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Abstract

Probabilistic Circuits (PCs) are a promising avenue for probabilistic modeling.
They combine advantages of probabilistic graphical models (PGMs) with those
of neural networks (NNs). Crucially, however, they are tractable probabilistic
models, supporting efficient and exact computation of many probabilistic inference
queries, such as marginals and MAP. Further, since PCs are structured compu-
tation graphs, they can take advantage of deep-learning-style parameter updates,
which greatly improves their scalability. However, this innovation also makes
PCs prone to overfitting, which has been observed in many standard benchmarks.
Despite the existence of abundant regularization techniques for both PGMs and
NNs, they are not effective enough when applied to PCs. Instead, we re-think
regularization for PCs and propose two intuitive techniques, data softening and
entropy regularization, that both take advantage of PCs’ tractability and still have
an efficient implementation as a computation graph. Specifically, data soften-
ing provides a principled way to add uncertainty in datasets in closed form,
which implicitly regularizes PC parameters. To learn parameters from a soft-
ened dataset, PCs only need linear time by virtue of their tractability. In en-
tropy regularization, the exact entropy of the distribution encoded by a PC can
be regularized directly, which is again infeasible for most other density estima-
tion models. We show that both methods consistently improve the generalization
performance of a wide variety of PCs. Moreover, when paired with a simple PC
structure, we achieved state-of-the-art results on 10 out of 20 standard discrete
density estimation benchmarks. Open-source code and experiments are available
at https://github.com/UCLA-StarAI/Tractable-PC-Regularization.

1 Introduction

Probabilistic Circuits (PCs) [1, 2] are considered to be the lingua franca for Tractable Probabilistic
Models (TPMs) as they offer a unified framework to abstract from a wide variety of TPM circuit
representations, such as arithmetic circuits (ACs) [3], sum-product networks (SPNs) [4], and prob-
abilistic sentential decision diagrams (PSDDs) [5]. PCs are a successful combination of classic
probabilistic graphical models (PGMs) and neural networks (NNs). Moreover, by enforcing various
structural properties, PCs permit efficient and exact computation of a large family of probabilistic
inference queries [6, 7, 8]. The ability to answer these queries leads to successful applications in
areas such as model compression [9] and model bias detection [10, 11]. At the same time, PCs are
analogous to NNs since their evaluation is also carried out using computation graphs. By exploiting
the parallel computation power of GPUs, dedicated implementations [2, 12] can train a complex PC
with millions of parameters in minutes. These innovations have made PCs much more expressive and
scalable to richer datasets that are beyond the reach of “older” TPMs [13].
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However, such advances make PCs more prone to overfitting. Although parameter regularization
has been extensively studied in both the PGM and NN communities [14, 15], we find that existing
regularization techniques for PGMs and NNs are either not suitable or not effective enough when
applied to PCs. For example, parameter priors or Laplace smoothing typically used in PGMs, and
often used in PC learning as well [16, 17, 18], incur unwanted bias when learning PC parameters –
we will illustrate this point in Sec. 3. Classic NN methods such as L1 and L2 regularization are not
always suitable since PCs often use either closed-form or EM-based parameter updates.

This paper designs parameter regularization methods that are directly tailored for PCs. We propose two
regularization techniques, data softening and entropy regularization. Both formulate the regularization
objective in terms of distributions, regardless of their representation and parameterization. Yet, both
leverage the tractability and structural properties of PCs. Specifically, data softening injects noise into
the dataset by turning hard evidence in the samples into soft evidence [19, 20]. While learning with
such softened datasets is infeasible even for simple machine learning models, with their tractability, a
class of PCs (i.e., deterministic PCs) can learn the maximum-likelihood estimation (MLE) parameters
given a softened dataset in O(|p| · |D|) time, where |p| is the size of the PC and |D| is the size
of the (original) dataset. For PCs that are not deterministic, every parameter update step can be
done in O(|p| · |D|) time, still allowing efficient parameter learning. Additionally, the entropy of
the distribution encoded by a PC can be tractably regularized. Although the entropy regularization
objective for PC is multi-modal and a global optimum cannot be found in general, we propose an
algorithm that is guaranteed to converge monotonically towards a stationary point.

We show that both proposed approaches consistently improve the test set performance over standard
density estimation benchmarks. Furthermore, we observe that when data softening and entropy
regularization are properly combined, even better generalization performance can be achieved.
Specifically, when paired with a simple PC structure, this combined regularization method achieves
state-of-the-art results on 10 out of 20 standard discrete density estimation benchmarks.

Notation We denote random variables by uppercase letters (e.g., X) and their assignments by
lowercase letters (e.g., x). Analogously, we use bold uppercase letters (e.g., X) and bold lowercase
letters (e.g., x) for sets of variables and their joint assignments, respectively.

2 Two Intuitive Ideas for Regularizing Distributions

A common way to prevent overfitting in machine learning models is to regularize the syntactic
representation of the distribution. For example, L1 and L2 losses add mutually independent priors to
all parameters of a model; other approaches such as Dropout [14], Bayesian Neural Networks (BNNs)
[21], and Bayesian parameter smoothing [22] incorporate more complex and structured priors into the
model [23]. In this section, we ask the question: how would we regularize an arbitrary distribution,
regardless of the model at hand, and the way it is parameterized? Such global, model-agnostic
regularizers appear to be under-explored. Next, we introduce two intuitive ideas for regularizing
distributions, and study how they can be practically realized in the context of probabilistic circuits in
the remainder of this paper.

Data softening Data augmentation is a common technique to improve the generalization perfor-
mance of machine learning models [24, 25]. A simple yet effective type of data augmentation is
to inject noise into the samples, for example by randomly corrupting bits or pixels [26]. This can
greatly improve generalization as it renders the model more robust to such noise. While current noise
injection methods are implemented as a sequence of sampled transformations, we stress that some
noise injection can be done in closed form: we will be considering all possible corruptions, each with
their own probability, as a function of how similar they are to a training data point.

Consider boolean variables1 as an example: after noise injection, a sample X=1 is represented as a
distribution over all possible assignments (i.e., X=1 and X=0), where the instance X=1, which
is “similar” to the original sample, gets a higher probability: P (X=1)=β. Here β∈ (0.5, 1] is a
hyperparameter that specifies the regularization strength — if β=1, no regularization is added; if β
approaches 0.5, the regularized sample represents an (almost) uniform distribution. For a sample x

with K variables X :={Xi}
K
i=1, where the kth variable takes value xk, we can similarly ‘soften’ x

1We postpone the discussion on regularizing samples with non-boolean variables in Appendix B.1.
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by independently injecting noise into each variable, resulting in a softened distribution Px,β :

∀x′∈val(X), Px,β(X=x
′) :=

K∏

i=1

Px,β(Xi=x′
i) =

K∏

i=1

(

β ·1[x′
i=xi] + (1−β)·1[x′

i 6=xi]
)

.

