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Cell-Free Massive MIMO with Finite Fronthaul

Capacity: A Stochastic Geometry Perspective
Priyabrata Parida and Harpreet S. Dhillon

Abstract—In this work, we analyze the downlink performance
of a cell-free massive multiple-input-multiple-output system with
finite capacity fronthaul links between the centralized baseband
unit and the access point (APs). Conditioned on the user and
AP locations, we first derive an achievable rate for a randomly
selected user in the network that captures the effect of finite
fronthaul capacity as a compression error. From this expression,
we establish that for the traditional cell-free architecture where
each AP serves all the users in the network, the achievable
rate becomes zero as the network size grows. Hence, to have
a meaningful analysis, for the traditional architecture, we model
the user and AP locations as two independent binomial point
processes over a finite region and provide an accurate theoretical
result to determine the user rate coverage. In contrast, for
an asymptotically large network, we consider a user-centric
architecture where each user in the network is served by a
specified number of nearest APs that limits the fronthaul load.
For this architecture, we model the AP and user locations as
two independent Poisson point processes (PPPs). Since the rate
expression is a function of the number of users served by an AP,
we statistically characterize the load in terms of the number of
users per AP. As the exact derivation of the probability mass
function of the load is intractable, we first present the exact
expressions for the first two moments of the load. Next, we
approximate the load as a negative binomial random variable
through the moment matching method. Using the load results
along with appropriate distance distributions of a PPP, we
present an accurate theoretical expression for the rate coverage
of the typical user. From the analyses, we conclude that for the
traditional architecture when the AP transmit power is relatively
high, a more collocated antenna deployment is preferred. Further,
for the user-centric architecture, the energy efficiency of the
system is a concave function of the number of antennas per
AP.

Index Terms—Cell-free massive MIMO, stochastic geometry,
limited fronthaul, binomial point process, Poisson point process,
AB random geometric graph.

I. INTRODUCTION

Cooperative cellular networks, where a set of multiple

base stations (BSs)/ access points (APs) simultaneously serve

a set of users, have been the subject of much investiga-

tion throughout the last decade. The latest incarnation of

such networks is the cell-free massive multiple-input-multiple-

output (mMIMO) systems that harness the benefits of network

densification by extending the concept of cellular mMIMO

to a distributed implementation [3], [4]. In cell-free mMIMO
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networks, the APs perform a limited set of signal processing

operations such as precoding/filtering using the local channel

state information (CSI) while most of the baseband processing

operations are carried out at the centralized baseband units

(BBUs). The communication between the APs and BBUs

is done through finite capacity fronthaul links. One of the

direct consequences of having finite fronthaul links is that

the compression/quantization error gets introduced into the

system, which affects the user performance. Hence, analyzing

the network-wide performance of cell-free mMIMO with finite

fronthaul capacity is an important requirement for the success-

ful integration of this technology to the fifth generation (5G)

and beyond networks. In this work, our goal is to model and

analyze such a system using tools from stochastic geometry

and provide useful system design guidelines.

A. Related works

We first discuss key prior works that focus on devising

compression algorithms while taking into account the limited

fronthaul capacity for other variants of cooperative cellular

networks such as coordinated multipoint (CoMP) and cloud

radio access networks (C-RAN). In [5], [6], the authors

provide information-theoretic insights regarding the capacity

of a backhaul-constrained distributed MIMO system. In other

notable works, authors use optimization-based frameworks

to devise compression algorithms that efficiently utilize the

fronthaul capacity constraints while maximizing a certain

performance metric (e.g., sum-rate) (cf. [7], [8]). A compre-

hensive overview of such works can be found in [9], [10].

While the insights obtained from these works are useful, they

are not all directly applicable to a cell-free mMIMO system

owing to its unique aspects such as beamforming based on

local imperfect CSI at the APs as well as the time division

duplex (TDD) mode of operation. A consequence of these

aspects is a completely different user signal-to-interference-

plus noise (SINR) expression compared to the system-level

analyses of CoMP and C-RAN. This motivated a separate set

of system-level analyses [11]–[19] for cell-free mMIMO with

finite fronthaul capacity as briefly outlined below.

In [11], the authors analyze the uplink performance using

Bussgang decomposition and studies the effect of the number

of quantization bits on the uplink outage probability. In [12],

the authors extend the framework of [11] and compare the

uplink performance of the scheme where both the quantized

version of the received signal and quantized channel esti-

mates are available at the BBU to the scheme where the

BBU has the quantized weighted signal from each AP. In
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addition, an uplink max-min power allocation algorithm and

an AP-user assignment scheme to reduce the fronthaul load

are also proposed. In [15], the authors compare the uplink

performances of the following three cases: perfect fronthaul

links, when the quantized version of the estimated channel

and signal are available at the BBU, and when only quantized

weighted signal is available at the BBU. The uplink energy

efficiency of a cell-free network with finite fronthaul capacity

is analyzed in [13]. In [14], the authors propose precoding

and pilot allocation schemes for a mmWave cell-free network.

In [16], the authors study the performance of a cell-free

network with hardware impairments and limited fronthaul

capacity. The uplink and downlink performance of fronthaul

constrained cell-free network with low resolutions ADCs is

studied in [17]. In [19], the authors compare the downlink

performance between local conjugate beamforming and cen-

tralized zero-forcing precoding. Note that most of these works

focus on traditional cell-free architecture where all the APs

serve each user in the network. Since the user performance

degrades with quantization/compression error, which depends

on the number of users (load) per AP, each AP should ideally

serve only a subset of users in the network. A network-centric

approach that achieves this goal is proposed in [12], [15].

However, from the perspective of scalability and distributed

implementation, a user-centric architecture is preferred where

a user selects its set of serving APs [18], [20]–[27]. To the

best of our knowledge, the downlink performance of the user-

centric cell-free architecture with finite fronthaul capacity has

not been studied in the literature yet. Given its importance,

one of our objectives is to bridge this gap in the literature.

From the perspective of system-level analysis, a comple-

mentary approach to simulations-based studies is theoretical

analyses using tools from stochastic geometry. To this end,

there has been a lot of work that analyzes the performance

of cooperative cellular networks, such as CoMP and C-RAN

(cf. [28]–[33]). However, as mentioned earlier, the system

architecture and key practical constrains of cell-free mMIMO,

such as imperfect CSI, local beamforming, finite fronthaul

capacity, result in a different SINR expression compared to

the aforementioned works. Hence, the analyses developed in

these works cannot be directly extended to the performance

analysis of cell-free mMIMO system. Finally, the performance

of cell-free architecture has been analyzed using tools from

the stochastic geometry in the following works [23], [34]–

[38]. In [34], the authors have focused on characterizing the

channel hardening phenomenon in cell-free mMIMO and have

presented simulation-based results for system performance

metrics such as average user rate. In [23], the authors have

used stochastic geometry to study the benefits of the proposed

“on-the-fly” pilot assignment scheme in reducing the effect of

pilot contamination and have compared the cell-free mMIMO

system performance with a cellular massive MIMO system.

In [35], the authors have presented the coverage probability

result for a traditional cell-free mMIMO with perfect fronthaul

assumption. Further, the deterministic SINR equivalence result

presented in this work may not be extended to the user-centric

cell-free mMIMO where the typical user is served by a few

nearest APs. In [36], authors have used stochastic geometry

to study the performance of a cell-free mMIMO system with

wireless information and power transfer capabilities. Authors

of [37] have considered a cell-free mMIMO network with

high mobility users that leads to channel aging effect and

degradation in achievable user rate both in the uplink and

downlink. Using tools from stochastic geometry, authors have

carried out frame length optimization that maximizes downlink

and uplink data rates under different transmission protocols.

For all these works, the performance analysis is carried out

asuming perfect fronthaul capacity, which is one of the key

practical assumptions of our work. Although in [38], authors

have analyzed the performance of a mmWave cell-free network

considering the effect of finite fronthaul, the analysis is carried

out for the uplink. Moreover, the traditional architecture is

considered where each AP serves each user in the network.

B. Contributions

With the background on aforementioned prior works, our

contributions are as follows:

1) System modeling: In this work, we consider the down-

link of a cell-free mMIMO system with finite capacity fron-

thaul links. To capture the effect of finite fronthaul, we

consider a point-to-point compression scheme between an AP

and the BBU. Further, we focus on both the traditional cell-free

mMIMO architecture, where each AP serves each user in the

network, and a variant of the user-centric cell-free architecture.

