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Abstract—In this work, we analyze the downlink performance
of a cell-free massive multiple-input-multiple-output system with
finite capacity fronthaul links between the centralized baseband
unit and the access point (APs). Conditioned on the user and
AP locations, we first derive an achievable rate for a randomly
selected user in the network that captures the effect of finite
fronthaul capacity as a compression error. From this expression,
we establish that for the traditional cell-free architecture where
each AP serves all the users in the network, the achievable
rate becomes zero as the network size grows. Hence, to have
a meaningful analysis, for the traditional architecture, we model
the user and AP locations as two independent binomial point
processes over a finite region and provide an accurate theoretical
result to determine the user rate coverage. In contrast, for
an asymptotically large network, we consider a user-centric
architecture where each user in the network is served by a
specified number of nearest APs that limits the fronthaul load.
For this architecture, we model the AP and user locations as
two independent Poisson point processes (PPPs). Since the rate
expression is a function of the number of users served by an AP,
we statistically characterize the load in terms of the number of
users per AP. As the exact derivation of the probability mass
function of the load is intractable, we first present the exact
expressions for the first two moments of the load. Next, we
approximate the load as a negative binomial random variable
through the moment matching method. Using the load results
along with appropriate distance distributions of a PPP, we
present an accurate theoretical expression for the rate coverage
of the typical user. From the analyses, we conclude that for the
traditional architecture when the AP transmit power is relatively
high, a more collocated antenna deployment is preferred. Further,
for the user-centric architecture, the energy efficiency of the
system is a concave function of the number of antennas per
AP.

Index Terms—Cell-free massive MIMO, stochastic geometry,
limited fronthaul, binomial point process, Poisson point process,
AB random geometric graph.

I. INTRODUCTION

Cooperative cellular networks, where a set of multiple
base stations (BSs)/ access points (APs) simultaneously serve
a set of users, have been the subject of much investiga-
tion throughout the last decade. The latest incarnation of
such networks is the cell-free massive multiple-input-multiple-
output (mMIMO) systems that harness the benefits of network
densification by extending the concept of cellular mMIMO
to a distributed implementation [3], [4]. In cell-free mMIMO
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networks, the APs perform a limited set of signal processing
operations such as precoding/filtering using the local channel
state information (CSI) while most of the baseband processing
operations are carried out at the centralized baseband units
(BBUs). The communication between the APs and BBUs
is done through finite capacity fronthaul links. One of the
direct consequences of having finite fronthaul links is that
the compression/quantization error gets introduced into the
system, which affects the user performance. Hence, analyzing
the network-wide performance of cell-free mMIMO with finite
fronthaul capacity is an important requirement for the success-
ful integration of this technology to the fifth generation (5G)
and beyond networks. In this work, our goal is to model and
analyze such a system using tools from stochastic geometry
and provide useful system design guidelines.

A. Related works

We first discuss key prior works that focus on devising
compression algorithms while taking into account the limited
fronthaul capacity for other variants of cooperative cellular
networks such as coordinated multipoint (CoMP) and cloud
radio access networks (C-RAN). In [5], [6], the authors
provide information-theoretic insights regarding the capacity
of a backhaul-constrained distributed MIMO system. In other
notable works, authors use optimization-based frameworks
to devise compression algorithms that efficiently utilize the
fronthaul capacity constraints while maximizing a certain
performance metric (e.g., sum-rate) (cf. [7], [8]). A compre-
hensive overview of such works can be found in [9], [10].
While the insights obtained from these works are useful, they
are not all directly applicable to a cell-free mMIMO system
owing to its unique aspects such as beamforming based on
local imperfect CSI at the APs as well as the time division
duplex (TDD) mode of operation. A consequence of these
aspects is a completely different user signal-to-interference-
plus noise (SINR) expression compared to the system-level
analyses of CoMP and C-RAN. This motivated a separate set
of system-level analyses [11]-[19] for cell-free mMIMO with
finite fronthaul capacity as briefly outlined below.

In [11], the authors analyze the uplink performance using
Bussgang decomposition and studies the effect of the number
of quantization bits on the uplink outage probability. In [12],
the authors extend the framework of [11] and compare the
uplink performance of the scheme where both the quantized
version of the received signal and quantized channel esti-
mates are available at the BBU to the scheme where the
BBU has the quantized weighted signal from each AP. In



addition, an uplink max-min power allocation algorithm and
an AP-user assignment scheme to reduce the fronthaul load
are also proposed. In [15], the authors compare the uplink
performances of the following three cases: perfect fronthaul
links, when the quantized version of the estimated channel
and signal are available at the BBU, and when only quantized
weighted signal is available at the BBU. The uplink energy
efficiency of a cell-free network with finite fronthaul capacity
is analyzed in [13]. In [14], the authors propose precoding
and pilot allocation schemes for a mmWave cell-free network.
In [16], the authors study the performance of a cell-free
network with hardware impairments and limited fronthaul
capacity. The uplink and downlink performance of fronthaul
constrained cell-free network with low resolutions ADCs is
studied in [17]. In [19], the authors compare the downlink
performance between local conjugate beamforming and cen-
tralized zero-forcing precoding. Note that most of these works
focus on traditional cell-free architecture where all the APs
serve each user in the network. Since the user performance
degrades with quantization/compression error, which depends
on the number of users (load) per AP, each AP should ideally
serve only a subset of users in the network. A network-centric
approach that achieves this goal is proposed in [12], [15].
However, from the perspective of scalability and distributed
implementation, a user-centric architecture is preferred where
a user selects its set of serving APs [18], [20]-[27]. To the
best of our knowledge, the downlink performance of the user-
centric cell-free architecture with finite fronthaul capacity has
not been studied in the literature yet. Given its importance,
one of our objectives is to bridge this gap in the literature.
From the perspective of system-level analysis, a comple-
mentary approach to simulations-based studies is theoretical
analyses using tools from stochastic geometry. To this end,
there has been a lot of work that analyzes the performance
of cooperative cellular networks, such as CoMP and C-RAN
(cf. [28]-[33]). However, as mentioned earlier, the system
architecture and key practical constrains of cell-free mMIMO,
such as imperfect CSI, local beamforming, finite fronthaul
capacity, result in a different SINR expression compared to
the aforementioned works. Hence, the analyses developed in
these works cannot be directly extended to the performance
analysis of cell-free mMIMO system. Finally, the performance
of cell-free architecture has been analyzed using tools from
the stochastic geometry in the following works [23], [34]-
[38]. In [34], the authors have focused on characterizing the
channel hardening phenomenon in cell-free mMIMO and have
presented simulation-based results for system performance
metrics such as average user rate. In [23], the authors have
used stochastic geometry to study the benefits of the proposed
“on-the-fly” pilot assignment scheme in reducing the effect of
pilot contamination and have compared the cell-free mMIMO
system performance with a cellular massive MIMO system.
In [35], the authors have presented the coverage probability
result for a traditional cell-free mMIMO with perfect fronthaul
assumption. Further, the deterministic SINR equivalence result
presented in this work may not be extended to the user-centric
cell-free mMIMO where the typical user is served by a few
nearest APs. In [36], authors have used stochastic geometry

to study the performance of a cell-free mMIMO system with
wireless information and power transfer capabilities. Authors
of [37] have considered a cell-free mMIMO network with
high mobility users that leads to channel aging effect and
degradation in achievable user rate both in the uplink and
downlink. Using tools from stochastic geometry, authors have
carried out frame length optimization that maximizes downlink
and uplink data rates under different transmission protocols.
For all these works, the performance analysis is carried out
asuming perfect fronthaul capacity, which is one of the key
practical assumptions of our work. Although in [38], authors
have analyzed the performance of a mmWave cell-free network
considering the effect of finite fronthaul, the analysis is carried
out for the uplink. Moreover, the traditional architecture is
considered where each AP serves each user in the network.