For a full dataset D :={x(i)}Ni=1, this softening of the data can also be represented through a new,
softened dataset Dβ . Its empirical distribution is the average softened distribution of its data. It is a
weighted dataset, where weight(Dβ ,x) denotes the weight of sample x in Dβ :

Dβ := {x |x∈val(X)} and weight(Dβ ,x) =
1

N

N∑

i=1

Px(i),β(X = x). (1)

This softened dataset ensures that each possible assignment has a small but non-zero weight in
the training data. Consequently, any distribution learned on the softened data must assign a small
probability everywhere as well. Of course, materializing this dataset, which contains all possible
training example, is not practical. Regardless, we will think of data softening as implicitly operating
on this softened dataset. We remark that data softening is related to soft evidence [27] and virtual
evidence [28], which both define a framework to incorporate uncertain evidence into a distribution.

Entropy regularization Shannon entropy is an effective indicator for overfitting. For a dataset D
with N distinct samples, a perfectly overfitting model that learns the exact empirical distribution
has entropy log(N). A distribution that generalizes well should have a much larger entropy, since it
assigns positive probability to exponentially more assignments near the training samples. Concretely,
for the protein sequence density estimation task [29] that we will experiment with in Sec. 4.3, the
perfectly overfitting empirical distribution has entropy 3, a severely overfitting learned model has
entropy 92, yet a model that generalizes well has entropy 177. Therefore, directly controlling the
entropy of the learned distribution will help mitigate overfitting. Given a model Pθ parametrized by

θ and a dataset D :={x(i)}Ni=1, we define the following entropy regularization objective:

LLent(θ;D, τ) :=
1

N

N∑

i=1

logPθ(x
(i)) + τ · ENT(Pθ), (2)

where ENT(Pθ) :=−
∑

x∈val(X) Pθ(x) logPθ(x) denotes the entropy of distribution Pθ, and τ is a

hyperparameter that controls the regularization strength. Various forms of entropy regularization
have been used in the training process of deep learning models. Different from Eq. (2), these methods
regularize the entropy of a parametric [30, 31] or non-parametric [32] output space of the model.

Although both ideas for regularizing distributions are rather intuitive, it is surprisingly hard to
implement them in practice since they are intractable even for the simplest machine learning models.

Theorem 1. Computing the likelihood of a distribution represented as a exponentiated logistic
regression (or equivalently, a single neuron) given softened data is #P-hard.

Theorem 2. Computing the Shannon entropy of a normalized logistic regression model is #P-hard.

Proof of Thm. 1 and 2 are provided in Appendices A.3 and A.4. Although data softening and entropy
regularization are infeasible for many models, we will show in the following sections that they are
tractable to use when applied to Probabilistic Circuits (PCs) [1], a class of expressive TPMs.

3 Background and Motivation

Probabilistic Circuits (PCs) are a collective term for a wide variety of TPMs. They present a unified
set of notations that provides succinct representations for TPMs such as Probabilistic Sentential
Decision Diagrams (PSDDs) [5], Sum-Product Networks (SPNs) [4], and Arithmetic Circuits (ACs)
[3]. We proceed by introducing the syntax and semantics of a PC.

Definition 1 (Probabilistic Circuits). A PC p that represents a probability distribution over variables
X is defined by a parametrized directed acyclic graph (DAG) with a single root node, denoted nr.
The DAG comprises three kinds of units: input, sum, and product. Each leaf node n in the DAG
corresponds to an input unit; each inner node n (i.e., sum and product units) receives inputs from its
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Algorithm 1 Forward pass

1: Input: A deterministic PC p; sample x

2: Output: value[n]:=(x∈supp(n)) for each unit n
3: foreach n traversed in postorder do
4: if n isa input unit then value[n]←fn(x)
5: elif n isa product unit then
6: value[n]←

∏
c∈in(n) value[c]

7: else //n is a sum unit
8: value[n]←

∑
c∈in(n) value[c]

Algorithm 2 Backward pass

1: Input: A deterministic PC p; ∀n, value[n]
2: Output: flow[n, c] := (x ∈ (γn∩γc)) for each

pair (n, c), where n is a sum unit and c∈ in(n)
3: ∀n, context[n]←0; context[nr]←value[nr]
4: foreach sum unit n traversed in preorder do
5: foreach m ∈ pa(n) do (denote g←pa(m))

6: f← value[m]
value[g]

· context[g]

7: context[n] += f; flow[g,m] = f

smoothing provides good priors to BNs and HBMs, its uniform prior could add unwanted bias to PCs.
Specifically, for every sum unit n, Laplace smoothing assigns the same prior to all its child parameters
(i.e., {θn,c | c∈ in(n)}), while in many practical PCs, these parameters should be given drastically
different priors. For example, consider the PC shown in Fig. 1(a). Since c2 has an exponentially
larger support than c1, it should be assumed as prior that θ12 will be much larger than θ11.

We highlight the significance of the above issue by examining the fraction of sum units with imbal-
anced child support sizes in PCs learned by Strudel, a state-of-the-art structure learning algorithm
for deterministic PCs [5]. We examine 20 PCs learned from the 20 density estimation benchmarks
[39], respectively. All sum units with ≥3 children and with a support size ≥128 are recorded. We
measure “imbalanceness” of a sum unit n by the fraction of the maximum and minimum support size

of its children (i.e.,
maxc1∈in(n) |supp(c1)|

minc2∈in(n) |supp(c2)|
). As demonstrated in Fig. 1(b), more than 20% of the sum

units have imbalanceness ≥102, which suggests that the inability of Laplace smoothing to properly
regularize PCs with imbalanced sum units could lead to severe performance degradation in practice.

4 How Is This Tractable And Practical?

In this section, we first provide additional background about the parameter learning algorithms for
deterministic and non-deterministic PCs (Sec. 4.1). We then demonstrate how the two intuitive ideas
for regularizing distributions (Sec. 2), i.e., data softening and entropy regularization, can be efficiently
implemented for deterministic (Sec. 4.2) and non-deterministic (Sec. 4.3) PCs.