Since the compression error is a function of the number of

users, the traditional cell-free network has to be of finite

size in order to limit the effect of compression error. Hence,

for this architecture, we model the AP and user locations as

two independent binomial point processes (BPPs) that is in

line with most of the works in the cell-free literature where

fixed numbers of APs and users are considered. On the other

hand, for the user-centric architecture, we are not restricted to

consider a small network size. Therefore, we model the AP

and user locations as two independent homogeneous Poisson

point processes (PPPs) on R
2 and assume that each user is

served by a specified number of its nearest APs. We restrict

our attention to conjugate beamforming. Conditioned on the

AP and user locations, we derive an achievable rate expression

for a randomly selected user that captures the effect of finite

fronthaul capacity in both the architectures.

2) Load characterization of user-centric architecture: Due

to the dependence of compression error on the number of users

served by an AP, the statistics of the load in terms of the

number of users is important for the system-level analysis.

While this number is fixed for the traditional architecture,

the load is a function of user and AP densities as well as

the number of APs that serve a given user in the user-centric

architecture. Hence, for the latter, we first determine the load

distribution for the set of tagged APs that serve the typical

user. Since an exact determination of the probability mass

function (PMF) of the number of users associated with each

tagged AP is intractable, we derive the first two moments of

the load and then approximate load for each of the tagged APs

as a negative binomial random variable through the moment

matching method. This result is later used to derive the rate
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coverage of the typical user in the user-centric architecture.

Further, we use a similar methodology to derive the load

result for the typical AP in the network. This result is useful

in network dimensioning, especially determining the desired

capacity of the fronthaul link between the typical AP and

the BBU to satisfy a certain signal to compression noise

ratio (SCNR). It is worth mentioning that this result has a

direct equivalence to the degree distribution in an AB random

geometric graph.

3) Performance analysis of the traditional architecture:

Using the above results, we first derive the downlink user

rate coverage result for the traditional architecture. Leveraging

the relevant distance distributions for a BPP, we provide

an approximate expression to analytically evaluate the rate

coverage averaged over the AP and user locations. From

our analyses, we infer that the average system sum-rate is a

strictly quasi-concave function of the number of users, and the

optimal number of users to achieve the maximum system sum-

rate increases with increasing fronthaul capacity. Further, in

contrast to the established notion that fully distributed MIMO

is superior to the collocated MIMO, our results suggest that at

higher per AP transmit power, a less distributed form of cell-

free mMIMO is better, i.e., for an equal number of antennas

in the system, it is better to deploy a fewer APs with more

antennas per AP.

4) Performance analysis of the user-centric architecture::

Using the load distribution result of the typical AP, we

highlight the interplay between key system parameters such as

the fronthaul capacity, the SCNR, and the number of serving

APs. Further, exploiting the statistical properties associated

with a PPP along with a few subtle approximations, we derive

the rate coverage result for the typical user. A key ingredient

of this derivation is the load distribution results for the tagged

APs. Our analysis suggests that the energy efficiency of the

system is a concave function of the number of antennas per

AP.

II. SYSTEM MODEL

We limit our attention to the downlink of a cell-free

mMIMO system. The sets of AP and user locations are given

by Φr and Φu, respectively. To capture the spatial randomness

in the AP and user locations, we model Φr and Φu by

appropriate point processes. The corresponding discussions on

the point processes are relegated to the following sections as

it is not necessary for the results derived in this section. We

assume that each AP has Na antennas. The distance between a

user at uk ∈ Φu and an AP at rm ∈ Φr is denoted by dmk. All

the APs are connected to a BBU through a fronthaul network,

where the capacity of each link is Cf bits/s/Hz. As mentioned

earlier, in case of the traditional cell-free architecture, all the

APs serve all the users in the network. In contrast, in case of

the user-centric network architecture, we consider that each

user is served by its nearest Ns APs. Both the architectures

are illustrated in Fig. 1.

A. Compression at the BBU

Due to limited fronthaul capacity, the BBU employs a lossy

compression scheme to forward user symbols to the APs.

Let an AP at ro serves a set of Ko users Φuo ⊆ Φu. Note

that in the case of traditional architecture, Φuo = Φu. Let

qo = [q1o , q2o , . . . , qKo
]T be the signal vector consisting

of the symbols to be transmitted to the users in Φuo. We

consider that qo is a circularly symmetric complex Gaussian

random vector and qo ∼ CN (0Ko , ρqoIKo), where ρqo =
E
[
|q1o |2

]
= E

[
|q2o |2

]
= . . . = E

[
|qKo |2

]
, 0Ko denotes

a Ko × 1 all zero vector, and IKo
denotes a Ko × Ko

identity matrix. Using a lossy compression scheme, the BBU

transmits q̂o = [q̂1o , q̂2o , . . . , q̂Ko
]T over the fronthaul links

to the AP. Similar to [5], we consider q̂o = qo + q̃o, where

q̃o ∼ CN (0Ko , ρq̃oIKo) is the compression error vector and

ρq̃o = E
[
|q̃1o |2

]
= E

[
|q̃2o |2

]
= . . . = E

[
|q̃Ko

|2
]
. Further,

we assume that qo and q̃o are uncorrelated. Since both are

Gaussian random vectors, they are independent as well. From

the above exposition, it is clear that q̂ ∼ CN (0Ko , (ρq̃o +
ρqo)IKo). If E

[
|q̂ko |2

]
is the same for all k = 1, 2, . . .Ko,

then both ρq̃o , ρqo depend on the fronthaul capacity Cf, as

discussed in the following lemma.

Lemma 1. For a fronthaul capacity Cf and number of users

Ko served by the typical AP, ρqo =
(
1− 2−Cf/Ko

)
E
[
|q̂ko |2

]

and ρq̃o = 2−Cf/KoE
[
|q̂ko |2

]
.

Proof: The amount of information that can be transmitted

from the BBU to each AP is upper bounded by the fronthaul

capacity Cf. Hence, we write I(q̂o;qo) ≤ Cf

=⇒ h(q̂o)− h(q̂o|qo) ≤ Cf

=⇒
Ko∑

i=1

h(q̂io)−
Ko∑

i=1

h(q̂io |qio) ≤ Cf

=⇒ log2(πe(ρqo + ρq̃o))− log2(πeρq̃o) ≤
Cf

Ko
,

where I(x; y) denotes the mutual information between two

random variables x and y, h(x) denotes the differential entropy

of a random variable x, and the last step follows from the

fact that q̂is and q̃is are complex Gaussian random variables.

Ideally, the BBU would like to transmit the maximum infor-

mation. Hence, we get

log2

(

1 +
ρqo
ρq̃o

)

=
Cf

Ko
=⇒ ρqo

ρq̃o
= 2Cf/Ko − 1.

The expression in the lemma follows directly using the fact

that ρqo+ρq̃o = E
[
|q̂ko

|2
]
. If we consider that E

[
|q̂ko

|2
]
= 1,

then ρqo =
(
1− 2−Cf/Ko

)
and ρq̃o = 2−Cf/Ko .

Remark 1. The SCNR, defined as
ρqo

ρq̃o
= 2Cf/Ko − 1, is a

decreasing function of the number of users served by the AP.

While in the case of the traditional cell-free mMIMO, the SCNR

can only be improved by increasing Cf, in the case of user-

centric architecture, SCNR can also be improved by limiting

the maximum number of users that should be scheduled by the

typical AP. Hence, for a given Cf and target SCNR threshold

Ts, the maximum number of scheduled users Kmax should

satisfy Kmax log2(1 + Ts) ≤ Cf.

B. Uplink channel estimation

Let gmk =
√
βmkhmk be the channel gain between the AP

at rm and the user at uk, where βmk captures the large-scale
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Fig. 1: Representative diagrams: (left) in the traditional architecture, each AP serves all the user in the network, and (right) in the user-centric
architecture, each user is served by its nearest three APs as marked by dotted circles.

channel gain and hmk ∼ CN (0Na
, INa

) captures the small-

scale channel fluctuations. We consider that βmk is only due

to the distance dependent path loss, i.e., βmk = l(dmk)
−1,

where l(·) is a non-decreasing path loss function presented in

Section VI.

