model a dense wireless local area network
(WLAN) where the access points (APs) employ carrier sense
multiple access (CSMA)-type medium access control (MAC)
protocol. In our model, the spatial locations of the set of active
APs are modeled using the random sequential adsorption (RSA)
process, which is more accurate in terms of the density of active
APs compared to the Matérn hard-core point process of type-
II (MHPP-II) commonly used for modeling CSMA networks.
Leveraging the theory of the RSA process from the statistical
physics literature, we provide an approximate but accurate
analytical result for the medium access probability (MAP) of
the typical AP in the network. Further, we present a numerical
approach to determine the pair correlation function (PCF), which
is useful for accurate estimation of the interference statistics.
Using the PCF result, we derive the signal-to-interference-plus-
noise ratio (SINR) coverage probability of the typical link in
the network. We validate the accuracy of the theoretical results
through extensive Monte Carlo simulations.

Index Terms—Stochastic geometry, CSMA, random sequential
adsorption, medium access probability, coverage probability.

I. INTRODUCTION

Owing to their ubiquity, WLAN or Wi-Fi networks play

a pivotal role in meeting the ever-increasing global data

demands. Since these networks operate with minimal central

coordination, MAC protocols that rely on local information are

preferred. One such MAC protocol is the CSMA that enables

efficient spatial sharing of the frequency bands among the

WLAN APs. Hence, it has become the de facto MAC protocol

in the popular IEEE 802.11 standards. The capacity of such a

network not only depends on the probability of an AP access-

ing the medium but also the network interference generated

by all active APs. Since these quantities strongly depend on

the active AP locations in the network (which are an outcome

of complex spatio-temporal interactions across all APs), one

approach to analyzing such a network is to model these AP

locations using an accurate point process. Later leveraging the

known statistical properties of the process, different system

metrics can be reliably estimated. Indeed, this philosophy has

gained significant traction in recent years to study a variety

of wireless networks using various point processes from the

stochastic geometry literature [1]–[3]. However, in the case of

the CSMA network, the problem is more complicated as the

spatial inhibition among the active APs is modeled using hard-

core processes, which are notoriously challenging to analyze.

A popular hard-core process that has been used to model

the CSMA network is the MHPP-II [4]–[7]. Although the

derivation of exact results remains intractable using MHPP-

II, the knowledge of its second-order statistics in closed
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form provides a reasonable degree of tractability to obtain

approximate results. However, it is well understood that

MHPP-II underestimates the density of simultaneously active

transmitters that subsequently leads to an underestimation of

network interference [8]. To overcome this limitation of the

MHPP-II, the RSA process has been proposed to model the

CSMA network [8], [9]. In [8], the authors demonstrate the

accuracy of the RSA-based model over MHPP-II through

a simulation-based study. In [9], the authors present the

generating functional of the RSA process as a solution to a

differential equation. Since the exact solution of the equation

is numerically demanding, the authors present a few bounds on

network performance metrics that are rather loose. In contrast

to the limited works in the communications literature, the RSA

process has received significant attention from the statistical

physics community (cf. [10] and the references therein) where

this process is used to model real-world phenomenon such as

deposition of colloidal particles on the surface of a substrate.

In this work, we revisit the problem of modeling a dense

CSMA network using the RSA process. From the statistical

physics literature, we recover a few useful results correspond-

ing to the first and second-order statistics of the process and

apply them, albeit with suitable modifications, to analyze

the CSMA network. Since the exact expressions for different

metrics are intractable, we derive approximate but accurate

theoretical results, which are amenable to faster numerical

evaluations. Our main contributions are as follows:

1. Owing to the contention-based medium access in a

CSMA network, the knowledge of the MAP of the typical AP is

critical for network capacity estimation. Therefore, we extend

the circular void probability result of the RSA process from the

statistical physics literature to present an accurate theoretical

expression for the MAP of the typical AP. We also present the

result for the density of the active APs in the network.

