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Abstract

In this work, we propose three pilot assignment schemes to reduce the effect of pilot contamination
in cell-free massive multiple-input-multiple-output (MIMO) systems. Our first algorithm, which is based
on the idea of random sequential adsorption (RSA) process from the statistical physics literature, can be
implemented in a distributed and scalable manner while ensuring a minimum distance among the co-pilot
users. Further, leveraging the rich literature of the RSA process, we present an approximate analytical
approach to accurately determine the density of the co-pilot users as well as the pilot assignment
probability for the typical user in this network. We also develop two optimization-based centralized
pilot allocation schemes with the primary goal of benchmarking the RSA-based scheme. The first
centralized scheme is based only on the user locations (just like the RSA-based scheme) and partitions
the users into sets of co-pilot users such that the minimum distance between two users in a partition
is maximized. The second centralized scheme takes both user and remote radio head (RRH) locations
into account and provides a near-optimal solution in terms of sum-user spectral efficiency (SE). The
general idea is to first cluster the users with similar propagation conditions with respect to the RRHs
using spectral graph theory and then ensure that the users in each cluster are assigned different pilots
using the branch and price (BnP) algorithm. Our simulation results demonstrate that despite admitting
distributed implementation, the RSA-based scheme has a competitive performance with respect to the
first centralized scheme in all regimes as well as to the near-optimal second scheme when the density

of RRHs is high.
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I. INTRODUCTION

The concept of distributed implementation of MIMO technique has been actively explored

for more than a decade. Recent push towards network densification has also made its practical
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implementation viable. In a distributed MIMO network, a number of geographically separated
RRHs simultaneously serve users in the network and are connected to a central base band unit
(BBU), which performs the physical layer tasks of symbol detection and decoding along with
complex upper layer tasks such as resource scheduling. In a dense network, the access points (or
RRHs) can be leveraged for distributed implementation resulting in higher SE through macro-
diversity and elimination of frequent handovers as users move from one access point to another.
Apart from network densification, massive MIMO (mMIMO) is also one of the major enablers
of the 5G wireless networks. Hence, it is natural to study the performance of a wireless network
where a large number of RRHs with multiple antennas simultaneously serve multiple users.
Not surprisingly, such studies have been conducted over the years under different pseudonyms
such as network MIMO, coordinated multi-point [2], cloud radio access network (RAN) [3],
fog-mMIMO [4], and recently the cell-free mMIMO [5], [6]. Successful implementation of any
MIMO technique requires accurate channel state information (CSI) at the transmitter (or receiver).
Similar to cellular mMIMO networks, the CSI acquisition in cell-free mMIMO systems needs to
be done through uplink pilot transmission due to its scalability. However, under the assumptions
of independent Rayleigh fading and sub-optimal linear precoders, pilot contamination becomes
the only capacity limiting factor of both cellular and cell-free mMIMO networks [6]-[8]. Hence,
judicious pilot assignment is essential to reduce the effect of pilot contamination, which is the

main focus of this paper.

A. Related works

In general, the optimal pilot assignment problem for a cell-free massive MIMO system is non-
deterministic polynomial-time (NP)-hard in nature. Hence, the computational resources required
to obtain the optimal solution scale exponentially with the number of users. Therefore, almost
all the works in the literature focus on providing heuristics-based algorithms to get an efficient
solution. These algorithms can be broadly categorized into centralized and distributed schemes.
In [6], a distributed random pilot allocation and a centralized greedy pilot allocation schemes are
presented for a cell-free mMIMO network. In [4] and [9], a distributed random access type pilot
assignment scheme is proposed, where a user is not served if its channel state information (CSI)
cannot be estimated reliably. A centralized structured pilot allocation scheme with an iterative
application of the K-means clustering algorithm is presented in [10]. A natural way to address the

resource allocation problem is through graph theoretic framework. This idea has been explored



in [11]-[13]. In [11], a centralized pilot sequence design scheme is proposed where the users in
the neighborhood of an RRH use orthogonal pilot sequences. The problem is posed as a vertex
coloring problem and solved using the greedy DASTUR algorithm. Along the similar lines, the
authors of [12] construct the conflict graph by having an edge between users that are dominant
interferers to each other. The graph coloring problem is solved using a greedy algorithm. In [13],
the pilot assignment problem is mapped to the Max K-cut problem, which is solved using a
heuristic algorithm. In [14], a dynamic pilot allocation approach is presented where two users
can be assigned the same pilot sequence if the signal to interference and noise ratios (SINRs) of
both the users are above a certain threshold. While the aforementioned works primarily focus
on reducing the interference due to pilot contamination, authors in [15] and [16] solve pilot
allocation optimization problems to maximize certain utility metrics. Due to the NP-hard nature
of the problem, authors in [15] use the Tabu search to solve the pilot allocation problem with
the objective of maximizing sum-user SE. Further, in [16], system throughput maximization, and
minimum user throughput maximization problems are solved using an iterative scheme based
on the Hungarian algorithm. Most of these works rely on the common underlying principle that
the same pilot can be assigned to the users that have sufficient geographical separation. This
principle also motivates the main pilot assignment scheme proposed in this work along with the
additional objective that it should be distributed as well as scalable in nature while providing

competitive performance in terms of average user SE. Our contributions are summarized next.

B. Contributions

1. Random sequential adsorption (RSA)-based pilot assignment scheme: First, we propose
a random pilot assignment algorithm with a minimum distance constraint among the co-pilot
users to reduce the effect of pilot contamination. The algorithm is inspired by random sequential
adsorption (RSA) process, which has been traditionally used across different scientific disciplines
such as condensed matter physics, surface chemistry, and cellular biology, to name a few, to
study the adsorption of large-particles such as colloids, proteins, and bacteria on a surface. Apart
from proposing the algorithm with a potential distributed implementation in the network, our
contribution lies in the accurate analytical characterization of the density of co-pilot users for a
given total user density and a minimum distance threshold. This result is used to characterize

the probability of a pilot assignment to the typical user in the network.



2. Two centralized pilot allocation schemes for benchmarking: To quantify the efficacy of the
proposed RSA-based pilot allocation scheme, we also propose two centralized algorithms. The
first algorithm, similar to the RSA scheme, is agnostic to the RRH locations and considers only
the user locations. This algorithm, named the max-min distance-based algorithm, partitions the
users into sets of co-pilot users to maximize the minimum Euclidean distance among the co-pilot
users. This scheme is optimal from the perspective of geographical separation between a set of
co-pilot users. In the proposed algorithm, the minimum distance is obtained through the bisection
search subject to a set of feasibility constraints. The second algorithm, which takes into account
both RRH and user locations, maximizes the sum-user SE of the network subject to minimum
user SINR constraint. First, leveraging tools from spectral graph theory, the algorithm partitions
the users into a desired number of clusters based on similar path-loss with respect to the RRHs.
Next, using the BnP algorithm, sets of co-pilot users are obtained with the additional constraint
that two users in the same cluster are not assigned the same pilot. This approach provides
us with a near-optimal solution in terms of sum-user SE at the cost of a significant increase in
computational complexity compared to the other two algorithms. Therefore, it is more suitable to
use this algorithm for benchmarking other pilot allocation schemes than practical implementation.