B. Contributions

With the background on aforementioned prior works, our
contributions are as follows:

1) System modeling: In this work, we consider the down-
link of a cell-free mMIMO system with finite capacity fron-
thaul links. To capture the effect of finite fronthaul, we
consider a point-to-point compression scheme between an AP
and the BBU. Further, we focus on both the traditional cell-free
mMIMO architecture, where each AP serves each user in the
network, and a variant of the user-centric cell-free architecture.
Since the compression error is a function of the number of
users, the traditional cell-free network has to be of finite
size in order to limit the effect of compression error. Hence,
for this architecture, we model the AP and user locations as
two independent binomial point processes (BPPs) that is in
line with most of the works in the cell-free literature where
fixed numbers of APs and users are considered. On the other
hand, for the user-centric architecture, we are not restricted to
consider a small network size. Therefore, we model the AP
and user locations as two independent homogeneous Poisson
point processes (PPPs) on R? and assume that each user is
served by a specified number of its nearest APs. We restrict
our attention to conjugate beamforming. Conditioned on the
AP and user locations, we derive an achievable rate expression
for a randomly selected user that captures the effect of finite
fronthaul capacity in both the architectures.

2) Load characterization of user-centric architecture: Due
to the dependence of compression error on the number of users
served by an AP, the statistics of the load in terms of the
number of users is important for the system-level analysis.
While this number is fixed for the traditional architecture,
the load is a function of user and AP densities as well as
the number of APs that serve a given user in the user-centric
architecture. Hence, for the latter, we first determine the load
distribution for the set of tagged APs that serve the typical
user. Since an exact determination of the probability mass
function (PMF) of the number of users associated with each
tagged AP is intractable, we derive the first two moments of
the load and then approximate load for each of the tagged APs
as a negative binomial random variable through the moment
matching method. This result is later used to derive the rate



coverage of the typical user in the user-centric architecture.
Further, we use a similar methodology to derive the load
result for the typical AP in the network. This result is useful
in network dimensioning, especially determining the desired
capacity of the fronthaul link between the typical AP and
the BBU to satisfy a certain signal to compression noise
ratio (SCNR). It is worth mentioning that this result has a
direct equivalence to the degree distribution in an AB random
geometric graph.

3) Performance analysis of the traditional architecture:
Using the above results, we first derive the downlink user
rate coverage result for the traditional architecture. Leveraging
the relevant distance distributions for a BPP, we provide
an approximate expression to analytically evaluate the rate
coverage averaged over the AP and user locations. From
our analyses, we infer that the average system sum-rate is a
strictly quasi-concave function of the number of users, and the
optimal number of users to achieve the maximum system sum-
rate increases with increasing fronthaul capacity. Further, in
contrast to the established notion that fully distributed MIMO
is superior to the collocated MIMO, our results suggest that at
higher per AP transmit power, a less distributed form of cell-
free mMIMO is better, i.e., for an equal number of antennas
in the system, it is better to deploy a fewer APs with more
antennas per AP.

4) Performance analysis of the user-centric architecture::
Using the load distribution result of the typical AP, we
highlight the interplay between key system parameters such as
the fronthaul capacity, the SCNR, and the number of serving
APs. Further, exploiting the statistical properties associated
with a PPP along with a few subtle approximations, we derive
the rate coverage result for the typical user. A key ingredient
of this derivation is the load distribution results for the tagged
APs. Our analysis suggests that the energy efficiency of the
system is a concave function of the number of antennas per
AP.

II. SYSTEM MODEL

We limit our attention to the downlink of a cell-free
mMIMO system. The sets of AP and user locations are given
by @, and ®,, respectively. To capture the spatial randomness
in the AP and user locations, we model ®, and &, by
appropriate point processes. The corresponding discussions on
the point processes are relegated to the following sections as
it is not necessary for the results derived in this section. We
assume that each AP has N, antennas. The distance between a
user at ug € ®, and an AP atr,,, € @, is denoted by d,,,.. All
the APs are connected to a BBU through a fronthaul network,
where the capacity of each link is C; bits/s/Hz. As mentioned
earlier, in case of the traditional cell-free architecture, all the
APs serve all the users in the network. In contrast, in case of
the user-centric network architecture, we consider that each
user is served by its nearest Ny APs. Both the architectures
are illustrated in Fig. 1.

A. Compression at the BBU

Due to limited fronthaul capacity, the BBU employs a lossy
compression scheme to forward user symbols to the APs.

Let an AP at r, serves a set of K, users ¢,, C ®,. Note
that in the case of traditional architecture, ®,, = ®,. Let
Qo = |q1,,92,,---,qK,]T be the signal vector consisting
of the symbols to be transmitted to the users in ®,,. We
consider that q, is a circularly symmetric complex Gaussian
random vector and q, ~ CN(0k,,pq IKk,), where p,, =
E[lg,?] = Efle2 )] = ... = E[lgx,|?], Ok, denotes
a K, x 1 all zero vector, and Ix, denotes a K, x K,
identity matrix. Using a lossy compression scheme, the BBU
transmits §, = [41,,G2.,-.-,dx,]T over the fronthaul links
to the AP. Similar to [5], we consider q, = q, + q,, Where
qo ~ CN(0k,,pg,1k,) is the compression error vector and
Pi, = E [|qlo|2] =E UQQOP] =...=E UQK()P} Further,
we assume that q, and q, are uncorrelated. Since both are
Gaussian random vectors, they are independent as well. From
the above exposition, it is clear that q ~ CN(Og,, (pg, +
pa.)Ik,). If E [|Gk,|?] is the same for all k = 1,2,... K,,
then both p;, ,pg, depend on the fronthaul capacity Cf, as
discussed in the following lemma.

Lemma 1. For a fronthaul capacity Cs and number of users
K, served by the typical AP, p,, = (1 —27C/K)E [|gy, |]
and p;, = 27O/ [|gs, |2].