In order to obtain the channel estimates, we consider that

each user uses a pilot from a set of P orthogonal pilot

sequences of τp symbol duration, which is assumed to be

less than the length of the coherence block τc. Further, the

transmit signal-to-noise ratio (SNR) of each symbol in a pilot

is ρp. Since we assume that these P sequences are orthogonal

to each other, τp ≥ P and ψH
i ψj = 1(i = j), where 1(·)

denotes the indicator function. Let the pilot used by the user at

uk be ψ(k). During the pilot transmission phase, the received

signal matrix Ro ∈ C
Na×τp at the typical AP is

Ro =
√
τpρp

∑

uk∈Φu

gokψ(k)
T +Wo,

where each element of Wo is CN (0, 1). Let ĝok be the

estimated channel vector at the AP ro for the user uk ∈ Φu

that is obtained after performing minimum-mean-squared-

error (MMSE) channel estimation. Further, g̃ok be the es-

timation error vector. Using the properties of MMSE esti-

mation [4], we write ĝok ∼ CN (0Na
, γokINa

) and g̃ok ∼
CN (0Na

, (βok − γok) INa
) , where

γok =
τpρpβ

2
ok

1 + τpρp
∑

uj∈Φu
ψ(k)Hψ(j)βoj

. (1)

C. Downlink data transmission

In this work, we consider that each AP employs conjugate

beamforming based on the local CSI. Hence, the precoded

symbol transmitted by the AP at ro is given as

xo =
∑

ui∈Ψuo

√
ρdηoi

ĝ∗
oi

√

E[∥ĝoi∥2]
q̂io =

∑

ui∈Ψuo

√
ρdηoiwoiq̂io ,

where ρd is the downlink transmit SNR, ηoi is normalization

coefficient used by the typical AP for the user at ui to satisfy

the average power constraint Tr(E
[
xox

H
o

]
) ≤ ρd, and Ψuo ⊆

Φuo is the set of scheduled users associated with the AP at

ro such that |Ψuo| ≤ Kmax for the user-centric architecture.

Note that for the traditional architecture, Ψuo = Φuo = Φu

and Kmax = Ko. We observe that by setting ηmk = 1/Kmax

and ρq̂o = E[|q̂io |2] = 1, the above constraint is satisfied.

More sophisticated power allocation algorithms, such as max-

min power allocation, can of course be considered. However,

the equal power allocation scheme has its own advantages of

lower complexity and admitting a distributed implementation.

Besides, this scheme provides a degree of tractability in the

coverage analysis as will be evident in the sequel.

D. An achievable rate for a randomly selected user

Now, we present an achievable rate for a randomly selected

user in the network that is applicable for both types of

architectures. Consider that a randomly selected user is located

at uo and is served by the set of APs Φro ⊆ Φr. The received

signal at this user is given as

ydlo =
∑

rl∈Φro

gT
loxl +

∑

rj∈ΦC
ro

gT
joxj + no

=
∑

rl∈Φro

√
ρdηlo

gT
loĝ

∗
lo√

Naγlo
q̂lo +

∑

rl∈Φro

∑

ui∈Ψ̃ul

√
ρdηlig

T
loĝ

∗
li√

Naγli
q̂li

+
∑

rl∈ΦC
ro

∑

ui∈Φul

√
ρdηlig

T
loĝ

∗
li√

Naγli
q̂li + no, (2)

where ΦC
ro = Φr \ Φro and Ψ̃ul = Ψul \ uo. In the following

lemma, we provide an expression for an achievable rate (a

lower bound on capacity).

Lemma 2. Conditioned on Φr and Φu, an achievable rate of

the typical user at uo is given as

SEo = ξtdd

(

1− τp
τc

)

log2 (1 + SINRo) bits/s/Hz, (3)

where SINRo is given in (4) at the top of the next page. Further,

in (4), Po is the set of users that use the same pilot sequence

as the typical user uo and kl is the number of users served by
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SINRo =

ρdNa

(

∑

rl∈Φro

√
γlo(1−2−Cf/kl )

Kmax

)2

ρdNa

∑

rl∈Φro

γlo
2−Cf/kl

Kmax
+ ρd

∑

rl∈Φr

βlo + ρdNa

∑

ui∈{Po\uo}

(

∑

rl∈Φri

√
γlo

Kmax

)2

+ 1

(4)

the AP at rl, ξtdd is the fraction of coherence block dedicated

for downlink transmission.

Proof: Please refer to Appendix A.

Note that the above SINR expression contains the interfer-

ence due to pilot contamination that originates due to reuse of

pilot sequences in the network. The presence of pilot contam-

ination makes the derivation of the rate coverage expression

intractable. Hence, in favor of tractability, we ignore the effect

of pilot contamination in subsequent analyses.

III. RATE COVERAGE FOR TRADITIONAL CELL-FREE

MMIMO

In this section, we derive the rate coverage result for the

traditional cell-free mMIMO system where each AP serves all

the users in the network. If we consider an infinite network

on R
2, then as per the result of Lemma 1, the SCNR → 0 as

Ko → ∞ and subsequently SINRo → 0 as given in Lemma 2.

Hence, for a meaningful analysis of the traditional architecture,

we need to consider a finite network, e.g., a shopping mall.

Therefore, we assume the system is limited to BRs
(o), a finite

circular region of radius Rs centered at o, where the set

of APs Φr = {r1, r2, . . . , rM} are randomly and uniformly

distributed. Further, Φu = {u1,u2, . . . ,uKo
} contains the set

of user locations that are uniformly and randomly distributed

in BRs
(o) and are independent of AP locations. Note that

by construction, Φr and Φu form two independent BPPs.

Alternatively, one can consider modeling Φr and Φu as two

independent PPPs over a finite region. Since conditioned on

the number of points, a PPP is equivalent to a BPP, it is

straightforward to extend the results of this section to the finite

PPP-based model. In that case, the statistical performance

metrics need further averaging over the number of APs M and

the number of users Ko that follow the Poisson distribution.

With this fundamental understanding, we consider the BPP-

based modeling of Φr and Φu for further discussion. The BPP-

based assumption is also consistent with most works related to

the traditional cell-free mMIMO literature that consider a fixed

number of users and APs in the network. As assumed in the

cell-free mMIMO literature, we consider that MNa ≫ Ko.

Further, we assume that the coherence block is sufficiently

long to ensure that τp ≥ Ko
1. As a consequence, pilots are

not reused in the network, thereby eliminating the effect of

pilot contamination. Under these assumptions, using the result

1If we assume a coherence block that spans 200 kHz - 500 kHz in frequency
and 2 ms in time, then the signaling dimension is between 400 - 1000 symbols.
For the considered finite system model, by reserving 20% of the symbols, we
can serve 80 - 200 users in the network without pilot contamination.

of Lemma 2, the achievable rate of a user at uo is given as

SEo,fin = ξ̂tdd log2 (1 + SINRo,fin), where

SINRo,fin =

ρd
Na

Ko
(1− 2−Cf/Ko)

(
M∑

m=1

√
γmo

)2

ρd
Na

Ko
2−Cf/Ko

M∑

m=1
γmo + ρd

M∑

m=1
βmo + 1

(5)

is the SINR of the user at uo in this finite network and ξ̂tdd =

ξtdd

(

1− τp
τc

)

Our goal is to determine the rate coverage Rc,fin(Tr) =
P[ξ̂tdd log2(1 + SINRo,fin) > Tr] for a randomly selected

user that requires averaging over the distances of the APs

from the user. Hence, now we present a few relevant distance

distributions for a BPP.

A. Relevant distance distributions in a BPP

Let Ro be the distance of the user at uo from the center

of the circle BRs
(o). Since uo is uniformly and randomly

distributed in BRs
(o), the cumulative distribution function

(CDF) and probability density function (PDF) of Ro is given as

FRo
(r) = r2/R2

s , and fRo
(r) = 2r/R2

s , 0 ≤ r ≤ Rs. (6)

Next, we present the distance distribution between uo to a

randomly distributed AP in BRs
(o).

Lemma 3. Conditioned on the distance Ro, the CDF of the

distance between the user at uo and the AP at rm is given as

FDmo(d|ro) =
(d2

(

θ∗ − sin(2θ∗)
2

)

πR2
s

+

(

φ∗ − sin(2φ∗)
2

)

π

)

× 1Rs−ro≤d≤Rs+ro +
d2

R2
s

10≤d<Rs−ro ,

and corresponding PDF is given as

fDmo
(d|ro) =

2d

R2
s

10≤d<Rs−ro +
2dθ∗

πR2
s

1Rs−ro≤d≤Rs+ro

where θ∗ = arccos
(

d2+r2o−R2
s

2rod

)

, φ∗ = arccos
(

R2
s+r2o−d2

2roRs

)

,

and 1(·) is the indicator function.

Proof: We provide a proof sketch for this lemma. Please

refer to [39, Lemma 1] for the detailed proof. Without loss of

generality, consider that uo = (ro, 0). Then, conditioned on

uo (equivalently ro), a uniformly distributed point in BRs
(o)

can lie either in the circle BRs−ro(uo) or in the region

BRs
(o)\BRs−ro(uo). In the CDF expression of the lemma, both

these conditions are captured by the indicator function and

corresponding conditional CDFs are presented. The expression
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for the PDF is obtained by taking the derivative of the CDF

with respect to d along with some algebraic manipulation.

Now, using the results from order statistics, we present the

conditional distance distribution between uo and its nearest

AP.