3: Insights from numerical results: Through extensive system simulation, we conclude that
the RSA-based pilot allocation scheme provides competitive performance compared to the max-
min distance-based pilot allocation scheme, especially when the ratio of the number of users
to the pilots is relatively low. Further, the RSA-based scheme achieves close to near-optimal
performance with the increasing RRH density. In addition, we compare the performance of the
RSA and the max-min schemes to another centralized pilot allocation scheme based on the
iterative K-means algorithm available in the literature. While RSA performs as well as the K-
means, the max-min distance-based scheme marginally outperforms it. Despite being a distributed
scheme, the competitive performance of the RSA-based scheme compared to other centralized

schemes makes it an attractive alternative for system implementation.

II. SYSTEM MODEL
A. Network model

We limit our attention to the downlink (DL) of a cell-free mMIMO system. The locations of
the RRHs form a Poisson point process (PPP) ®,. of density J\,. Similarly, the user point process

¥, is also modeled as an independent PPP of density A\,. Each RRH is equipped with N antennas



and each user with a single antenna. The RRHs are connected to a BBU and collectively serve
users in the network. The distance between a user at u, € ¥, and an RRH at r,, € &, is
denoted by d,,;. In line with the mMIMO literature, where the number of antennas is assumed
to be an order of magnitude more than the number of users, we consider that the antenna density
N, > \,. Further, invoking stationarity of this setup, we analyze the system performance for
the typical user u,, which is located at the origin o.

Channel estimation: Let g,,x = \/Bmihni be the channel gain between the m-th RRH and
the k-th user, where [3,,; captures the large-scale channel gain and h,,;, ~ CA(0,1y) captures
the small-scale channel fluctuations. We consider that the large-scale channel gain [3,,; is only
due to the distance dependent path-loss, i.e. 3,1 = [(dni)~', where [(-) is a non-decreasing
path-loss function. While the analysis presented in this paper is agnostic to the choice of [(-),
we will need to choose a specific [(+) for the numerical results, which is presented in Section VI.

In order to obtain the channel estimates, each user uses a pilot from a set of P orthogonal
pilot sequences P = [p1, po, - .., Pp)’, where p; denotes the i-th sequence. The length of each
pilot is 7, symbol durations, which is less than the coherence interval. Since we assume that the
P sequences are orthogonal to each other, P < 7, and p/p; = 7,1(i = j), where 1(-) denotes
the indicator function. Due to finite number of pilots, the pilot set needs to be reused across the
network. Let the pilot used by the k-th user be p(k). During the pilot transmission phase, the
received signal matrix Y, € CV*™ at the m-th RRH is

Y =1, Z gnxp (k)" + Wi,
upevy,
where p, is the normalized transmit signal-to-noise ratio (SNR) of each pilot symbol and W, is
an additive white Gaussian noise matrix whose elements follow CA/(0,1). At the m-th RRH,
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the least-square estimate, y,,; € , of the channel of the users that use the [-th sequence is

Yml = YmP[ = Tppp Z 8mk + Wby,

uged,,
where ®,; is the set of users that use the [-th sequence. Further, the set of users that are assigned
a pilot is defined as ¢, = Uleq)uk. Assuming u, € ®,;, the minimum-mean-squared-error
(MMSE) estimate of the channel of the typical user at the m-th RRH is given as
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gmo = E[ymlggo] (E[leygl])_IY’ml = Yl = CmoYmi- (1)




In this case, the error vector g,,x = Zmk — &mk 18 uncorrelated to the estimated vector. Now the

estimate and the error vectors are distributed as follows [5]:

mo ™ CN (07 ’YmoIN> ) gmo ~ CN (07 (ﬁmo - ’Yma) IN) )

TPpPﬁ'rQno
H‘Zuke@ul TpPpBmk

estimates depend on the locations of the co-pilot users in ®,;.

where v,,, = . From the expression of 7,,,, it is clear that the quality of channel

DL user SINR: Using the channel estimates, each RRH precodes the data for all the users
in the network. In this work, we consider conjugate beamforming precoding scheme. Since the
m-th RRH cannot distinguish among the channels of the users that use the [-th pilot, it uses the
normalized direction of y,,; for beamforming, i.e. the precoding vector used to transmit data to

the users that use [-th pilot is given as

Wit = Yot/ VE[|YmilI*] = &mo/ v/ E[l|&mol|*]-

Now the data transmitted by the m-th RRH is given as

P
m = \/ﬁzw;knp Z \/%Qka

p=1 up€Edyp
where 7,,,. is the transmission power used by the m-th RRH for the k-th user and ¢, ~ CN (0, 1)
is the transmit symbol of the k-th user. For each RRH, we assume the following power constraint:
E[||x,,||?] < pa. The symbol received at o (that uses the I-th pilot) is given as

A gmo
Z gZ;me + Mo :\/% Z (gmo + gmo) \/— V Umoqo

rm €0, rim €0,

P ~ %
DYDY gﬁv—TWq

p=1,pF#l U €Pyp rm €D,

+ \/_ Z Z gmo + gmo \/gﬂ\/ Nmk' k! + Mo,

uk/G@u rm €P,
where @/, = ®,, \ u,, the first term on the right hand side is the desired term, the second term
corresponds to multi-user interference due to non-copilot users, and the third term is the source

of interference due to pilot contamination.

B. Metrics for system performance analysis

1) DL power control and SINR of an arbitrary user: Since our objective is to propose a scheme

to reduce pilot contamination, we focus on the operational regime where pilot contamination



dominates rest of the interference terms. In the following lemma, we present the SINR expression

of the typical user under the assumption that the RRHs are equipped with N — oo antennas.

Lemma 1. Conditioned on ®, and ®,, the asymptotic SINR of the typical user is given as

(Zrme¢>T vV 7K/TI’Lo’)lmo) ?
5
Zuk€¢>;l (Zrmecbr \V/ nmk’ymo)

Proof: The estimated symbol at the typical user can be obtained as ¢, = r,/ v/ N. Now,

SINR, o, = 2

: oo oo &mo&inp
using the law of large numbers, as N — oo, SO —y Yo, SHEEEE — (), and =5t — 0.
Hence, the limiting SINR converges to (2). [ ]
In this work, we consider a distributed power control scheme [10] where the transmission

power used by the the m-th RRH for the typical user at o is given as

— ’Ymo
p Zukefbul ’ymk ’

Nmk = 1/P. We assume that the RRHs allocate equal power 1/P to serve

Mo 3)

such that . g
each set of co-pilot users. Now, we define the following metrics for the performance analysis:
i. Pilot assignment probability of the typical user: Since the RSA-based pilot assignment is
stochastic in nature, for a given realization of user locations, a few of the users may not be
assigned a pilot. Hence, pilot assignment probability to the typical user is an important metric
to analyze for this scheme. Let {Z, = 1} be the event that the user at o is assigned a pilot. Then

the aforementioned probability is given as
M, =P[Z, = 1] = E[1(Z, = 1)}, )

where the expectation is taken over W,. In Section III-A, we present our proposed approach to
characterize the above quantity along with the RSA-based pilot assignment scheme. This quantity
can be used to get an estimate of the number of pilots necessary to satisty target pilot assignment
probability for a given user density. Note that M, = 1 for the max-min distance-based and the
BnP-based schemes proposed in this work.

ii. Average user spectral efficiency: It is defined as
SE, =E [Z,log,(1 + SINR,)] = E [log,(1 + SINR,)|Z, = 1] P[Z, = 1], 5)

where the expectation is taken over ¢, W,,.



iii. Sum-user spectral efficiency: In contrast to the above two quantities, sum-user SE is defined
for a given realization of ®, and ¥, over a finite observation window W C R? and given as

Sse= »  Zjlogy(1+ SINRy), (6)

Lle\I/uﬁW
where Z; = 1 for the max-min and BnP-based schemes and Z; € {0,1} for the RSA-based

scheme.

