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Abstract

Computing the expectation of kernel functions is

a ubiquitous task in machine learning, with appli-

cations from classical support vector machines to

exploiting kernel embeddings of distributions in

probabilistic modeling, statistical inference, causal

discovery, and deep learning. In all these scenar-

ios, we tend to resort to Monte Carlo estimates

as expectations of kernels are intractable in gen-

eral. In this work, we characterize the conditions

under which we can compute expected kernels

exactly and efficiently, by leveraging recent ad-

vances in probabilistic circuit representations. We

first construct a circuit representation for kernels

and propose an approach to such tractable computa-

tion. We then demonstrate possible advancements

for kernel embedding frameworks by exploiting

tractable expected kernels to derive new algorithms

for two challenging scenarios: 1) reasoning under

missing data with kernel support vector regressors;

2) devising a collapsed black-box importance sam-

pling scheme. Finally, we empirically evaluate both

algorithms and show that they outperform standard

baselines on a variety of datasets.

1 INTRODUCTION

Kernel functions have been prominent in the machine learn-

ing community for decades. Kernels provided a conve-

nient notion of inner product for high-dimensional feature

maps [Cortes and Vapnik, 1995, Schölkopf et al., 1998]

and have been extended to represent distributions as ele-

ments in a reproducing kernel Hilbert space (RKHS). They

have contributed to various fundamental tasks including

sample testing [Gretton et al., 2012, Jitkrittum et al., 2017],
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group anomaly detection [Muandet and Schölkopf, 2013]

and causal discovery [Chen et al., 2014].

One fundamental computation that naturally arises in these

kernel-embedding based frameworks is to compute the ex-

pectations of a kernel function w.r.t. distributions over its

inputs. For instance, it arises in integral probability met-

rics (IPMs) [Müller, 1997] when the functional space is

chosen as an RKHS and distributions are characterized by

their kernel embeddings. However, such expectations are

computationally hard in general and most existing methods

resort to Monte Carlo estimators for approximation.

In this paper, we investigate how to derive a tractable algo-

rithm to compute these kernel expectations, thus enabling

the aforementioned frameworks to perform exact inference

without relying on unreliable approximations. We do so by

leveraging recent advances in tractable probabilistic mod-

eling. Specifically, our algorithmic contribution will take

advantage of representing both the kernels and the input

distributions participating in the expectation as circuits.

Circuit representations [Vergari et al., 2019, Choi et al.,

2020] reconcile and abstract from the different graphical

and syntactic representations of both classical tractable

probabilistic models such as mixture models (e.g., mix-

tures of Gaussian distributions), bounded-treewidth graph-

ical models [Koller and Friedman, 2009, Meila and Jor-

dan, 2000] and more recent ones such as probabilistic cir-

cuits [Choi et al., 2020, Vergari et al., 2021] like arithmetic

circuits [Darwiche, 2003], probabilistic sentential decision

diagrams (PSDDs) [Kisa et al., 2014], sum-product net-

works (SPNs) [Poon and Domingos, 2011], and cutset net-

works [Rahman et al., 2014]. As such, our analysis within

the framework of circuit representations will help trace the

boundaries of tractable computations of kernel expectations,

delivering a general and efficient scheme that can be flexibly

applied to many kernel-embedding scenarios and different

tractable probabilistic model formalisms.

For this representation language, we characterize under

which structural constraints on kernel functions and proba-
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bility distributions the expectations of kernels can be com-

puted exactly and efficiently. We show how kernel functions

can be represented as circuits with the requisite structural

properties, and construct a recursive algorithm that deliv-

ers the tractable computation of their expectation in time

polynomial in the size of the circuit representations.

Moreover, we demonstrate how the tractable computation

of expected kernels can serve as a powerful tool to derive

novel kernel-based algorithms on two challenging tasks

when using kernel embeddings to represent features as well

as distributions. The first is to enable kernel support vector

regressors to deal with missing data by computing their ex-

pected predictions [Anderson and Gupta, 2011, Khosravi

et al., 2019a]. In the second, we derive a novel collapsed

black-box importance sampling scheme using the kernel-

ized Stein discrepancy [Liu and Lee, 2017] for efficient

approximate inference over factor graph models that do not

have a tractable representation. We compare each algorithm

with existing baselines on different real-world datasets and

problems, showing that our exact expected kernels yield

better inference performance.

2 EXPECTED KERNELS

We use uppercase letters X for random variables and lower-

case letters x for their assignments. Analogously, we denote

a set of random variables in bold uppercase X and their

assignments in bold lowercase x. The domain of variables

X is denoted by X . The cardinality of X is denoted by |X |.

We are interested in the modular operation of computing

expected kernels. This task naturally arises in various kernel-

embedding based frameworks.

Definition 2.1 (Expected Kernel). Given two distributions p
and q over variables X on domain X , and a positive definite

kernel function k : X × X → R, the expected kernel, that

is, the expectation of the kernel function k with respect to

the distributions p and q is defined as follows.

Mk(p, q) := Ex∼p,x′∼q[k(x,x
′)] (1)

Expected kernels are omnipresent in machine learning. For

instance, one of the most well-known IPMs, the squared

maximum mean discrepancy (MMD) [Gretton et al., 2012]

is defined as MMD
2[H, p, q] = Mk(p, p) + Mk(q, q) −

2Mk(p, q) and measures the distance between two distri-

butions p and q whose embeddings via a kernel k live in a

RKHS H. However, the computation cost of expected ker-

nels is prohibitive in general, even for distributions that are

tractable for other inference scenarios, as the next theorem

illustrates.

Theorem 2.2. There exist representations of distributions

p and q that are tractable for computing marginal, condi-

tional, and maximum a-posteriori (MAP) probabilities, yet

computing the expected kernel of a simple kernel k that is

the Kronecker delta is already #P-hard.