2. For statistical characterization of network interference, we

resort to accurate approximation using the two-particle density

function of the RSA process. Inspired by the results from the

physics literature, we present a useful numerical approach to

obtain the PCF of the RSA process. To facilitate tractable anal-

ysis, we also provide a parametric closed-form expression for

the PCF, where the desired parameters can be obtained through

curve-fitting with respect to either the numerical or simulated

PCF. Using the PCF result, we approximate the conditional

RSA process as a non-homogeneous PPP. This approximation

helps us determine the SINR coverage probability.

II. SYSTEM MODEL

A. Network model: We consider the downlink (DL) of a

WLAN network where the locations of APs follow a homo-

geneous Poisson point process (PPP) ΦA = {x1,x2, . . .} with

density λa. Since deployment of WLAN APs are unplanned, a
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PPP model is quite reasonable in this case. Further, we assume

that the set of users served by each AP is randomly and uni-

formly distributed within a circle of radius rinh centered at the

corresponding AP. This assumption is motivated by the facts

that WLAN networks are usually closed-access systems and

the users are in the general vicinity of serving APs. Further,

this assumption is a generalization of the bipolar model used

for modeling serving distance in ad hoc networks. Our focus is

on a WLAN system with a single channel. Further without loss

of generality, the analysis is for a representative resource block

with flat frequency response. On the representative resource

block, considering a fixed AP transmit power Pt, the received

power at y ∈ R
2 from an AP at xi is

Pr(y,xi) = Pth(y,xi)l(∥y − xi∥),
where h(y,xi) is the multi-path gain of the link. Assuming

that multi-path fading follows Rayleigh distribution, we model

the gain as an independent and identically distributed (i.i.d.)

exponential random variable with unit mean for each link.

Further, l(∥y − xi∥) is the distance dependent path-loss be-

tween y and xi. For simplicity, we assume that l(∥y−xi∥) =
∥y − xi∥−α, where α > 2 is the path-loss exponent.

B. Contention-based medium access: As shown in Fig. 1,

we consider a slotted CSMA-type MAC protocol. The duration

of each slot is tb+td time units, where the maximum back-off

period is tb and the minimum data transmission duration is td.

At the beginning of a slot, each AP enters a back-off period

that is uniformly distributed in (0, tb] and independent for each

AP as well as the history of the back-off times in the previous

slots. In case the back-off times of two APs are the same,

advanced protocols can be used to avoid packet collision. For

our construction of the back-off procedure, the probability of

such event is zero. Hence, we do not consider such events in

our analyses. Further, since there is no packet collision, we

also do not consider exponential back-off in our analyses. We

consider saturated traffic for each AP. Hence, during each slot,

all the APs in the network participate in channel contention. In

this period, an AP continuously senses the channel to register

the activity of nearby APs that may have smaller back-off

periods and may have started data transmission. If the AP

infers the channel to be active by the time the back-off period

ends, it waits for the next slot and then follows the same

process. In contrast, if the AP does not detect the presence

of other APs in its contention/inhibition region, it transmits

data until the end of the slot. The same process repeats at the

beginning of each slot. Note that during a slot, the duration of

the data transmission period for the typical AP in the network

is uniformly distributed in [td, td + tb). This is a consequence

of the random back-off period and having a fixed slot duration.

During the back-off period, the typical AP can detect the

presence of other active APs in its contention region through

energy detection and/or preamble detection. In this work, we

only consider preamble detection. To successfully decode the

preamble, we assume that the averaged received signal strength

needs to be above the sensing threshold τcs. For the typical

AP located at x0 ∈ R
2, the contention region is Bdinh(x0),

which is defined as a circular region of radius dinh centered

at the AP. We define this distance such that τcs = Ptl(dinh).

In Fig. 2, we depict the contention region for the typical AP

using a dotted black circle of radius dinh. Further, we present

the service region of all the active APs through red circles

of radius rinh = dinh/2. Note that each active AP can be

associated with a non-overlapping circular service region in

R
2 of size πr2inh.

slot # n slot # (n+1)

back-off window data transmission window

Fig. 1: Example of two consecutive slots for the slotted CSMA considered
in this work. The slots are represented from the perspective of the AP, i.e., the
transmitter. During the gap between two consecutive slots, control signaling
such as acknowledgement of correct reception from the user takes place.