III. RSA-BASED PILOT ALLOCATION SCHEME

Before delving into the proposed RSA-based pilot assignment scheme, we find it pertinent to
mention the complexity associated with pilot assignment problem that serves as a motivation to
propose a heuristic algorithm. The objective of any resource allocation algorithm is to maximize
a cost (reward) function subject to certain constraints due to a limited availability of resources.
In our case, we choose the cost function to be the sum SE. Hence, for a given realization
of the locations of RRHs and users, our objective is to maximize the sum SE by judiciously
selecting the set of co-pilot users. Inspired by the column generation approach prevalent in the
linear programming literature, the problem can be formulated in the following way. We consider
each potential set of co-pilot users as a column. In order to have a finite dimension for the
set of feasible solutions, it is imperative to consider a finite observation window with NV, users
S = {uj,uy,...,uy,} and N, RRHs. Let A denotes the set of all the potential co-pilot user
sets avoiding the null and singleton sets. Hence, the cardinality of .4, which is also the total
number of columns, is 2 — N,, — 1. As an example, consider a set of users A; = {uy,uy, uz}.
The corresponding column for these co-channel users is givenasxx = {1 1 1 0 ... 0 ' S

{0,1}"«. We define the matrix A, where each column corresponds to a set in A. Further, the

cost of a set A; (equivalently, the cost of the j-th column x;) is given as

ZUiGA]' 10g2 (1 + FZJ) ) if Flj > Fmin \V/uz S Aj

c(x;) = (N
—M, if I';; < I'pin for any u; € A,
2
where the SINR of the i-th user in the j-th set is I';; = (Zesco, Vi) Chin 18

ZukG{Aj\ui} (Zrmebr \/’m)2 ’
the minimum SINR threshold, and M is a large positive number. With this definition the set

of co-pilot users not satisfying the minimum SINR threshold even for a single user is (almost)

never selected. Now, we express the optimization problem as
Al

max ; c(xs)As (8a)



st. AA=1 (8b)

Al =P (8c)
A e {0, 1}, (8d)
where A = [/\1, A2,y A A|]T, (8b) ensures that each user is assigned exactly one pilot, (8c)

ensures that P columns are selected each representing a set of co-pilot users. Above problem
is NP-hard. Further, the feasible solution space of the problem is ('ﬁ'). Hence, if we wish to
obtain the optimal solution even for a moderately small system of 24 users with 6 pilots, we
need to search over a feasible set of size approximately 3.1 x 104°.

Owing to the complexity of the problem, it is natural to consider heuristic solutions, albeit
sub-optimal, that can be implemented efficiently in the network. In the following subsection, we
present a sub-optimal pilot allocation algorithm that only considers user locations to select the
set of co-pilot users such that the pilot contamination-based interference is mitigated thereby
implicitly improving the user SE as well as the sum SE. This algorithm, which is inspired by
the RSA process, can be implemented both in a centralized or distributed manner and is easily

scalable as the network size grows.

A. RSA-based pilot assignment algorithm

Our goal is to select the sets of co-pilot users among all the users in the network such
that a minimum distance R;,, is maintained between two co-pilot users. This can be achieved
by dependent selection of the users from the original user point process V¥, as outlined in
Algorithm 1. The algorithm assigns a random mark ¢;, which is uniformly distributed in [0, 1],
to each point uy, € V,,. Let Bg,,, (ux), a circle of radius R;,, centered at uy, be defined as the
contention domain of the point at u;. For pilot assignment, the algorithm considers each user
in increasing order of their marks, i.e. the lowest mark is considered first. From the available
set of pilots, a pilot is randomly assigned to a user at ui, where the set of available pilots
are those which have not been assigned to the users in B, , (uy). Note that to implement this
algorithm, the BBU requires only the location information of the users, which does not require
any additional signaling overhead as this information is typically present at a centralized node
in the network such as the BBU. At the end of this subsection, we also discuss a protocol for

potential distributed implementation of the algorithm.



Input: User locations ¥,,, the set of pilots P, inhibition distance Ry
Result: Pilot assignment table 7
Initialization: 7 = (), a random mark ¢; ~ U(0, 1) for each u; € ¥,,;
Let ¥, be the set of users in the increasing order of marks;
for User uc ¥, do
Set: P =P,
while User u is not assigned a pilot do
if P/ == () then
| No pilot can be assigned: 7 =T U 0;
Break;
else

‘ Select a pilot sequence pj randomly from the set P’;

end
if No other users in Bg,, (u) are using py, then
‘ Assign the pilot: 7 =T U px;
Break;
else

‘ Remove py, from list of potential pilots: P’ = P’ \ py;

end

end
end

Algorithm 1: The RSA-based pilot assignment algorithm in for a cell-free mMIMO system.

Fig. 1: Realizations of co-pilot user locations using Algorithm 1. Parameters: Rinn = 200, A, = 2 X 1076 (left), Ay = 1073
(center, right). Left and center figures represent realizations of co-pilot users for P = 1. Right figure represents a realization of

co-pilot users for P = 2.

For the system designers, it is useful to know the probability that a user will be scheduled as
a function of the density of users and the number of pilots in the system. Following subsections
present an approximate theoretical result that answers the aforementioned question eliminating
the need for a system simulation. It is worth-mentioning that the approximate result is a new
contribution to the RSA literature as the exact solution for counterpart of this problem even in
the case of 1D is unknown.

1) Analysis of the pilot assignment probability: Recall that ®, is the set of users that are
assigned a pilot (in this case by Algorithm 1), i.e. ¢, = Uf;:l(bup. Let ¢, be the mark associated



with the typical user. Now, the user at o is assigned a pilot if |®, N Bg,,(0)| < P — 1. This is

ensured by the following two events:

« &: there are at most P — 1 points in Bg,, (0) NV, that have marks less than t,,
o & there are more than P —1 points in Bg,_, (0) NV, that have marks less than t,. However,
some of these points are not assigned a pilot as their contention domains have more than

P points with marks smaller than their respective marks.

While obtaining the probability of &; is straightforward, characterizing & is highly non-trivial
even for P = 1. Note that for P = 1, the above formulation has been used to model the
CSMA-CA networks. However, due to the intractability of &, Matérn hardcore process of type-
IT (MHPP-II) has been used for approximate characterization for ¢, [17]. Hence, one may be
inclined to extend the MHPP-II process for P > 2. However, one of the limitations of the
MHPP-II process is that it underestimates the number of points in @, [18]. Hence, the extension
of the MHPP-II model for P > 2 will not result in an accurate estimation. On the other hand,
for P =1, ¢, is exactly modeled by the simple sequential inhibition (SSI) process [18] or the
RSA process [19]. Using this fact, in the sequel, we present an efficient heuristic to estimate the
pilot assignment probability.