Concretely, we show that this is true for probabilistic circuit

representations, which unify several tractable probabilistic

model representations. We defer the proof of the above

statement to Section 4 after circuits are introduced.

The most commonly adopted solution to estimating Equa-

tion 1 and circumventing its computational challenge is

to approximate it by sampling. Instead, we are interested

in defining a large model class guaranteeing its tractable

computation and thus providing an efficient algorithm to

compute it exactly. We will show that this is possible by

leveraging circuit representations of functions. In summary,

we first adopt the probabilistic circuit representations for

distributions, and further build a circuit representation for

kernel functions to allow an exact computation of the ex-

pected kernels to be described in circuit operations. Then,

we exploit the structural constraints on circuits such that the

computational complexity can be bounded to be polytime

in the size of circuits. The necessary background on circuits

is presented in Section 3 and the tractable computation of

expected kernels is demonstrated in Section 4.

Expected Kernels in Action Our proposed tractable com-

putation of expected kernel can be applied to expressive dis-

tribution families and it can potentially lead to new advances

in kernel-based frameworks. To demonstrate this, we show

how tractable expected kernels give rise to novel algorithms

for two challenging tasks, where the kernels serve as em-

beddings for features in one algorithm, and as embeddings

for distributions in the other, covering the two most popular

usages of kernel functions. The first one is to reason about

kernel-based support regression models in the presence of

missing features. The second one is to perform black-box im-

portance sampling with collapsed samples, where expected

kernels are leveraged to obtain the kernelized discrepancy

between collapsed samples, which further gives the optimal

importance weights. We will show the detailed descriptions

of the proposed algorithms in Section 5 and their empirical

evaluation in Section 7.

3 CIRCUIT REPRESENTATION

Circuits are parameterized representations of functions as

computational graphs. They provide a language to char-

acterize the tractability of function operations in terms of

structural constraints over these computational graphs. Next

we first introduce circuits and their properties.

Definition 3.1 (Circuit). A circuit f over variables X is

a parameterized computational graph encoding a function

f(X) and comprising three kinds of computational units:

input, product, and sum. Each inner unit n (i.e., product or

sum unit) receives inputs from some other units, denoted
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Figure 1: Examples of circuit representations. Units in the computational graph include sum units, product units, univariate

input distribution units represented with a circle and labeled by their scopes, and non-linear input function units represented

with a curve and labeled by the input functions. Sum parameters are omitted for visual clarity. The feed-forward evaluation

(input before outputs) is intended from left to right. The rightmost unit is the output of the circuit. All product nodes are

colored according to their scopes: {X1, X2} in pink, {X1, X2, X3} in green, and X in orange.

in(n). Each unit n encodes a function fn as follows:

fn(φ(n)) =











ln(φ(n)) if n is an input unit
∏

c∈in(n) fc(φ(c)) if n is a product unit
∑

c∈in(n) θcfc(φ(c)) if n is a sum unit

where θc ∈ R are the parameters associated with each

sum node, and input units encode parameterized functions

ln over variables φ(n) ⊆ X, also called their scope. The

scope of an inner unit is the union of the scopes of its inputs:

φ(n) =
⋃

c∈in(n) φ(c). The final output unit (the root of the

circuit) encodes f(X).

Circuits can be understood as compact representations of

polynomials, whose indeterminates are the functions en-

coded by the input units. They are assumed to be simple

enough to allow locally tractable computations which fur-

ther forms global operations with tractability guarantees.

Most well-known circuit classes are various forms of prob-

abilistic circuits (PCs) [Vergari et al., 2019, Choi et al.,

2020]. PCs provide a unified framework where probabilistic

inference operations are cleanly mapped to the circuit repre-

sentations. As such, they abstract from the many graphical

formalism for tractable probabilistic models, from classi-

cal shallow mixtures [Koller and Friedman, 2009, Meila

and Jordan, 2000] to more recent deep variants [Poon and

Domingos, 2011, Peharz et al., 2020]. Specifically, a PC

encodes a (possibly unnormalized) probability distribution

over a collection of variables in a recursive manner.

Definition 3.2 (Probabilistic Circuits). A PC on domain X
is a circuit encoding a non-negative function p : X → R

≥0.

A circuit p can be evaluated in time linear in its size denoted

by |p|, i.e., the number of edges in its computational graph.

For example, computing p(X = x) in a PC can be done in a

feedforward way, evaluating input units before outputs, and

hence in time linear in the size of the PC.

W.l.o.g., we will assume that units in circuits alternate layer-

wise between sum and product units and that every product

unit receives only two inputs. Both requirements can be

easily enforced in any circuit structure with a polynomial

increase in its size [Peharz et al., 2020, Vergari et al., 2015].

Furthermore, in this work we focus on discrete variables.

For conciseness, we denote the circuit by the same notation

as the function that it represents, for instance, a PC p refers

to the circuit representation of the distribution p.

Properties of Circuits The tractability of computing

quantities of interest involving the function encoded in a cir-

cuit, also called queries, can be characterized by structural

constraints on the computational graph of its circuit [Dar-

wiche and Marquis, 2002]. Next we introduce the structural

properties that will be sufficient for the tractable computa-

tion of the expected kernels. We refer the interested reader

to Choi et al. [2020] for additional properties enabling other

tractable inference scenarios.

Definition 3.3 (Smoothness). A circuit is smooth, if for

every sum node n, its inputs in(n) share the same scope, i.e.,

∀c, c′ ∈ in(n), φ(c) = φ(c′).

Some examples of smooth circuits are mixture models: they

comprise a single sum node over tractable input distributions

that have to share the same scope. For example, a Gaussian

mixture model (GMM) can be represented as a smooth

circuit with a single sum unit and several input units, each

of which encodes a (multivariate) Gaussian density defined

over the same set of variables.

Definition 3.4 (Determinism). A circuit is deterministic if

the inputs of every sum unit have disjoint supports.

