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ABSTRACT

In this paper, we introduce the concept of information consistency for Bayesian Gaussian process models
and further provide the information consistency results for stochastic kriging (SK). It is found that, to ensure
information consistency of SK, the budget allocated should grow in a fashion that is commensurate with
the smoothness level of the mean response function to estimate, as the number of design points approaches
infinity. Moreover, it is recommended that an experiment design consist of a relatively large number of
design points with a few replications at each when given a fixed budget to expend.

1 INTRODUCTION

Complex simulation models of proposed or existing systems are often used to aid system design and
analysis. In some situations, however, simulation models can be very expensive to run; in this case, if
intense simulation is necessary to evaluate even one scenario and there are many “what if” scenarios to
evaluate, simulation cannot deliver the desired answer in a timely manner. To remedy the situation, a
metamodel is often used as an accurate, drop-in replacement for the simulation model as if the simulation
can be run “on demand” to support real-time decision making. A metamodel is typically built on outputs
from simulations run at some selected design points to “map” the performance response surface as a function
of the controllable decision variables, or uncontrollable environmental variables. Successful applications
of simulation metamodeling have been recorded in many cases (Osorio and Bierlaire 2013; Ouyang et al.
2017; Santos and Santos 2016).

The Gaussian process regression (GPR) or kriging methodology has been one of the most popular
metamodeling approaches in various engineering disciplines for approximating the output of deterministic
computer experiments (i.e., the same output is produced if the simulation is run twice at the same design
point); see, for instance, Santner et al. (2003). One primary reason for GPR models’ popularity is that they
unite sophisticated and consistent theoretical investigations with computational tractability (Rasmussen and
Williams 2006).

Asymptotic properties of GPR models have been investigated from different perspectives over the past
few decades. On the one hand, posterior consistency of GPR models has been well studied in various
general settings, providing a frequentist’s validation of these methods as some kind of updating approaches.
That is, as the sample size increases, one expects the posterior distribution of the parameter estimates
to concentrate around the true values of the parameters; see, e.g., a comprehensive review of posterior
consistency given by Choi and Ramamoorthi (2008).

On the other hand, quite a few research studies have investigated consistency of GPR models from the
perspective of prediction. For instance, Vazquez and Bect (2010) investigated the pointwise consistency of
the kriging predictor with known mean and covariance functions; for GPR models with a constant noise
variance (also known as kriging with nugget effect), Gratiet and Garnier (2015) analyzed the asymptotic
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values of the resulting integrated mean squared error (IMSE) and obtained the convergence rates of IMSE
for selected kernels as the number of design points tends to infinity. Seeger et al. (2008) proved information
consistency of GPR models based on cumulative log loss. Roughly speaking, if the sample size of the
observations collected is sufficiently large and the underlying covariance function satisfies some regularity
conditions, the prediction based on a GPR model is consistent to the true curve of interest, and the
consistency does not depend on the choice of the values of hyper-parameters involved in the covariance
function. Moreover, information consistency rates for a wide range of covariance functions were obtained
using kernel eigenvalues asymptotics. The interested reader is referred to Shi and Choi (2011) and references
therein for details.

Standard GPR models (i.e., kriging and kriging with nugget effect), however, often fall short for the
purpose of providing an accurate approximation to the mean response function implied by a stochastic
simulation experiment, especially when the simulation model generates random outputs that exhibit strong
heteroscedasticity, namely, the simulation variance varies significantly across the design space (Ankenman
et al. 2010). The literature on heteroscedastic GPR models for stochastic simulation metamodeling is not
sparse (Ankenman et al. 2010; Ng and Yin 2012; van Beers and Kleijnen 2008). The stochastic kriging
(SK) methodology proposed by Ankenman et al. (2010) has been known as an effective metamodeling
tool for approximating a mean response function by correctly accounting for both sampling uncertainty
inherent in a stochastic simulation and the response-surface uncertainty. Despite a great amount of research
effort dedicated to experiment design and analysis methods for SK metamodeling (Chen and Kim 2014;
Chen and Kim 2016; Chen et al. 2012; Chen et al. 2013; Liu and Staum 2010; Wang and Chen 2018),
little work has been done to investigate consistency issues of SK and heteroscedastic GPR models alike.

In this paper, we study information consistency of SK with known heteroscedasticity along the lines
of Seeger et al. (2008) and Wang and Shi (2014). The results help shed some light on properties of a
desirable stochastic simulation experiment design for SK to achieve such a consistency. It is found that
the budget used by SK metamodeling should grow in a fashion that is commensurate with the smoothness
level of the mean response function of interest, as the number of design points approaches infinity. The
remainder of the paper is organized as follows. Section 2 provides a brief review on SK. Section 3 provides
the main results. Finally, Section 4 concludes the paper.

2 A BRIEF REVIEW ON STOCHASTIC KRIGING

Proposed by Ankenman et al. (2010), the SK methodology has been known as an effective metamodeling
tool for approximating a mean response function implied by a stochastic simulation. We provide a brief
review on SK in this section before delving into the information consistency issue of interest.