C. Point process of the active APs: In this work, we analyze

the system performance for a single representative slot. From

the description of the back-off process, one can interpret that

the APs arrive in the system at random times within a slot

based on their back-off times. Further, the arriving locations

are random in R
2 based on the underlying PPP ΦA. An AP

is allowed to access the medium if at its time of arrival there

are no APs in its contention domain. Let us denote the set of

active APs at time t0(< tb) by Ψt0 , which is defined as

Ψt0 = {xi : xi ∈ ΦA, ti < t0, |Ψti ∩Bdinh(xi)| = 0},
where the last condition captures that for the AP at xi with

a back-off time ti to transmit, there should be no active APs

in its circular contention region Bdinh(xi). The point process

that exactly models Ψt0 is the RSA process [8], [9] as will be

clear from its definition presented in the next section.

Now, let us denote I0 as the medium access indicator of the
typical AP with a back-off time t0. If the AP gets to transmit
in the slot then I0 = 1, otherwise I0 = 0. We define

I0 =
∏

xj∈Ψt0

1 (d0j ≥ dinh) ,

where dij = ∥xi − xj∥. Using the above definition, at the

end of the back-off period, the set of all active APs is

Ψtb = Ψ = {xi ∈ ΦA : Ii = 1}. (1)

For the rest of the paper, we consider tb = 1.

D. Performance metrics: Conditioned on the event that the

typical AP at x0 gets to transmit, the DL SINR for its serving

user at u0 is given as

SINR0 =
Pth(u0,x0)l(∥x0 − u0∥)

∑

xj∈Ψ0 Pth(xj ,u0)l(∥xj − u0∥) + σ2
, (2)

where Ψ0 = Ψ \ {x0} and σ2 is the noise power over the

system bandwidth. Let us denote the random distance ∥x0 −
u0∥ = R0. Based on our earlier assumption, the PDF of R0 is

fR0(r0) = 2r0/r
2
inh, 0 < r0 ≤ rinh, (3)

where rinh = dinh/2. Note that the coverage probability

analysis is valid for any other distance distribution as long

as the closed-access system assumption in maintained.

In this work, we limit our focus to the following two

metrics. It is straightforward to extend the derived theoretical

results for other metrics such as average spatial throughput.
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Fig. 2: A representative illustration of the system. Each red circle is centered
at an active AP illustrated by cross mark. APs that did not win contention are
denoted by black-dots. A few representative user locations are illustrated by
dark rectangles. The inhibition region of the typical AP at x0 is Bdinh (x0)
that is illustrated by the dotted black circle of radius dinh. For the typical AP,
the serving users are uniformly distributed in Brinh (x0).

1) Medium access probability: The MAP of the typical AP

at x0 ∈ ΦA is defined as

M0 = P[I0 = 1] = E

[

∏

xj∈Ψt0

1 (d0j ≥ dinh)

]

. (4)

2) SINR coverage probability: As explained in Sec. II.B, if

the typical AP is active, then the data transmission window

is a random variable that is uniformly distributed in [td, td +
tb). Assuming the back-off time of the typical AP to be t0,

the number of active interfering APs keeps increasing during

(t0, tb] and does not change during (tb, tb+td]. Since the latter

window corresponds to the worst-case interference scenario,

we define the SINR coverage probability of the typical link for

this window. For a threshold β, it is given as

Pc(β) = P

[

Pth0l(r0)
∑

xi∈Ψ0 Pthil(ri) + σ2
≥ β

]

, (5)

where ri = ∥xi − u0∥, hi = h(xi,u0), and Ψ0 = Ψ \ {x0}.

Remark 1. To analytically quantify these metrics, we need to

use the statistical properties of Ψt0 , which is an RSA process.