Determinism in PCs enables the tractable computation of

MAP inference. In this work, determinism will play a role in

exactly computing the KSD between discrete distributions

(see Corollary 4.7).

Definition 3.5 (Decomposability). A circuit is decompos-

able, if for every product node n, its inputs in(n) have dis-

joint scopes, i.e., ∀c, c′ ∈ in(n), c 6= c′ : φ(c) ∩ φ(c′) = ∅.

Decomposable product nodes encode local factorizations.

For example, a decomposable product node n over vari-

ables X with inputs from two units can be written as



fn(X) = fL(XL)fR(XR), where XL and XR form a parti-

tion of X. Taken together, smoothness and decomposability

are sufficient and necessary for performing tractable integra-

tion over arbitrary sets of variables in a single feedforward

pass, which allows to compute marginals and condition-

als in time linear in the circuit size [Choi et al., 2020]. To

characterize tractable kernel expectations, we will need the

multiple circuits participating in it to have product units

that decompose their scopes in a “synchronized” way. This

property, called compatibility, is formalized recursively as

follows.

Definition 3.6 (Compatibility). Two circuits f and g are

compatible if (i) they are smooth and decomposable, and (ii)

for any pair of product units n ∈ f and m ∈ g that share the

same scope, they decompose in the same way, i.e., for every

unit c ∈ in(n), there must exist a unique unit c′ ∈ ch(m)
such that φ(c) = φ(c′).

Definition 3.7 (Structured-decomposability). A circuit is

structured-decomposable if it is compatible with itself.

Notice that structured-decomposable circuits are a strict

subclass of decomposable circuits. An example of a

structured-decomposable PC is shown in Figure 1a. The

way that a structured-decomposable circuit hierarchically

partitions its scope can be compactly represented by a

graph called vtree [Pipatsrisawat and Darwiche, 2008],

pseudo-forest [Jaeger, 2004] or pseudo-tree [Dechter and

Mateescu, 2007]. In a nutshell, compatible structured-

decomposable circuits conform to the same hierarchical

partitioning over their variables. Figure 1a and Figure 1b

show two compatible PCs. This additional requirement en-

ables also the tractable computation of moments of predic-

tive models [Khosravi et al., 2019a] and the probability of

logical constraints [Bekker et al., 2015, Choi et al., 2015].

Construction of PCs As mentioned before, several

classes of tractable probabilistic graphical models (PGMs)

including Chow-Liu trees [Chow and Liu, 1968] and hidden

Markov models (HMMs) [Rabiner and Juang, 1986] can be

represented as compact PCs with certain structural proper-

ties. The process of translating one graphical representation

into a circuit is called compilation and has received much

attention in the literature [Chavira and Darwiche, 2005, Dar-

wiche, 2011]. In particular, Shen et al. [2016] propose a very

efficient compilation scheme that compiles a factor graph

into a structured-decomposable PC by first representing

each factor as a PC and then multiplying them together.

Besides compiling PCs from other tractable models, we can

also directly learn PCs from data [Lowd and Domingos,

2012, Rooshenas and Lowd, 2014, Peharz et al., 2020].

Recently learning algorithms tailored towards structured-

decomposable PCs have been proposed [Liang and Van den

Broeck, 2017, Dang et al., 2020]. For our experiments we

will employ STRUDEL [Dang et al., 2020] for its simplicity

and speed.

4 TRACTABLE COMPUTATION OF

EXPECTED KERNELS

Computing expected kernels is a #P-hard problem in general.

It involves summation over exponentially many states in the

distribution space. We first provide a formal proof for the

hardness statement provided in Theorem 2.2.

Proof. [Theorem 2.2] Consider the case when p and q are

both structured-decomposable and deterministic probabilis-

tic circuits, and the positive definite kernel k is a Kronecker

delta function defined as k(x,x′) = 1 if and only if x = x
′.

Then computing the expected kernel Mk(p, q) is equivalent

to computing the quantity
∑

x∈X p(x)q(x), which has been

shown to be #P-hard by Vergari et al. [2021]. Therefore,

computing the expected kernel is #P-hard.

From the proof we can tell that mild structural constraints on

circuits are not enough to reduce the computational complex-

ity. We provide another proof in Appendix where a pair of

probabilistic circuits with different constraints is considered.

Together they show that it is highly challenging to derive

sufficient structural constraints to guarantee tractability.

The aim of this section is to investigate under what structural

constraints on circuits an exact and efficient computation

of expected kernels is possible. But before we character-

ize tractability in the circuit language, we need to consider

whether also kernels can be represented as circuits. To an-

swer this question we define kernel circuits (KCs) to be the

circuit representations of kernel functions that measure sim-

ilarities between input pairs defined on the kernel domain.

Definition 4.1. A KC on domain X×X is a circuit encoding

a symmetric kernel function k : X × X → R
+.

Remark. To verify that a given KC is positive definite, it

is sufficient to verify that the input units are positive definite

kernels and that the sum parameters are positive since the

positive definite kernel family is closed under summation

and product. Moreover, it can be done tractably in time

linear in the number of input units in the KC.

Figure 1c shows an example kernel circuit. We further define

the left (resp. right) projection of a KC given x ∈ X to be

k(·,x) : X → R
+ (resp. k(x, ·) : X → R

+). Intuitively,

for the tractability of expected kernels, the KC should have

its structure conform to the distributions that it measures,

which allows the measurement to be broken down into basic

ones along the circuit. Next, we characterize the structural

constraints on KCs suitable for such a computation.

Definition 4.2 (Kernel Compatibility). Let p and q be a

pair of compatible circuits. A kernel circuit k(X,X′) is

kernel-compatible with the circuit pair p(X) and q(X′) if



Algorithm 1 Mkl
(pn, qm) — Computing the expected ker-

nel

Require: Two compatible PCs pn and qm, and a KC kl that

is kernel-compatible with the PC pair pn and qm.