A simulation experiment design for applying SK to approximate a mean response function typically
comprises a set of design points (say, k) to run independent simulations and the corresponding numbers
of replications to apply at each, i.e., {(xi,ni), i = 1,2, . . . ,k}. The simulation output obtained at a design
point xi ∈X ⊂ℜd on the jth simulation replication can be described by the following model:

Y j(xi) = f0(xi)+ ε j(xi), j = 1,2, . . . ,ni, (1)

where f0(·) is the true unknown mean response function that we intend to estimate, and the simulation
errors incurred at xi on different simulation replications, ε1(xi),ε2(xi), . . ., are assumed to be independent
and identically distributed (i.i.d.) normal random variables, ε j(xi) ∼ N (000,V(xi)), i = 1,2, . . . ,k. The
simulation error variance V(x) may depend on x and supx∈X V(x) < ∞. The normality of ε j(x) can be
anticipated from the fact that in a discrete-event simulation the simulation output Y j(x) could be the average
of a large number of more basic random variables obtained on the jth simulation replication.

Given the simulation outputs generated, we see from (1) that the average output at xi can be written as

Ȳ (xi) =
1
ni

ni

∑
j=1

Y j(xi) = f0(xi)+ ε̄(xi), i = 1,2, . . . ,k, (2)
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where ε̄(xi) = n−1
i ∑

ni
j=1 ε j(xi) denotes the average simulation error incurred at xi. Write ε̄ as a shorthand

for the k×1 vector of average simulation errors (ε̄(x1), ε̄(x2), . . . , ε̄(xk))
>, and write the k×1 vector of

average outputs as Ȳ =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)>.
Parallel with the treatment adopted in the standard GPR literature (Rasmussen and Williams 2006;

Santner et al. 2003), in SK it is assumed that the underlying mean response function f0(·) is a zero-mean
Gaussian process, denoted by f0(·)∼GP(000,K(·, ·;θθθ)), where K(·, ·;θθθ) denotes the covariance function or
kernel. Specifically, the covariance between the values of f0 at any two inputs x,x′ ∈X can be modeled
as

Cov
(

f0(x), f0(x′)
)
= K(x,x′;θθθ), (3)

where θθθ denotes the vector of hyper-parameters in the covariance function. Commonly used covariance
functions include Matérn and squared exponential or Gaussian covariance functions; see Chapter 4 of
Rasmussen and Williams (2006) for details. We note that Ankenman et al. (2010) refer to the stipulated
stochastic nature of f0(·) as extrinsic uncertainty, in contrast to the intrinsic uncertainty induced by the
simulation error ε that is inherent in a stochastic simulation output; and these two sources of uncertainty
are assumed to be independent.

To predict the mean response at any x0 ∈X , SK adopts the following predictor:

µ(x0) = ΣΣΣ f (x0,X)>
(
ΣΣΣ f ,k +ΣΣΣε,k

)−1
Ȳ , (4)

and the corresponding predictive variance is given by

σ
2(x0) = ΣΣΣ f (x0,x0)−ΣΣΣ f (x0,X)>(ΣΣΣ f ,k +ΣΣΣε,k)

−1
ΣΣΣ f (x0,X), (5)

where X := (x>1 ,x>2 , . . . ,x>k )
> denotes the matrix consisting the k design points. With a slight abuse of

notation, we denote ΣΣΣ f ,k :=K(X,X;θθθ) as the k×k covariance matrix across the k design points, with its (i, j)th
entry given by K(xi,x j;θθθ) for i, j = 1,2, . . . ,k. The k×1 vector, ΣΣΣ f (x0,X), contains the covariances between
the k design points and the prediction point x0. The k×k matrix ΣΣΣε,k is the variance-covariance matrix of ε̄ .
As the use of common random numbers (CRN) does not necessarily help improve the predictive performance
of SK (Chen et al. 2012), in this paper we assume that CRN is not applied in simulation experiments.
Hence, ΣΣΣε,k reduces to a k× k diagonal matrix, i.e., ΣΣΣε,k = diag(V(x1)/n1,V(x2)/n2, . . . ,V(xk)/nk).

3 MAIN RESULTS

To start, define x≤i and Ȳ≤i respectively as {x1,x2, . . . ,xi} and {Ȳ1, Ȳ2, . . . , Ȳi} for i ≥ 1, where Ȳi is
a shorthand for Ȳ (xi), i = 1,2, . . . ,k. Similarly, let x<i and Ȳ<i respectively be {x1,x2, . . . ,xi−1} and
{Ȳ1, Ȳ2, . . . , Ȳi−1} for i ≥ 2. Assume that f (·) ∼ GP(000,K(·, ·;θθθ)). Hence, the stochastic process f (·)
induces a measure on the space of continuous functions F = { f (·) : X 7→ℜ}, where recall that θθθ is the
hyper-parameter vector and we assume that θθθ is estimated by θ̂θθ via some empirical Bayesian method (Shi
and Choi 2011). Also recall that f0(·) denotes the true underlying mean response function. Denote

pgp(Ȳ≤k) =
∫

F
p(Ȳ≤k| f (x≤k)) p̃( f (x≤k))d f (x1) . . .d f (xk),

p0(Ȳ≤k) = p(Ȳ1, Ȳ2, . . . , Ȳk| f0(x≤k)) = p(Ȳ≤k| f0(x≤k)),

where pgp(Ȳ≤k) is the predictive distribution of Ȳ≤k given by SK, and p̃( f ) depends on the data collected
at design points in x≤k since the hyper-parameters of f (·) are estimated from the data collected.