Consider a finite observation window B, (0) C R?, where R, > Riy,. Let N, = |¥,NBg, (0)|
be the total number of users and N; = |, N Bg,(0)| be the number of users that are assigned
a pilot. Note that for a given N,, N, is a random variable as it depends on the realization of
U, as well as random marks associated with these points. Now, for a given N,, > P, E[N|N,]
is the average number of users that are assigned a pilot. Hence, the probability that the typical
user out of the N, users is assigned a pilot is E[N|N,|/N,. On the other hand, for N, < P,
the typical user is assigned a pilot with probability 1. Combining these two events, we write the

pilot assignment probability as
P[Z, = 1] =P[N, < P] +]ENH[E[NS\NU]N51]NU > P|P[N, > P]
~P[N, < P]+E [NS\NU = WR?)\U} E[NJWNH > P|P[N, > P], C))

where the second step is an approximation as instead of Ey, [E[Ns|N,]|N, > P], we determine
E[N;] by considering N, = WR?)\H, which is its expected value. Since /N, is Poisson distributed
with mean \,7R?,

AR2 = P Poi(\,mR2,n)

E [N, 'IN, > P] = ==l
1= _oPoi(A,mR% n)

) (10)



where Poi(\,mR? n) = e*A“”Rg(’\“ZL&.

Next, we discuss our approach to analytically estimate E [N,| N, = 7 R2\,] leveraging the rich
theory of the RSA process. For convenience, we use the notation E [N, to represent the above
expectation. We first present the analysis for the special case of P = 1 followed by its extension
to the general case of P > 2.

2) Pilot assignment probability for P = 1: Traditionally, the RSA process has been used
across different disciplines, such as condensed matter physics, surface chemistry, and cellular
biology, to study the adsorption of different substances, such as colloids, proteins, and bacteria,
on a surface [19]. Next, we present a brief overview of the RSA process before analyzing pilot
assignment probability.

Random sequential adsorption process: An RSA process is defined as a stochastic space-time
process, where n-dimensional hard spheres sequentially arrive at random locations in R™ such
that any arriving sphere cannot overlap with already existing sphere. More formally, for 2D case,
let U be a homogeneous space-time point process on R? x R*. The circles with radii R;.y/2 are
arriving at a rate of Ay per unit area. Let W(¢) be the point process on R? when W is observed
at an arbitrary time ¢. Observe that the density of W(¢) is Agt. At time ¢, an arriving point at
x € R? is retained if there are no other points within Bg,, (x). Let ¢(¢t|¥) be a realization of
the set of the retained points at time t. Clearly, p(t1|¥) C ¢(to|V) for t; < to. Moreover, there
exists a time ¢ € R™ such that p(¢;|¥) = ¢(t;|¥) for ¢;,t; > ¢, i.e. no more points can be added
to the system. This is known as the jamming limit. Observe that the random marks assigned by
Algorithm 1 can be thought of as the arrival times of the points in W,,. In this interpretation, the
points that arrive early (have smaller marks) are more likely to get an assignment.

Let ®(t) be the point process of the retained points at time ¢ and p(¢) be the corresponding
density. In order to obtain the density of retained point process for a given density of original
point process, we need to observe the system at a specific time. For example, if we want to
obtain the density of retained points for an original point density of 2y, then we need to observe
the system at ¢ = 2. Fig. 1 illustrates the realizations of co-pilot users for different A, and P. In
the left figure, the system does not reach the jamming limit due to lower density of the original
user point process V,. On the other hand, the center figure (almost) reaches the jamming limit
and there cannot be more co-pilot users in the system. Notice the regular, almost grid-type,
realization of points. The right figure illustrates the jamming state for P = 2. In the following

lemma, we present the density of ®(t).



Lemma 2. The density p(t) of the point process ®(t) is obtained by solving the following

differential equation [20] with the initial condition p(0) = 0:
dp(?) Ay
R o) (11)
/ o(rp(t)) s

2
where Kk = ﬂ}““ is the area covered by a circle, kp(t) is the fraction of the area that is covered

by the retained circles at time t, ¢(kp(t)) is the probability that a circle arriving at an arbitrary
location in R? is retained at time t, and C' is the integration constant. The retention probability

is given as [20, Eq. 19] ¢(kp(t)) =

9 2Rinh 3 2Pbinh
t t
1 — 47 R2,p(t) + % / 4y Ay (r)dr + % / 2rr A5 (r)dr — S5+ O(p()*),  (12)
Rinn Rinn

3
where S5 = %W (\/§7r — %4) RS ., Ay(r) is the area of intersection of two circles of radius

Rinn whose centers are separated by distance r.

Proof: For the detailed proof of this lemma, please refer to [20]. Due to space limitations,
we just present the proof sketch here. Note that xp(t) is the fraction of area covered by the
retained circles at time t. Now, the rate of change of the fraction of the covered area with
respect to time depends on the number of arrivals A\ydt¢ per unit area and the probability of an

arrival being retained, which is given by ¢ (kp(t)). Hence,

WD) _ ry (mol1)) (13)
The expression for ¢ (kp(t)) is derived in [20]. Solution of the differential equation (13) gives
the density of ®(t). n

Since the function (12) is difficult to work with, a fitting function is analytically presented in

[20] as ¢FIT<,0(t)> =
(1 + byz(t) + box(t)? + baz(t)*) (1 — 2(¢)?), (14)

where z(t) = p(t)/p(c0) and p(oco)x = 0.5474 is the fraction of the area that is covered at the
jamming limit as ¢ — 0o. The coefficients by, by and b3 are obtained by matching the order of p(t)
in equations (12) and (14). Now the expression for p(t) is obtained by solving the differential
equation (11). While the closed form solution of the equation is difficult, the problem can be
efficiently solved using standard numerical softwares. Now, with the help of Lemma 2, we

present pilot assignment probability to a user for P = 1.



Lemma 3. For a system with P = 1, the probability that the typical user is assigned a pilot is
PZ, = 1] = (1 4+ 7R2\,)e ™M 4 (1 — (1 4+ nR2\,)e ™) (p(1)7 R)E [N, YN, > 1],
where p(1) is determined using Lemma 2 and [N '|N, > 1] using (10).

Proof: Since the density of user process ¥, is A, users per unit area, as per the RSA process
definition, we can construct an equivalent space-time process where the arrivals occur at A\, users
per unit area per unit time. Now, to obtain the density of ®,,, we observe this space-time system
at time ¢t = 1. Hence, the density of ®, is p(1). The final expression is obtained by replacing
E[N,] = 7R?p(1) in (9). [ ]

3) Pilot assignment probability for P > 2: For the general case of P > 2, consider that
D1, Do, ..., Pyp contain the locations of the users that are assigned the pilots py, ps, ..., Pp,
respectively, by Algorithm 1. Since Algorithm 1 has no preference regarding the pilots, the
densities of ®,1, P,9,...,P,p are the same. Let Ay, be this density. In order to determine
As,,, modifications in Lemma 2 are necessary. To be specific, for (12), the knowledge of virial
coefficients for a mixture of non-interacting hard spheres, and subsequently derivation of S5*
is necessary [20]. Since the above steps appear extremely difficult for this case, we provide an

approximate yet accurate way to estimate the pilot assignment probability for P > 2.