Proof: The amount of information that can be transmitted
from the BBU to each AP is upper bounded by the fronthaul
capacity Ct. Hence, we write 1(q,;q,) < Ct

= h(élo) - h(do‘qo) < Ct

K, K,
— > h(@,) — Y hld,le,) < C

i=1 i=1
C:
K,’
where I(x;y) denotes the mutual information between two
random variables x and y, h(z) denotes the differential entropy
of a random variable x, and the last step follows from the
fact that ¢;s and ¢;s are complex Gaussian random variables.
Ideally, the BBU would like to transmit the maximum infor-
mation. Hence, we get

log, (1 + p"f’) _ & Pao _ oCt/Ko _ 1,
Pio Ko Pio

The expression in the lemma follows directly using the fact

that pg, +pg, = E [|dx, |*]. If we consider that E [|gy, [*] = 1,

then p,, = (1 - 2_Cf/K°) and pg, = 27 /Ko, u

Remark 1. The SCNR, defined as Zﬁ = 2C/Ko _ 1 isa
decreasing function of the number of users served by the AP.
While in the case of the traditional cell-free mMIMO, the SCNR
can only be improved by increasing Cs, in the case of user-
centric architecture, SCNR can also be improved by limiting
the maximum number of users that should be scheduled by the
typical AP. Hence, for a given C: and target SCNR threshold
Ts, the maximum number of scheduled users K.y should
satisfy Kpaylogy(1+ T5) < Ct.

= logy(me(pq, + pg,)) — loga(mepg,) <

B. Uplink channel estimation

Let gk = v Bmihmi be the channel gain between the AP
at r,, and the user at uy, where 3, captures the large-scale
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Fig. 1: Representative diagrams: (left) in the traditional architecture, each AP serves all the user in the network, and (right) in the user-centric
architecture, each user is served by its nearest three APs as marked by dotted circles.

channel gain and h,,;, ~ CN(On,,Iy,) captures the small-
scale channel fluctuations. We consider that 3, is only due
to the distance dependent path loss, i.e., Bmr = [(dmi) 2,
where [(-) is a non-decreasing path loss function presented in
Section VI.

In order to obtain the channel estimates, we consider that
each user uses a pilot from a set of P orthogonal pilot
sequences of 7, symbol duration, which is assumed to be
less than the length of the coherence block 7.. Further, the
transmit signal-to-noise ratio (SNR) of each symbol in a pilot
is pp. Since we assume that these P sequences are orthogonal
to each other, 7, > P and pH Y; = 1(i = j), where 1(-)
denotes the indicator function. Let the pilot used by the user at
uy, be (k). During the pilot transmission phase, the received
signal matrix R, € CM-X7 at the typical AP is

R, = v TpPp Z golﬂ/’(k)T
up€Py

where each element of W, is CN(0,1). Let g, be the
estimated channel vector at the AP r, for the user u; € &,
that is obtained after performing minimum-mean-squared-
error (MMSE) channel estimation. Further, g,; be the es-
timation error vector. Using the properties of MMSE esti-
mation [4], we write g,z ~ CN (On,,VorIn,) and gop ~
CN (On,, (Bok — Yor) IN,), where

2
ToPpBor

L4 7505 20, e, W (R) b (5)Bo;

+ W,

(1)

Yok =

C. Downlink data transmission

In this work, we consider that each AP employs conjugate
beamforming based on the local CSI. Hence, the precoded
symbol transmitted by the AP at r, is given as

Z V PdT]meQz,, y

u; €Wy,

vV Pall %
u; EZ\IIU,O " Ol

where py is the downlink transmit SNR, 7),; is normalization
coefficient used by the typical AP for the user at u; to satisfy
the average power constraint Tr(E [xo D < pg, and ¥, C

®,,, is the set of scheduled users associated with the AP at
r, such that |¥,,| < K., for the user-centric architecture.
Note that for the traditional architecture, ¥,, = ®,, = O,
and K., = K,. We observe that by setting 7, = 1/Kpax
and p;, = E[|G;,|*] = 1, the above constraint is satisfied.
More sophisticated power allocation algorithms, such as max-
min power allocation, can of course be considered. However,
the equal power allocation scheme has its own advantages of
lower complexity and admitting a distributed implementation.
Besides, this scheme provides a degree of tractability in the
coverage analysis as will be evident in the sequel.

D. An achievable rate for a randomly selected user

Now, we present an achievable rate for a randomly selected
user in the network that is applicable for both types of
architectures. Consider that a randomly selected user is located
at u, and is served by the set of APs ®,., C ®,. The received
signal at this user is given as

Yor = Z gzz;Xl + Z g}:,xj +n,

red,, r; €q>

gloglo ~ \/mglogll A
S v g, Yy YL,

re€d,, \/7 l‘lE‘I’rou E\IJ a’)/lz
VPANi&181i pdnglogh g

+ + no, 2)

rlZ{;Cu%‘; ) \/Na'yl qui o

where ¢ = @, \ ®,, and U, = Uy \ u,. In the following
lemma, we provide an expression for an achievable rate (a
lower bound on capacity).

Lemma 2. Conditioned on ®, and ®,, an achievable rate of
the typical user at u, is given as

SE, = &taa (1 — Tp) log, (1 + SINR,) bits/s/Hz, (3)
Te
where SINR, is given in (4) at the top of the next page. Further,
in (4), P, is the set of users that use the same pilot sequence
as the typical user u, and k; is the number of users served by
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SINR, =
2—Cst/k;

pdNa Z Yio K,

max
red,,

red,

the AP at r;, Evqq IS the fraction of coherence block dedicated
for downlink transmission.

Proof: Please refer to Appendix A. ]
Note that the above SINR expression contains the interfer-
ence due to pilot contamination that originates due to reuse of
pilot sequences in the network. The presence of pilot contam-
ination makes the derivation of the rate coverage expression
intractable. Hence, in favor of tractability, we ignore the effect
of pilot contamination in subsequent analyses.

III. RATE COVERAGE FOR TRADITIONAL CELL-FREE
MMIMO

In this section, we derive the rate coverage result for the
traditional cell-free mMIMO system where each AP serves all
the users in the network. If we consider an infinite network
on R2, then as per the result of Lemma 1, the SCNR — 0 as
K, — oo and subsequently SINR, — 0 as given in Lemma 2.
Hence, for a meaningful analysis of the traditional architecture,
we need to consider a finite network, e.g., a shopping mall.
Therefore, we assume the system is limited to Bg_(0), a finite
circular region of radius R centered at o, where the set
of APs ®, = {rj,rs,...,r)} are randomly and uniformly
distributed. Further, ®, = {u;,us,...,uk, } contains the set
of user locations that are uniformly and randomly distributed
in Bp_ (o) and are independent of AP locations. Note that
by construction, ¢, and ®, form two independent BPPs.
Alternatively, one can consider modeling ®, and ¢, as two
independent PPPs over a finite region. Since conditioned on
the number of points, a PPP is equivalent to a BPP, it is
straightforward to extend the results of this section to the finite
PPP-based model. In that case, the statistical performance
metrics need further averaging over the number of APs M and
the number of users K, that follow the Poisson distribution.
With this fundamental understanding, we consider the BPP-
based modeling of ®, and ®,, for further discussion. The BPP-
based assumption is also consistent with most works related to
the traditional cell-free mMIMO literature that consider a fixed
number of users and APs in the network. As assumed in the
cell-free mMIMO literature, we consider that M N, > K,.
Further, we assume that the coherence block is sufficiently
long to ensure that 7, > K,'. As a consequence, pilots are
not reused in the network, thereby eliminating the effect of
pilot contamination. Under these assumptions, using the result

'If we assume a coherence block that spans 200 kHz - 500 kHz in frequency
and 2 ms in time, then the signaling dimension is between 400 - 1000 symbols.
For the considered finite system model, by reserving 20% of the symbols, we
can serve 80 - 200 users in the network without pilot contamination.