We say that SK achieves information consistency if k−1Ex≤k(D[p0(Ȳ≤k), pgp(Ȳ≤k)])→ 0 as k→∞, where
Ex≤k denotes the expectation under the distribution of the design points in x≤k and D[p0(Ȳ≤k), pgp(Ȳ≤k)] is the
Kullback-Leibler (KL) divergence between p0(·) and pgp(·), i.e., D[p0(u), pgp(u)]=

∫
p0(u) log [p0(u)/pgp(u)]du.
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Lemma 1 Consider SK as a GP prediction method equipped with a zero-mean GP prior and covariance
function K(·, ·;θθθ). Let Y j(xi)’s be simulation outputs as described by the output model (1) and the underlying
mean response function f0 be from the reproducing kernel Hilbert space (RKHS) associated with K(·, ·;θθθ).
Suppose that K(·, ·;θθθ) is bounded and continuous in θθθ and the estimator θ̂θθ → θθθ almost surely as k→ ∞.
Then for some M > 0 and any η > 0, when k is large enough, it holds that

1
k

(
− log pgp(Ȳ≤k)+ log p0(Ȳ≤k)

)
≤ 1

k

(
1
2
‖ f0‖2

K +
1
2

log |ΣΣΣ−1
ε,kΣΣΣ f ,k + Ik|+M

)
+η , (6)

where recall that ΣΣΣ f ,k is the k× k covariance matrix over the design points in x≤k stipulated by SK and
ΣΣΣε,k = diag(V(x1)/n1,V(x2)/n2, . . . ,V(xk)/nk). Furthermore, ‖ f0‖K is the RKHS norm of f0 associated
with K(·, ·;θθθ), |A| denotes the determinant of matrix A, and Ik denotes the k× k identity matrix.

Proof. Let H be the RKHS associated with K(·, ·;θθθ) and Hk the span of K(·,xi;θθθ), i.e., Hk = { f (·) :
f (x) = ∑

k
i=1 αiK(x,xi;θθθ), for any αi ∈ ℜ}. We first assume that f0 ∈Hk, then f0(·) can be expressed

as f0(·) = ∑
k
i=1 αiK(·,xi;θθθ). Denote ααα = (α1,α2, . . . ,αk)

>. It follows from the properties of RKHS that
‖ f0‖2

K = ααα>ΣΣΣ f ,kααα and ( f0(x1), f0(x2), . . . , f0(xk))
> = ΣΣΣ f ,kααα .

Let P and P̄ be any two measures on F , then it follows from Fenchel-Legendre duality relationship
that, for any functional g(·) on F ,

EP̄[g( f )]≤ logEP[eg( f )]+D(P̄,P). (7)

In (7), we let

1. g( f ) be log p(Ȳ≤k| f ) for any Ȳ1, Ȳ2, . . . , Ȳk ∈ℜ and f ∈F ;
2. P be the probability measure induced by GP(000,K(·, ·; θ̂θθ)), hence its finite dimensional distribution

at z1,z2, . . . ,zk is p̃(z1,z2, . . . ,zk) = N (000, Σ̂ΣΣ f ,k), and

EP[eg( f )] = EP[p(Ȳ≤k| f )] =
∫

F
p(Ȳ≤k| f ) p̃( f (x≤k))d f (x1) . . .d f (xk) = pgp(Ȳ≤k); (8)

where Σ̂ΣΣ f ,k is defined in the same way as ΣΣΣ f ,k but with θθθ being replaced by θ̂θθ .
3. P̄ be the posterior distribution of f (·) on F which has a prior distribution GP(000,K(·, ·;θθθ)) and

normal likelihood ∏
k
i=1 N (Ȳi; f (xi),V(xi)/ni), where Ȳ = (Ȳ1, Ȳ2, . . . , Ȳk)

> = (ΣΣΣ f ,k + ΣΣΣε,k)ααα.
And Ȳ is a vector of average outputs observed at x1,x2, . . . ,xk. Hence, P̄( f ) = p( f |Ȳ≤k,x≤k) is a
probability measure on F . By the GPR property, the posterior of ( f (x1), f (x2), . . . , f (xk))

> is

p̄( f (x1), f (x2), . . . , f (xk)) := p
(

f (x1), f (x2), . . . , f (xk)|Ȳ≤k,x≤k
)

= N
(
ΣΣΣ f ,k(ΣΣΣ f ,k +ΣΣΣε,k)

−1Ȳ ,ΣΣΣ f ,k(ΣΣΣ f ,k +ΣΣΣε,k)
−1

ΣΣΣε,k
)
,

= N (ΣΣΣ f ,kααα,ΣΣΣ f ,kB−1),

where B = ΣΣΣ
−1
ε,kΣΣΣ f ,k + Ik.
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Now, on the one hand, it follows that

D(P̄,P) =
∫

F
log
(

dP̄
dP

)
dP̄

=
∫

ℜk
p̄( f (x1), f (x2), . . . , f (xk)) log

[
p̄( f (x1), f (x2), . . . , f (xk))

p̃( f (x1), f (x2), . . . , f (xk))

]
d f (x1) . . .d f (xk)