Lemma 4. Conditioned on the distance Ro, the CDF

of the distance Doo between uo and its nearest AP is

given as FDoo
(doo|ro) = P [Doo ≤ doo|ro] = 1 − (1 −

FDmo
(doo|ro))M , and the corresponding PDF is given as

fDoo(doo|ro) = MfDmo(doo|ro)(1 − FDmo(doo|ro))M−1,
where fDmo , FDmo were presented in Lemma 3.

Note that conditioned on the distance Doo, rest of the APs

in BRs
(o) are uniformly and randomly located in BRs

(o) \
Bdoo

(uo), where doo is a realization of Doo. In the following

lemma, we present the distribution of the distance between a

randomly located AP in the above region and uo.

Lemma 5. Conditioned Doo and Ro, the PDF of the distance

D̂mo between a randomly selected AP in BRs
(o) \ Bdoo

(uo)
and uo is given as

fD̂mo
(d|doo, ro) =

fDmo(d|ro)
1− FDmo

(doo|ro)
, doo ≤ d ≤ ro +Rs.

Proof: We provide a proof sketch for this lemma. For the

detailed proof, please refer to [39, Lemma 3]. Conditioned

on Doo, rest of the APs are uniformly distributed in BRs
(o) \

Bdoo
(uo). Hence, the distribution of the distance D̂mo follows

the lower truncated distribution of Dmo, which is captured in

the above expression.

Next, using the above distance distributions, we derive the

rate coverage expression.

B. Approximate evaluation of average achievable user rate

The exact evaluation of rate coverage Rc,fin is challenging

as it requires an (M + 1)-fold integration to average it over

the locations of all the M APs and the user at uo. Notice that

the SINRo,fin in (5) has the following terms:

I1 =

M∑

m=1

√
γmo, I2 =

M∑

m=1

γmo, I3 =
M∑

m=1

βmo. (7)

Since there is no pilot contamination, γmk(dmk) =
τpρpl(dmk)

−2

1+τpρpl(dmk)−1 . Further, γmk is a decreasing function of dmk.

Due to path loss, these terms are dominated by contributions

from a few nearest APs. Hence, we approximate I1, I2, and

I3 as the sum of exact contribution from the nearest AP and

the mean contribution from the rest of the APs conditioned

on the distance doo between uo and its nearest AP. Hence, we

write

I1(doo, ro) ≈
√
γoo + E

[ M∑

m=1,m ̸=o

√
γmo

∣
∣
∣
∣
doo, ro

]

,

I2(doo, ro) ≈ γoo + E

[ M∑

m=1,m ̸=o

γmo

∣
∣
∣
∣
doo, ro

]

,

I3(doo, ro) ≈ βoo + E

[ M∑

m=1,m ̸=o

βmo

∣
∣
∣
∣
doo, ro

]

. (8)

It is worth mentioning that this approach based on dominant

interferers has been extensively used in the stochastic geom-

etry literature (cf. [40], [41]). Note that conditioned on Doo,

distances between uo and rest of the APs in the network are

i.i.d [39, Lemma 3]. Hence, using Campbell’s theorem, (8)

can be written as

Î1(doo, ro) =
√
γoo + (M − 1)

×
∫ ro+Rs

r=doo

√
τpρpl(r)

−1

√
1 + τpρpl(r)−1

fD̂mo
(r|doo, ro)dr,

Î2(doo, ro) =γoo + (M − 1)

×
∫ ro+Rs

r=doo

τpρpl(r)
−2

1 + τpρpl(r)−1
fD̂mo

(r|doo, ro)dr,

Î3(doo, ro) =βoo + (M − 1)

×
∫ ro+Rs

r=doo

l(r)−1fD̂mo
(r|doo, ro)dr. (9)

With the above approximation, in the next Proposition, we

present an expression to evaluate the rate coverage of the

typical user in this finite cell-free mMIMO network.

Proposition 1. For a given threshold Tr, the rate coverage of

a randomly selected user in the network is given as

Rc,fin(Tr) =

∫ Rs

ro=0

∫ Rs

doo=0

1
(

SINR
Apx
o (doo, ro) > 2Tr/ξ̂tdd − 1

)

× fDoo(doo|ro)fRo(ro)ddoodro,

where SINR
Apx
o (doo, ro) =

ρd
N
Ko

(1− 2−Cf/Ko)(Î1(doo, ro))
2

ρd
N
Ko

(Î2(doo, ro))2−Cf/Ko + ρdÎ3(doo, ro) + 1
, (10)

and the PDFs of Doo and Ro are presented in Lemma 4 and

(6), respectively.

Proof: This result follows by first replacing different

terms in the SINRo,fin by their approximations given in (9)

to obtain SINR
Apx
o (doo, ro). In the next step, we decondition

over Doo and Ro to obtain Rc,fin(Tr).
Next we present the metric to study the energy efficiency

of the traditional cell-free mMIMO system that use the result

of Proposition 1.

C. Energy efficiency of the network

For the finite traditional cell-free network, we define energy

efficiency as the ratio of average network throughput to

the average total power consumption at the APs and their

associate fronthaul. We ignore the signal processing-related

power consumption at the central baseband unit as it is

likely to be small compared to the aforementioned AP-related

power consumption in the network. Further, since we focus

on the downlink, we do not take into account the uplink pilot

transmission power of the users in our power consumption

model. Hence, for the downlink, the total power consumption

for the AP at rl ∈ Φr can be modeled as [42]

Pl,tot =∆a

|Φu|
Ko

Pd + Pl,fix
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+
∑

uk∈Φu

Pfh,vBWξ̂tdd log2(1 + SINRo,fin), (11)

where the first term on the right hand side corresponds to total

downlink transmission power and ∆a > 1 captures the power

amplifier inefficiency. Note that for the finite network the APs

use all their transmission power Pd, which is related to the

transmit SNR ρd = Pd/Pn, where Pn is the total thermal noise

power. The second term in (11) corresponds to the both circuit

power consumption of the AP and the traffic independent

power consumption of the fronthaul link associated with the

AP and can be expressed as Pl,fix = Naκrf+Pfh,f, where κrf
is the RF chain power consumption that can be assumed to

be the same for all the antennas. Further, Pfh,f corresponds to

the fixed power consumption of the fronthaul link. The third

term in (11) captures the traffic dependent power consumption

of the fronthaul link, where BW is the system bandwidth

and Pfh,v is a scaling constant. Now, for the downlink, the

average total power consumption of the network is given

as Ptot = E[
∑

rl∈Φr
Pl,tot]. Putting all terms together, for

the finite traditional cell-free network, the average energy

efficiency is given in (12) at the top of the next page. In

Section VI, we evaluate the performance of the traditional cell-

free mMIMO in terms of the metrics derived in this section.

Next, we focus on the user-centric cell-free mMIMO. In this

case, we model Φr and Φu as two independent homogeneous

PPPs on R
2. The densities of Φr and Φu are λr and λu,

respectively. Further, each user is served by its nearest Ns APs.

Observe that the SINR expression of Lemma 2 is a function of

the number of users served by each AP in the network. Owing

to the spatial randomness of both user and AP locations, the

number of users served by each AP is a random variable.

Therefore, to derive the rate coverage expression, we need the

statistical properties of the load associated with an AP that are

presented in the next section.

IV. LOAD CHARACTERIZATION IN USER-CENTRIC

ARCHITECTURE

Before proceeding further, we provide the distinction be-

tween the typical AP and the set of tagged APs in the network.

The typical AP is by definition a randomly selected AP in Φr.

On the other hand the set of tagged APs is the set of serving

APs of the typical user, which is selected randomly from Φu.

This random selection of the typical user makes it more likely

to be served by APs that have larger service regions. This

effect is reminiscent of the waiting time paradox in queuing

systems and the difference between 0-cell and the typical

cell in a Poisson-Voronoi tessellation [43], [44]. Since we

are focusing on the performance analysis of the typical user,

we need the load distribution result associated with the set of

tagged APs. On the other hand, from a network dimensioning

perspective, such as provisioning of fronthaul capacity, we also

need the statistical information on the load associated with

the typical AP. In the next subsection, we first derive the load

distribution results associated with the set of tagged APs.

A. The load of a tagged AP

The statistical metric that we are interested in is the PMF

of the load. The exact derivation of PMF is intractable. Hence,

we first derive the exact result for the first two moments of

the number of users for a tagged AP.

1) Determination of the first two moments: Since Φu is

a homogeneous PPP, it is translation invariant. Hence, we

assume that the typical user is located at the origin o. It is

worth mentioning that the loads associated with each of the

tagged APs are not identical. Hence, we need to present a

generic result that is a function of the serving AP rank in

terms of the distance from the typical user. Next, we derive

the first two moments of the load for the N -th nearest tagged

AP.