Since the exact characterization of the process is intractable,

we focus on deriving approximate results exploiting the first

and second-order statistics, namely density and PCF of the

process. The density result helps derive the MAP. Further, to

obtain the coverage probability result, we approximate Ψ0 as

a non-homogeneous PPP due to its unparalleled tractability.

This requires information regarding the density as well as the

PCF of the RSA process that are derived next.

III. A BRIEF OVERVIEW OF THE RSA PROCESS

In the two-dimensional (2D) space, the RSA process is

defined as a stochastic space-time process, where circles of

a certain radius sequentially arrive at random locations in

R
2 such that any arriving circle cannot overlap with already

existing circles. To be specific, let Φ be a homogeneous space-

time PPP on R
2 × [0, 1] that contains the centers of circles of

radius rinh. These circles arrive at the rate of λΦ per unit

area. At an arbitrary time t ∈ (0, 1), a circle arriving at

x ∈ R
2 is retained if there are no other circle centers in its

inhibition region Bdinh(x). Let Φ(t) be the point process that

contains all the centers (both retained and discarded) of Φ at

an arbitrary time 0 < t ≤ 1. From the definition of Φ, Φ(t)
is a homogeneous PPP with density λΦt. Let Ψ(t)(⊆ Φ(t))
be the corresponding RSA process that has all the retained

points and its density be ρ(t). If λΦ is high enough, then

beyond a certain time there will be no more empty space left

to accommodate a new circle. In the RSA literature, this is

known as the jamming limit, where the fraction of area covered

by the circles is ρ(1)πr2inh ≈ 0.547 as λΦ → ∞ and the

corresponding density ρ(1) is the jamming density [10].

A. Density of the RSA process: Due to the infinite memory

of the RSA process, characterizing its density is challenging.

Nevertheless, many works in the statistical physics literature

provide accurate approximation results [11]–[13]. In the fol-

lowing lemma, we present one such result for the density

estimation of Ψ(t).

Lemma 1. The density ρ(t) of the point process Ψ(t) is

obtained by solving the following equation [11] with the initial

condition ρ(0) = 0:
∫

dρ(t)

φ(κρ(t))
=

λΦ

κ
t+ C, (6)

where κ = πr2inh is the unique area covered by a circle, κρ(t)
is the fraction of the area that is covered by the retained circles
at time t, φ(κρ(t)) is the probability that a circle arriving at
an arbitrary location in R

2 is retained at time t, and C is
the integration constant. The series expansion of the retention
probability in terms of the density ρ(t) is given as [11, Eq. 30]

φ(κρ(t)) =1− 4πd2inhρ(t) +
ρ(t)2

2

2dinh
∫

dinh

4πrA2(r)dr

+
ρ(t)3

3

2dinh
∫

dinh

2πrA2
2(r)dr − S

eq

3 +O(ρ(t)4), (7)

where S
eq

3 = ρ(t)3

8 π
(√

3π − 14
3

)

d6inh, A2(r) is the area of

intersection of two circles of radius dinh whose centers are

separated by distance r.

Proof: For the proof, please refer to [11].

While the above result is accurate until intermediate cov-

erage (35%-40% occupied area by the admitted circles), the

results for the jamming limit are well-known thanks to the ex-

isting simulation-based studies [14]. Using the above Lemma

along with the knowledge of jamming limit coverage, authors

in [11] present a fitting function for the fraction of covered

area that is fairly accurate for the entire coverage range. This

unified equation is given as φFIT(κρ(t)) =

(1 + b1x(t) + b2x(t)
2 + b3x(t)

3)(1− x(t)3), (8)

where x(t) = κρ(t)/0.5474. The coefficients b1, b2 and b3 are

obtained by matching the order of ρ(t) in (7) and (8). The

density at time 0 < t ≤ 1 can be obtained by solving (6).