Input: User locations ¥, the set of pilots P, inhibition distance Rj;py;
Result: Pilot assignment table 7T
Initialization: ¥! =¥, T = 0;
for Each pilot p;, € P do
for Each user u € !, do
if No other users in Bp,, (u) are using py, then
Assign the pilot: 7 =T U px;

Remove u from list of users: ¥/, = ¥’ \ u;

end

end

end

Algorithm 2: The regenerative algorithm for pilot assignment.

First, we present the regenerative pilot assignment algorithm (Algorithm 2) that is essential

for our approximate analysis. Different from Algorithm 1, in Algorithm 2, the pilots are assigned



to users sequentially, i.e. for the typical user the second pilot sequence is considered if the first
pilot has already been assigned to a user in its contention domain, the third pilot sequence is
considered if both the first and the second pilots have been used in its contention domain, and

so on. In order to proceed with our analysis, we make the following remark:

Remark 1. The total number of pilot reuses required in Bg_(0) to obtain a target pilot assignment
probability is the same for both Algorithms I and 2. In other words, the density of users that

are assigned a pilot is the same for both the algorithms.

Let i)ul, &)ug, ..., ®,p contain the locations of the users that are assigned pilots py, p2,...,Pp,
respectively, by Algorithm 2. Let Ay ;A ..., A3 , be the densities of o1, Pua, .., Pup,
respectively. We obtain these densities by sequentially using Lemma 2. First, the density Ag |
of the users that are assigned the pilot p; is directly obtained from Lemma 2 where the initial
density of the process is A,. Now, to obtain the density A\; , of the users that are assigned the
pilot py, we approximate the initial density of users as A\, — A\g_ . Also note that the points
in U, \ <I>u1 do not form a PPP. However, for simplicity we approximate ¥, \ éul as a PPP.
Similarly, to obtain \g ., we approximate W, \ {Cf)ul U &Duz} as a PPP of density A\, — g — A3,
and use Lemma 2. The same approximation is made to get the rest of the densities. In the next

section, we will demonstrate that these approximations do not compromise the accuracy of our

results. Based on Remark 1, with the knowledge of A\; Az ,,---: A, ,, We can obtain
P
Aow = > A, /P (15)
I=1

In the next lemma, we present the pilot assignment probability for the general case of P > 1.

Lemma 4. For a system with P > 1, the pilot assignment probability for the typical user is
P[Z, = 1] ~ P[N, < P] + P[N, > P|(PXs,,7R2)E[N,'|N, > P], (16)
where Ay, is determined from (15) and Lemma 2, E[N;'|N, > P| is determined using (10),

and N, is Poisson distributed with mean )\uﬂRf.

Proof: The proof follows on the similar lines as that of Lemma 3. [ ]

B. Distributed implementation of the RSA-based pilot allocation scheme

The RSA based pilot allocation scheme can also be implemented in a distributed manner.

Consider the moment when a user u, enters the network. During the initial access phase, the



user senses the environment to get an estimate of active pilot transmission in the vicinity. Let
r, € C*™ be the received signal obtained through sensing. Note that 77, should span over
multiple coherence time intervals 7. to average out the effect of small scale fading. Assuming
synchronization has been established between the network and the user, the received signal

strength on k-th pilot can be estimated as

TIA/Te
ro[(m—1D7r.+1:(m—1)1.+ Tp]Hpk, 17)
m=1

1

P, =
TIA/Tc

where 7, is the duration of the pilot sequence. Once the received signal powers on all the pilots
are calculated, they are compared with a threshold power P, which is a function of R;.. A
pilot is randomly selected from the set of candidate pilots {py : P < Piu}. If this set is empty,

then the user is not assigned a pilot. Algorithm 3 presents the above-mentioned procedure.

Input: Power threshold P;y, Received signal r,;
Result: Pilot for user u,;
Initialization: Candidate set of pilots P, = 0 ;
for Each pilot p;, € P do

Obtain P using (17) ;

ika S-Plnh then

! Pc = Pc U Pk

end
end
if P. # () then

| Select a pilot randomly from 7P..

end

Algorithm 3: The algorithm for an arriving user to select a pilot during initial access phase.

IV. MAX-MIN DISTANCE-BASED PILOT ALLOCATION SCHEME

While the proposed RSA-based scheme is a computationally efficient scheme with possible
distributed implementation, a natural question is how good is the quality of the solution. In this
section, we propose an algorithm that has the objective of maximizing the minimum distance
between the set of co-pilot users similar to the RSA-based scheme. However, in contrast to
the RSA scheme that can be implemented in a distributed manner, this algorithm can only be
implemented in a centralized way and does not have the scalability property of the RSA-based
scheme.

To have a meaningful problem formulation, we restrict our attention to a finite spatial ob-
servation window W C R2. Let the set of users in this observation window be given as

S = {uj,uy,...,uy,}. Our objective is to partition S into P sets S;,So,...,Sp such that



the minimum distance between any two users in a partition is maximized. For a user u,,
the binary variable y,, = 1 if the user belongs to Sy and 0 otherwise. We define the metric
Aimin(Sk) = min{|lu; — ;|| : w; # v,y = yjr = 1} as the minimum distance between two
elements in Si. The problem of maximizing the minimum distance between users belonging to

the same set can be written as

max, min Aimin (Sk) (18a)
p
st Y yu=1, Yn=12.. N, (18b)
k=1
Ny
> ym>1, VE=12,... P (18¢c)
n=1
Ynk € {07 1}7 Vn7Vk7 (18d)

where (18b) ensures that each point belongs to exactly one partition, (18c) ensures that each
partition has more than two points, (18d) imposes the integrality constraint. Note that (18c) can
be modified to ensure more balanced partitioning. For example, if we need each partition to
have more than x < N, /P users then we can set the constraint as 25:1 Ynk > x, Vk. This

problem can be reformulated as

max t (19a)
t,Ynk
S.t. Hui—ujH >tyikyjk uiES,uj GS,i#j,k: 1,2,...P, (19b)
P
> =1, Vn=12...,N, (19¢)
k=1
Ny,
> yw>1, VE=12,... P (19d)
n=1
Ynk S {O) 1}7 vna\V/k) (196)

where (19b) ensures that two points belonging to the same partition are separated by distance ¢
and rest of the constraints are the same as the previous formulation. The aforementioned problem
can be solved in two steps. In the first step, a bisection search is used to improve the objective
function, and in the second step for a given ¢, a feasibility problem is solved. The optimization
routine to solve the problem is presented in Algorithm 4.

Both the algorithms mentioned so far do not take into account the distances among the users

and the RRHs. As a consequence, two users that are separated by a reasonable distance, but



1: Initialization: Set the values of t,,;, and t,,,x that define the solution space for the bisection search. Select a
tolerance parameter €.