Lemma 6. The first moment of the number of users (excluding

the typical user) served by the N -th nearest AP to the typical

user at the origin is given as E[KN ] =

2πλrλu

∞∫

ro=0

dro

∞∫

dx=0

ddx

2π∫

vx=0

dvxhtag,m1(ro, dx, vx, N)dxro,

where htag,m1(ro, dx, vx, N) is given in (13) at the top of

the next page. In the above expression rx(ro, dx, vx) =
√

r2o + d2x − 2rodx cos(vx) and AoI2(ro, dx, vx) is the area

of intersection of two circles is given as

AoI2(ro, dx, vx) =r2x

(

u(ro, dx, vx)−
sin (2u(ro, dx, vx))

2

)

+ r2o

(

vx − sin (2vx)

2

)

, (14)

where

u(r1, r2, v) = arccos

(

r2 − r1 cos(v)
√

r21 + r22 − 2r1r2 cos(v)

)

. (15)

The corresponding second moment is given as E[K2
N ] =

2πλrλ
2
u

∞∫

ro=0

∞∫

dx=0

∞∫

dy=0

2π∫

vx=0

2π∫

vy=0

× htag,m2(ro, dx, dy, vx, vy, N)dvydvxdyddydxddxrodro,

where htag,m2(ro, dx, dy, vx, vy, N) is given by (26) in Ap-

pendix B.

Proof: Please refer to Appendix B.

Remark 2. The load on a tagged AP depends on its distance

from the typical user at the origin. Using the results of the

above lemma, we conclude that E[K1] > E[K2] > E[K3] >
. . ., and E[|K1|2] > E[|K2|2] > E[|K3|2] > . . ..

2) Approximation of the load PMF: Using the first two

moments, we approximate the load as a negative binomial

random variable. The PMF of this variable with parameters

r and p is

P[KN = k] =
Γ(k + r)

k!Γ(r)
pr(1− p)k,

where E[KN ] = (1 − p)r/p and E[K2
N ] = (1 − p)r(1 +

(1 − p)r)/p2. Using the results of Lemma 6, we solve the

aforementioned two equations to obtain the values of r and

p. The intuition behind the consideration of negative binomial
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EEfin =
BW|Φu|ξ̂tddE[log2(1 + SINRo,fin)]

∆a|Φr|Pd + |Φr|(Naξl + Pfh,s) + Pfh,vBW|Φu||Φr|ξ̂tddE[log2(1 + SINRo,fin)]
. (12)

htag,m1(ro, dx, vx, N) =

N−1∑

n=0

PosPMF(N − n− 1, λr(πr
2
o − AoI2(ro, dx, vx)))

PosPMF(n, λrAoI2(ro, dx, vx))PosCMF(Ns − n− 1, λr(πr
2
x − AoI2(ro, dx, vx))). (13)

stems from the following fact: if we consider that each user

is served by its nearest AP, then the serving region of each

AP is its own Poisson-Voronoi cell. The area of this cell is

well approximated as a gamma random variable [45]. Now,

conditioned on the area of the cell, the number of users that

fall in this area follows Poisson distribution. Hence, once we

decondition over the serving area, we get a Poisson-gamma

mixture distribution for the number of users served by a tagged

AP. Since negative binomial distribution is a consequence

of the Poisson-gamma mixture distribution, this justifies our

choice to approximate the load with this distribution. This

approximation will be validated in Sec. VI.

B. The load of the typical AP

In this section, we derive the approximate PMF of the

number of users served by the typical AP in the network.

Similar to the previous case, since exact characterization of

the PMF is intractable, we first derive the exact expression for

the first two moments of the load for the typical AP. Next,

using moment-matching method, we approximate the PMF as a

negative binomial PMF. The derivation of the first two moments

now becomes the special case of the tagged AP result. In the

following lemma, we present the first two moments.

Lemma 7. The first two moments of the number of users Ko

served by the typical AP are

E[Ko] =Ns

λu
λr

,

E[K2
o ] =2πλ2

u

∞∫

rx=0

∞∫

ry=0

2π∫

u=0

htyp,m2(r1, r2, u)dur2dr2r1dr1

+Ns

λu
λr

,

where htyp,m2(rx, ry, u) is given in (16) at the top

of the next page. In the above equation, vxy =

arccos

(

rx−ry cos(u)√
r2x+r2y−2rxry cos(u)

)

, and AoI2 is given in (14).

Proof: Please refer to Appendix C.

Similar to the tagged AP case, we approximate the load of

the typical AP as a negative binomial random variable.

Remark 3. We observe that E[K2
o ] ≈ E[Ko] + (1 +

(0.2802)Ns)E2[Ko]. This result is known for Ns = 1 [46].

Remark 4. The load distribution result of the typical AP

also characterizes the degree distribution in an AB random

geometric graph (AB-RGG). An AB-RGG is a bipartite random

graph between two sets of vertices A and B, where a point in

A is connected to a few points in B based on certain distance

criteria [47], [48]. In our case, A = Φr, B = Φu and an edge

exists if x ∈ Φu is served by y ∈ Φr. It is worth mentioning

that a simulation-based approximation result for the degree

distribution of this type of AB-RGG is recently studied in [49].

V. RATE COVERAGE FOR USER-CENTRIC CELL-FREE

MMIMO

The achievable rate result derived in Lemma 2 is directly

applicable to the user-centric cell-free architecture. Recall that

Φr and Φu are two independent homogeneous PPP. Further,

we consider that the typical user at the origin and its set of

serving APs Φro consists of the nearest Ns APs. Determining

the distribution of the rate or SINR of the typical user is

intractable as each term in (4) depends on a set of common

distances. However, a degree of tractability can be achieved for

theoretical analysis by assuming that the network is operating

in a regime where pilot contamination is negligible.

Remark 5. A system with a pilot allocation scheme that

ensures that each AP serves only one user per pilot is likely

to operate in the regime where the above assumption holds,

especially, for the set of serving (dominant) APs for the typical

user. This assignment scheme is realizable in a low mobility

scenario, where the coherence block is sufficiently large. For

example, if we consider a coherence bandwidth of 200 kHz

and a coherence time of 2 ms, then the TDD coherence block

has 400 symbols. Let us assume that each AP is served by the

nearest Ns = 5 APs. In such a scenario, the probability that

the set of tagged APs, which serve the typical user, collectively

serve more than 30 users is less than 0.002. Hence, the above

criterion is met by reserving around 30 symbols, which is less

than 10% of the coherence block, for pilot estimation.

With this assumption, we present the rate coverage for the

typical user.

Proposition 2. The rate coverage Rc,inf(Tr) for the typical

user for a target threshold Tr is given in (17) at the top of

the next page. In the expression, d1o ≤ d2o ≤ . . . ≤ dNso,

where dio is the distance between the typical user and its

i-th closest AP. The load of the closest AP is K1 and the

mean load of the i-th closest AP is K̄i, which is given as

K̄i = 1 +
∑∞

ki=0 min{ki,Kmax}P[Ki = ki].

Proof: Please refer to Appendix E.
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htyp,m2(rx, ry, u) =

Ns−1∑

l=0

[

PosPMF(l, λrAoI2(rx, ry, vxy))PosCMF(Ns − l − 1, λr(πr
2
x − AoI2(rx, ry, vxy)))

× PosCMF(Ns − l − 1, λr(πr
2
y − AoI2(rx, ry, vxy)))

]

. (16)

Rc,inf(Tr) = P[SEo > Tr] =

∞∫

dNso=0

dNso∫

dNs−1o=0

. . .

dNso∫

d1o=0

∞∑

k1=0

1

(

2πλr

∞∫

doNs

l(r)rdr ≤ hcov(k1, d1o, d2o, . . . , dNso)

)

× P[K1 = k1]

Ns−1∏

i=1

2dio
dNso

fDNso
(dNso)dd1o . . . ddNso, (17)

where

hcov (k1, d1o, d2o, . . . , dNso) =
Na

(2Tr/ξ̂tdd − 1)Kmax

(√

γ1o(1− 2
−

Cf
min{k1+1,Kmax} ) +

Ns∑

l=2

√

γlo(1− 2−Cf/K̄l)

)

− Na

Kmax

(

γ1o2
−

Cf
min{k1+1,Kmax} +

Ns∑

l=2

γlo2
−Cf/K̄l

)

−
Ns∑

l=1

l(dlo)−
1

ρd
. (18)

A. Energy efficiency of the user-centric cell-free mMIMO

For the user-centric network, the downlink energy effi-

ciency can be defined as the ratio of average throughput

per unit area to the average power consumption per unit

area [50]. The average throughput per unit area is equal to

λuBWξ̂tddE[log2(1 + SINR0k)], where E[log2(1 + SINR0k)] is

the average user spectral efficiency of the typical user that

is evaluated using Proposition 2. Further, the average power

consumption at the typical AP can be modeled as [42]

Pl,tot =
∆a

Kmax

Pd

λuNs

λr
+ (Naκrf + Pfh,f)

+ Pfh,vBW

λuNs

λr
ξ̂tddE[log2(1 + SINR0k)],

where the first term captures the average transmission power

of the AP while taking into account the power amplifier

inefficiency, the second term captures the traffic independent

power consumption related to the RF chains and fronthaul link,

and the third captures the traffic dependent power consumption

of the fronthaul link. The average power consumption per unit

area is Ptot = λrPl,tot. Combining all terms together, for the

user-centric cell-free mMIMO, the energy efficiency is given

in (19) at the top of the next page. In the following section,

using the derived results of this section we provide useful

system design guidelines for the user-centric cell-free mMIMO

network.