=
1
2

(
tr(Σ̂ΣΣ

−1
f ,kΣΣΣ f ,kB−1)+(ΣΣΣ f ,kααα)>ΣΣΣ

−1
f ,k(ΣΣΣ f ,kααα)− k− log |ΣΣΣ f ,kB−1|+ log |Σ̂ΣΣ f ,k|

)
=

1
2

(
− log |Σ̂ΣΣ f ,kΣΣΣ f ,k|+ log |B|+ tr(Σ̂ΣΣ

−1
f ,kΣΣΣ f ,kB−1)+(ΣΣΣ f ,kααα)>Σ̂ΣΣ

−1
f ,k(ΣΣΣ f ,kααα)− k

)
=

1
2

(
− log |Σ̂ΣΣ f ,kΣΣΣ f ,k|+ log |B|+ tr(Σ̂ΣΣ

−1
f ,kΣΣΣ f ,kB−1)+‖ f0‖2

K +ααα
>

ΣΣΣ f ,k(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k− Ik)ααα− k

)
,

where tr(A) denotes the trace of matrix A. On the other hand,

EP̄[g( f )] = EP̄[log p(Ȳ≤k| f )] =
k

∑
i=1

EP̄[log p
(
Ȳi| f (xi)

)
], (9)

since

log p
(
Ȳi| f (xi)

)
=−1

2
· log

(
2π

V(xi)

ni

)
− 1

2
·
(
Ȳi− f (xi)

)2

V(xi)/ni
.

By Taylor’s expansion, we expand log p
(
Ȳi| f (xi)

)
at f0(xi),

log p
(
Ȳi| f (xi)

)
= log p

(
Ȳi| f0(xi)

)
+

d
(
log p

(
Ȳi| f0(xi)

))
d f (xi)

( f (xi)− f0(xi))

+
1
2

d2
(
log p

(
Ȳi| f̃ (xi)

))
d2 f (xi)

( f (xi)− f0(xi))
2 ,

where f̃ (xi) = f0(xi)+λ ( f (xi)− f0(xi)) for some λ ∈ (0,1) and

d(log p
(
Ȳi| f (xi)

)
)

d f (xi)
=

(
Ȳi− f (xi)

)
V(xi)/ni

,
d2(log p

(
Ȳi| f (xi)

)
)

d2 f (xi)
=− ni

V(xi)
.

Hence, we have

EP̄[log p
(
Ȳi| f (xi)

)
] = log p

(
Ȳi| f0(xi)

)
+

d
(
log p

(
Ȳi| f0(xi)

))
d f (xi)

EP̄ [ f (xi)− f0(xi)]

− ni

2V(xi)
EP̄

[
( f (xi)− f0(xi))

2
]
, (10)

where EP̄ [ f (xi)− f0(xi)] = 0 and EP̄

[
( f (xi)− f0(xi))

2
]
= (ΣΣΣ f ,kB−1)ii, i.e., the (i, i)th entry of the matrix

ΣΣΣ f ,kB−1, i = 1,2, . . . ,k.
It follows from (9) and (10) that

EP̄[g( f )] = EP̄[log p(Ȳ≤k| f )] =
k

∑
i=1

EP̄[log p
(
Ȳi| f (xi)

)
]

=
k

∑
i=1

log p
(
Ȳi| f0(xi)

)
− 1

2

k

∑
i=1

(ΣΣΣ f ,kB−1)ii

V(xi)/ni
=

k

∑
i=1

log p
(
Ȳi| f0(xi)

)
− 1

2
tr(ΣΣΣ f ,kB−1

ΣΣΣ
−1
ε,k)

= log p0(Ȳ≤k)−
1
2

tr(ΣΣΣ f ,kB−1
ΣΣΣ
−1
ε,k). (11)
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Finally, we have from (7)–(11) that

− log pgp(Ȳ≤k)+ log p0(Ȳ≤k) =− logEP[eg( f )]+EP̄[g( f )]+
1
2

tr(ΣΣΣ f ,kB−1
ΣΣΣ
−1
ε,k)

≤ D(P̄,P)+
1
2

tr(ΣΣΣ f ,kB−1
ΣΣΣ
−1
ε,k)

=
1
2

(
− log |Σ̂ΣΣ

−1
f ,kΣΣΣ f ,k|+ log |B|+ tr(Σ̂ΣΣ

−1
f ,kΣΣΣ f ,kB−1)+‖ f0‖2

K

+ααα
>

ΣΣΣ f ,k(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k− Ik)ααα− k+ tr(ΣΣΣ f ,kB−1

ΣΣΣ
−1
ε,k)
)
. (12)

When k is large enough, for any η > 0, we have there exists η ′ > 0 such that tr(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,kB−1) ≤

tr
(
(Ik +η ′ΣΣΣ f ,k)B−1

)
satisfying tr(η ′ΣΣΣ f ,kB−1)≤ η · k. Hence,

tr(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,kB−1)+ tr(ΣΣΣ f ,kB−1

ΣΣΣ
−1
ε,k)≤ tr

(
(Ik +η

′
ΣΣΣ f ,k)B−1 +ΣΣΣ

−1
ε,kΣΣΣ f ,kB−1

)
= tr

(
(Ik +ΣΣΣ

−1
ε,kΣΣΣ f ,k)B−1 +η

′
ΣΣΣ f ,kB−1

)
= k+ tr(η ′ΣΣΣ f ,kB−1)≤ k+η · k. (13)

Hence, from (12) and (13) we have

− log pgp(Ȳ≤k)+ log p0(Ȳ≤k)

≤ 1
2

(
− log |Σ̂ΣΣ

−1
f ,kΣΣΣ f ,k|+ log |B|+ k+ tr(η ′ΣΣΣ f ,kB−1)+‖ f0‖2

K +ααα
>

ΣΣΣ f ,k(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k− Ik)ααα− k

)
=

1
2

(
− log |Σ̂ΣΣ

−1
f ,kΣΣΣ f ,k|+ log |B|+η · k+‖ f0‖2

K +ααα
>

ΣΣΣ f ,k(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k− Ik)ααα

)
.