+pd Z ﬁlo+pdNa Z

“4)

2

of LemmaA2, the achievable rate of a user at u, is given as
SEo tin = &raalogy (1 4 SINR, £in), Where

(.5
u, €{Po\uo} \ri€d,;

M 2
pade (1 — 27 Cu/ o) ( 21 \/’%>

N M M
Pdfz2_of/K“ Z Ymo + Pa Z Bmo +1
m=1 m=1

SINR, tin = &)

is the SINR of the user at u, in this finite network and étdd =
o (1 - )

Our goal is to determine the rate coverage Rc sin(Ty) =
]P’[étdd logy(1 + SINR, ¢in) > Ty] for a randomly selected
user that requires averaging over the distances of the APs
from the user. Hence, now we present a few relevant distance
distributions for a BPP.

A. Relevant distance distributions in a BPP

Let R, be the distance of the user at u, from the center
of the circle Bgr, (o). Since u, is uniformly and randomly
distributed in Bg, (o), the cumulative distribution function
(CDF) and probability density function (PDF) of R, is given as

Fr,(r)=r*/RZ, and fg,(r)=2r/R2, 0<r <R (6)

Next, we present the distance distribution between u, to a
randomly distributed AP in Bg, (o).

Lemma 3. Conditioned on the distance R,, the CDF of the
distance between the user at u, and the AP at r,, is given as

a* (9* - %> <¢* - Il(i‘”))
+

7w R2 0
d2

X 1R, —r,<d<R.+r, + 72 Lo<d<R,—r,s
S

Fo,. ) =(

and corresponding PDF is given as

2d 2d6*

I (dlro) =—5 lo<d<R,—r, + —p5 1R,—r,<d<R.tr,
R2 TR2
S S

d24r2_R2
where 0* = arccos (L ,®* = arccos

2r,d
and 1.y is the indicator function.

R§+r§—d2)
27, Rg ’

Proof: We provide a proof sketch for this lemma. Please
refer to [39, Lemma 1] for the detailed proof. Without loss of
generality, consider that u, = (r,,0). Then, conditioned on
u, (equivalently r,), a uniformly distributed point in Bg_(0)
can lie either in the circle Bg _, (u,) or in the region
Br, (0)\Bg,—r,(u,). In the CDF expression of the lemma, both
these conditions are captured by the indicator function and
corresponding conditional CDFs are presented. The expression



for the PDF is obtained by taking the derivative of the CDF
with respect to d along with some algebraic manipulation. W

Now, using the results from order statistics, we present the
conditional distance distribution between u, and its nearest
AP.

Lemma 4. Conditioned on the distance R, the CDF
of the distance D,, between u, and its nearest AP is
given as Fp, (doolTo) = P[Doo < doolre] = 1 — (1 —
Fp,, (doo|ro))™, and the corresponding PDF is given as
IDoo(doolmo) = Mfp,,,(doo|ro)(1 — FDmo(dOOVO))Milv
where fp. ., Fp,  were presented in Lemma 3.

Note that conditioned on the distance D,,, rest of the APs
in Br, (o) are uniformly and randomly located in Bpg, (o) \
Ba,,(u,), where d,, is a realization of D,,. In the following
lemma, we present the distribution of the distance between a
randomly located AP in the above region and u,.

mo?

Iiemma 5. Conditioned D,, and R,, the PDF of the distance
Dy between a randomly selected AP in Br_ (o) \ Ba,, (u,)
and u, is given as

SD o (d]ro)
1-Fp,, (doolTo) ’
Proof: We provide a proof sketch for this lemma. For the
detailed proof, please refer to [39, Lemma 3]. Conditioned
on D,,, rest of the APs are uniformly distributed in Bg_(0) \
Ba,, (u,). Hence, the distribution of the distance D, follows
the lower truncated distribution of D,,,, which is captured in
the above expression. ]
Next, using the above distance distributions, we derive the
rate coverage expression.

f) (d|d007T0) doo S d S To + Rs'

B. Approximate evaluation of average achievable user rate

The exact evaluation of rate coverage Rc rin 1S challenging
as it requires an (M + 1)-fold integration to average it over
the locations of all the M APs and the user at u,. Notice that
the SINR, ¢in in (5) has the following terms:

Z Ymo> I3 - Z ﬂmo (7)

no pilot contamination,

Z vV Tmo> 12

Since there is Yk (dmk) =
% Further, +,,, is a decreasing function of d,,.
Due to path loss, these terms are dominated by contributions
from a few nearest APs. Hence, we approximate /1, I, and
I3 as the sum of exact contribution from the nearest AP and
the mean contribution from the rest of the APs conditioned
on the distance d,, between u, and its nearest AP. Hence, we
write

Il( ooaTo) \/700+E|:

vV Ymo doo, To:| »
o

M
2
m=1,m#
M
Z mo 007 TO:| bl
}: B
1,m#

doos To:| . ®)

IQ(dom To) ~ Yoo + ]E|:

mo

I3(d007 To) ~ Boo + ]E|:

It is worth mentioning that this approach based on dominant
interferers has been extensively used in the stochastic geom-
etry literature (cf. [40], [41]). Note that conditioned on D,,,
distances between u, and rest of the APs in the network are
ii.d [39, Lemma 3]. Hence, using Campbell’s theorem, (8)
can be written as

[1(dao, 7o) =Yoo + (M = 1)
ro+Rs I
x Rl R
r=doo W
jZ(dooyT'o) =Yoo =+ (M _ 1)
To+R Ly
T Tppl(r)
g T o (=17 Dy, (Tldoo; mo)dr,
/T’d,,o 1 +Tpppl(7~)71 fD,,,w (] ro)dr
Is(dooyo) =fao + (M = 1)
ro+Rs
<[ e ©)
r=doo

With the above approximation, in the next Proposition, we
present an expression to evaluate the rate coverage of the
typical user in this finite cell-free mMIMO network.

Proposition 1. For a given threshold Ty, the rate coverage of
a randomly selected user in the network is given as

/ / SINR{}PX(dOO,rO) > 9T/ Cea _ 1)
doo=0
X [Doo(doolT0) fR, (T0)ddoodTo,
where SINRAPX(d,,,7,) =
pd%(l - 27Cf/KO)(IA1(d0077n0))2
de (IQ(dow ro))Q_Cf/KO + pdf3(dooa 7”0) + 1,

and the PDFs of D,, and R, are presented in Lemma 4 and
(6), respectively.

c fln

(10)

Proof: This result follows by first replacing different
terms in the SINR, ¢in by their approximations given in (9)
to obtain SINRAPX(d,,,7,). In the next step, we decondition
over D,, and R, to obtain R¢ ¢in (7). [ |

Next we present the metric to study the energy efficiency
of the traditional cell-free mMIMO system that use the result
of Proposition 1.