2: Set t = (tmin + tmax)/2. Solve the following feasibility problem:

K
> ymk=1 ¥n=12,...,N, (20a)
k=1
Ny
S yae>1 Vk=12,...P (20b)
n=1
yik tyie <1 Vw —uyf| <t (20c)
Yni € {0,1}  Vn, Vk. (20d)

3: if (20) is feasible then
4 Set tin = t.

5: else

6 Set tax = t.

7: end if

8: Repeat the above steps until if |tyax — tmin| < €.

Algorithm 4: Solving the max-min distance partitioning problem

have a common set of dominant RRHs may be assigned the same pilot. In such a scenario, both
the users will experience performance degradation. This scenario is more likely to occur when
the density of RRHs is low. In order to overcome this performance degradation, in the following

section we propose a centralized RRH location aware pilot allocation algorithm.

V. RRH LOCATION AWARE PILOT ALLOCATION SCHEME

In this section, we present a heuristic algorithm to solve the original pilot allocation problem
(8) presented in Sec. III. Despite a few useful constraints that we introduce to the problem to limit
the size of the feasible solution space, the complexity of the problem still remains high. Hence,
the practical utility of the algorithm is somewhat questionable in a large network (hundreds of
users), but it provides an excellent opportunity for benchmarking any pilot allocation algorithms
for a smaller network with tens of users. Further, we use this scheme to benchmark the RSA-
based and max-min distance-based algorithms proposed in the previous sections.

In order to reduce the space of good quality feasible solutions, we first use a clustering

algorithm to group the users that have a similar path-loss with respect to the set of RRHs. Once



the clusters of users are obtained, we use BnP algorithm to solve the sum SE maximization
problem with the additional constraint that users in the same cluster cannot be assigned the
same pilot. In the following two subsections, we discuss the clustering algorithm followed by a

brief overview of the BnP algorithm with application to the problem at hand.

A. RRH location-aware user clustering based on spectral graph theory

We use a spectral graph theory-based algorithm to cluster users with similar propagation char-
acteristics. Before proceeding further, we present a few graph theoretic notations and definitions
that are required for a rigorous exposition.

1) Graph definitions: Consider the weighted undirected graph G = (V,E, W), where V =
{v1,v9,...,v,} is known as the vertex set, & = {e;;}i;j—1.., is the edge set that contains
the edges connecting these vertices, and W = {wij}i,jzl’m,n is a set of non-negative weights
assigned to each edge. If two vertices 7, j are connected then e;; = 1 and w;; > 0. Otherwise,
e;j = w;; = 0. The adjacency matrix of the graph G is denoted by A € {0,1}"*" and defined
as A(i, j) = e;;. Further, the weighted adjacency matrix is given as 1V € R"*" and defined as
W (i, j) = w;;. The degree matrix of a weighted graph G, denoted by D € R™*", is a diagonal

matrix whose i-th diagonal element is given as D(i, i) = > ', w;;. The Laplacian matrix of the

graph G is defined as L = D — W. The K-cut of the graph G is defined as

K
Cut(Vl,V27...,VK) = %Z Z Wim,

=1 v eV;,vmeVY
where V; is the i-th partition of V. Further, UX,V; =V and V; N V; = 0 for i # j. The volume
of a partition V; is defined as
Vol(V,) = > D(j, j).
v EV;

The graph G is bipartite, if the vertex set can be partitioned into two sets X', ) C )V such that
the edges in £ have one end point in X and another end point in ). Further, the graph G is a
connected graph, if there is at least one path between any two vertices. Next, we formulate the
problem of clustering users with similar propagation characteristic, namely the path-loss.

2) Graph theoretic formulation of the clustering problem: We consider a weighted bipartite
graph where the vertices are the sets of users \Ifu = V¥, NW and RRHs <f>r = &, NW over the

finite spatial observation window W. An edge exists between each RRH and each user, but no
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edge exists among the RRHs or the users. The weight of an edge is the path-loss between a user
and a RRH. In terms of the notations introduced earlier, ¥V = \Ifu U &DT, E={epr=1:u; €
U, T € i)u}, and W = {wx = Bk : Ui € U, Ty € Cfr}. As mentioned earlier, \\ilu| = N,
and |®| = N,. The degree matrix is given as

Do D, On, x N, € RWutNe)x(Nut+Ny)
0N, «n, Dr

)

where D, € RNV«*Nu ig the degree matrix for the users and D, € R¥*"r is the degree matrix

for the RRHs. Further, the weighted adjacency matrix for the considered bipartite graph is

W = Onuxna Wor € RWutNo)X(NutNy)

Y

WER On, xn,
where the rows of Wy p € RMXNr represent the weights associated with a user with respect
to all the RRHs. The problem of user clustering is based on the idea of partitioning the graph
into desired number of groups such that edges across the groups have the lowest weights. In
the current case, the output of the partitioning algorithm should be the clusters of users along
with corresponding set of dominant RRHs such that the sum of edge weights between a set of
clustered users and corresponding set of non-dominant RRHs should be minimum. The problem

can be formally stated as a min-cut problem presented below:

K
o . 1
minimize cut(Vy, Vs, ..., Vi) = minimize E : 5 Z Wim
Vi, Vo,....VK ViV, Vi k=1 2

= leVk,vaVg

K K
subject to U V=V, ﬂ Vi =0, (21)

k=1 k=1
where V, = \I/k Uék contains the nodes (both users and RRHs) corresponding to the k-th cluster.

Different algorithms exist to solve the above min-cut problem. However, one major drawback
of these algorithms is that they partition the vertices into unequal groups. To circumvent this
problem, normalized ratio cut (Ncut) is considered as the objective instead of the cut presented

in (21) [21]. Hence, the modified optimization problem can be written as

VRY) Y =~ 1 ZUIEVk v EVE Wim

minimize Ncut(Vi, Vs, ..., = minimize e ,

V1V, Ve V1, V2 K) ViVa,... Vi 21 2 Vol (V)
K K

subject to U V.=V, ﬂ V. = 0. (22)
k=1 k=1

The aforementioned problem is NP-hard in nature. However, an efficient approximate solution

can be obtained by relaxing the above problem that is presented next.
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3) Spectral graph theory to solve the Ncut problem: The general idea of the algorithm is
composed of two steps. In the first step, user locations are transformed into a space that captures
the propagation characteristics between the set of users and the set of RRHs. In the second step,
user clustering is performed by K-means algorithm to the transformed user and RRH locations.

For the i-th cluster V;, let us define the vector f; € RV*! whose j-th element is given as

1
- ifu, eV
f“ — \/VO](VZ) !
ij
0, if v; € V7,

where N; = N, + N,. Note that based on the definition of the degree matrix, fiT Df;, = 1.
Further, in case of the Laplacian matrix of the graph, £/ Lf; = cut(V;, V¢)/Vol(V;). Verifying
these statements is straightforward and we refer the reader to [21] (and the references therein)
for further insights on the graph Laplacian.