4.1 Learning the Parameters of PCs

Deterministic PCs Given a deterministic PC p defined on variables X and a datasetD = {x(i)}Ni=1,

the maximum likelihood estimation (MLE) parameters θ∗
D :=argmaxθ

∑N
i=1 log p(x

(i);θ) can be
learned in closed-form. To formalize the MLE solution, we need a few extra definitions.

Definition 5 (Context). The context γn of every unit n in a PC p is defined in a top-down manner: for
the base case, context of the root node nr is defined as its support: γnr

:= supp(nr). For every other
node n, its context is the intersection of its support and the union of its parents’ (pa(n)) contexts:

γn :=
⋃

m∈pa(n)

γm ∩ supp(n).

Intuitively, if an assignment x is in the context of unit n, then there exists a path on the PC’s DAG
from n to the root unit nr such that for any unit m in the path, we have x∈ supp(m). Circuit flow
extends the notation of context to indicate whether a sample x is in the context of an edge (n, c).

Definition 6 (Flows). The flow Fn,c(x) of any edge (n, c) in a PC given variable assignments
x∈val(X) is defined as 1[x∈γn∩γc], where 1[·] is the indicator function. The flow Fn,c(D) w.r.t.

dataset D={x(i)}Ni=1 is the sum of the flows of all its samples: Fn,c(D) :=
∑N

i=1 Fn,c(x
(i)).

The flow Fn,c(x) for all edges (n, c) in a PC p w.r.t. sample x can be computed through a forward
and backward path that both take O(|p|) time. The forward path, as shown in Alg. 1, starts from the
leaf units and traverses the PC in postorder to compute ∀n, value[n] :=1[x∈supp(n)]; afterwards,
the backward path illustrated in Alg. 2 begins at the root unit nr and traverses the PC in preorder to
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Algorithm 3 PC Entropy regularization

1: Input: A deterministic PC p; flow Fn,c(D) for every edge (n, c) in p; hyperparameter τ .
2: Output: A set of log-parameters, {ϕn,c : (n, c) ∈ p}, which are the solution of Eq. (2).
3: ∀n, node_prob[n]← 0; node_prob[nr]← 1 //nr is the root node of p
4: while not converge do
5: ∀n, entropy[n]← The entropy of the sub-PC rooted at n (see Alg. 4 in Appendix A.2)
6: foreach sum unit n traversed in preorder (parent before children) do

7: di ← Fn,ci(D)/|D|; b = τ · node_prob[n] //{ci}
in(n)
i=1 is the set of children of n

8: Solve for {ϕn,ci}
|in(n)|
i=1 in the following set of equations (y is a variable):

{

die
−ϕn,ci − b · ϕn,ci + b · entropy[ci] = y (∀i ∈ {1, . . . , |in(n)|})

∑|in(n)|
i=1 eϕn,ci = 1

(5)

9: for each c ∈ in(n) and each m ∈ in(c) do //Update node_prob of grandchildren
10: node_prob[m]← node_prob[m] + eϕn,c · node_prob[n]

this negative result, the MLE parameters of a PC p w.r.t. Dβ can be computed in time O(|p|·|D|),
which is linear w.r.t. the model size as well as the size of the original dataset.

Theorem 3. Let fn(x) = β ·1[x ∈ supp(n)] + (1−β) ·1[x 6∈ supp(n)] in Alg. 1. Given a
deterministic PC p, a boolean dataset D, and hyperparameter β ∈ (0.5, 1], the set of all flows
{Fn,c(Dβ) | ∀ edge (n, c)} w.r.t. the softened dataset Dβ can be computed by Alg. 1 and 2 within
O(|p|·|D|) time.

Proof of this theorem is provided in Appendix A.1. Since the MLE parameters (Eq. (3)) w.r.t. Dβ

can be computed in O(|p|) time using the flows, the overall time complexity to compute the MLE
parameters is again O(|p|·|D|).

Entropy regularization The hope for tractable PC entropy regularization comes from the fact that
the entropy of a deterministic PC p can be exactly computed in O(|p|) time [6, 46]. However, it is
still unclear whether the entropy regularization objective LLent(θ;D, τ) (Eq. (2)) can be tractably
maximized. We answer this question with a mixture of positive and negative results: while the
objective is multi-modal and the global optimal is hard to find, we propose an efficient algorithm that
(i) guarantees convergence to a stationary point, and (ii) achieves high convergence rate in practice.
We start with the negative result.

Proposition 1. There exists a deterministic PC p, a hyperparameter τ , and a dataset D such that
LLent(θ;D, τ) (Eq. (2)) is non-concave and has multiple local maximas.

Proof is given in Appendix A.7. Although global optimal solutions are generally infeasible, we
propose an efficient algorithm that guarantees to find a stationary point of LLent(θ;D, τ). Specifically,
Alg. 3 takes as input a deterministic PC p and all its edge flows w.r.t. D, and returns a set of learned
log-parameters that correspond to a stationary point of the objective.2 In its main loop (lines 4-10),
the algorithm alternates between two procedures: (i) compute the entropy of the distribution encoded
by every node w.r.t. the current parameters (line 5),3 and (ii) update PC parameters with regard to the
computed entropies (lines 6-10). Specifically, in the parameter update phase (i.e., the second phase),
the algorithm traverses every sum unit n in preorder and updates its child parameters by maximizing
the entropy regularization objective (LLent(θ;D, τ)) with all other parameters fixed. This is done by
solving the set of equations in Eq. (5) using Newton’s method (lines 7-8).4 In addition to the child
nodes’ entropy computed in the first phase, Eq. (5) uses the top-down probability of every unit n (i.e.,
node_prob[n]), which is progressively updated in lines 9-10.

Theorem 4. Alg. 3 converges monotonically to a stationary point of LLent(θ;D, τ) (Eq. (2)).

Proof. The high-level idea of the proof is to show that the parameter update phase (lines 6-10) opti-
mizes a concave surrogate objective of LLent(θ;D, τ), which is determined by the entropies computed

2We compute parameters in the logarithm space for numerical stability.
3This can be done by Alg. 4 shown in Appendix A.2. Lem. 1 proves that Alg. 4 takes O(|p|) time.
4Details for solving Eq. (5) is given in Appendix B.2.

7







achieved higher log-likelihood on 18, 19, 10, and 17 datasets compared to EinSumNet, LearnSPN,
ID-SPN, and RAT-SPN, respectively.

5 Conclusions

This paper proposes two model-agnostic distribution regularization techniques: data softening and
entropy regularization. While both methods are infeasible for many machine learning models, we
theoretically show that they can be efficiently implemented when applied to probabilistic circuits. On
the empirical side, we show that both proposed regularizers consistently improve the generalization
performance over a wide variety of PC structures and datasets.
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Supplementary Material

A Proofs

This section provides the full proof of the theorems stated in the main paper.