C. Energy efficiency of the network

For the finite traditional cell-free network, we define energy
efficiency as the ratio of average network throughput to
the average total power consumption at the APs and their
associate fronthaul. We ignore the signal processing-related
power consumption at the central baseband unit as it is
likely to be small compared to the aforementioned AP-related
power consumption in the network. Further, since we focus
on the downlink, we do not take into account the uplink pilot
transmission power of the users in our power consumption
model. Hence, for the downlink, the total power consumption
for the AP at r; € ®, can be modeled as [42]

\‘P\

P)ltot_A Pd+P)lf1X
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where the first term on the right hand side corresponds to total
downlink transmission power and A, > 1 captures the power
amplifier inefficiency. Note that for the finite network the APs
use all their transmission power Py, which is related to the
transmit SNR pg = P4/ P,, where P, is the total thermal noise
power. The second term in (11) corresponds to the both circuit
power consumption of the AP and the traffic independent
power consumption of the fronthaul link associated with the
AP and can be expressed as P tix = Nakirs + Pen ¢, Where rps
is the RF chain power consumption that can be assumed to
be the same for all the antennas. Further, Py ¢ corresponds to
the fixed power consumption of the fronthaul link. The third
term in (11) captures the traffic dependent power consumption
of the fronthaul link, where By is the system bandwidth
and Py, is a scaling constant. Now, for the downlink, the
average total power consumption of the network is given
as Pt = E[Zrzeir P, +o¢]. Putting all terms together, for
the finite traditional cell-free network, the average energy
efficiency is given in (12) at the top of the next page. In
Section VI, we evaluate the performance of the traditional cell-
free mMIMO in terms of the metrics derived in this section.

Next, we focus on the user-centric cell-free mMIMO. In this
case, we model ®, and ®, as two independent homogeneous
PPPs on R2. The densities of ®, and ®, are A\, and )\,
respectively. Further, each user is served by its nearest N APs.
Observe that the SINR expression of Lemma 2 is a function of
the number of users served by each AP in the network. Owing
to the spatial randomness of both user and AP locations, the
number of users served by each AP is a random variable.
Therefore, to derive the rate coverage expression, we need the
statistical properties of the load associated with an AP that are
presented in the next section.

IV. LOAD CHARACTERIZATION IN USER-CENTRIC
ARCHITECTURE

Before proceeding further, we provide the distinction be-
tween the typical AP and the set of fagged APs in the network.
The typical AP is by definition a randomly selected AP in ®,.
On the other hand the set of tagged APs is the set of serving
APs of the typical user, which is selected randomly from ®,,.
This random selection of the typical user makes it more likely
to be served by APs that have larger service regions. This
effect is reminiscent of the waiting time paradox in queuing
systems and the difference between O-cell and the typical
cell in a Poisson-Voronoi tessellation [43], [44]. Since we
are focusing on the performance analysis of the typical user,
we need the load distribution result associated with the set of
tagged APs. On the other hand, from a network dimensioning
perspective, such as provisioning of fronthaul capacity, we also
need the statistical information on the load associated with
the typical AP. In the next subsection, we first derive the load
distribution results associated with the set of tagged APs.

A. The load of a tagged AP

The statistical metric that we are interested in is the PMF
of the load. The exact derivation of PMF is intractable. Hence,

we first derive the exact result for the first two moments of
the number of users for a tagged AP.

1) Determination of the first two moments: Since @, is
a homogeneous PPP, it is translation invariant. Hence, we
assume that the typical user is located at the origin o. It is
worth mentioning that the loads associated with each of the
tagged APs are not identical. Hence, we need to present a
generic result that is a function of the serving AP rank in
terms of the distance from the typical user. Next, we derive
the first two moments of the load for the N-th nearest tagged
AP.

Lemma 6. The first moment of the number of users (excluding
the typical user) served by the N-th nearest AP to the typical
user at the origin is given as E[Ky]| =

(') () 27
2T / ar, / dd, / v, hiagm, (Fos das ey N)dyro,

ro=0 d,=0 v, =0

where Neagm, (7o, s, Ve, N) is given in (13) at the top of
the next page. In the above expression 14(1o,dy,v;) =
\/7’3 +d2 — 2r,dy cos(vy) and Aoly(r,,dy,v,) is the area
of intersection of two circles is given as

sin (2u(r;, ) )

AOIQ(Toadwva) :T?g (u(roadwavw) -

3] 2,’1,
42 (U,;— bln(Q’U ))7

u(ry, ra,v) = arccos (

(14)

where
r9 — 11 cOS(V) Cas)
/13 + 1% — 27179 cos(v)

The corresponding second moment is given as E[K%| =
o'} 2 27

o] [T ]]

76=0d;=0d,=0vy;=0v,=0
X Reagmy (Tos Ay dy, Vg, Uy, N)dvydvgdyddy,dyddyredr,,

where Nyagn, (7o, s, dy, Ve, vy, N) is given by (26) in Ap-
pendix B.

Proof: Please refer to Appendix B. [ ]

Remark 2. The load on a tagged AP depends on its distance

from the typical user at the origin. Using the results of the

above lemma, we conclude that E[K;] > E[K,] > E[K3] >
.., and E[|K1|?] > E[|K2|?] > E[|K3]?] > ...

2) Approximation of the load PMF: Using the first two
moments, we approximate the load as a negative binomial
random variable. The PMF of this variable with parameters
r and p is

Bty — = L)

‘s 1 _ k

RO (1-p)",
where E[Ky] = (1 — p)r/p and E[K%] = (1 — p)r(1 +
(1 — p)r)/p®. Using the results of Lemma 6, we solve the
aforementioned two equations to obtain the values of r and
p. The intuition behind the consideration of negative binomial
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N-1
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stems from the following fact: if we consider that each user
is served by its nearest AP, then the serving region of each
AP is its own Poisson-Voronoi cell. The area of this cell is
well approximated as a gamma random variable [45]. Now,
conditioned on the area of the cell, the number of users that
fall in this area follows Poisson distribution. Hence, once we
decondition over the serving area, we get a Poisson-gamma
mixture distribution for the number of users served by a tagged
AP. Since negative binomial distribution is a consequence
of the Poisson-gamma mixture distribution, this justifies our
choice to approximate the load with this distribution. This
approximation will be validated in Sec. VL.

B. The load of the typical AP

In this section, we derive the approximate PMF of the
number of users served by the typical AP in the network.
Similar to the previous case, since exact characterization of
the PMF is intractable, we first derive the exact expression for
the first two moments of the load for the typical AP. Next,
using moment-matching method, we approximate the PMF as a
negative binomial PMF. The derivation of the first two moments
now becomes the special case of the tagged AP result. In the
following lemma, we present the first two moments.

Lemma 7. The first two moments of the number of users K,
served by the typical AP are

Au
E| K, =Ns—,
) =N 5

oo

e} 27
E[Kg] :277)\‘21 / / /htYP’mg(Tl,TQ,U)dU’I“QdT‘QTld’I"l
0

re=07r,=0u=

Au
N.2w
+ Vg P
where  hyyp o (70, 7y,u) is given in (16) at the top
of the next page. In the above equation, vy, =
75—y cos(u) . . .
arccos \/Tgﬂzjwﬂy COS(U)) and Aol is given in (14).
Proof: Please refer to Appendix C. ]

Similar to the tagged AP case, we approximate the load of
the typical AP as a negative binomial random variable.

Remark 3. We observe that E[K?2] ~ E[K,] + (1 +
(0.2802)N=)E2[K,]. This result is known for Ns =1 [46].