VI. RESULTS AND DISCUSSION

In this section, we provide useful system design insights

from our analysis as well as validate our theoretical rate

coverage results through extensive Monte Carlo simulations.

Unless otherwise stated, solid lines and markers represent

analytical and simulation results, respectively.

A. Performance of traditional cell-free mMIMO

First, we validate the theoretical results derived for the

traditional architecture in Sec. III. We have considered a finite

circular region of radius Rs = 500 m. We have used 3GPP

Urban Micro-cell path-loss function [51] which is given as

10 log 10(l(r)) = 30.5 + 36.7 log10(max(r, 1)). (20)

We consider a maximum transmit SNR ρd = 122 dB and

transmit pilot SNR ρp = 112 dB. The system bandwidth BW

is 20 MHz and the noise power is set to -92 dBm over this

bandwidth. Hence, the maximum AP transmit power Pd = 1
watt. Let the TDD coherence block consists of τc = 200
symbols, which corresponds to a coherence bandwidth of 200

kHz and a coherence time of 1 ms. We assume that the

users are assigned orthogonal pilot sequences, equivalently the

number of users in this finite system K ≤ τp. The fraction ξtdd
of TDD resource allocated for the downlink is 0.8. The choice

of other system parameters are indicated at necessary places.

Using the rate coverage result of Proposition 1, the average

user rate is expressed as

S̄Eo,fin =

∫ ∞

t=o

tRc,fin(t)dt bits/s/Hz,

and corresponding average system sum-rate is KS̄Eo,fin

bits/s/Hz.

1) The effect of fronthaul capacity: In Fig. 2 (left), we

have presented the rate coverage of the system for K = 20
users in the system. As expected, the rate coverage improves

with increasing SCNR threshold Ts as it directly corresponds

to a higher fronthaul capacity Cf. Further, in Fig. 2 (right),

the average system sum-rate is presented as a function of

the number of users K for different fronthaul capacities. As

evident from the figure, the average system sum-rate is quasi-

concave function of the number of users. Further, for a given
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EEinf =
λuBWξ̂tddE[log2(1 + SINR0k)]

∆a

Kmax
PdNsλu + λr(Naκrf + Pfh,f) + Pfh,vBWλuNsξ̂tddE[log2(1 + SINR0k)]

. (19)
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Fig. 2: The effect of fronthaul capacity on system performance. System parameters: M = 600, Na = 40, τp = 20 (left), τp = 50 (right),Ko =
20, ρp = 112 dB, ρd = 122 dB.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

110 112 114 116 118 120
1.5

2

2.5

3

3.5

4

4.5

5
10

6

Fig. 3: The effect of number of antennas per AP on rate coverage (left) and average user rate (center). We have considered MNa =
600, τp = 40,K = 20, ρp = 112 dB, SCNR = 20 dB. (Right) The effect of transmit SNR on the energy efficiency. Parameters: MNa =
600,Ko = 20, τp = 40, ρp = 112 dB, SCNR = 20 dB, BW = 20 MHz.

number of APs, the optimum number of users that should

be multiplexed to maximize the average system rate increases

with the increasing fronthaul capacity.

2) Distributed vs. collocated: In Fig. 3 (left), we present the

rate coverage of the system for different number of antennas

at the AP while keeping the total number of antennas in the

system fixed, i.e., MNa = 600. We observe that the central-

ized architecture performs better than a distributed architecture

under conjugate beamforming and equal power allocation. In

Fig. 3 (center), we present the average user rate for different

number of antennas at each AP while keeping the total number

of antennas in the service region fixed. We consider the SCNR

threshold Ts = 20 dB. We observe that for high transmit SNR

ρd, average user rate increases as we move towards a more

collocated setup. On the other hand, with low ρd, the average

user SE is a concave function of the number of antennas

per AP. This behavior is in contrast to the conventional

MIMO results where a distributed implementation is always

preferable. The justification to this counter-intuitive trend can

be explained by the fact that due to conjugate beamforming,

we get a self-interference term from all the APs as evident

from the SINR expression in (5). Hence, with a distributed

implementation, the desired signal power from the nearest AP

increases and so does the self interference term. Therefore, a

more collated set up is preferable for high ρd.

3) Energy efficiency: In Fig. 3 (right), we present the

energy efficiency of the traditional cell-free mMIMO with re-

spect to transmit SNR. As evident from the figure, a distributed

network is less energy efficient. Further, the energy efficiency

is a quasi-concave function of transmit SNR.

B. Performance of user-centric cell-free mMIMO

Now, we verify the theoretical results derived in Secs. IV

and V through extensive Monte Carlo simulations. Further, we

provide a few useful network dimensioning guidelines. For the

simulations, we consider the system radius to be 2000 m. The

path loss is the same as (20). The choice of other system

parameters are indicated at appropriate places.

1) The load distribution result: In Fig. 4, we validate the

approximate theoretical PMFs derived in Secs. IV-A and IV-B,

respectively, by Monte Carlo simulations. In both the cases,
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Fig. 4: The PMF of the load of the nearest tagged AP (left) and the typical AP (right) in the network. λr = λu = 10−4, Ns = 5.
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Fig. 5: (Left) The number of serving APs to ensure a certain minimum SCNR for different Ts. Other parameters: λu = λr = 10−4, Cf = 20
bits/s/Hz. (Right) The required fronthaul capacity as a function of Ns to ensure P[SCNR ≥ Ts] is above a certain threshold. Other parameters:
λu = λr = 10−4, Ts = 15 dB.
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Fig. 6: (Left) The rate coverage of the typical user for different Ts and a fixed Cf = 80 bits/s/Hz. Other parameters: λu = λr = 10−4, Na =
20, Ns = 5, τp = 40, Tc = 200; ρp = 112dB, ρd = 122dB. (Center) The rate coverage for different number of serving APs (Ns). (Right)
Energy efficiency of the user-centric cell-free system as a function of Na. Other parameters: λu = λr = 10−4, Ns = 5, Cf = 80 bits/s/Hz,
Bw = 20 MHz.

theoretical and simulation results are remarkably close. In

Fig. 5 (left), using the typical AP load distribution result, for a

given fronthaul capacity Cf and SCNR threshold Ts, we present

the probability that SCNR is above Ts as a function of number

of serving APs Ns. Formally, we study P[SCNR ≥ Ts] =

P[2Cf/Ko − 1 ≥ Ts] = P[Ko ≤ Cf/ log2(1 + Ts)],

which is the CDF of the typical AP load. As expected, the

more stringent the Ts, the lower the probability of having

a SCNR more than Ts for a given number of serving APs.

Note that in this result we assume that all the users attached

to the typical AP are scheduled on the same resource while

using different pilots. In Fig. 5 (right), we present the required

fronthaul capacity as a function of number of serving APs. As
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expected, we observe a linear growth in Cf with increasing

Ns. However, the rate of growth depends on how strict the

SCNR constraint is.

2) The rate coverage and energy efficiency results: In Fig. 6

(left and center), we present the rate coverage result for the

user-centric architecture. The results suggest that the simu-

lations and the theory are in close agreement. As expected,

with reducing Ts coverage probability improves as the APs

are allowed to transmit to a potentially lesser number of users

thereby reducing the network interference. Further, increasing

Ns also improves the coverage probability. In Fig. 6 (right),

we present the system energy efficiency result highlighting its

concave nature with respect to the number of antennas per AP.

VII. CONCLUSION

In this work, we modeled and analyzed a cell-free mMIMO

network with finite fronthaul capacity using tools from

stochastic geometry. We considered two different architec-

tures of cell-free mMIMO, namely, the traditional architecture

where each AP serves all the users in the network, and the

user-centric architecture where the typical user is served by a

few nearest APs. For the traditional architecture, we derived

the user rate coverage result using the relevant statistics

of BPPs. For the user-centric architecture, we statistically

characterized the load for the typical AP as well as the set

of tagged APs that serve the typical user in the network.

Further, using the statistical properties of PPPs, we presented

the rate coverage result for the typical user in the network.