Now since the covariance function is bounded and continuous in θθθ and θ̂θθ → θθθ almost surely, Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k−

Ik→ 0 as k→∞. There exists a positive constant M such that for k large enough, − log |Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k|< M and

ααα>ΣΣΣ f ,k(Σ̂ΣΣ
−1
f ,kΣΣΣ f ,k− Ik)ααα < M. Therefore, we have

− log pgp(Ȳ≤k)≤− log p0(Ȳ≤k)+
1
2
‖ f0‖2

K +M+
1
2

log |B|+η · k

for any f0 ∈Hk. Equivalently, we have

−1
k

log pgp(Ȳ≤k)≤−
1
k

log p0(Ȳ≤k)+
1
k

(
1
2
‖ f0‖2

K +M+
1
2

log |B|
)
+η , (14)

for any f0 ∈Hk.
By taking the infimum on the right-hand side of (14) over f0 and applying the Representer theorem

(See, e.g., Lemma 2 of Seeger et al. (2008)), we have

1
k

(
− log pgp(Ȳ≤k)+ log p0(Ȳ≤k)

)
≤ 1

k

(
1
2
‖ f0‖2

K +M+
1
2

log |B|
)
+η ,

for all f0 ∈H .
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Lemma 1 provides a regret bound for SK-based prediction, competing against experts from the RKHS
associated with the covariance function K of the GP stipulated by SK. The bound depends on the squared
RKHS norm ‖ f0‖2

K , log |B|= log |ΣΣΣ−1
ε,kΣΣΣ f ,k + Ik| (referred to as the regret term, which also depends on K),

and the simulation experiment design adopted. We next examine the regret term log |B| using the Mercer
eigenexpansion of the covariance function K. To lighten notation, below we omit the hyper-parameter
vector θθθ when referring to K. First, Let us recall Mercer’s theorem; see further details from, e.g., Chatterji
et al. (2019).
Theorem 1 (Mercer’s theorem) Let X ⊂ℜd be compact and ν be a finite Borel measure with support X .
Suppose K is a continuous square integrable positive definite kernel on X , and define a positive definite
operator TK : L2(X ;ν) 7→ L2(X ;ν) by (TK f )(·) :=

∫
X K(·,x) f (x)dν . Then there exists a sequence of

eigenfunctions {φm}m∈N that forms an orthonormal basis of L2(X ;ν) consisting of eigenfunctions of TK ,
and an associated sequence of non-negative eigenvalues {λm}m∈N such that TK(φm) = λmφm for m ∈ N.
Moreover, K can be represented as K(x,x′) = ∑

∞
m=1 λmφm(x)φm(x′), ∀x,x′ ∈X .

Assumption 1 Let K be a Mercer kernel satisfying Theorem 1.

1. The λm’s are in a decreasing order, i.e., λ1 ≥ λ2 ≥ . . .≥ 0.
2. ∀x,x′ ∈X , |K(x,x′)| ≤ K̄, for some K̄ > 0.
3. ∀m≥ 1,∀x ∈X , |φm(x)| ≤ φ̄ , for some φ̄ > 0.

Lemma 2 (Lemma 1 in Vakili et al. (2021)) For all positive definite matrices P ∈ ℜn×n, logdet(P) ≤
n log(tr(P)/n).
Theorem 2 Consider an SK metamodel with a covariance function K satisfying Assumption 1. For any
D≥ 1,

log |B| ≤ D log

(
1+

1
D

K̄
k

∑
i=1

ti

)
+δD

k

∑
i=1

ti, (15)

where δD = ∑
∞
m=D+1 λmφ̄ 2 and ti = ni/V(xi), i = 1,2, . . . ,k.

Proof. To upper bound log |B|, we first consider a projection on a D-dimensional feature space φφφ D(·) =
(φ1(·),φ2(·), . . . ,φD(·))> spanned by the first D features (corresponding to the D largest eigenvalues of K).
Specifically, define Kp(x,x′) = ∑

D
m=1 λmφm(x)φm(x′) and Ko(x,x′) = K(x,x′)−Kp(x,x′) for any x,x′ ∈X .

It follows immediately from Assumption 1 that Ko(x,x′) ≤ δD for any x,x′ ∈X . Similarly, we have
ΣΣΣ f ,k = K(X,X) = Kp(X,X)+Ko(X,X), where Kp(X,X) denotes the k× k matrix with its (i, j)th entry
given by Kp(xi,x j) (i, j = 1,2, . . . ,k), and Ko(X,X) denotes the corresponding orthogonal part. Therefore,

log |B|= log |Ik +ΣΣΣ
−1
ε,kΣΣΣ f ,k|= log |Ik +ΣΣΣ

−1
ε,k (Kp(X,X)+Ko(X,X)) |

= log |(Ik +ΣΣΣ
−1
ε,kKp(X,X))(Ik +(Ik +ΣΣΣ

−1
ε,kKp(X,X))−1

ΣΣΣ
−1
ε,kKo(X,X))|

= log |Ik +ΣΣΣ
−1
ε,kKp(X,X)|︸ ︷︷ ︸

:=log(|B|)a

+ log |Ik +(Ik +ΣΣΣ
−1
ε,kKp(X,X))−1

ΣΣΣ
−1
ε,kKo(X,X)|︸ ︷︷ ︸

:=log(|B|)b

. (16)