Remark 4. The load distribution result of the typical AP
also characterizes the degree distribution in an AB random

geometric graph (AB-RGG). An AB-RGG is a bipartite random
graph between two sets of vertices A and B, where a point in
A is connected to a few points in B based on certain distance
criteria [47], [48]. In our case, A = &, B = ®, and an edge
exists if x € ®, is served by y € ®,. It is worth mentioning
that a simulation-based approximation result for the degree
distribution of this type of AB-RGG is recently studied in [49].

V. RATE COVERAGE FOR USER-CENTRIC CELL-FREE
MMIMO

The achievable rate result derived in Lemma 2 is directly
applicable to the user-centric cell-free architecture. Recall that
®, and P, are two independent homogeneous PPP. Further,
we consider that the typical user at the origin and its set of
serving APs ®,., consists of the nearest Ng APs. Determining
the distribution of the rate or SINR of the typical user is
intractable as each term in (4) depends on a set of common
distances. However, a degree of tractability can be achieved for
theoretical analysis by assuming that the network is operating
in a regime where pilot contamination is negligible.

Remark 5. A system with a pilot allocation scheme that
ensures that each AP serves only one user per pilot is likely
to operate in the regime where the above assumption holds,
especially, for the set of serving (dominant) APs for the typical
user. This assignment scheme is realizable in a low mobility
scenario, where the coherence block is sufficiently large. For
example, if we consider a coherence bandwidth of 200 kHz
and a coherence time of 2 ms, then the TDD coherence block
has 400 symbols. Let us assume that each AP is served by the
nearest Ng = 5 APs. In such a scenario, the probability that
the set of tagged APs, which serve the typical user; collectively
serve more than 30 users is less than 0.002. Hence, the above
criterion is met by reserving around 30 symbols, which is less
than 10% of the coherence block, for pilot estimation.

With this assumption, we present the rate coverage for the
typical user.

Proposition 2. The rate coverage Re int (1) for the typical
user for a target threshold T is given in (17) at the top of
the next page. In the expression, di, < dap < ... < dn.o
where d;, is the distance between the typical user and its
i-th closest AP. The load of the closest AP is K1 and the
mean load of the i-th closest AP is K;, which is given as

Ki =1 + Z;jzo min{ki, Kmax}P[Ki = k‘l]
Proof: Please refer to Appendix E. [ ]
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A. Energy efficiency of the user-centric cell-free mMIMO

For the user-centric network, the downlink energy effi-
ciency can be defined as the ratio of average throughput
per unit area to the average power consumption per unit
area [50]. The average throughput per unit area is equal to
AuBy€raaE[logs (1 4 SINRg, )], where E[log,(1 + SINRg, )] is
the average user spectral efficiency of the typical user that
is evaluated using Proposition 2. Further, the average power
consumption at the typical AP can be modeled as [42]

A AulVg

Pl7tot :Kiapd )

AoV,
+ Py, va

+ (Nakirt + Pen)

§tddE[IOg2(1 + SINRy, )],

where the first term captures the average transmission power
of the AP while taking into account the power amplifier
inefficiency, the second term captures the traffic independent
power consumption related to the RF chains and fronthaul link,
and the third captures the traffic dependent power consumption
of the fronthaul link. The average power consumption per unit
area is Pioy = Ar P tor. Combining all terms together, for the
user-centric cell-free mMIMO, the energy efficiency is given
in (19) at the top of the next page. In the following section,
using the derived results of this section we provide useful
system design guidelines for the user-centric cell-free mMIMO
network.

VI. RESULTS AND DISCUSSION

In this section, we provide useful system design insights
from our analysis as well as validate our theoretical rate
coverage results through extensive Monte Carlo simulations.
Unless otherwise stated, solid lines and markers represent
analytical and simulation results, respectively.

A. Performance of traditional cell-free mMIMO

First, we validate the theoretical results derived for the
traditional architecture in Sec. III. We have considered a finite
circular region of radius Rs = 500 m. We have used 3GPP
Urban Micro-cell path-loss function [S1] which is given as

101og 10(1(r)) = 30.5 4 36.7 log ;o (max(r, 1)). (20)

We consider a maximum transmit SNR pg = 122 dB and
transmit pilot SNR p, = 112 dB. The system bandwidth By
is 20 MHz and the noise power is set to -92 dBm over this
bandwidth. Hence, the maximum AP transmit power Py = 1
watt. Let the TDD coherence block consists of 7. = 200
symbols, which corresponds to a coherence bandwidth of 200
kHz and a coherence time of 1 ms. We assume that the
users are assigned orthogonal pilot sequences, equivalently the
number of users in this finite system K < 7. The fraction {44
of TDD resource allocated for the downlink is 0.8. The choice
of other system parameters are indicated at necessary places.
Using the rate coverage result of Proposition 1, the average
user rate is expressed as

(o]
SEo,fin = / tRe tin(t)dt  bits/s/Hz,
t=o0

and corresponding average system sum-rate is KSE, fin
bits/s/Hz.

1) The effect of fronthaul capacity: In Fig. 2 (left), we
have presented the rate coverage of the system for K = 20
users in the system. As expected, the rate coverage improves
with increasing SCNR threshold 75 as it directly corresponds
to a higher fronthaul capacity Ct. Further, in Fig. 2 (right),
the average system sum-rate is presented as a function of
the number of users K for different fronthaul capacities. As
evident from the figure, the average system sum-rate is quasi-
concave function of the number of users. Further, for a given
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Fig. 2: The effect of fronthaul capacity on system performance. System parameters: M = 600, N, = 40, 7, = 20 (left), 7, = 50 (right), K, =

20, pp = 112 dB, pg = 122 dB.
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600, = 40, K = 20, p, = 112 dB,SCNR = 20 dB. (Right) The effect of transmit SNR on the energy efficiency. Parameters: M N,

600, K, = 20,7, = 40, pp = 112 dB, SCNR = 20 dB, By = 20 MHz.

number of APs, the optimum number of users that should
be multiplexed to maximize the average system rate increases
with the increasing fronthaul capacity.

2) Distributed vs. collocated: In Fig. 3 (left), we present the
rate coverage of the system for different number of antennas
at the AP while keeping the total number of antennas in the
system fixed, i.e., M N, = 600. We observe that the central-
ized architecture performs better than a distributed architecture
under conjugate beamforming and equal power allocation. In
Fig. 3 (center), we present the average user rate for different
number of antennas at each AP while keeping the total number
of antennas in the service region fixed. We consider the SCNR
threshold 75 = 20 dB. We observe that for high transmit SNR
P4, average user rate increases as we move towards a more
collocated setup. On the other hand, with low pq4, the average
user SE is a concave function of the number of antennas
per AP. This behavior is in contrast to the conventional
MIMO results where a distributed implementation is always
preferable. The justification to this counter-intuitive trend can
be explained by the fact that due to conjugate beamforming,
we get a self-interference term from all the APs as evident

Antennas per AP (N,)

Transmission SNR (pq)

from the SINR expression in (5). Hence, with a distributed
implementation, the desired signal power from the nearest AP
increases and so does the self interference term. Therefore, a
more collated set up is preferable for high pg.