Let the matrix F' = [f}, f,, ..., fx]. Now, the optimization problem in (22), can be written as
minimize Tr (F"LF) , subject to  FTDF = I. (23)

The optimal solution for the columns of F' should only take discrete binary values. However,
due to the NP-hard nature of the problem, a relaxed version of the above problem is solved,

which is given as

minimize Tr (F'LF), subject to FTDF =1Ig. (24)

FERNt XK

Substituting Z = D'/?F, we get

minimize Tr (Z"D~'2LD™'?Z7), subject to  ZT7Z = 1. (25)

ZERNtXK
Note that the above problem is convex and can be solved by reducing it to an unconstrained
optimization problem using Lagrange multiplier [22]. In the following lemma, the solution to

the (25) is presented.

Lemma 5. The solution to (25) consists of K eigenvectors corresponding to the K smallest

non-zero eigenvalues of D~Y2LD~1/2,

Proof: The Lagrangian of (25) is given as [22]

L(Z,%)=Te (Z'DV?LD?Z) + Tr (£7(27Z - 1g)) .
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Now, taking the derivative of £ with respect to Z and equating it to zero we get

0L(Z,%)

A oD \2LD7V?7 — 975 =0 = D YV2LD Y27z =xZ. (26)

Above problem is the eigenvalue problem of D~Y/2[D~1/?

. Let ) contains the eigenvectors of
D='2L,D='/2? and ¥ is a diagonal matrix consisting of the corresponding eigenvalues. For our
solution, Z contains the K columns of () corresponding to the smallest K eigenvalues. [ ]

Let Z,, € RV*K pe the row normalized version of Z. The transformed locations of the RRHs
and users are the rows of Zn [23], [24]. We perform K-means clustering algorithm on the rows
of Z, to group the users and their dominant set of RRHs. Once the cluster of users are obtained,
we invoke the additional constraint of not assigning the same pilot to two users in the same

cluster. With this additional constraint, we solve the problem (8) using BnP algorithm that is

presented next.

B. Branch and price (BnP) algorithm

BnP is an efficient method to solve large integer programming problems and has been suc-
cessfully applied to many discrete optimization problems, such as generalized assignment prob-
lem [25], graph coloring [26], and also to communication network problems of link schedul-
ing [27], [28]. The core idea of BnP algorithm is to traverse through a branch and bound (BnB)
tree. At each node of the tree, a smaller version of the original problem (by optimizing over a
reduced feasible space) and a pricing problem are iteratively solved. The objective of the pricing
problem is to add good quality feasible columns to the feasible space of the smaller problem. The
process is repeated until no good quality columns are found. As a consequence of this iterative
approach, a large number of (useless) columns are never considered in the entire process saving
significant amount of computational resources. Depending on the nature of the problem, some
branching constraint is used to traverse through the tree. Similar to any BnB-based algorithm, the
BnP algorithm terminates once there is no improvement in the objective value in the remaining
nodes of the tree compared to the incumbent solution. An illustration of the BnP algorithm and
flow of the column generation process (using the pricing problem) is presented in Fig. 2.

1) Modified cost function and reduced linear master problem: Using the clustering algo-

rithm presented in the previous section, we get K sets of clustered user partitions given by
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cost columns
found
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solution is optimal

Fig. 2: The branch and bound tree (left). The column generation algorithm flow chart (right).

{V1,Vs,...,Vk}. To ensure that users in the same cluster are not assigned the same pilot, we

modify the cost function (7) as

ZUieAj log, (1 +1;), ifI'yj > Dy Yu; € A,
c(xj) = ¢ —M, if Tyj < [y for any u; € A; 27)
—M, if VinAj| >1forany k=1,2,... K,
where the last row ensures that the columns that have users from the same cluster are (almost)
never considered as good columns in the pricing problem. Based on the above definition of the
cost function, to make sure that the original problem remains feasible, number of users in a
cluster should be less than the number of pilots. Hence, we choose K = max{P, N,,/P}. We
call (8) with the modified cost function definition as the master problem (MP). Further, we refer

to the problem with relaxed integer constraint (8d) of the MP as linear master problem (LMP),

which is expressed as

4|
max ; (Xs) A (28a)
st AN = (28b)
[Allr =P (28¢)

A e [0, 1] (28d)



24

As mentioned earlier, at each node of the BnB tree, we solve the problem with a subset of
all potential columns in A, and gradually keep adding good columns determined by the pricing
algorithm. We define the set H C A and the corresponding matrix as H, which contains a few
of the columns of A. We refer to this problem as the reduced linear master problem (RLMP),

which is given as

|
max ; c(xs)As (29a)
st. HA=1 (29b)
[Ally =P (29¢)
A e [0,1)7. (29d)
Let IT = [my,7ma,...,my,| be the set of dual variables that correspond to the constraint (29c)

and [ be the dual variable for the constraint (29d). Note that the optimal set of dual variable
for LMP is also the optimal set of dual variables for RLMP.

2) Pricing problem: At each node of the BnB tree, the RLMP is solved to optimality using any
linear programming method, such as the simplex, and the corresponding dual variables are used
to obtain new columns that can improve the objective of RLMP by solving a pricing problem.
The idea behind the pricing problem can be better understood from the Lagrange function of

LMP, which is given as
|A|
LALBA) =Y e(x)A — (AN — 1) = B(|A]l, — P). (30)

s=1

Note that if a given set of solutions A* is optimal for the LMP, then the first derivative of £
with respect to each variable is zero. On the other hand, for a given set of dual variables, if we

can improve the value of £ by increasing the value of A;, then it must be the case that

%’j’m = c(x;) — "x; — 8 > 0. (31)
The quantity c(x;) — II7x; — 8 is known as the positive reduced cost of the column x;. This
provides us a direct way to add new columns to an RLMP that can improve its objective function
value. To be specific, for a given set of dual variables (II, 3) corresponding to a RLMP, the pricing
problem is given as

arg max c(x) — [I'x — f, (32)

xEA
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and the optimal column is added to the RLMP, thus obtaining an augmented matrix H.The RLMP
is solved again using H and the new set of dual variables are used in the pricing problem to get
better columns. The procedure is repeated until there is no column in A with positive reduced
cost, i.e. ¢(x) — I1"x — 3 < 0 for all the columns in A\ #. The flow of the column generation
process is given in Fig. 2 (right). Note that even with the linear relaxation (32) is a non-convex
non-linear problem. Hence, solving it to optimality in polynomial time is not possible. However,
meta-heuristic algorithms such as the genetic algorithm, or tabu search, can be used to get
efficient solutions. In this work, we focus on solving (32) with exhaustive enumeration over
the set of feasible columns. This process is significantly more efficient compared to solving the
original problem through exhaustive enumeration.

Note that the optimal solution of the RLMP, i.e. A*, is not guaranteed to be an integral solution.
The following branching rule in the BnB tree ensures that the optimal solution to the RLMP is
an integer vector, thereby making A* an optimal solution to the original RMP problem that has
the integrality constraint.

3) Branching rule: The objective of the branching rule is to progressively introduce branching
constraints such that eventually the solution to the RLMP becomes integral [25]. The branching
rule is derived from a relatively well-known result in the linear programming literature that is

stated in the following lemma.

Lemma 6. Consider the linear maximization problem {maxc’x : Ax = 1,x > 0}. If A is a

totally balanced matrix, then the optimal solution x* is integer valued.