We first consider the term log(|B|)a. By eigen-decomposition, Kp(X,X) = Φk,DΛΛΛΦ>k,D, where Φk,D =

(φφφ D(x1),φφφ D(x2), . . . ,φφφ D(xk))
> is a k×D matrix, whose ith row is given by the feature vector φφφ

>
D(xi),

i = 1,2, . . . ,k; and ΛΛΛ = diag(λ1,λ2, . . . ,λD) is a D×D diagonal matrix. Denote A = ΣΣΣ
−1
ε,kΦk,DΛΛΛ

1
2 and

C = ΛΛΛ
1
2 Φ>k,D. Then, AC = ΣΣΣ

−1
ε,kΦk,DΛΛΛΦ>k,D = ΣΣΣ

−1
ε,kKp(X,X), where AC is a k× k matrix with tr(AC) being

finite. By Weinstein–Aronszajin identity (Pozrikidis 2014), we have |Ik +ΣΣΣ
−1
ε,kKp(X,X)|= |ID+Gk|, where

Gk = CA = ΛΛΛ
1
2 Φ>k,DΣΣΣ

−1
ε,kΦk,DΛΛΛ

1
2 .
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Furthermore,

tr(ID +Gk) = D+ tr
(

ΛΛΛ
1
2 Φ
>
k,DΣΣΣ

−1
ε,kΦk,DΛΛΛ

1
2

)
= D+

k

∑
i=1

titr
(

ΛΛΛ
1
2 φφφ D(xi)φφφ

>
D(xi)ΛΛΛ

1
2

)
= D+

k

∑
i=1

ti
D

∑
m=1

λmφ
2
m(xi)≤ D+ K̄

k

∑
i=1

ti, (17)

where the third step follows from the fact that tr
(
AA>

)
= tr

(
A>A

)
by setting A = ΛΛΛ

1
2 φφφ D(xi) and the last

step holds because ∑
D
m=1 λmφ 2

m(x) = Kp(x,x′)≤ K̄ for any x ∈X , thanks to Assumption 1. By Lemma 2
and (17), we can bound log(|B|)a as follows:

log |Ik +ΣΣΣ
−1
ε,kKp(X,X)| ≤ D log

(
1+

1
D

K̄
k

∑
i=1

ti

)
. (18)

The term log(|B|)b can be bounded in a similar fashion as done for log(|B|)a. Specifically, we first
note that

tr((Ik +ΣΣΣ
−1
ε,kKp(X,X))−1

ΣΣΣ
−1
ε,kKo(X,X))≤ tr(ΣΣΣ−1

ε,kKo(X,X))λ̄ ≤ tr(ΣΣΣ−1
ε,kKo(X,X)), (19)

where the first inequality follows from applying the result in Fang et al. (1994) that tr(P1P2)≤ λ̄ tr(P2),
with λ̄ denoting the maximum eigenvalue of P1 and noting that λ̄ ≤ 1 for P1 = (Ik +ΣΣΣ

−1
ε,kKp(X,X))−1.

Since for any x,x′ ∈X , Ko(x,x′;θθθ)≤ δD, we further have

tr(ΣΣΣ−1
ε,kKo(X,X))≤ δD

k

∑
i=1

ti. (20)

Then, by Lemma 2, (19) and (20), we can bound log(|B|)b as follows:

log |Ik +(Ik +ΣΣΣ
−1
ε,kKp(X,X))−1(ΣΣΣ−1

ε,kKo(X,X))| ≤ k log
(

1+
1
k

δD

k

∑
i=1

ti

)
≤ δD

k

∑
i=1

ti, (21)

where the second inequality follows since log(1+x)≤ x for any x≥ 0. Finally, combining (16), (18), and
(21) yields

log |B| ≤ D log
(

1+
1
D

K̄
k

∑
i=1

ti

)
+δD

k

∑
i=1

ti.

Under some further assumptions on the eigendecay profile of the covariance function or kernel K, we
can obtain specific orders of log |B|.
Definition 1 Consider the sequence of eigenvalues of a kernel K satisfying Assumption 1.

1. For some Cp > 0,βp > 1, K is said to be a (Cp,βp) polynomial eigendecay kernel, if for any m ∈N,
λm ≤Cpm−βp .

2. For some Ce,1,Ce,2,βe > 0, K is said to be a (Ce,1,Ce,2,βe) exponential eigendecay kernel, if for
any m ∈ N, λm ≤Ce,1 exp(−Ce,2mβe).
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Corollary 3 Denote Tk =∑
k
i=1 ti =∑

k
i=1 ni/V(xi) and consider the regret term, log |B|, as defined in Lemma 1

and studied in Theorem 2.

1. If K has a polynomial eigendecay, log |B| ≤ 2
[(

Cpφ̄ 2Tk
) 1

βp log−
1

βp (1+ K̄Tk)+1
]

log(1+ K̄Tk) .

That is, log |B|= O

(
T

1
βp

k log1− 1
βp Tk

)
.

2. If K has an exponential eigendecay, log |B| ≤ 2
[(

2C−1
e,2

(
logTk +Cβe

)) 1
βe
+1
]

log(1+ K̄Tk). That

is, log |B|= O
(

log1+ 1
βe Tk

)
.