A.1 Proof of Theorem 3

High-level idea The high-level idea of this proof is by separately showing the correctness of the
forward pass (Alg. 1) and the backward pass (Alg. 2). Specifically, for a “softened” sample x, we aim
to show that (i) in the forward pass, the value of x w.r.t. any PC unit n corresponds to the likelihood
of x (note that since x can be represented as a weighted sum of exponentially many “hard” samples,
the target likelihood is also the weighted sum of the respective likelihoods), and (ii) in the backward
pass, the flow of x w.r.t. any PC unit corresponds to the weighted sum of the flows of the “hard”
samples “contained” in x. Both claims are proved by induction: for the forward pass, we first show
that the base cases (leaf nodes) satisfy the claim, then by assuming all children of a PC unit satisfy
the claim, we prove the inductive case of sum and product units; for the backward pass, induction is
also applied in the preorder (parents before children).

As stated in the theorem, assume that we are given a deterministic PC p, a boolean dataset D
containing N samples {x(i)}Ni=1, and hyperparameter β ∈ (0.5, 1]. Define K as the number of

variables in X, i.e., X = {Xk}
K
k=1.

Correctness of the forward pass We show that the value of each node n w.r.t. sample x
(i) (by

slightly abusing notation, denoted as valuei[n]) computed by Alg. 1 (with the specific choice of
fn(x) = β ·1[x ∈ supp(n)] + (1− β)·1[x 6∈ supp(n)]) is defined as

valuei[n] =
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(n)], (6)

where xk denotes the kth feature of x.

• Base case: input units. Suppose node n is a literal w.r.t. variable Xk. That is, x ∈ supp(n) iff
xk = Lit(n), where Lit(n) is either true or false defined by the PC. Denote ¬Lit(n) as the
negation of Lit(n). ∀i ∈ {1, . . . , N} we have

valuei[n] =β ·1[x(i) ∈ supp(n)] + (1− β)·1[x(i) 6∈ supp(n)]

=β ·1[x
(i)
k = Lit(n)] + (1− β)·1[x

(i)
k = ¬Lit(n)]

(a)
=

∑

x∈{x:x∈val(X)∧xk=Lit(n)}

K∏

l=1,l 6=k

(

β ·1[x
(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)

·
(

β ·1[x
(i)
k = Lit(n)] + (1− β)·1[x

(i)
k = ¬Lit(n)]

)

=
∑

x∈{x:x∈val(X)∧xk=Lit(n)}

K∏

l=1,l 6=k

(

β ·1[x
(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)

·
(

β ·1[x
(i)
k = xk]·1[xk = Lit(n)] + (1− β)·1[x

(i)
k 6= xk]·1[xk = Lit(n)]

)

=
∑

x∈{x:x∈val(X)∧xk=Lit(n)}

K∏

l=1,l 6=k

(

β ·1[x
(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)

·
(

β ·1[x
(i)
k = xk] + (1− β)·1[x

(i)
k 6= xk]

)

·1[xk = Lit(n)]

(b)
=

∑

x∈{x:x∈val(X)}

K∏

l=1

(

β ·1[x
(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)

·1[xk = Lit(n)]
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=
∑

x∈{x:x∈val(X)}

K∏

l=1

(

β ·1[x
(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)

·1[x ∈ supp(n)],

where (a) holds because the added term

∑

x∈{x:x∈val(X)∧xk=Lit(n)}

K∏

l=1,l 6=k

(

β ·1[x
(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)

= 1;

the sum condition xk = Lit(n) after (b) can be lifted thanks to the indicator 1[xk = Lit(n)].

• Inductive case: product units. Suppose n is a product unit with children {cj}
|in(n)|
j=1 . Recall that the

scope of the child cj is denoted as φ(cj). Since the PC is decomposable, the contexts of different
children are non-overlapping. Suppose the value of any child unit cj is defined according to Eq. (6),
i.e.,

valuei[cj ] =
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(cj)].

Denote Kcj as the set of index for the variables in φ(cj). We have

valuei[n]
(a)
=

|in(n)|
∏

j=1

valuei[cj ]

=

|in(n)|
∏

j=1

{
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(cj)]

}

=

|in(n)|
∏

j=1

{
∑

x∈val(φ(cj))

∏

k∈Kcj

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(cj)]

}

(b)
=

∑

x∈val(
⋃|in(n)|

j=1 φ(cj))

∏

k∈
⋃|in(n)|

j=1 Kcj

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

·

( |in(n)|
∏

l=1

1[x∈supp(cl)]

)

(c)
=

∑

x∈val(
⋃|in(n)|

j=1 φ(cj))

∏

k∈
⋃|in(n)|

j=1 Kcj

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

1[x∈supp(n)]

(d)
=

∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

1[x∈supp(n)],

where (a) holds by line 6 of Alg. 1; (b) holds since ∀ci, cj ∈ in(n)(ci 6= cj), we have φ(ci)∩φ(cj) =
∅ and Kci ∩ Kcj = ∅ thanks to decomposability of the PC; (c) is satisfied by the definition of

product units: supp(n) =
⋂

c∈in(n) supp(c); (d) holds since
⋃|in(n)|

j=1 φ(cj) is a subset of X.

• Inductive case: sum units. Suppose n is a sum unit with children {cj}
|in(n)|
j=1 . Suppose the value

valuei[cj ] of any child unit cj is defined according to Eq. (6), we have

valuei[n]
(a)
=

|in(n)|
∑

j=1

valuei[cj ]

=

|in(n)|
∑

j=1

{
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(cj)]

}
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(b)
=

∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

·
( |in(n)|

∑

j=1

1[x∈supp(cj)]
)

(c)
=

∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(n)],

where (a) follows line 8 of Alg. 1; (b) holds because the sum unit n is deterministic: ∀ci, cj ∈
in(n)(ci 6= cj), supp(ci) ∩ supp(cj) = ∅; (c) follows from the definition of sum units: supp(n) =
⋃

c∈in(n) supp(c).

We have shown that for any unit n, the value stored in valuei[n] follows the definition in Eq. (6).
We proceed to show the correctness of the backward pass.