B. PCF of the RSA Process: Informally, the PCF denoted

as g2(r1, r2; t) describes the likelihood of finding a point of

the process at r2 given that there is a point at r1. Since

RSA is a motion-invariant process, the PCF is a function of

distance between two locations and independent of absolute

locations [1]. Hence, we define g2(r1, r2; t) := g2(|r2 −
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r1|; t) = g(r; t). Similar to the derivation of the density

result, approximated PCF result can be obtained using the

differential equation framework. Since RSA is a stationary

process, the second-moment density or the two-particle density

is given as ρ2(r1, r2; t) = ρ(t)2g2(r1, r2; t). By definition,

ρ2(r1, r2; t)dr1dr2 is equal to the probability that the center

of one unspecified point can be found in dr1 at r1 and another

unspecified point in dr2 at r2. Creation of a new pair of

particles in an infinitesimally small time window (t, t + dt]
can occur either by (1) addition of a circle at r2 conditioned

on already existing circle at r1, or (2) vice-versa. Hence, the

rate of increase of the two-particle density is

∂ρ(t)2g2(r1, r2; t)

∂t
= λΦ

[

Φ(r1, r
0
2; t) + Φ(r2, r

0
1; t)

]

, (9)

where Φ(ri, r
0
j ; t) is the probability of finding a circle centered

at ri and empty space at rj for addition of another circle.

Again due to motion-invariance, Φ(ri, r
0
j ; t) is only a function

of the relative distance |ri − rj |. Based on already existing

results [15], [16], one can express Φ(ri, r
0
j ; t) =

(1 + fij)φ(κρ(t))

[

ρ(t) +
∞
∑

s=1

ρ(t)s+1

s!

∫

. . .

∫

fjk1
. . . fjks

gs+1(ri, rk1 , . . . rks
; t)drk1 . . . drks

]

, (10)

where fij = f(|ri − rj |) = −1 if |ri − rj | < dinh and

fij = 0 if |ri − rj | ≥ dinh, gn(·) is the n-particle correlation

function. In the 2D space, the sum over s can be reduced to six

terms as a circle can have maximum six neighboring circles.

The PCF can be exactly characterized by substituting (10) in

(9). However, as evident from (10), without the knowledge

of the n-particle correlation function for n ≤ 7, this is not

possible. Therefore, in [17], a numerical approach based on

first order density approximation of Φ(ri, r
0
j ; t) is presented

to estimate the PCF that is outlined in the Appendix. For a

better understanding of the technical arguments presented int

the Appendix, the readers may refer to [16].

1) Exponential regression-based curve-fitting For tractable

analysis, it is convenient to approximate the PCF in closed-

form, as has been commonly done in the stochastic geometry

literature, e.g., for the cellular uplink analysis [18]. We use

the following parametric function for this:

g(r; ρ(t)) = 1 + c1 exp (−c2 (r/dinh − 1)) , r ≥ dinh, (11)

where c1 and c2 are functions of RSA density/time that can

be obtained by curve-fitting with respect to the numerically

obtained PCF. This choice of exponential function is moti-

vated by the super-exponential decay of the PCF of the RSA

process [19]. Since for the RSA process, the PCF is scale-

invariant, the values for c1 and c2 need to be determined

only once for different densities and later can be reused.

Further, note that the numerically obtained PCF as outlined

in the Appendix is accurate for low to intermediate coverage

(≤ 40%) owing to the first order density approximation in (14).

Therefore, to obtain more accurate estimates of c1 and c2, we

curve-fit (11) with respect to simulated data using exponential

regression. These values are reported in Table I.

C. The RSA process as a non-homogeneous PPP: As

mentioned in Remark 1, using the density and PCF results,

we approximate the RSA process as a non-homogeneous PPP.

Proposition 1. Conditioned on the location of the typical

point of the RSA process Ψ(t), it can be approximated as

a non-homogeneous PPP Ψ̃0(t) with the following distance-

dependent density function:

λΨ̃(r, ρ(t)) = ρ(t)g(r; ρ(t)).