Proof. The proof is in the same vein as that of Corollary 1 in Vakili et al. (2021). Under the polynomial
eigendecay condition, we have

δD =
∞

∑
m=D+1

λmφ̄
2 ≤

∞

∑
m=D+1

Cpm−βp φ̄
2 ≤

∫
∞

D
Cpz−βp φ̄

2dz =CpD1−βp φ̄
2.

Then, D is selected to be d(Cpφ̄ 2Tk)
1

βp log−
1

βp (1+K̄Tk)e to ensure δDTk ≤ log(1+K̄Tk) by directly solving the

inequality. Thus, in light of Lemma 2, we have log |B| ≤ 2
[(

Cpφ̄ 2Tk
) 1

βp log−
1

βp (1+ K̄Tk)+1
]

log(1+ K̄Tk).
Under the exponential eigendacay condition, δD can be upper bounded as follows:

δD =
∞

∑
m=D+1

λmφ̄
2 ≤

∞

∑
m=D+1

Ce,1 exp(−Ce,2mβe)φ̄ 2 ≤
∫

∞

D
Ce,1 exp(−Ce,2zβe)φ̄ 2dz. (22)

We further consider two cases: βe = 1 and βe 6= 1. The selection of D in both cases intends to en-
sure that δDTk ≤ log(1 + K̄Tk) by setting the left-hand side to 1, which is dominated by the right-
hand side when Tk is reasonably large. When βe = 1, it can be easily shown by (22) that δD ≤
Ce,1C−1

e,2 exp(−Ce,2D)φ̄ 2. Thus, D is selected to be
⌈
C−1

e,2 log
(

Ce,1φ̄ 2TkC−1
e,2

)⌉
. When βe 6= 1, δD can be

bounded by 2Ce,1(Ce,2βe)
−1
(

2C−1
e,2

(
β−1

e −1
)) 1

βe
−1

exp
(
−
(
β−1

e −1
))

exp
(
−Ce,2Dβe/2

)
φ̄ 2 following sim-

ilar steps as given in the proof of Corollary 1 in Vakili et al. (2021). It follows that D can be selected to be⌈(
2C−1

e,2

[
logTk + log

(
2Ce,1φ̄ 2(βeCe,2)

−1
)
+
(
β−1

e −1
)(

log
[
2C−1

e,2

(
β−1

e −1
)]
−1
)]) 1

βe

⌉
. Hence, in light

of Lemma 2 and the analysis above, we have log |B| ≤ 2
[(

2C−1
e,2

(
logTk +Cβe

)) 1
βe
+1
]

log(1+ K̄Tk) , where

Cβe = log(Ce,1φ̄ 2C−1
e,2 ) when βe = 1 and Cβe = log(2Ce,1φ̄ 2(βeCe,2)

−1)+(β−1
e −1)(log[2C−1

e,2 (β
−1
e −1)]−1)

when βe 6= 1.

Remark 1 Corollary 3 enables one to obtain specific orders of log |B| for kernels commonly used in
practice. Recall that d denotes the input-space dimensionality.

1. As a special case of polynomial eigendecay kernels, a Matétrn kernel has λm = O(m−
2ν+d

d ) for any

m ∈N, where ν > 1/2 denotes the smooth parameter. In this case, log |B|=O

(
T

d
2ν+d

k log
2ν

2ν+d Tk

)
.

2. As a special case of exponential eigendecay kernels, a squared exponential kernel has λm =

O
(

exp
(
−m

1
d

))
for any m ∈ N. In this case, log |B|= O

(
logd+1 Tk

)
.

In light of Corollary 3, we further stipulate some mild assumptions on the budget allocation of SK so
that log |B| remains reasonably small with the increase of k for kernels with different eigendecay profiles.
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Assumption 2 The total simulation budget Bk = ∑
k
i=1 ni satisfies Bk = O(kb) for some b > 0.

Assumption 3 The total simulation budget satisfying Bk = O(kb), where 0 < b < βp holds if K is a
polynomial eigendecay kernel.
Corollary 4 Under Assumption 2, log |B|= O(k) for exponential eigendecay kernels. Under Assumption 3,
log |B|= O(k) for polynomial eigendecay kernels.

Proof. Recall its definition in Corollary 3, Tk =∑
k
i=1 ti =∑

n
i=1 ni/V(xi). We have Tk ≤∑

k
i=1 ni/V= Bk/V,

where V = infx∈X V(x)> 0. Under Assumption 2 (respectively, Assumption 3), Tk = O(kb/V) = O(kb).
In light of Corollary 3, we further have, for a polynomial eigendecay kernel, that

log |B|= O

(
T

1
βp

k log1− 1
βp Tk

)
= O

(
k

b
βp log1− 1

βp

(
kb
))

= O
(

k
b

βp log1− 1
βp (k)

)
= O(k),

where the last step follows from Assumption 3.
For an exponential eigendecay kernel, we have

log |B|= O
(

log
1

βe
+1 Tk

)
= O

(
log

1
βe
+1
(kb)

)
= O

(
log

1
βe
+1
(k)
)
= O(k).

In light of Lemma 1 and Corollary 4, we arrive at the following result regarding information consistency
of SK.
Theorem 5 Under an SK metamodel as described in Section 2, the conditions given in Lemma 1, and
Assumptions 1 to 3, k−1Ex≤k

(
D[p0(Ȳ≤k), pgp(Ȳ≤k)]

)
→ 0 as k→ ∞.