1: if n,m, l are input units then

2: return Mkl
(pn, qm)

3: else if n,m, l are sum units then . cf. Prop. 4.4

4: return
∑

i∈in(n),j∈in(m),c∈in(l) θiδjγc Mkc
(pi, qj)

5: else if n,m, l are product units then . cf. Prop. 4.5

6: return MkL
(pnL

, qmL
) ·MkR

(pnR
, qmR

)

i) the kernel circuit k is smooth and decomposable, and

ii) the left and right projections of k are compatible with

circuit p and q respectively for any x ∈ X .

For example, the KC shown in Figure 1c is kernel-

compatible with the circuit pair shown in Figure 1a and

Figure 1b. Intuitively, a KC with kernel compatibility mea-

sures the similarity between the two probability distributions

in a hierarchical way.

Note that many commonly used kernels have a circuit rep-

resentations that exhibits kernel compatibility. These in-

clude several exponentiated forms such as the radial ba-

sis function kernel (RBF) and the exponentiated Hamming

kernel. To see how, consider an RBF kernel k(X,X′) =

exp(−
∑4

i=1 |Xi − X ′
i|
2). It can be represented by a KC

with one product unit connected to four input units each

of which represents the basic function exp(−|Xi −X ′
i|
2).

Given a pair of compatible PCs p and q as in Figure 1a and

Figure 1b, we can always transform the KC of an RBF ker-

nel into a circuit compatible with p and q by “splitting” its

product unit into intermediate products that are compatible

with the product units in p and q and by introducing dummy

sum units receiving single inputs and with parameter θ = 1.

The resulting KC is shown in Figure 1c.

Next we show our main result: kernel compatibility is suffi-

cient to guarantee the tractability of expected kernels.

Theorem 4.3. Let p and q be a pair of compatible PCs, and

k be a kernel circuit. If k is kernel-compatible with p and

q, the expected kernel Mk(p, q) can be computed exactly in

O(|p||q||k|) time.1

The proof is by construction. Intuitively, the computation of

expected kernels can be recursively “broken down” along

the circuit structures, until we reach collections of input

units for which we can assume the integrals in the expecta-

tions to be tractably computed. The next proposition shows

this recursion over circuits whose outputs are sums.

1As the algorithm will show, this is not a tight bound and

in practice the effective number of recursive calls will be much

smaller than |p||q||k|.

Proposition 4.4. Let pn and qm be two smooth probabilis-

tic circuits over variables X whose output units n and m
are sum units, denoted by pn(X) =

∑

i∈in(n) θipi(X) and

qm(X) =
∑

j∈in(m) δjqj(X) respectively. Let kl be a ker-

nel circuit with its output unit being a sum unit l, denoted

by kl(X) =
∑

c∈in(l) γckc(X). Then it holds that

Mkl
(pn, qm) =

∑

i∈in(n)

θi
∑

j∈in(m)

δj
∑

c∈in(l)

γc Mkc
(pi, qj).

(2)

This way, the expected kernel can be computed by the

weighted sum of a number of simpler expected kernel com-

putations over the input units. Analogously, the expected

kernel computation can be broken down at the product units

as follows thanks to compatibility.

Proposition 4.5. Let pn and qm be two compatible prob-

abilistic circuits over variables X whose output units

n and m are product units, denoted by pn(X) =
pnL

(XL)pnR
(XR) and qm(X) = qmL

(XL)qmR
(XR). Let

kl be a kernel circuit that is kernel-compatible with the cir-

cuit pair pn and qm with its output unit being a product unit

denoted by kl(X,X′) = kL(XL,X
′
L
)kR(XR,X

′
R
). Then it

holds that

Mkl
(pn, qm) = MkL

(pnL
, qmL

) ·MkR
(pnR

, qmR
).

Lastly, for the base cases of the recursion we can have that

either both p and q comprise a single input distribution (shar-

ing the same scope), or one of them is an input distribution

and the other a sum unit.2 The first case is easily computable

in polytime by the assumption in Theorem 4.3. Note that this

assumption is generally easy to meet as the double summa-

tion in Mk(pn, qm) for input distributions can be computed

in polytime by enumeration, since input distributions have

limited scopes (generally univariate) and p(x)q(x′)k(x,x′)
can be computed in closed form for decomposable kernels

k and commonly used distributions such as discrete distribu-

tions as in our case. The second corner case reduces to the

first when noting that computing Mk(pn, qm) for an input

distribution and a mixture of input distributions reduces to

computing a weighted sum of expectations followed by ap-

plying Proposition 4.4. Algorithm 1 summarizes the whole

computation of the expected kernel Mk, which requires only

polynomial complexity when caching repeated calls.

As direct results of Theorem 4.3, we show that two com-

mon kernelized discrepancies in reproducing kernel Hilbert

space (RKHS) can be tractably computed if the same struc-

tural constraints apply to the distributions and kernels.

Corollary 4.6. Following the assumptions in Theorem 4.3,

the squared maximum mean discrepancy MMD [H, p, q] in

2The other unit cannot be a product unit otherwise compatibil-

ity would be violated.



RKHS H associated with kernel k as defined in Gretton et al.

[2012] can be tractably computed in time O(|p||q||k|).

Corollary 4.7. Following the assumptions in Theorem 4.3,

if the probabilistic circuit p further satisfies determinism, the

kernelized discrete Stein discrepancy (KDSD) D2(q ‖ p) =
Ex,x′∼q[kp(x,x

′)] in the RKHS associated with kernel k as

defined in Yang et al. [2018] can be tractably computed.

The computation of expected kernels by circuit operations

allows us to compute the kernel-embedding based statistics

exactly and efficiently. This further gives rise to interesting

applications part of which will be shown in the next section.

We leave the further explorations on what other statistics will

benefit from the proposed computation of expected kernels

and what more applications will be inspired as future work.