From our analyses, we conclude that for the traditional archi-

tecture, when the AP transmit power is relatively high, a more

collocated implementation of cell-free mMIMO is preferred

over the fully distributed implementation. Further, for the

user-centric architecture, there exists an optimal number of

antennas per AP that maximizes the system energy efficiency.

Promising future directions include consideration of more

practical fading scenarios such as Rician fading. Moreover, the

analysis presented in this work can be extended to consider

other beamforming schemes such as full-pilot zero-forcing.

The system analysis in the presence of pilot contamination

is also another promising direction that can lead to useful

guidelines for pilot allocation.

APPENDIX

A. Proof of Lemma 2

The proof of this lemma is based on a lower bound that

is well known in the mMIMO literature (cf. [52, Lemma 2],

[53]). From (2), we can express ydlo as given in (21) at the

top of the next page, where we assume that the user uo has

the knowledge of the average channel statistics with respect

to its serving APs and Po contains the user locations that use

the same pilot sequence as uo. In (21), it can be shown that

the desired signal is uncorrelated to the rest of the signals.

To derive an achievable rate (lower bound on the capacity),

we replace the uncorrelated signals by independent Gaussian

random variables [53]. The variance of each of the Gaussian

variables is equal to the corresponding variance of the unde-

sired signal. Hence, the SINR corresponding to this achievable

rate is given as SINRo = E
[
|T1|2

]
/(
∑7

i=2 E
[
|Ti|2

]
+ 1). In

this case, note that E [Ti] = 0 for all i. Further,

E
[
|T1|2

]
= ρdNa




∑

rl∈Φro

√

γlo(1− 2−Cf/kl)

Kmax





2

,

E
[
|T2|2

]
= ρd

∑

rl∈Φro

γlo(1− 2−Cf/kl)

Kmax

,

E
[
|T3|2

]
= ρd(Na + 1)

∑

rl∈Φro

γlo
Kmax

2−Cf/kl ,

E
[
|T4|2

]
= ρd

∑

rl∈Φro

(βlo − γlo)

Kmax

,

E
[
|T5|2

]
= ρd

∑

rl∈Φro

kl − 1

Kmax

βlo

≤ ρd
∑

rl∈Φro

Kmax − 1

Kmax

βlo ≤ ρd
∑

rl∈Φro

βlo,

E
[
|T6|2

]
= ρd

∑

rl∈Φc
ro

kl − 1

Kmax

βlo ≤ ρd
∑

rl∈Φc
ro

Kmax − 1

Kmax

βlo,

E
[
|T7|2

]
=

∑

ui∈{Po\uo}




∑

rl∈Φri

ρdβlo

Kmax

+ ρdNa

(
∑

rl∈Φri

√
γlo
Kmax

)2


 .

Substituting these values, we obtain the expression presented

in the lemma.

B. Proof of Lemma 6

The mean load of the N -th closest serving AP to the typical

user at o is given in (22) in the next page, where ro = ∥r−o∥,

rx = ∥r − x∥ =
√

r2o + d2x − 2rodx cos(vx), dx = ∥x − o∥
(please refer to Fig. 7 (left)). Conditioned on the location of

the AP at r, we expand the inner expectation as given in (23)

in the next page, where the second step follows from the fact

that {Φr \ r} is a homogeneous PPP with density λr and the

regions in each indicator function are non-overlapping. The

final result follows in two step: first we decondition over the

point r, then we decondition over Φu. Formally, E[KN ] =

EΦu

[
∑

x∈Φu

∫

r∈R2

htag,m1(∥r∥, dx, vx, N)λrdr

]

=EΦu

[
∑

x∈Φu

2πλr

∫ ∞

ro=0

htag,m1(ro, dx, vx, N)rodro

]

=2πλuλr

∞∫

ro=0

dro

∞∫

dx=0

ddx

2π∫

vx=0

dvxhtag,m1(ro, dx, vx, N)rodx,

where the last step follows from the application of Campbell’s

theorem.

Now, we focus on deriving the second moment of the load

E[|KN |2] for the N -th nearest serving AP. Using the similar

principle used in (22) for the first moment, we can express

E[|KN |2] as given in (24) in the next page. On the right hand

side of (24), the second summation term is the mean E[KN ],
which has already been derived above. Hence, we focus on

deriving an expression for the first term (please refer to Fig. 7
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ydlo =
√
ρd

∑

rl∈Φro

√
ηlo

E
[
∥ĝlo∥2

]

√
Naγlo

qol

︸ ︷︷ ︸

T1: Desired signal

+
√
ρd

∑

rl∈Φro

√
ηlo

(
∥ĝlo∥2 − E

[
∥ĝlo∥2

])

√
Naγlo

qol

︸ ︷︷ ︸

T2: Beamforming uncertainity

+
∑

rl∈Φro

∥ĝlo∥2√
Naγlo

√
ρdηloq̃ol

︸ ︷︷ ︸

T3: compression error

+
∑

rl∈Φro

√
ρdηlo

g̃T
loĝ

∗
lo√

Naγlo
q̂ol

︸ ︷︷ ︸

T4: chanenel estimation error

+
∑

rl∈Φro

∑

ui∈Ψul\{uo}

√
ρdηli

gT
loĝ

∗
li√

Naγli
q̂il

︸ ︷︷ ︸

T5: inter user interference

+
∑

rl∈ΦC
ro

∑

ui∈Ψul\Po

√
ρdηli

gT
loĝ

∗
li√

Naγli
q̂il

︸ ︷︷ ︸

T6: interfering AP signal

+
∑

ui∈{Po\{uo}}

∑

rl∈Φri

√
ρdηli

gT
loĝ

∗
li√

Naγli
q̂il

︸ ︷︷ ︸

T7: pilot contamination

+no, (21)

E[KN ] = E

[
∑

x∈Φu

1 (|Φr ∩ Brx(x)| ≤ Ns − 1)1 (|Φr ∩ Bro(o)| = N − 1)

]

= EΦu

[
∑

x∈Φu

EΦr
[1 (|Φr ∩ Brx(x)| ≤ Ns − 1)1 (|Φr ∩ Bro(o)| = N − 1)]

]

, (22)

E{Φr\r}

[
N−1∑

n=0

1(|Φr∩Bro (o)∩Brx (x)|=n)1(|Φr∩{Bro (o)\Brx (x)}|=N−n−1)1(|Φr∩{Brx (x)\Bro (o)}|≤Ns−n−1)

]

=

N−1∑

n=0

(λr|Bro(o) ∩ Brx(x)|)n
n!

e−λr|Bro (o)∩Brx (x)|
(λr|Bro(o) \ Brx(x)|)N−n−1

n!
e−λr|Bro (o)\Brx (x)|

Ns−n−1∑

l=0

(λr|Brx(x) \ Bro(o)|)Ns−n−1

l!
e−λr|Brx (x)\Bro (o)|

=
N−1∑

n=0

PosPMF(n, λrAoI2(ro, dx, vx))PosPMF(N − n− 1, λr(πr
2
o − AoI2(ro, dx, vx)))

PosCMF(Ns − n− 1, λr(πr
2
x − AoI2(ro, dx, vx))) = htag,m1(ro = ∥r∥, dx, vx, N), (23)

E[|KN |2] =E

[∣
∣
∣
∣

∑

x∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bro (o)|=N−1

∣
∣
∣
∣

2]

= E

[
∑

x∈Φu

y∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bry (y)|≤Ns−11|Φr∩Bro (o)|=N−1

]

=E

[ x ̸=y
∑

x∈Φu

y∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bry (y)|≤Ns−11|Φr∩Bro (o)|=N−1

]

+ E

[
∑

x∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bro (o)|=N−1

]

.

(24)

(center)). Using (15), let us define ux = u(ro, dx, vx), uy =
u(ro, dy, vy), and

uxy =







ux + uy, {vx < π, vy > π},
ux + uy, {vx > π, vy < π},
|ux − uy|, Otherwise.