Proof: For any function f : R2 → R+,
∑

x∈Ψ(t)

f(x) =
∑

x∈Ψ̃0(t)

f(x) ⇒ ρ(t)

∫

x∈R2

f(x)g(∥x∥
√

ρ(t); ρ(t))

=

∫

x∈R2

f(x)λΨ̃(∥x∥, ρ(t)),

where the second step follows from the application of Camp-

bell’s theorem and replacing the intensity measure by the

reduced second factorial moment measure [1]. We obtain the

final result using the fact that the PCF of the RSA process is

scale-invariant. Hence, g(r
√

ρ(t); ρ(t)) = g(r; ρ(t)).

IV. APPLICATION TO THE CSMA NETWORK ANALYSIS

As mentioned in Sec. II, we have two quantities of interest:

(1) the MAP of the typical AP in ΦA and (2) the SINR

coverage probability conditioned on the fact that the typical

AP transmits. Next, we begin our discussion with the MAP.

A. The MAP of the typical AP: The MAP of the typical AP

can be determined using the results from Lemma 1 that is

presented in the following proposition.

Proposition 2. The MAP of the typical AP is given as

M0 =

∫ 1

0

φ(κρ(t0))dt0,

where φ(κρ(t0)) and ρ(t0) are obtained using the results in

Lemma 1 with dinh = (Pt/τcs)
1/α

.

Proof: Let the typical AP at x0 has a back-off time t0.
The MAP of this AP as defined in (4) is

M0 = E[I0] =E

[

∏

xj∈Ψt0

1 (d0j > dinh)

]

.

At time t0, the set of active transmitting APs the network is

Ψt0 . If there are no active APs in the contention domain of

the typical AP, i.e. |Ψt0 ∩Bdinh(x0)| = 0, then the typical AP

transmits. Hence, the probability of the event that the typical

AP transmits is equivalent to the probability of finding a empty

circular region of diameter dinh in Ψt0 . This probability is

essentially captured by φ(κρ(t0)) given in Lemma 1 and (8).

Since t0 is uniformly distributed over (0, 1], we get the final

expression in the proposition by deconditioning over t0.

B. SINR Coverage probability: In the following proposition

we present the SINR coverage probability of the typical link.

Proposition 3. Conditioned on the fact that the typical AP

transmits, the SINR coverage probability of the typical link in

the network for a threshold β is given as

Pc(β) =

∫ rinh

r0=0

exp

(

− βσ2

Ptl(r0)

)

exp



−λΨ

∞
∫

r=0

2π
∫

θ=0

η(r, r0, θ)

1 + l(r0)
βl(r)

dθrdr





2r0
r2inh

dr0,
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TABLE I: Values of c1 and c2 used in the PCF for different fractions of the total occupied area.

Occupied area (κρ(t)) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.547

c1 0.14 0.2 0.28 0.41 0.47 0.66 0.87 1.42 1.83 2.5

c2 2 2.8 2.25 4 3.4 3.96 4.38 5.92 6.78 7.24

where η(r, r0, θ) = g(
√

r2 + r20 − 2rr0 cos(θ)).

Proof: Using Proposition 1, Ψ0 can be approximated as

a non-homogeneous PPP with density λΨ0(r) = λΨg(r) =

λΨ (1 + c1 exp (−c2 (r/dinh − 1))) , r ≥ dinh,

where λΨ(= ρ(1)) is determined using Lemma 1. Further, c1
and c2 are obtained from Table I depending on λΨ. Now, the

coverage probability can be expressed as

Pc(β) = P

[

Pth0l(r0)
∑

xi∈Ψ\{x0}
Pthil(∥xi∥) + σ2

≥ β

]

= P

[

h0 ≥
∑

xi∈Ψ0

β
hil(∥xi∥)
l(r0)

+
βσ2

Ptl(r0)

]

(a)
= Er0

[

e
− βσ2

Ptl(r0)

]

E

[

∏

xi∈Ψ0

Ehi

[

e
−

βhil(∥xi∥)

l(r0)

] ]

(b)
= Er0

[

e
− βσ2

Ptl(r0)

]

E

[

∏

xi∈Ψ0

(1 + βl(∥xi∥)/l(r0))−1

]

,

where (a) follows from using the CDF of the exponential fading

random variable h0, (b) follows from the moment generating

function of an exponential random variable, and the final result

follows from applying the PGFL of a PPP and deconditioning

over the serving distance r0 of the typical link.