Correctness of the backward pass Similar to the forward pass, we show that the context

contexti[n] of each sum unit w.r.t. sample x
(i) computed by Alg. 2 is defined as

contexti[n] =
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈γn], (7)

and the flow flowi[n, c] of each edge (n, c) s.t. n is a sum unit is:

flowi[n, c] =
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈γn ∧ x∈γc]. (8)

• Base case: root unit nr. Without loss of generality, we assume the root node represents a sum unit.6

According to Def. 5, the context of the root node nr equals its support, i.e., γnr
= supp(nr). Since

in line 3 of Alg. 2, the value contexti[n] is set to valuei[n], we know that

contexti[n] =
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈supp(n)]

=
∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈γn].

• Inductive case: sum unit. Suppose n is a sum unit with parent product units {mj}
|pa(n)|
j=1 . Denote

the parent of product unit mi as gi.
7 Suppose the contexts of {gj}

|pa(n)|
j=1 satisfy Eq. (7). For ease of

presentation, denote H(x,x(i), k) :=
(
β ·1[x

(i)
k = xk] + (1− β)·1[x

(i)
k 6= xk]

)
.

flowi[gj ,mj ] =
valuei[mj ]

valuei[gj ]
· contexti[gj ]

=

∑

x∈val(X)

∏K
k=1 H(x,x(i), k) · 1[x∈γgj ]

∑

x∈val(X)

∏K
k=1 H(x,x(i), k) · 1[x∈supp(gj)]

·
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x∈supp(mj)] (9)

Define γ′
gj

:=
⋃

c∈pa(gj)
γc, Def. 5 suggests that γgj = γ′

gj
∩ supp(gj). Thus,

1[x∈γgj ] = 1[x∈γ′
gj
] · 1[x∈supp(gj)]. (10)

6Note that if the root unit is not a sum, we can always add a sum unit as its parent and set the corresponding
edge parameter to 1.

7W.l.o.g. we assume all product unit only have one parent.
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Consider conditioning supp(gj) and γ′
gj

on the variables φ(gj) (i.e., the variable scope of gj). For

any partial variable assignment e over φ(gj), if e ∈ supp(gj), then e ∈ γ′
gj

. Denote Kgj as the set

of index for the variables in φ(gj). We have

∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x∈γ′
gj
] · 1[x∈supp(gj)]

=

(
∑

x∈val(φ(gj))

∏

k∈Kgj

H(x,x(i), k) · 1[x∈supp(gj)]

)

·

(
∑

x∈val(X\φ(gj))

∏

k∈{1,...,K}\Kgj

H(x,x(i), k) · 1[x∈γ′
gj
]

)

(11)

Plug Eqs. (11) and (10) into Eq. (9), we have

flowi[gj ,mj ] =

∑

x∈val(φ(gj))

∏

k∈Kgj
H(x,x(i), k) · 1[x∈supp(gj)]

∑

x∈val(X)

∏K
k=1 H(x,x(i), k) · 1[x∈supp(gj)]

·

(
∑

x∈val(X\φ(gj))

∏

k∈{1,...,K}\Kgj

H(x,x(i), k) · 1[x∈γ′
gj
]

)

·

(
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x∈supp(mj)]

)

=

(
∑

x∈val(X\φ(gj))

∏

k∈{1,...,K}\Kgj

H(x,x(i), k) · 1[x∈γ′
gj
]

)

·

(
∑

x∈val(φ(gj))

∏

k∈Kgj

H(x,x(i), k) · 1[x∈supp(mj)]

)

(12)

Since mj is a child of gj , the support of mj is a subset of gj’s support: supp(mj) ⊆ supp(gj).
Therefore, for any partial variable assignment e over φ(gj), if e ∈ supp(mj), then e ∈ supp(gj).
Since {e | e ∈ val(φ(gj)) ∧ e ∈ supp(gj)} ⊆ {e | e ∈ val(φ(gj)) ∧ e ∈ γ′

gj
}, we conclude that for

any partial variable assignment e over φ(gj), if e ∈ supp(mj), then e ∈ γ′
gj

. Therefore, the two

product terms in Eq. (12) can be joined with a Cartesian product:

flowi[gj ,mj ] =
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x ∈ γ′
gj
∩ supp(mj)]. (13)

Note that γ′
gj
∩ supp(mj) = γ′

gj
∪ supp(gj) ∩ supp(mj) = γgj ∩ supp(mj). Since γmj

= γgj ∩

supp(mj) (according to Def. 5), we have

γ′
gj
∩ supp(mj) = γgj ∩ supp(mj)

= γgj ∩ supp(gj) ∩ supp(mj)

= γgj ∩ γmj
.

Plug the above equation into Eq. (13), we have

flowi[gj ,mj ] =
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x ∈ γgj ∩ γmj
],

which is equivalent to Eq. (7).

We proceed to show that the context of unit n follows Eq. (8). According to lines 6 and 7 of Alg. 2,
contexti[n] is computed as

contexti[n] =

|pa(n)|
∑

j=1

flowi[gj ,mj ]
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=

|pa(n)|
∑

j=1

∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x ∈ γgj ∩ γmj
]

=
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) ·
( |pa(n)|

∑

j=1

1[x ∈ γgj ∩ γmj
]
)

. (14)

Next, we show that ∀mi,mj ∈ pa(n)(mi 6= mj), γmi
∩ γmj

= ∅. We prove this claim using its

contrapositive form. Suppose there exists x ∈ val(X) such that x ∈ γmi
and x ∈ γmj

. According
to the definition of context, if x ∈ γmi

, then there must be a path between mi and the root node nr

where all nodes in the path are “activated”, i.e., for any unit c in the path, x ∈ γc. Similarly, there
much exists a path of “activated” units between mj and nr. We note that the two paths must share a
set of identical nodes since their terminal are both the root node nr. Therefore, there must exist a
sum unit n′ along the intersection of the two path where at least two of its children are activated, i.e.,
∃c1, c2 ∈ in(n′)(c1 6= c2), such that x ∈ γc1 and x ∈ γc2 . This contradicts the assumption that the
PC is deterministic. Therefore, the claim at the beginning of this paragraph holds. Thus,

|pa(n)|
∑

j=1

1[x ∈ γgj ∩ γmj
]
(a)
=

|pa(n)|
∑

j=1

1[x ∈ γmj
]

(b)
= 1[x ∈

⋃|pa(n)|

j=1
γmj

]

(c)
= 1[x ∈

⋃|pa(n)|

j=1
γmj
∩ supp(n)]

(d)
= 1[x ∈ γn],

where (a) follows from γmj
⊆ γgj ; (b) holds because the statement made in the previous paragraph

(i.e., ∀mi,mj ∈ pa(n)(mi 6= mj), γmi
∩ γmj

= ∅); (c) holds since supp(mj) ⊆ supp(n) and

γmj
⊆ supp(mj); (d) directly applies the definition of context (i.e., Def. 5).