Proof. It follows from the definition of information consistency that

D
[
p0(Ȳ≤k), pgp(Ȳ≤k)

]
=
∫

Rk
p0(Ȳ≤k) log

(
p0(Ȳ≤k)

pgp(Ȳ≤k)

)
dȲ1 . . .dȲk

=
∫

Rk
p0(Ȳ≤k)

(
log p0(Ȳ≤k)− log pgp(Ȳ≤k)

)
dȲ1 . . .dȲk. (23)

From Corollary 4, we have log |B|= O(k) for polynomial eigendecay kernels and exponential eigendecay
kernels. Furthermore, since f0 ∈H , the RKHS associated with K, ‖ f0‖K < ∞. Hence, it follows from
Lemma 1 that

1
k

Ex≤k

(
D
[
p0(Ȳ≤k), pgp(Ȳ≤k)

])
≤ 1

2k
‖ f0‖2

K +
1
2k

log |B|+ M
k
→ 0, as k→ ∞.

Remark 2 Corollary 4 provides some sufficient conditions on budget allocation that ensure information
consistency of SK as the number of design points k and the total simulation budget allocated Bk approach
infinity. For estimating a sufficiently smooth mean response function f0, i.e., f0 lying in an RKHS of an
exponential eigendecay kernel K, there is no particular requirement on the budget allocation to achieve
information consistency so long as Bk,k→∞. Interestingly, for estimating a mean response function f0 that
is not that smooth, i.e., f0 belonging to an RKHS of a polynomial eigendecay kernel K, the budget allocated
to the k design points should avoid growing too quickly as k→ ∞. In particular, for f0 contained in the
RKHS of a Matétrn kernel, we see that the budget Bk = O(kb) must satisfy that b < βp = (2ν +d)/d for SK
to achieve information consistency. The smoother the function f0 (i.e., the greater ν) is, the less stringent
the condition is on the budget allocated Bk. A converse effect holds for the input-space dimensionality d
on Bk. Therefore, we recommend setting k relatively large and using relatively few replications at each
given a fixed budget to expend. This echoes with the suggestion given by Wang and Chen (2018) to use a
“dense and shallow” design for SK.
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We remark on Theorem 5 with some interpretations. From Theorem 5, the KL divergence between the
two distribution functions for Ȳ≤k|x≤k from the true and the assumed models becomes zero, asymptotically.
For the sake of brevity, we note without showing details that

pgp(Ȳ≤k) := p
θ̂
(Ȳ≤k|x≤k) =

k

∏
i=1

p
θ̂
(Ȳi|x≤i, Ȳ<i), (24)

where

p
θ̂
(Ȳi|x≤i, Ȳ<i) =

∫
F

p(Ȳi| f ,x≤i, Ȳ<i)dp
θ̂
( f |x≤i, Ȳ<i), dp

θ̂
( f |x≤i, Ȳ<i) =

p(Ȳ<i| f ,x<i)dp
θ̂
( f )∫

F p(Ȳ<i| f ′,x<i)dp
θ̂
( f ′)

.

Similarly, under the true model, it holds that

p0(Ȳ≤k) := p(Ȳ≤k| f0,x≤k) =
k

∏
i=1

p(Ȳi| f0,x≤i, Ȳ<i). (25)

Paralleling the developments given in Seeger et al. (2008) and Wang and Shi (2014), we refer to
p(Ȳ≤i| f0,x≤i, Ȳ<i) and p

θ̂
(Ȳ≤i|x≤i, Ȳ<i) as Bayesian prediction strategies. We can see from (23) to

(25) that

D
[
p0(Ȳ≤k), pgp(Ȳ≤k)

]
=
∫

Rk

k

∑
i=1

Q(Ȳi|x≤i, Ȳ<i)p0(Ȳ≤k)dȲ≤k,

where Q(Ȳi|x≤i, Ȳ<i) = log p(Ȳ≤i| f0,x≤i, Ȳ<i)− log p
θ̂
(Ȳi|x≤i, Ȳ<i) is a loss function for i ≥ 2 (with

Q(Ȳi|x≤i, Ȳ<i) = 0 for i = 1), and ∑
k
i=1 Q(Ȳi|x≤i, Ȳ<i) is referred to as cumulative log loss. Similar to the

results as given in Seeger et al. (2008) and Wang and Shi (2014), Theorem 5 here can be interpreted as the
average of cumulative log loss k−1

∑
k
i=1 Q(Ȳi|x≤i, Ȳ<i) approaching zero asymptotically. Hence, we have

related the information consistency of SK to sequential prediction under cumulative log loss.

4 CONCLUSIONS

In this paper, we proved information consistency results for SK metamodels. We showed that information
consistency of SK depends on not only the covariance function of the GP prior but also the budget allocation
adopted in the stochastic simulation experiment. Our investigation has focused on the case where the true
mean response function f0 is contained in the RKHS of the GP prior adopted by SK, hence one potential
extension is to elaborate these results for SK in a more accurate way by studying small ball probabilities
and entropy calculations in the GP priors as performed in van der Vaart and van Zanten (2011) for standard
GPR models. Moreover, in our analysis we have assumed that the simulation noise variances V(xi)’s are
known and hence the noise variance-covariance matrix ΣΣΣε,k is given. Another potential direction is to
extend the analysis to the case where estimation of simulation noise variances is required.
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