3) Energy efficiency: In Fig. 3 (right), we present the
energy efficiency of the traditional cell-free mMIMO with re-
spect to transmit SNR. As evident from the figure, a distributed
network is less energy efficient. Further, the energy efficiency
is a quasi-concave function of transmit SNR.

B. Performance of user-centric cell-free mMIMO

Now, we verify the theoretical results derived in Secs. IV
and V through extensive Monte Carlo simulations. Further, we
provide a few useful network dimensioning guidelines. For the
simulations, we consider the system radius to be 2000 m. The
path loss is the same as (20). The choice of other system
parameters are indicated at appropriate places.

1) The load distribution result: In Fig. 4, we validate the
approximate theoretical PMFs derived in Secs. IV-A and IV-B,
respectively, by Monte Carlo simulations. In both the cases,
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theoretical and simulation results are remarkably close. In
Fig. 5 (left), using the typical AP load distribution result, for a
given fronthaul capacity C; and SCNR threshold 75, we present
the probability that SCNR is above 7T as a function of number
of serving APs N;. Formally, we study P[SCNR > T;] =

P20/ Ko 1 > T.] = P[K, < C¢/log,(1 +T5)],

which is the CDF of the typical AP load. As expected, the
more stringent the T, the lower the probability of having
a SCNR more than 75 for a given number of serving APs.
Note that in this result we assume that all the users attached
to the typical AP are scheduled on the same resource while
using different pilots. In Fig. 5 (right), we present the required
fronthaul capacity as a function of number of serving APs. As



expected, we observe a linear growth in Ct with increasing
N;. However, the rate of growth depends on how strict the
SCNR constraint is.

2) The rate coverage and energy efficiency results: In Fig. 6
(left and center), we present the rate coverage result for the
user-centric architecture. The results suggest that the simu-
lations and the theory are in close agreement. As expected,
with reducing 7y coverage probability improves as the APs
are allowed to transmit to a potentially lesser number of users
thereby reducing the network interference. Further, increasing
Ny also improves the coverage probability. In Fig. 6 (right),
we present the system energy efficiency result highlighting its
concave nature with respect to the number of antennas per AP.

VII. CONCLUSION

In this work, we modeled and analyzed a cell-free mMIMO
network with finite fronthaul capacity using tools from
stochastic geometry. We considered two different architec-
tures of cell-free mMIMO, namely, the traditional architecture
where each AP serves all the users in the network, and the
user-centric architecture where the typical user is served by a
few nearest APs. For the traditional architecture, we derived
the user rate coverage result using the relevant statistics
of BPPs. For the user-centric architecture, we statistically
characterized the load for the typical AP as well as the set
of tagged APs that serve the typical user in the network.
Further, using the statistical properties of PPPs, we presented
the rate coverage result for the typical user in the network.
From our analyses, we conclude that for the traditional archi-
tecture, when the AP transmit power is relatively high, a more
collocated implementation of cell-free mMIMO is preferred
over the fully distributed implementation. Further, for the
user-centric architecture, there exists an optimal number of
antennas per AP that maximizes the system energy efficiency.
Promising future directions include consideration of more
practical fading scenarios such as Rician fading. Moreover, the
analysis presented in this work can be extended to consider
other beamforming schemes such as full-pilot zero-forcing.
The system analysis in the presence of pilot contamination
is also another promising direction that can lead to useful
guidelines for pilot allocation.

APPENDIX
A. Proof of Lemma 2

The proof of this lemma is based on a lower bound that
is well known in the mMIMO literature (cf. [52, Lemma 2],
[53]). From (2), we can express y3' as given in (21) at the
top of the next page, where we assume that the user u, has
the knowledge of the average channel statistics with respect
to its serving APs and P, contains the user locations that use
the same pilot sequence as u,. In (21), it can be shown that
the desired signal is uncorrelated to the rest of the signals.
To derive an achievable rate (lower bound on the capacity),
we replace the uncorrelated signals by independent Gaussian
random variables [53]. The variance of each of the Gaussian
variables is equal to the corresponding variance of the unde-
sired signal. Hence, the SINR corresponding to this achievable

rate is given as SINR, = E [|T1 2] /(XL E [|T3?] +1). In
this case, note that E [T;] = 0 for all i. Further,
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Substituting these values, we obtain the expression presented
in the lemma. ]

B. Proof of Lemma 6

The mean load of the /N-th closest serving AP to the typical
user at o is given in (22) in the next page, where r, = |[r—ol],
Tp = |Ir — x|| = /12 + d2 — 2r,d, cos(vy), d; = [|x — o
(please refer to Fig. 7 (left)). Conditioned on the location of
the AP at r, we expand the inner expectation as given in (23)
in the next page, where the second step follows from the fact
that {®, \ r} is a homogeneous PPP with density A, and the
regions in each indicator function are non-overlapping. The
final result follows in two step: first we decondition over the
point r, then we decondition over ®,. Formally, E[Ky] =

X [ hessmlinl dev

xed,

Z%/\/

xed, ro=0

N)A: dr]

htag,ml (7’0, gy Vg, N)rodTO]

=2 A Ar /dTo/ dd, /dvachtagml Toy Ay Vs N )Tl

ro=0 V=0
where the last step follows from the application of Campbell’s
theorem.

Now, we focus on deriving the second moment of the load
E[ 2] for the N-th nearest serving AP. Using the similar
principle used in (22) for the first moment, we can express
E[|K n|?] as given in (24) in the next page. On the right hand
side of (24), the second summation term is the mean E[K ],
which has already been derived above. Hence, we focus on
deriving an expression for the first term (please refer to Fig. 7

>2



[”gloH ]

eV Y Vi e

r€d,, ri€d,,

(gl —E

[181°])

Go, VP2 Y, Vil

IIgzall
qo, + Z \/ pdnlo(Io,

r€d,,

V Na’ylo

T : Desired signal

+ Z \/ﬂdﬁlojﬁAol“i’ Z Z

r €.,

T5: Beamforming uncertainity

ri€®r0 u; €V, \{uo}

T’3: compression error

\/pdmzjﬁlﬁ >y \/pdnu\/i

r €®C u; eV, \ P,

Ty chanenel estimation error

T’s: inter user interference

Te: interfering AP signal

+ Y > m\s@% +n,, @21)
u1e{7)o\{uo}}rleq>r1
T+ pilot contamination
E[Ky]=E [Z 1(|®: N By, (x)| < Ns = 1) 1 (|2 N By, ( )INI)]
xed,
lz Eg, [1(|®; N B, (x)] < Ny —1)1(|®: N B,, (0)] = N — 1)]] , (22)
xed
N—1
Efa.\r) Z 1(¢rﬂBro(°)ﬁBm(x):”)1(‘i’rﬁ{Bro(o)\Brw(x)}|=N—n—1)1(@rﬁ{Brm(x)\BTo(o)}|§Ns_n_1)]
n=0
N-1 " e
(M| By, (0) N Brz( ) o MlBr, (0)NB.,, (x)| (A:| By, (0) \ By, (x)|)Y lefxr\s,,,u (0)\B,, (x)]
n!
stnfl o
Z (AeBr, ( )\B;'o D™ ™" A 1B, G\B., (o)
I
N71
= Pospyr (1, ArAoIs (7, dy, vy ) )Pospup(N — n — 1, )\r(ﬂrg — AoIy(ry, dyyvy)))
n=0
Posaur (Ns — 1 — 1, A (712 — AoTo(1y, dy, v,))) = hiagm, (1o = |||, dg, vz, N), (23)

Z 1i¢,.n8,, (x)|<N.—11|0.nB,, (0)|=N-1

Bl =E|
xed,
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(24)

(center)). Using (15), let us define u, = u(ro,dy, vs), Uy =
(7o, dy,vy), and

Uy + Uy, {Vz <m0y > 7Y
Upy = § Ug + Uy, {vg > 70, <7}, (25)
|uy — uy|, Otherwise.