Plug in Eq. (14), we have

contexti[n] =
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) ·
( |pa(n)|

∑

j=1

1[x ∈ γgj ∩ γmj
]
)

=
∑

x∈val(X)

K∏

k=1

H(x,x(i), k) · 1[x ∈ γn].

Computing Fn,c(Dβ) Finally, we can compute Fn,c(Dβ) from the flows (i.e., flowi[n, c]) com-
puted by Alg. 2:

Fn,c(Dβ) =
∑

x∈val(X)

weight(Dβ ,x) · 1[x∈γn ∧ x∈γc]

=
∑

x∈val(X)

N∑

i=1

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

︸ ︷︷ ︸

weight(Dβ ,x)

·1[x∈γn ∧ x∈γc]

=

N∑

i=1

∑

x∈val(X)

K∏

k=1

(

β ·1[x
(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

· 1[x∈γn ∧ x∈γc]

︸ ︷︷ ︸

flowi[n,c]

=

N∑

i=1

flowi[n, c].

Finally, we note that Alg. 1 and 2 both run in time O(|p|·|D|).
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Algorithm 4 PC entropy

1: Input: A deterministic PC p
2: Output: entropy[n] := ENT(pn) for every unit n
3: foreach n traversed in postorder do
4: if n isa input unit then entropy[n] = ENT(pn) //entropy of the input distribution
5: elif n isa product unit then entropy[n] =

∑
c∈in(n) entropy[c]

6: else //n is a sum unit then

entropy[n] = −
∑

c∈in(n)

θn,c log θn,c +
∑

c∈in(n)

θn,c · entropy[c]

A.2 Useful Lemmas

This section provides several useful lemmas that are later used in the proof of Thm. 4.

Lemma 1. Given a deterministic PC p whose root node is nr, its entropy ENT(p)
def
= ENT(pnr

) can
be decomposed recursively as follows:

ENT(pn) =

{∑

c∈in(n)

(
− θn,c log θn,c + θn,c · ENT(pc)

)
if n is a sum unit,

∑

c∈in(n) ENT(pc) if n is a product unit,

where the entropy of an input unit is defined by the entropy of the corresponding univariate distribution.
Following this decomposition, we construct Alg. 4 that computes the entropy of every nodes in a
deterministic PC in O(|p|) time.

Proof. We show the correctness of the entropy decomposition over a sum unit and a product unit
respectively.

• Sum units. If n is a sum unit:

ENT(pn) = −
∑

x∈val(φ(n))

( ∑

c∈in(n)

θn,cpc(x)
)

log
( ∑

c∈in(n)

θn,cpc(x)
)

= −
∑

x∈val(φ(n))

( ∑

c∈in(n)

θn,cpc(x)1[x ∈ supp(c)]
)

log
( ∑

c∈in(n)

θn,cpc(x)1[x ∈ supp(c)]
)

(a)
= −

∑

x∈val(φ(n))

∑

c∈in(n)

1[x ∈ supp(c)] · θn,c · pc(x) ·
(

log θn,c + log pc(x)
)

= −
∑

c∈in(n)

θn,c log θn,c

( ∑

x∈val(φ(n))

1[x ∈ supp(c)]pc(x)
)

︸ ︷︷ ︸

=1

+
∑

c∈in(n)

θn,c

(

−
∑

x∈val(φ(n))

pc(x) log pc(x)
)

︸ ︷︷ ︸

=ENT(pc)

=
∑

c∈in(n)

(

− θn,c log θn,c + θn,c · ENT(pc)
)

, (15)

where (a) uses the assumption that the sum unit is deterministic, i.e., ∀c1, c2 ∈ in(n) (c1 6=
c2), supp(c1) ∩ supp(c2) = ∅.

• Product units. If n is a product unit:

ENT(pn) = −
∑

x∈val(φ(n))

( ∏

c∈in(n)

pc(x)
)

log
( ∏

c∈in(n)

pc(x)
)

= −
∑

c∈in(n)

( ∑

x∈val(φ(c))

pc(x) log pc(x)
)
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Figure 7: An example PC to show that PC entropy is neither convex nor concave.

=
∑

c∈in(n)

ENT(pc). (16)

Lemma 2. The entropy of a deterministic PC p is neither convex nor concave w.r.t. its parameters.

Proof. Consider the example PC in Fig. 7. Assume n = 20 and define parameters θa = {θ1 =
0.1, θ2 = 0.1} and θb = {θ1 = 0.12, θ2 = 0.12}. Denote θc = (θa + θb)/2, we have

2 · ENT(p;θc)− ENT(p;θa)− ENT(p;θb) ≈ −0.0047898 < 0.

Hence the entropy is not concave.

Define parameters θd = {θ1 = 0.4, θ2 = 0.8} and θe = {θ1 = 0.42, θ2 = 0.82}. Denote
θf = (θd + θe)/2, we have

2 · ENT(p;θf )− ENT(p;θd)− ENT(p;θe) ≈ 0.0056294 > 0.

Hence the entropy is not convex.

Lemma 3. For any dataset D = {x(i)}Ni=1 and any deterministic PC p with parameters θ, the
following formula is concave w.r.t. θ:

N∑

i=1

log p(x(i);θ). (17)

Proof. For any input x, log p(x;θ) can be decomposed over sum and product units:

• Sum units. Suppose n is a sum unit, then

log pn(x;θ) = log
( ∑

c∈in(n)

θn,c · pc(x)
)

= log
( ∑

c∈in(n)

θn,c · pc(x)1[x ∈ supp(c)]
)

=
∑

c∈in(n)

1[x ∈ supp(c)]
(
log θn,c + log pc(x)

)
, (18)

where the last equation holds because unit n is deterministic: ∀ci, cj ∈ in(n)(ci 6= cj), supp(ci) ∩
supp(cj) = ∅.

• Product units. Suppose n is a product unit, then

log pn(x;θ) = log

(
∏

c∈in(n)

pc(x)

)

=
∑

c∈in(n)

log pc(x). (19)

According to Eqs. (18) and (19), for any x ∈ val(X), log p(x;θ) can be decomposed into the sum
over a set of log-parameters (e.g., log θn,c). Therefore, Eq. (17) is concave.
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Lemma 4. Given a deterministic PC p with root node nr, its entropy ENT(p) can be decomposed as
follows:

ENT(pnr
) = −

∑

(n,c)∈edges(pnr )

Pnr
(n) · θn,c log θn,c,

where edges(p) denotes all edges (n, c) in the PC with sum unit n; Pnr
(n) is defined in Eq. (21).