5 EXPECTED KERNELS IN ACTION

In this section we will show how the tractable computation

of expected kernels can be leveraged in 1) kernel embedding

for features to derive an inference algorithm for support

vector regression (SVR) under missing data; 2) kernel em-

bedding for distributions to derive a collapsed estimator

in black-box importance sampling (IS). We further demon-

strate the effectiveness of both proposed expected-kernel

based algorithms empirically in Section 7.

5.1 SVR FOR MISSING DATA

Support vector machines (SVMs) for classification and re-

gression are widely used in machine learning [Noble, 2006].

SVMs’ foundations have great theoretical appeal, and they

are still widely used in practice. How to deal with missing

features in SVMs has been an active area of research [Ay-

dilek and Arslan, 2013, Saar-Tsechansky and Provost, 2007,

Marlin, 2008].

In this section, we aim to tackle missing features in SVR at

deployment time from a principled probabilistic perspective,

like in Anderson and Gupta [2011], but for a larger model

class represented as circuits. We propose to leverage PCs to

learn the joint feature distribution, and then exploit tractable

expected kernels to efficiently compute the expected predic-

tions of SVR models. More formally, given a set of input

variables X (features) with domain X and a variable Y (tar-

get) with domain Y , and a kernel function k, a kernelized

SVR learns from a dataset {(x(i), y(i))}ni=1 to predict for

new inputs with a function f taking the form

f(X) =
n
∑

i=1

wik(x
(i),X) + b. (3)

Existing works to handle missing features at deployment

time include imputation strategies that substitutes missing

values with reasonable alternatives such as the mean or me-

dian, estimated from training data. The imputation methods

are typically heuristic and model-agnostic, and sometimes

make strong distributional assumptions such as total inde-

pendence of the feature variables. As demonstrated in Khos-

ravi et al. [2019b], computing expected predictions is not

only theoretically principled but practically effective.

Definition 5.1 (Expected prediction). Given a predictive

model f : X → Y , a distribution p(X) over features X and

a partial assignment xs for variables Xs ⊂ X, the expected

prediction of f w.r.t. p is

Exc∼p(Xc|xs)[f(x)], (4)

where Xc = X\Xs and where x is the completed feature

vector consisting of both xc and xs.

Intuitively, the expected prediction of a SVR given a partial

feature vector can be thought of as reweighting all possi-

ble completions by their probability. Expected prediction

enjoys the theoretical guarantee that it is consistent under

both missing completely at random (MCAR) and missing

at random (MAR) mechanisms, if f has been trained on

complete data and is Bayes optimal [Josse et al., 2019].

Proposition 5.2. Given a SVR model f with a KC k, and a

structured-decomposable PC p for the feature distribution,

the expected prediction of f can be tractably computed in

time O(|k||p|).

Proof. The expected prediction of f w.r.t. p can be rewritten

as a linear combination of expected kernels.

Exc∼p(Xc|xs)[f(x)] =

n
∑

i=1

wiExc∼p(Xc|xs)[k(x,x
(i))]+b.

Note that the task of computing the doubly expected kernel

in Definition 2.1 subsumes the task of computing a singly

expected kernel where one of the inputs to the kernel func-

tion is a constant vector xi instead of a variable and both

Theorem 4.3 and Algorithm 1 apply here.

5.2 COLLAPSED BLACK-BOX IMPORTANCE

SAMPLING

Black-box importance sampling (BBIS) [Liu and Lee, 2017]

is a recently introduced algorithm to flexibly perform ap-

proximate probabilistic inference on intractable distribu-

tions. By weighting samples from an arbitrary proposal as

to minimize a kernelized Stein discrepancy (KSD), BBIS

can accurately estimate continuous target distributions.

In this section, we first show that the BBIS algorithm can be

extended to discrete distributions by adopting a recently pro-

posed kernelized discrete Stein discrepancy (KDSD) [Yang

et al., 2018] that serves as the discrete counterpart for KSD.



We further show that the BBIS algorithm can be improved

by using collapsed samples, which is made possible by the

tractable computation of expected kernels.

We start with a brief overview of how to construct the

KDSD. For a finite domain X , a cyclic permutation de-

noted by ¬ is a bijection associated with some ordering of

elements in X that maps an element in X to the next one

according to the ordering. A partial difference operator ∆∗

for any function f on domain X is defined as ∆∗f(x) :=
(∆∗

1f(x), · · · ,∆
∗
Df(x)), with ∆∗

i f(x) := f(x) − f(¬ix)
for i = 1, 2, · · · , D with D = |X|. Now we are ready to

define the (difference) score function, an important tool for

determining a probability distribution. The score function

is defined as sp(x) := ∆∗p(x)/p(x), a vector-valued func-

tion with its i-th dimension being sp,i(x) := ∆∗
i p(x)/p(x).

Then the KDSD between two distributions p and q is defined

as

D(q ‖ p) := sup
f∈F

Ex∼q(X)[Tpf(x)], (5)

with the functional space F being RKHS associated with a

strictly positive definite kernel k, and the operator Tp being

the Stein difference operator defined as Tpf := sp(x)f
>−

∆f(x). The KDSD is a proper divergence measure in the

sense that for any strictly positive distribution p and q, the

KDSD D(q ‖ p) = 0 if and only if p = q [Yang et al.,

2018]. Moreover, a nice property of the KDSD is that even

though it involves a variational optimization problem in its

definition, it admits a closed-form representation as

S(q ‖ p) := D
2(q ‖ p) = Ex,x′∼q[kp(x,x

′)], (6)

with the kernel function kp defined as

kp(x,x
′) = sp(x)

>k(x,x′)sp(x
′)− sp(x)

>∆x
′

k(x,x′)

−∆xk(x,x′)>sp(x
′) + tr(∆x,x′

k(x,x′)),

where the superscript x and x
′ of the difference operator

specifies the variables that it operates on.