Further, let us denote the region of intersection of three
circles as Roloxy = {B,(0) N B, (x) N B, (y)}, the region
exclusive to both the circles centered at o and x as RoI,y =
{B,,(0) N B, (x)} \ Roloyy, the regions exclusive to both the

circles at o and y as RoIoy = {B,,(0) N B, (¥)} \ RoTexy,
and the common region exclusive to circles at x and y as
Rolyy, = {B,,(x) N B,,(y)} \ Rolsyy. Conditioned on @,
and r, the first term on the right hand side of (24) can
be expressed as given in (26) at the top of the next page,
where 7; = \/d? + 12 — 2r,d; cos(v;) for i € {z,y}, the
function AoIs (-, -,-) is given in (14), the area of intersection
of three circles is evaluated as per the procedure presented in
Appendix D. Further in (26), the Step (a) follows from the fact
that the regions in indicator functions are non-overlapping and
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D, \ r .is a homogeneous PPP with den§ity Ar. Similar to .the + E{ Z E {1@106%” (x)|§Ns—1} ] )
derivation of the first moment, we obtain the final expression XED,
for the second moment by deconditioning over r and then over

. ) B[Ko]
®, by applying Campbell’s theorem.
We can decompose the inner expectation

C. Proof of Lemma 7

o o Ee, {hqmzs”xu )I<Ne— 11208y ()| <Ne—1| =
Much of the derivation can be done on the similar lines as

that of Appendix B. Since &, is a homogeneous PPP, it is N.—1
translation invariant. Hence, we assume that the typical AP is Z Ee {1| BN (B ()N By (¥)} =l
located at the origin. The mean load of the AP is =0 . o

X 10,0 {B)y | )\ (B (ONByy ) () HENo—1-1
]E[Ko} =E [Z E [1 (|(I)r N BHXH(X)| § Ns - 1)]

xed

X 10,0 (B O\ (B (ONBy (Y)}I<Nsll] :

From the above expression, we obtain the expression for

)\
=27 Ay / (A ) exp(—mAr?)rdr
" Pyp me (rg, Ty, w) by taking the expectation with respect to ®;.

0 =0

(a))\ oyl Ny Now, with the application of Campbell’s formula, we get the
=— exp(—u)du = , .
Ar — Ju=0 I Ar final expression of the lemma as
where (a) follows from replacing u = 7A.7?. The second x#y
moment of the load can be written as E[K?2] = E Z Z Roypm2 (T, Ty )
2 x€d, yed,
]E[ > 1(|@: N By (x)] < N — 1) } oo
qu’" =212 / / / hiypma (T2, 7y, w)durydryrydr,,
x#y
:IE[ Z Es, |:1|‘I>rﬂB”xH(x)\SNs—ll\CDrﬁBHyH(y)|§N571:| } T Oy mOus0
xed,

yed where 7,7, and u are as depicted in Fig. 7 (Right).



Fig. 7: (Left and center figures are for the proof in Appendix B.) The typical user is located at o, while x,y € ®, are random user locations.
The red triangles represent the serving AP locations of the typical user. The illustration is for the third nearest serving AP for the typical
user. (Right figure is for the proof in Appendix C.) x and y correspond to user locations and o correspond to the typical AP location.

D. Area of Intersection of Three Circles

Due to the constraint that the three circles have a common
point of intersection, the common area of intersection will
be either of the following three cases: (1) a point with area
zero, (2) a lens, or (3) a circular triangle. All three cases are
presented in Fig. 8. When the common area of intersection is
a circular triangle (right most case in Fig. 8), the area is given
as [54] AoIg(7o, 7z, Ty, Vg, Uy) =

1
Z\/(61 +co + 03)(02 +c3 — 01)(01 +c3 — 02)(01 + co — 03)

.G C1 . C2
+ 7"3 arcsin — — —1/4r2 — c% + ri arcsin —
27, 4 2ry
Co . C3 C3
_ = 2 _ 2 2 I 2 _ o2
4ry — ¢5 + ry arcsin 4rg — cs,

4 2ry 4

where c1, co, c3 are chord lengths as denoted in the figure.
Please note that the first two cases are special cases of the
third case, e.g., we can get the second case by replacing c; = 0
and c; = ¢3. Similarly, in the first case, ¢; = co = c3 = 0.
Further, ¢;s are functions of r,, 74,7y, vz, vy. The procedure
for determining them is outlined in [54] that is followed in
this work.

E. Proof of Proposition 2

Ignoring the pilot contamination term in the expression of
achievable rate in (3), we can write the rate coverage as given
in (27) at the top of the next page. To proceed further, we
first condition on the distance to the Ns-th serving AP dn_o.
Conditioned on this distance, we replace > [, by its mean

rl€<1>§0
which is given as Egc [ Z:{)C Bio] = 2mA; fr:sto I(r)rdr.
riedr,
This result follows from the application of Campbell’s theo-
rem. Note that using the mean instead of the exact expectation

has marginal impact on the accuracy of the result as > S,
r €d,
is dominated by contributions from the nearest Ng serving

APs. Hence, we write

Z ﬁl()% Z ﬂlo"’E@%[ Z Blo]~

r;€d, red,, r €®8

Next, the loads for the different serving APs are correlated.
Hence, to get the exact result, we need to evaluate (27)
with respect to the joint distribution of {K;},. However,
obtaining this joint distribution is not tractable. Hence, we
exactly consider the load of the nearest AP and replace
the load of the rest of the APs by its effective mean. For
the i-th nearest AP, the effective mean is given as K, =
1+ 30 _gmin{k;, Knax JP[K; = k], where K; follows
negative binomial distribution whose PMF is determined using
the moment matching method presented in Sec. IV-A. Under
the above two approximations, conditioned on the distances to
the serving APs and the load of the nearest AP to the typical
user, the rate coverage is given as R¢ ins (Ty) =

Ek’lsdloandeso [

1 (27‘()\1- / Wr)rdr < heoy(k1, d1o, doo, - - - 7sto>:| , (28)

Ngo
where hcoy(k1, d10,d20, - - -, dN,o) s given by (18). Note that
conditioned on dpn,o, dip for 1 < 7 < Ng — 1 are iid.
distributed with the following PDF [55]

2dio
fDio (diO) = d2 ) 0< dio < sto-
Nso
Further, the PDF of Dy, is given as [55]

2 _
Ipn,o(dN,o) = m(ﬂ/\r)md?\gi ! eXP(—W/\rd?vso)-

We evaluate the expectation in (28) using the aforementioned

distance distributions along with the PMF of the load K
associated with the nearest tagged AP.
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