(25)

Further, let us denote the region of intersection of three

circles as RoIoxy = {Bro(o) ∩ Brx(x) ∩ Bry (y)}, the region

exclusive to both the circles centered at o and x as RoIox =
{Bro(o)∩Brx(x)} \ RoIoxy, the regions exclusive to both the

circles at o and y as RoIoy = {Bro(o) ∩ Bry (y)} \ RoIoxy,

and the common region exclusive to circles at x and y as

RoIxy = {Brx(x) ∩ Bry (y)} \ RoIoxy. Conditioned on Φu

and r, the first term on the right hand side of (24) can

be expressed as given in (26) at the top of the next page,

where ri =
√

d2i + r2o − 2rodi cos(vi) for i ∈ {x, y}, the

function AoI2 (·, ·, ·) is given in (14), the area of intersection

of three circles is evaluated as per the procedure presented in

Appendix D. Further in (26), the Step (a) follows from the fact

that the regions in indicator functions are non-overlapping and
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E{Φr\r}

[

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bry (y)|≤Ns−11|Φr∩Bro (o)|=N−1

]

=E{Φr\r}

[N−1∑

n=0

1|Φr∩RoIoxy|=n

N−n−1∑

m=0

1|Φr∩RoIox|=m

N−m−n−1∑

p=0

1|Φr∩RoIoy|=p1|Φr∩{Bro (o)\{Brx (x)∪Bry (y)}}}|=N−n−m−p−1

min{Ns−n−m−1,Ns−n−p−1}
∑

q=0

1|Φr∩RoIxy|=q1|Φr∩{Brx (x)\{Bro (o)∪Bry (y)}}}|≤Ns−n−m−q−1

1|Φr∩{Bry (y)\{Bro (o)∪Brx (x)}}}|≤Ns−n−p−q−1

]

(a)
=

N−1∑

n=0

PosPMF(n, λrAoI3(ro, rx, ry, vx, vy))

×
N−n−1∑

m=0

PosPMF(m,λr(AoI2(ro, rx, vx)− AoI3(ro, rx, ry, vx, vy)))

×
N−n−m−1∑

p=0

PosPMF(p, λr(AoI2(ro, ry, vy)− AoI3(ro, rx, ry, vx, vy)))

× PosPMF(N − n−m− p− 1, λr(πr
2
o − AoI2(ro, rx, vx)− AoI2(ro, ry, vy) + AoI3(ro, rx, ry, vx, vy)))

×
min
{
Ns−n−m−1,
Ns−n−p−1

}

∑

q=0

PosPMF(q, λr(AoI2(rx, ry, uxy)− AoI3(ro, rx, ry, vx, vy)))

× PosPMF(Ns − n−m− q − 1, λr(πr
2
x − AoI2(ro, rx, vx)− AoI2(rx, ry, uxy) + AoI3(ro, rx, ry, vx, vy)))

× PosPMF(Ns − n− p− q − 1, λr(πr
2
y − AoI2(ro, ry, vy)− AoI2(rx, ry, uxy) + AoI3(ro, rx, ry, vx, vy)))

= htag,m2(ro, dx, dy, vx, vy, N). (26)

Φr \ r is a homogeneous PPP with density λr. Similar to the

derivation of the first moment, we obtain the final expression

for the second moment by deconditioning over r and then over

Φu by applying Campbell’s theorem.

C. Proof of Lemma 7

Much of the derivation can be done on the similar lines as

that of Appendix B. Since Φr is a homogeneous PPP, it is

translation invariant. Hence, we assume that the typical AP is

located at the origin. The mean load of the AP is

E[Ko] =E

[
∑

x∈Φu

E
[
1
(
|Φr ∩ B∥x∥(x)| ≤ Ns − 1

)]

]

=2πλu

∫ ∞

r=0

Ns−1∑

l=0

(πλrr
2)l

l!
exp(−πλrr

2)rdr

(a)
=

λu
λr

Ns−1∑

l=0

∫ ∞

u=0

ul

l!
exp(−u)du =

Nsλu
λr

,

where (a) follows from replacing u = πλrr
2. The second

moment of the load can be written as E[K2
o ] =

E

[∣
∣
∣
∣

∑

x∈Φu

1
(
|Φr ∩ B∥x∥(x)| ≤ Ns − 1

)
∣
∣
∣
∣

2]

=E

[ x ̸=y
∑

x∈Φu

y∈Φu

EΦr

[

1|Φr∩B∥x∥(x)|≤Ns−11|Φr∩B∥y∥(y)|≤Ns−1

] ]

+ E

[
∑

x∈Φu

E

[

1|Φr∩B∥x∥(x)|≤Ns−1

] ]

︸ ︷︷ ︸

E[Ko]

.

We can decompose the inner expectation

EΦr

[

1|Φr∩B∥x∥(x)|≤Ns−11|Φr∩B∥y∥(y)|≤Ns−1

]

=

Ns−1∑

l=0

EΦr

[

1|Φr∩{B∥x∥(x)∩B∥y∥(y)}|=l

× 1|Φr∩{B∥y∥(y)\{B∥x∥(x)∩B∥y∥(y)}|≤Ns−l−1

× 1|Φr∩{B∥x∥(x)\{B∥x∥(x)∩B∥y∥(y)}|≤Ns−l−1

]

.

From the above expression, we obtain the expression for

htyp,m2(rx, ry, u) by taking the expectation with respect to Φr.

Now, with the application of Campbell’s formula, we get the

final expression of the lemma as

E




∑

x∈Φu

x ̸=y
∑

y∈Φu

htyp,m2(rx, ry, u)





=2πλ2
u

∞∫

rx=0

∞∫

ry=0

2π∫

u=0

htyp,m2(rx, ry, u)durydryrxdrx,

where rx, ry, and u are as depicted in Fig. 7 (Right).
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Fig. 7: (Left and center figures are for the proof in Appendix B.) The typical user is located at o, while x,y ∈ Φu are random user locations.
The red triangles represent the serving AP locations of the typical user. The illustration is for the third nearest serving AP for the typical
user. (Right figure is for the proof in Appendix C.) x and y correspond to user locations and o correspond to the typical AP location.

D. Area of Intersection of Three Circles

Due to the constraint that the three circles have a common

point of intersection, the common area of intersection will

be either of the following three cases: (1) a point with area

zero, (2) a lens, or (3) a circular triangle. All three cases are

presented in Fig. 8. When the common area of intersection is

a circular triangle (right most case in Fig. 8), the area is given

as [54] AoI3(ro, rx, ry, vx, vy) =

1

4

√

(c1 + c2 + c3)(c2 + c3 − c1)(c1 + c3 − c2)(c1 + c2 − c3)

+ r2o arcsin
c1
2ro

− c1
4

√

4r2o − c21 + r2y arcsin
c2
2ry

− c2
4

√

4r2y − c22 + r2x arcsin
c3
2rx

− c3
4

√

4r2x − c23,

where c1, c2, c3 are chord lengths as denoted in the figure.

Please note that the first two cases are special cases of the

third case, e.g., we can get the second case by replacing c2 = 0
and c1 = c3. Similarly, in the first case, c1 = c2 = c3 = 0.

Further, cis are functions of ro, rx, ry, vx, vy . The procedure

for determining them is outlined in [54] that is followed in

this work.

E. Proof of Proposition 2

Ignoring the pilot contamination term in the expression of

achievable rate in (3), we can write the rate coverage as given

in (27) at the top of the next page. To proceed further, we

first condition on the distance to the Ns-th serving AP dNso.

Conditioned on this distance, we replace
∑

rl∈ΦC
ro

βlo by its mean

which is given as EΦC
ro
[
∑

rl∈ΦC
ro

βlo] = 2πλr
∫∞

r=dNso
l(r)rdr.

This result follows from the application of Campbell’s theo-

rem. Note that using the mean instead of the exact expectation

has marginal impact on the accuracy of the result as
∑

rl∈Φr

βlo

is dominated by contributions from the nearest Ns serving

APs. Hence, we write
∑

rl∈Φr

βlo ≈
∑

rl∈Φro

βlo + EΦC
ro
[
∑

rl∈ΦC
ro

βlo].

Next, the loads for the different serving APs are correlated.

Hence, to get the exact result, we need to evaluate (27)

with respect to the joint distribution of {Ki}Ns

i=1. However,

obtaining this joint distribution is not tractable. Hence, we

exactly consider the load of the nearest AP and replace

the load of the rest of the APs by its effective mean. For

the i-th nearest AP, the effective mean is given as K̄i =
1 +

∑∞
ki=0 min{ki,Kmax}P[Ki = ki], where Ki follows

negative binomial distribution whose PMF is determined using

the moment matching method presented in Sec. IV-A. Under

the above two approximations, conditioned on the distances to

the serving APs and the load of the nearest AP to the typical

user, the rate coverage is given as Rc,inf(Tr) =

Ek1,d1o,...,dNso

[

1

(

2πλr

∞∫

dNso

l(r)rdr ≤ hcov(k1, d1o, d2o, . . . , dNso

)]

, (28)

where hcov(k1, d1o, d2o, . . . , dNso) is given by (18). Note that

conditioned on dNso, dio for 1 ≤ i ≤ Ns − 1 are i.i.d.

distributed with the following PDF [55]

fDio
(dio) =

2dio
d2Nso

, 0 ≤ dio ≤ dNso.

Further, the PDF of DNso is given as [55]

fDNso
(dNso) =

2

Γ(Ns)
(πλr)

Nsd2Ns−1
Nso

exp(−πλrd
2
Nso).

We evaluate the expectation in (28) using the aforementioned

distance distributions along with the PMF of the load K1

associated with the nearest tagged AP.
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