V. RESULTS AND CONCLUSION

In this section, we validate the accuracy of the theoretical

results by comparing them with NS-2 simulations and exten-

sive Monte Carlo simulations.

A. Validation of the MAP result: First, we validate the

accuracy of modeling a CSMA network with the RSA process

by comparing the theoretical MAP result with NS-2 simulations.

We use the simulation results reported in [4]. The NS-2

simulation setup that is used to generate the MAP result is

as follows: the simulation area is considered to be 4 × 4
km2. The AP locations are selected randomly and uniformly

in the simulation area and each AP is associated with user data

protocol (UDP) flows of constant rate 1 Mbps to emulate the

saturated traffic condition. Further, all flows start to transmit

at the same time. For this simulation, the propagation model

is selected to be TwoRayGround and the inhibition distance

dinh is 550 m. To obtain the MAP, the fraction of APs that

transmit without collision is obtained during several epochs

of a simulation run. In Fig. 3 (left), for the above-mentioned

setup, the MAP after 50 simulation runs is presented. To

validate the accuracy of Proposition 2 that corresponds to the

MAP obtained from the RSA-based approach, we compare it

with the NS-2 simulations. Further, to highlight the improved

accuracy of the RSA-based approach over MHPP-II-based

approach, we also plot the MAP of the MHPP-II-based approach

that is given as [4]

M0,M =
1− exp(−πλad

2
inh)

πλad2inh
. (12)

From Fig. 3 (left), we conclude that the RSA-based approach

more accurately describes the CSMA network compared to the

MHPP-II-based approach.

We further validate the accuracy of the theoretical MAP

results for denser networks using Monte Carlo simulations.

Using the stationarity property of the PPP, we consider the typ-

ical AP is located at the origin. For this simulation setup, we

consider a circular service region of radius 1500 m centered at

the typical AP. Rest of the AP locations are dropped uniformly

at random in this service region. Each AP is associated with

a back-off time that is uniformly distributed in (0, 1]. Based

on its back-off time, if the typical AP gets to transmit, we say

that the AP has successfully accessed the medium. We repeat

this process for 104 times to generate the MAP result reported

in Fig. 3 (center) for a given density λa. As observed from

the figure, the theoretical results (from Proposition 2) and the

simulation results are remarkably close. We also compare the

MAP result of MHPP-II based modeling using (12). From Fig. 3

(left and center), we observe that RSA-based modeling of the

CSMA network is more accurate compared to the MHPP-II

based modeling used in the literature.

B. Validation of the SINR coverage probability result: In

order to validate the coverage probability result, we follow the

same Monte Carlo simulations method as described above. In

addition, in each drop, we consider that the location of the

user served by the typical AP is uniformly distributed within

the circular region Brinh(o). We consider Pt = 20 dBm over

a 10 MHz system bandwidth and the carrier sense threshold

τcs = −65 dBm. We run the Monte Carlo simulations 104

times. The DL user SINR0 is calculated using (2) with the

condition that the typical AP gets access to the channel. The

simulation-based coverage probability is obtained by taking

the ratio of the number of times we get SINR0 ≥ β and

the total number drops. We compare the simulation results

with the theoretical coverage probability result obtained using

Proposition 3. As observed in Fig. 3 (right), the coverage

result is more accurate for a dense network. We also com-

pare the coverage probability result using the MHPP-II-based

approach. We observe that the MHPP-II model significantly

overestimates the coverage probability for a denser network.

This is not surprising as the MHPP-II process attains the

saturation density, which is the maximum density of active

transmitter, at a lower value of λa. Hence, it does not represent

the actual density of active transmitter in a CSMA network as

λa increases. As a consequence, it significantly underestimates

the total network interference.