Proof. We prove the lemma by induction.

• Base case. Suppose m is a sum unit such that all its decendents are either input units or product
unit. By definition, we have Pm(m) = 1, and edges(pm) = {(m, c) | c ∈ in(m)}. Thus,

−
∑

(n,c)∈edges(pm)

Pm(n) · θn,c log θn,c = −
∑

c∈in(m)

θm,c log θm,c = ENT(pm).

• Inductive case: product units. Suppose m is a product unit such that for each of its children
c ∈ in(m), we have

ENT(pc) = −
∑

(n′,c′)∈edges(pc)

Pc(n
′) · θn′,c′ log θn′,c′ .

Then by Lem. 1 we know that

ENT(pm) =
∑

c∈in(m)

ENT(pm)

= −
∑

c∈in(m)

∑

(n′,c′)∈edges(pc)

Pc(n
′) · θn′,c′ log θn′,c′

(a)
= −

∑

c∈in(m)

∑

(n′,c′)∈edges(pc)

Pm(n′) · θn′,c′ log θn′,c′

(b)
= −

∑

(n′,c′)∈edges(pm)

Pm(n′) · θn′,c′ log θn′,c′ ,

where (a) holds since for any sum unit n′, Pc(n
′) = Pm(n′), and (b) follows from the fact that

edges(pm) =
⋃

c∈in(m) edges(pc).

• Inductive case: sum units. Suppose m is a sum unit such that for each of its children c ∈ in(m), we
have

ENT(pc) = −
∑

(n′,c′)∈edges(pc)

Pc(n
′) · θn′,c′ log θn′,c′ .

Then by Lem. 1 we have

ENT(pm) =
∑

c∈in(m)

(
− θn,c log θn,c + θn,c · ENT(pc)

)

=
∑

c∈in(m)

−θn,c log θn,c −
∑

c∈in(n)

∑

(n′,c′)∈edges(pc)

θm,c · Pc(n
′)

︸ ︷︷ ︸

Pm(n′)

·θn′,c′ log θn′,c′

=
∑

c∈in(m)

−Pm(m)θn,c log θn,c −
∑

c∈in(n)

∑

(n′,c′)∈edges(pc)

Pm(n′) · θn′,c′ log θn′,c′

(a)
= −

∑

(n′,c′)∈edges(pm)

Pm(n′) · θn′,c′ log θn′,c′ ,

where (a) holds because edges(pm) =
(⋃

c∈in(m) edges(pc)
) ⋃ (

{(m, c) | c ∈ in(m)}
)
.

Lemma 5. The entropy regularization objective in Eq. (2) w.r.t. a deterministic PC p and a dataset
D could have multiple local maximas.
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Figure 8: An example PC to show that Eq. (2) could have multiple stationary points.

Proof. Consider the deterministic PC p in Fig. 8 and dataset D with a single sample x =
(true, . . . , true). The objective in Eq. (2) can be re-written as follows

Lent(θ;n1, τ) := log pn1
(x) + τ · ENT(pn1

),

where n1 is the root node of the PC as denoted in Fig. 8. We further decompose Lent(θ;n1, τ):

Lent(θ;n1, τ) = log θ1 + 67 · log θ2 + τ · ENT(pn1
)

= log θ1 + 67 · log θ2 + τ ·
(
− θ1 log θ1 − (1−θ1) log(1−θ1)

)

+ τ · θ1 · ENT(pn2) + τ · (1−θ1) · ENT(pn3).

First, we observe that to maximize Lent(θ;n1, τ), θ3 should always be 0.5 since the only term that
depends on θ3 is (1−θ1) · ENT(pn3

) and 1−θ1>0. Therefore, we have

ENT(pn3) = 78 · log 2 ≈ 54.065.

Next, for any fixed θ1∈(0, 1], the objective Lent(θ;n1, τ) is concave w.r.t. θ2:

Lent(θ;n1, τ) = 67 ·
(
log θ2 − τ ·θ1 ·(θ2 log θ2 + (1−θ2) log(1−θ2))

)
+ const, (20)

where the constant term does not depend on θ2. Therefore, for any θ1, we can uniquely compute
the optimal value of θ2. We are left with determining the optimal value of θ1. Choose τ = 1.5, the
derivative of Lent(θ;n1, τ) w.r.t. θ1 is (denote ent0 := −(θ2 log θ2 + (1−θ2) log(1−θ2)))

g(θ1) :=
∂Lent(θ;n1, τ)

∂θ1
=

1

θ1
+ 1.5 ·

(

log(1−θ1)− log θ1 + ENT(pn2
)− ENT(pn3

)
)

=
1

θ1
+ 1.5 ·

(

log(1−θ1)− log θ1 + 67 · ent0 − ENT(pn3
)
)

where ENT(pn3) can be viewed as a constant and ent0 depends on θ1. Specifically, for any θ1, we
compute θ2 and hence ent0 by maximizing Eq. (20). Putting everything together, we have







g(0.02) ≈ 1.772730 > 0,

g(0.7) ≈ −0.190743 < 0,

g(0.9) ≈ 2.055231 > 0,

g(0.99) ≈ −0.216938 < 0.

Since g is continuous in range (0, 1], there exists a local maxima of θ1 between 0.02 and 0.7 as well
as between 0.9 and 0.99. Therefore, the entropy regularization objective could have multiple local
maximas.

A.3 Proof of Theorem 1

This theorem is a direct corollary of Theorem 5 in [49], which has the following statement:

Computing the expectation of a logistic regression model w.r.t. a uniform data distribution is #-hard.

Note that with β = 0.5, the distribution Dβ is essentially uniform, Thm. 1 follows directly from [49].
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A.4 Proof of Theorem 2

This proof largely follows the proof of Theorem 5 in [49]. The proof is by reduction from #NUMPAR,
which is defined as follows. Given n positive integers k1, . . . , kn, we want to count the number of
subset S ⊆ [n] that satisfies

∑

i∈S ki =
∑

i 6∈S ki. #NUMPAR is known to be #P-hard.

Fix an instance of #NUMPAR, k1, . . . , kn, and assume w.l.o.g. that the sum of the numbers is even,
i.e.,

∑

i ki = 2c for some natural number c. Define P := {S | S ⊆ [n],
∑

i∈S ki = c}. By definition

|P | is the solution to the #NUMPAR problem. Note that for each S ∈ P , its complement S̄ should
also be a member of P , and hence |P | is even.