We can now proceed to propose a BBIS algorithm for cat-

egorical distributions. Given a set of samples {x(i)}ni=1

generated from some unknown proposal q possibly from

some black-box mechanism, Categorical BBIS computes

the importance weights for the samples by minimizing the

KDSD between q and target distribution p formulated as

w∗ = argmin
w

{

w>Kpw

∣

∣

∣

∣

∣

n
∑

i=1

wi = 1, wi ≥ 0

}

, (7)

where Kp is a Gram matrix with entries [Kp]ij =
kp(x

(i),x(j)) and w = (w1, · · · , wn) is the weight vec-

tor. We prove that the BBIS for categorical distributions

enjoys the same convergence guarantees as its continuous

counterpart. Due to space constraints, we defer both the

algorithm details and convergence proofs to the Appendix.

However, a computational bottleneck in BBIS limits its scal-

ability, the construction of the Gram matrix. We therefore

propose a collapsed variant of BBIS to accelerate it by deliv-

ering equally good approximations with fewer samples. Col-

lapsed samplers, also known as cutset or Rao-Blackwellised

samplers [Casella and Robert, 1996], improve over classical

particle-based methods by limiting sampling to a subset of

the variables while pairing it with some closed-form repre-

sentation of a conditional distribution over the rest.

Specifically, let (Xs,Xc) be a partition for variables X. A

weighted collapsed sample for variables X takes the form

of a triplet (xs, p(Xc | xs), w) where xs is an assignment

for the sampled variables Xs, p(Xc | xs) is a conditional

distribution over the collapsed set Xc, and w the importance

weight. We now show how to distill a conditional KDSD,

in order to extend BBIS to the collapsed sample scenario.

Definition 5.3 (Conditional KDSD). Assume given a

strictly positive distribution p and a strictly positive pro-

posal distribution of the sampled set qs, where the variable

subset Xs defines the samples. The full distribution defined

by the collapsed samples is q(x) = qs(xs)p(xc | xs). The

conditional KDSD (CKDSD) is defined as the KDSD be-

tween distributions p and q, i.e., Ss(qs ‖ p) := S(q ‖ p).

Proposition 5.4. The CKDSD between the two positive

distributions p and q admits a closed form as

Ss(qs ‖ p) = Exs,x′

s
∼qs(Xs)[kp,s(xs,x

′
s
)], (8)

where kp,s denotes a conditional kernel function defined as

kp,s(xs,x
′
s
) = E

xc∼p(Xc|xs),x
′

c
∼p(Xc|x

′

s
)
[kp(x,x

′)] . (9)

Similar to the optimization in Equation 7 for BBIS, given

a set of collapsed samples {(xs
(i), p(Xc | xs

(i)))}ni=1, the

problem of computing importance weights can be cast as

minimizing the empirical CKDSD between the collapsed

samples and the target distribution p as follows.

Ss({xs
(i), wi} ‖ p) = w>Kp,sw (10)

where w is the vector of sample weights and Kp,s is the

Gram matrix with entries [Kp,s]ij = kp,s(xs
(i),xs

(j)).
Now the key question is whether the conditional kernel

function kp,s can be computed tractably. We show that this

is possible with the tractable computation of expected ker-

nels.

Proposition 5.5. Let p(Xc | xs) be a PC that encodes

a conditional distribution over variables Xc conditioned

on Xs = xs, and k be a KC. If the PC p(Xc | xs) and

p(Xc | xs
′) are compatible and k is kernel-compatible with

the PC pair for any xs, xs
′, then the conditional kernel

function kp,s can be tractably computed.

This finishes the construction of a BBIS scheme using the

collapsed samples, which we name CBBIS. The complete

algorithmic recipe for CBBIS is presented in Algorithm 2
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1 PROOFS

We first present another hardness result about the computa-

tion of expected kernels besides Theorem 2.2.

Theorem 1.1. There exist representations of distributions

p and q that are smooth and compatible, yet computing the

expected kernel of a simple kernel k that is the Kronecker

delta is already #P-hard.

Proof. (an alternative proof to the one in Section 4) Con-

sider the case when the positive definite kernel k is a Kro-

necker delta function defined as k(x,x′) = 1 if and only if

x = x
′. Moreover, assume that the probabilistic circuit p is

smooth and decomposable, and that q = p. Then computing

the expected kernel is equivalent to computing the power of

a probabilistic circuit p, that is, Mk(p, q) =
∑

x∈X p2(x)
with X being the domain of variables X. Vergari et al.

[2021] proves that the task of computing
∑

x∈X p2(x) is

#P-hard even when the PC p is smooth and decomposable,

which concludes our proof.

Proposition 4.4 Let pn and qm be two compatible proba-

bilistic circuits over variables X whose output units n and

m are sum units, denoted by pn(X) =
∑

i∈in(n) θipi(X)

and qm(X) =
∑

j∈in(m) δjqj(X) respectively. Let kl be a

kernel circuit with its output unit being a sum unit l, denoted

by kl(X) =
∑

c∈in(l) γckc(X). Then it holds that

Mkl
(pn, qm) =

∑

i∈in(n)

θi
∑

j∈in(m)

δj
∑

c∈in(l)

γc Mkc
(pi, qj).

(1)

*Authors contributed equally. This research was performed

while W.L. was visiting UCLA remotely.

Proof. Mkl
(pn, qm) can be expanded as

Mkl
(pn, qm)

=
∑

x

∑

x′

pn(x)qm(x′)kl(x,x
′)

=
∑

x

∑

x′

∑

i∈in(n)

θipi(x)
∑

j∈in(m)

δjqj(x
′)

∑

c∈in(l)

γckc(x,x
′)

=
∑

i∈in(n)

θi
∑

j∈in(m)

δj
∑

c∈in(l)

γc Mkc
(pi, qj).