For the proof along with detailed discussion of the result stated in the lemma, please refer
to [29]. After solving the RLMP and pricing problem to (near) optimality, the objective is to
introduce the branching constraints such that the augmented matrix of the RLMP H eventually
becomes a fotally balanced matrix as we traverse through the BnB tree. As mentioned in [25],
this can be achieved by the constraints Bpk = izrk on one branch and Bpk = ﬁrk =0or ﬁpk =+ ﬁrk
on the other branch, where ﬁpk is the element corresponding to the p-th row and k-th column of
H. The branching constraint implicitly ensures that on one branch two users belong to the same
column, while on the other branch the users belong to two different columns. These branching
constraints are introduced in the RLMP and also used in the column generation process.

4) Node pruning and termination criterion for the BnB tree: The backbone of the BnP

algorithm is the BnB algorithm. To harvest full benefits of the BnB tree, it is essential to
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introduce efficient node pruning criteria so that unnecessary nodes are never visited. Let zyp,
2 mp are the optimal values of the MP and LMP, respectively. Further, z{\p < 2rume + Pc, where
c is the maximum positive reduced cost of columns for a given RLMP. When the RLMP along
with pricing problem is solved to optimality, z{yp = Zr mp. SiNce there exists no column that
can improve the value of 2, yp- Let zipe be the incumbent solution, which is always integral in
nature. If at a node of BnB tree, we have zg; \p < Zinc, Subsequent nodes in the branch will not
provide any better solution. Hence, the pruning occurs at this node of the branch, i.e., subsequent
nodes on the same branch are not explored and the nodes on the other branches are explored.

Once no nodes with 2§, \p > 2ine are found, zj, is the optimal solution.

VI. RESULTS

In this section, through Monte Carlo simulations, we validate the theoretical analysis on pilot
assignment probability and assess the performance of the RSA-inspired pilot allocation compared
to other schemes presented in this work. The simulations environment for each scenario is

presented in the specific subsection.

A. Performance of the RSA-based pilot allocation scheme

In this case, for the simulations, we consider a network of radius 1500 m. In order to avoid edge
effects, points within 600 m are considered. The average user spectral efficiency is reported for the

typical user located at the center. We use the following non-line-of-sight path-loss function [30]:
I(d) =161.04 — 7.11log,,(W) + 7.5log;o(h) — [24.37 — 3.7(h/hap)?] log,o (hap)
+ [43.42 — 3.1 1og, o (hap)][log1o(d) — 3] + 201ogy(fe) — (3.2[logy(11.75har)?] — 4.97),

where W = 20, hap = 40, har = 1.5, h = 5, f. = 0.45 GHz.

In Fig. 3 (left), the co-pilot user density as a function of number of pilots is presented. As
expected, the co-pilot user density decreases with increasing number of pilots. In Fig. 3 (center),
we present the pilot assignment probability as a function of the number of pilots. This result
is useful in determining the number of pilots that is required to achieve a certain assignment
probability. Finally, in Fig. 3 (right), we present the average user SE as a function of Rj,,. To
generate this result, we set the uplink pilot SNR p,, = 80 dB, length of pilot sequence 7, = P = 16.
We observe that with increasing \,, the optimal R;,, that maximizes user SE becomes smaller.
Further, there exists a range of R, that provides higher user SE compared to the random pilot

assignment scheme [6]. However, this range shrinks as ), increases.
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Fig. 3: The co-pilot user density as a function of P (left), Probability of pilot assignment as a function P (center), and Average
user SE as a function of Riny (right). In the first two figure, markers and solid lines represent simulations and theoretical results,

respectively.

B. Performance comparison of RSA-based scheme to the max-min distance-based scheme

In this subsection, we compare the performance of the RSA scheme to the max-min distance-
based scheme. Further, we also provide the relative performance between RSA and the following
two existing schemes in the literature: iterative K-means-based algorithm [14] and the random
pilot allocation algorithm [6]. In the case of the RSA-based scheme, for a given A, and \,, the
R, that maximizes the average user SE is selected. The simulation environment remains the
same as that of the previous subsection. In Fig. 4, we present the ratio of the average user SEs
of different schemes with respect to the average user SE of the RSA scheme. From the results,
we conclude that the system performance is primarily affected by (i) the average number of
users per pilot and (ii)) RRH density. When the average number of users per pilot is relatively
low, the RSA scheme marginally outperforms the max-min as well as the iterative K-means
algorithms, especially at the low RRH density. On the other hand, with a relatively high average
number of users per pilot, the max-min scheme performs marginally better compared to both the
RSA and iterative K-means algorithm. In the case of the RSA, this slightly inferior performance
can be attributed to the reduced pilot assignment probability in a dense environment. All the
three schemes provide significant average user SE improvement over the random pilot allocation

scheme.

C. Performance comparison of the RSA-based scheme to the BnP scheme

Since the RRH location-aware heuristic scheme based on BnP algorithm exhibits significant
computational complexity for a large system (hundreds of users), we compare the performance

for a relatively small system with 48 users uniformly distributed over a circular area of radius
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Fig. 4: The ratio of average user SEs of different schemes with respect to the RSA-based scheme for different system
configurations: (left) A\, = 1075, P = 16; (center) A, = 10™%, P = 16; (right) A\, = 107°, P = 8.

400 m. Further, these users are simultaneously served by /N, RRHs distributed uniformly over
the same area. The path-loss function remains the same as given in the previous subsection. In
Fig. 5, we present the cumulative distribution function (CDF) of the ratio of sum user SEs for
the RSA to BnP scheme. As observed from Fig. 5 (left), the performance of the RSA scheme
improves with the increasing number of RRHs in the system. However, the effect of number of
pilots on the relative performance of RSA compared to the BnP scheme is negligible as evident

from Fig. 5 (right), where RSA gives similar performance for different number of pilots.
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Fig. 5: The CDF of the ratio of sum user SE of RSA to BnP scheme for different system configuration: (left) N, = 48, P = 10;
(right) N, = 48, N, = 10.

VII. CONCLUSION

In this work, we proposed a pilot assignment algorithm to mitigate the effect of pilot con-
tamination for cell-free mMIMO systems. Our algorithm is inspired by the RSA process, which

has been used to study the adsorptions of hard particles on a surface across different scientific
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disciplines. Using the well-developed analytical tools for the RSA process, we presented an
accurate theoretical expression for average pilot assignment probability for the typical user in
the network. Further, the performance of the proposed algorithm was compared to two centralized
pilot allocation schemes. With respect to the first centralized scheme, which partitions the users
in the network such that the minimum distance among the sets of co-pilot users is maximized, the
RSA-based scheme provides competitive average user SE performance. The second centralized
pilot allocation scheme, which is based on the BnP algorithm, provides a near-optimal solution
in terms of sum user SE for a relatively small system with tens of users. The performance of
the RSA-based scheme is appreciable with respect to the near-optimal BnP scheme. Owing to
its competitive performance and scalable distributed implementation, the RSA-based scheme is
an attractive algorithm for pilot allocation in a pilot contamination limited cell-free mMIMO
network. Although technically challenging, a promising future direction of this work is to
investigate a more efficient solution for the pricing problem used in the column generation
process so that the BnP-based scheme can be used to benchmark the performance of even larger

systems with hundreds of users.
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