C. Conclusion: In conclusion, this paper models a dense

WLAN system with CSMA-type medium access protocol

using the RSA process. Leveraging the rich theoretical results

from the statistical physics literature, we present approximate

analytical results to estimate two key metrics, namely the



6

λa (AP/km2)
5 10 15 20

M
A
P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RSA

NS2 Simulations

MHPP-II

λa

10
-6

10
-5

10
-4

10
-3

M
A
P

0

0.2

0.4

0.6

0.8

1

τcs = −65,−70,−75,−80
dBm/10 MHz

SINR Threshold (β)
0 5 10 15 20

C
ov
er
a
g
e
P
ro
b
a
b
il
it
y

0

0.2

0.4

0.6

0.8

1

λa = 4× 10−2 (Sim)

λa = 1× 10−4 (Sim)

λa = 5× 10−5 (Sim)

λa = 4× 10−2 (RSA)

λa = 1× 10−4 (RSA)

λa = 5× 10−5 (RSA)

λa = 4× 10−2 (MHP-II)

λa = 5× 10−5 (MHP-II)

Fig. 3: (Left) Validation of the accuracy of the RSA-based approach for modeling of CSMA network using NS-2 simulations. (Center) MAP as a function of
AP density λa. Markers represent Monte Carlo simulations, solid lines represent theoretical MAP of the RSA-based approach using Proposition 2, and dashed
lines represent the MAP of the MHPP-II-based approach using (12). (Right) Coverage probability as a function SINR threshold for different λa. For the Center
and Right figures, Pt = 20 dBm/10 MHz, α = 4. For the Right figure, τcs = −65 dBm/10 MHz.

MAP of the typical AP and the SINR coverage probability of

the typical link. The derived results can be readily extended

to analyze more sophisticated metrics such as the average

spatial throughput of the system. Further, these results are

also useful in modeling a wireless network that has orthogonal

spatial reuse of radio resources, such as frequency reuse in a

traditional cellular system. Moreover, the analysis presented

in this work is for a single channel CSMA network. Hence,

another interesting direction of future work is to extend the

analysis for a multi-channel CSMA network.

APPENDIX

NUMERICAL APPROXIMATION OF THE RSA PCF [17]

Let us define a function Y2(r1, r
0
2; ρ(t)) that represents the

conditional probability of finding a point at r1 given there is a

circular gap centered at r02. Further, there is no constraint on

the distance between r1 and r2. Hence, we write

Φ(r1, r
0
2; t)/φ(κρ(t)) = ρ(t)(1 + f12)Y2(r1, r

0
2; ρ(t)), (13)

where

Y2(r1, r
0
2; ρ(t)) =1 +

∞
∑

s=1

ρ(t)s

s!

∫

. . .

∫

f2k1
. . . f2ks

gs+1(ri, rk1 , . . . , rks
; t)drk1 . . . drks

.

A first order approximation for Y2(r1, r
0
2; ρ) is [20]

Y2(r1, r
0
2; ρ) = Y2(r12, ρ) = 1 + ρ

∫

r3

C(r13, ρ)h(r32, ρ)dr3

= 1 + ρ

∫

r3

C(|r3 − r1|, ρ)h(|r2 − r3|, ρ)dr3, (14)

where C(r12, ρ) is the mixed direct correlation function at

system density ρ and h(r12, ρ) = g(r12, ρ)−1 is the (generic)

total pair correlation function. With the above approximation,

instead of solving (9) with (10), we can solve (9) along with

(14). However, since there are three unknown functions, the

following additional equation is needed for unique solution

C(r12, ρ) = f12Y2(r12, ρ). (15)

This relationship directly follows from the definition of
C(r12, ρ) and Y2(r12, ρ). Using (15) in (9), we get

1

2ρ

∂ρ2h(r12, ρ)

∂ρ
= C(r12, ρ) + ρ

∫

r3

C(r13, ρ)h(r32, ρ)dr3. (16)

Simultaneously solving (14), (15), and (16), we get the PCF.
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