Proposition 4.5 Let pn and qm be two compatible proba-

bilistic circuits over variables X whose output units n and m
are product units, denoted by pn(X) = pnL

(XL)pnR
(XR)

and qm(X) = qmL
(XL)qmR

(XR). Let k be a kernel cir-

cuit that is kernel-compatible with the circuit pair pn and

qm with its output unit being a product unit denoted by

k(X,X′) = kL(XL,X
′
L
)kR(XR,X

′
R
). Then it holds that

Mk(pn, qm) = MkL
(pnL

, qmL
) ·MkR

(pnR
, qmR

).

Proof. Mk(pn, qm) can be expanded as

Mk(pn, qm)

=
∑

x

∑

x′

pn(x)qm(x′)k(x,x′)

=
∑

x

∑

x′

pmL
(xL)pmR

(xR)qnL
(xL)qnR

(xR)kL(xL,x
′
L
)kR(xR,x

′
R
)

= MkL
(pnL

, qmL
) ·MkR

(pnR
, qmR

).

Corollary 4.6. Following the assumptions in Theorem 4.3,

the squared maximum mean discrepancy MMD [H, p, q] in

RKHS H associated with kernel k as defined in Gretton

et al. [2012] can be tractably computed.
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Proof. This is an immediate result following Theorem 4.3

by rewriting MMD as defined in Gretton et al. [2012] in the

form of a linear combination of expected kernels, that is,

MMD
2[H, p, q] = Mk(p, p) +Mk(q, q)− 2Mk(p, q).

Corollary 4.7. Following the assumptions in Theorem 4.3,

if the probabilistic circuit p further satisfies determin-

ism, the kernelized discrete Stein discrepancy (KDSD)

D
2(q ‖ p) = Ex,x′∼q[kp(x,x

′)] in the RKHS associ-

ated with kernel k as defined in Yang et al. [2018] can be

tractably computed.

Before showing the proof for Corollary 4.7, we first give

definitions that are necessary for defining KDSD as follows

to be self-contained.

Definition 1.2 (Cyclic permutation). For a finite set X and

D = |X |, a cyclic permutation ¬ : X → X is a bijective

function such that for some ordering a1, a2, · · · , aD of the

elements in X , ¬ai = a(i+1) mod D, ∀i = 1, 2, · · · , D.

Definition 1.3 (Partial difference operator). For any func-

tion f : X → R with D = |X |, the partial difference

operator is defined as

∆∗
i f(X) := f(X)− f(¬iX), ∀i = 1, · · · , D, (2)

with ¬iX := (X1, · · · ,¬Xi, · · · , XD). Moreover,

the difference operator is defined as ∆∗f(X) :=
(∆∗

1f(X), · · · ,∆∗
Df(X)). Similarly, let � be the inverse

permutation of ¬, and ∆ denote the difference operator

defined with respect to �, i.e.,

∆if(X) := f(X)− f(�i X), i = 1, · · · , D.

Definition 1.4 (Difference score function). The (difference)

score function is defined as sp(X) := ∆∗p(X)
p(X) on domain

X with D =| X |, a vector-valued function with its i-th
dimension being

sp,i(X) :=
∆∗

i p(X)

p(X)
= 1−

p(¬iX)

p(X)
, i = 1, 2, · · · , D.

(3)

Given the above definitions, the discrete Stein discrepancy

between two distributions p and q is defined as

D(q ‖ p) := sup
f∈H

Ex∼q(X)[Tpf(x)], (4)

where f : X → R
D is a test function, belonging to some

function space H and Tp is the so-called Stein difference

operator, which is defined as

Tpf = sp(x)f
> −∆f(x). (5)

If the function space H is an reproducing kernel Hilbert

space (RKHS) on X equipped with a kernel function k(·, ·),

then a kernelized discrete Stein discrepancy (KDSD) is de-

fined and admits a closed-form representation as

S(q ‖ p) := D
2(q ‖ p) = Ex,x′∼q[kp(x,x

′)]. (6)

Here, the kernel function kp is defined as

kp(x,x
′) = sp(x)

>k(x,x′)sp(x
′)− sp(x)

>∆x
′

k(x,x′)

−∆xk(x,x′)>sp(x
′) + tr(∆x,x′

k(x,x′)),

where the difference operator ∆x is as in Definition 1.3. The

superscript x specifies the variables that it operates on.

Proof. [Corollary 4.7] By the definition of difference score

functions, the close form of KDSD can be further rewritten

as follows.

Ex,x′∼q[kp(x,x
′)]

=

D
∑

i=1

Ex,x′∼q[
p(¬ix)p(¬ix

′)

p(x)p(x′)
k(x,x′)−

p(¬ix)

p(x)
k(x,¬ix

′)

−
p(¬ix

′)

p(x′)
k(¬ix,x

′) + k(¬ix,¬ix
′)]

=

D
∑

i=1

[Mk(q
p̃i
p
, q

p̃i
p
)−Mk(q

p̃i
p
, q̃i)

−Mk(q̃i, q
p̃i
p
) +Mk(q̃i, q̃i)]

(7)

where D denotes the cardinality of the domain of variables

X, the probablity p̃i(X) := p(¬iX) and the probablity

q̃i(X) := q(¬iX). Notice that the cyclic permutation ¬i

operates on individual variable and the resulting PC p̃i and

q̃i retains the same structure properties as PCs p and q re-

spectively. To prove that KDSD can be tratably computed, it

suffices to prove that the expected kernel terms in Equation 7

can be tractably computed.

For a deterministic and structured-decomposable PC p, since

PC p̃i retains the same structure, then resulting ratio p̃i/p is

again a smooth circuit compatible with p by Vergari et al.

[2021]. Moreover, since PC p and q are compatible, the

circuit p̃i/p is compatible with PC q. Thus, the resulting

product q p̃i

p is a circuit that is smooth and compatible with

both p and q by Theorem B.2 and thus compatible with

q̃i. By similar arguments, we can verify that all the circuit

pair in the expected kernel terms in Equation 7 satisfy the

assumptions in Theorem 4.3 and thus they are amenable to

the tractable computation we propose in Algorithm 1, which

finishes our proof.

Proposition (convergence of Categorical BBIS). Let

f(x) be a test function. Assume that f − Ep[f ] ∈ Hp, with



Hp being the RKHS associated with the kernel function kp,

and
∑

i wi = 1, then it holds that

∣

∣

∣

∣

∣

N
∑

n=1

wnf(xn)− Epf

∣

∣

∣

∣

∣

≤ Cf

√

S({x(n), wn} ‖ p),

where Cf :=‖ f − Epf ‖Hp
. Moreover, the convergence

rate is O(N−1/2).

Proof. Let f̂(x) := f(x)− Epf , then it holds that

∣

∣

∣

∣

∣

N
∑

n=1

wnf(x
(n))− Epf

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

wnf̂(x
(n))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

wn〈f̂ , kp(·,x
(n))〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈f̂ ,

N
∑

n=1

wnkp(·,x
(n))〉Hp

∣

∣

∣

∣

∣

≤‖ f̂ ‖Hp
· ‖

N
∑

n=1

wnkp(·,x
(n)) ‖Hp

=‖ f̂ ‖Hp
·
√

S({x(n), wn} ‖ p).

We further prove the convergence rate of the estimation

error by using the importance weights as reference weights.

Let v∗n = 1
np(x

(n))/q(x(n)). Then S({x(n), v∗n} ‖ p) is

a degenerate V-statistics [Liu and Lee, 2017] and it holds

that S({x(n), v∗n} ‖ p) = O(N−1). Moreover, we have that
∑N

n=1 v
∗
n = 1 + O(N−1/2), which we denote by Z, i.e.,

Z =
∑N

n=1 v
∗
n. Let w∗

n = v∗n/Z, then it holds that

S({x(n), w∗
n} ‖ p) =

S({x(n), v∗n} ‖ p)

Z2
= O(N−1).

Therefore,

∣

∣

∣

∣

∣

N
∑

n=1

wnf(x
(n))− Epf

∣

∣

∣

∣

∣

≤‖ f̂ ‖Hp
·
√

S({x(n), wn} ‖ p)

≤‖ f̂ ‖Hp
·
√

S({x(n), w∗
n} ‖ p)

= O(N−1/2).

Proposition 5.5. Let p(Xc | xs) be a PC that encodes

a conditional distribution over variables Xc conditioned

on Xs = xs, and k be a KC. If the PC p(Xc | xs) and

p(Xc | xs
′) are compatible and k is kernel-compatible with

the PC pair for any xs, xs
′, then the conditional kernel

function kp,s as defined in Proposition 5.4 can be tractably

computed.

Proof. From Proposition 5.4, kp,s can be written as

kp,s =

D
∑

i=1

Exc∼p(Xc|xs),x′

c
∼p(Xc|x′

s
)[kp,i(x,x

′)],

where kp,i can be expanded as follows.

kp,i(x,x
′) =

p(¬ix)p(¬ix
′)

p(x)p(x′)
k(x,x′)−

p(¬ix)

p(x)
k(x,¬ix

′)

−
p(¬ix

′)

p(x′)
k(¬ix,x

′) + k(¬ix,¬ix
′).

for any i ∈ c, given that none of the variables in Xs is

flipped in the above formulation, kernel kp,i can be further

written as

kp,i(x,x
′) =

p(¬ixc | xs)p(¬ix
′
c
| x′

s
)

p(xc | xs)p(x′
c
| x′

s
)

k(x,x′)

−
p(¬ixc | xs)

p(xc | xs)
k(x,¬ix

′)

−
p(¬ix

′
c
| x′

s
)

p(x′
c
| x′

s
)

k(¬ix,x
′)

+ k(¬ix,¬ix
′).

By substituting kp,i into the expected kernel in the expecta-

tion of kp,i with respect to the conditional distributions can

be simplified to be a constant zero, that is,

Exc∼p(Xc|xs),x′

c
∼p(X′

c
|x′

s
)[kp,i(x,x

′)] = 0.

Thus, kp,s can be expanded as

kp,s(x,x
′) = Exc∼p(Xc|xs),x′

c
∼p(Xc|x′

s
)[
∑

i∈s

kp,i(x,x
′)]

=
∑

i∈s

[
p(¬ixs)p(¬ix

′
s
)

p(xs)p(x′
s
)

·Mk(·,·)(p(· | ¬ixs), p(· | ¬ix
′
s
))

−
p(¬ixs)

p(xs)
·Mk(·,¬i·)(p(· | ¬ixs), p(· | x

′
s
))

−
p(¬ix

′
s
)

p(x′
s
)

·Mk(¬i·,·)(p(· | xs), p(· | ¬ix
′
s
))

+Mk(¬i·,¬i·)(p(· | xs), p(· | x
′
s
))].

As Theorem 4.3 has shown that Mk(p, q) can be computed

exactly in time linear in the size of each PC, kp,s(x,x
′) can

also be computed exactly in time O(|p1||p2||k|), where p1
and p2 denote circuits that represent the conditional prob-

ability distribution given the index set, i.e., p(· | xs) or

p(· | ¬ixs).

2 ALGORITHMS

Algorithm 1 summarizes how to perform the BBIS scheme

we propose for Categorical distributions, and generate a set

of weighted samples.



Algorithm 1 CATEGORICALBBIS(p, q, k, n)

Input: target distributions p over variables X, a black-box

mechanism q, a kernel function k and number of samples n
Output: weighted samples {(x(i), w∗

i )}
n
i=1

1: Sample {x(i)}ni=1 from q
2: for i = 1, . . . , n do

3: for j = 1, . . . , n do

4: [Kp]ij = kp(x
(i),x(j)) . cf. Section 5.2

5: w∗ = argminw
{

w>Kpw
∣

∣

∑n
i=1 wi = 1, wi ≥ 0

}

6: return {(x(i), w∗
i )}

n
i=1
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