Define a logistic regression model as F (x1, . . . , xn) := σ(w0 +
∑n

i=1 wi · xi), where σ is the
sigmoid function. Define the normalized model of F as G(x1, . . . , xn) := F (x1, . . . , xn)/Z,
where Z :=

∑

x∈val(X) F (x1, . . . , xn). Denote the entropy of a normalized logistic regressor G as

ENT(G) := −
∑

x∈val(X) G(x) logG(x).

We now describe an algorithm that computes |P | using an oracle for ENT(G), where G is a normalized
logistic regression model. Denote m as a large natural number to be chosen later, and define the
following weights

w0 := −
m

2
−mc, wi := mki(∀i ∈ [n]).

Let F be the logistic regressor corresponds to the above weights and G the normalized model of F .
We can represent ENT(G) as follows:

ENT(G) = −
∑

x∈val(X)

F (x)

Z
log

F (x)

Z
= −

∑

x∈val(X)

(F (x) logF (x)

Z
−

F (x)

Z
logZ

)

= −
∑

x∈val(X)

F (x) logF (x)

Z
+ logZ.

For large enough m, F (x) will approach either 0 or 1. Therefore, the first term in the above equation
will approach 0. Therefore, for large enough m, we have

ENT(G) ≈ logZ = log
( ∑

x∈val(X)

σ(w0 +

n∑

i=1

wi · xi)
)

= log
( ∑

x∈val(X)

σ(w0 +

n∑

i=1

wi · xi)
)

.

For each S ⊆ [n], we define weight(S) := −m
2 −mc+m(

∑

i∈S ki). Then,

exp(ENT(G)) ≈
∑

x∈val(X)

σ(−
m

2
−mc+m(

∑

i∈[n]

kixi))

=
∑

x∈val(X)

σ(−
m

2
−mc+m(

∑

i:xi=1

ki))

=
∑

S⊆[n]

σ(weight(S))

=
1

2

∑

S⊆[n]

(
σ(weight(S)) + σ(weight(S̄))

)
.

If S is a solution to #NUMPAR, then

σ(weight(S)) + σ(weight(S̄)) = 2σ(−m/2).

Othervise, one of weight(S) and weight(S̄) is ≥ m/2 and the other is ≤ −3m/2, and hence

σ(m/2) ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + σ(−3m/2).

For a large enough m such that 2σ(−m/2) < ε and 1− σ(m/2) < ε, we have

S ∈ P : 0 ≤ σ(weight(S)) + σ(weight(S̄)) ≤ ε,

S 6∈ P : 1− ε ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + ε.
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Therefore, we have

2n − |P |

2
(1− ε) ≤ exp(ENT(G)) ≤

|P |

2
ε+

2n − |P |

2
(1 + ε)

|P | ≥ 2n −
2 exp(ENT(G))

1− ε
|P | ≤ 2n(1 + ε)− 2 exp(ENT(G))

This gives a lower and upper bound for |P |. For small enough ε (governed by large enough m),
the difference between the lower and upper bound is less than 1, and hence |P | can be uniquely
determined, which proves the theorem.

A.5 Proof of Theorem 4

First note that according to Lem. 2, Eq. (2) is not a convex optimization problem. The key idea of
Alg. 3 is to propose a set of surrogate objective functions, and maximize the objective function Eq. (2)
by iteratively maximizing the surrogate objective. Concretely, we show the monotonic convergence
property of Alg. 3 by checking the correctness of the following three statements:
• Statement #1: The surrogate objective is easy to maximize as it is a concave function w.r.t. the
parameters.
• Statement #2: The surrogate objective is consistent with the original objective Eq. (2). That is,
whenever a set of surrogate objectives are improved, the true objective is also improved.
• Statement #3: The surrogate objectives can always be improved unless the original objective
Eq. (2) has zero first-order derivative.
• Statement #4: Solving Eq. (5) is equivalent to maximizing the surrogate objective.

Before verifying the statements, we first formally define the surrogate. Denote ENT(pn;θ) as the
entropy of the PC rooted at n and with parameters θ; the top-down probability of n, denoted Pnr

(n),
is recursively defined as follows:

Pnr
(n) :=







1 if n is the root node nr,
∑

m∈pa(n) Pnr
(m) if n is a sum unit,

∑

m∈pa(n) θm,n · Pnr
(m) if n is a product unit.

(21)

Given a set of reference parameters θref, we define the surrogate objective w.r.t. parameter θn,c as

Lsurr(θn,c;θ
ref) :=

1

N

N∑

i=1

log p(x(i);θref\{θref
n,c}, θn,c)

︸ ︷︷ ︸

Term 1

+ τ ·Pnr
(n;θref)·

(

−θn,c log θn,c+θn,c ·ENT(pc;θ
ref)

)

︸ ︷︷ ︸

Term 2

. (22)

Given parameters θold, we now describe an update procedure to obtain a set of new parameters θnew.

Parameter update procedure We start with an empty set of parameters θ
update := θ

old and
iteratively update its entries with updated parameters θnew

n,c . For every sum unit n traversed in pre-

order, we update the parameters {θn,c | c ∈ in(n)} by maximizing the sum of surrogate objectives:
∑

c∈in(n)

Lsurr(θn,c;θ
update). (23)

After solving the above equation, the updated parameters {θn,c | c ∈ in(n)} replace the corresponding

original parameters in θ
update. As we will proceed to show in statement #4, maximizing Eq. (23) is

done in Lines 7 to 7 in Alg. 3.

Given the formal definition of the surrogate objective and the corresponding update process, we
re-state the three statements and prove their validity in the following.

• Statement #1: The surrogate objective Eq. (23) is concave w.r.t. parameters {θn,c | c ∈ in(n)}.
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Proof. This statement can be proved by showing that ∀(n, c), ∀θ, Lsurr(θn,c;θ) is concave. Specif-
ically, according to Lem. 3, the first term of Eq. (22) is concave; the second term of Eq. (22) is
concave since (i) −x log x is concave w.r.t. x, and (ii) Pnr

(n;θref) and ENT(pc;θ
ref) are independent

of {θn,c′ | c
′ ∈ in(n)}.

• Statement #2: For any sum unit n and any parameters θ, if we update n’s parameters (i.e.,
{θn,c | c ∈ in(n)}) by maximizing Eq. (23), the true objective Eq. (2) will also improve.

Proof. Consider updating the parameters correspond to sum unit n (i.e., {θn,c | c ∈ in(n)}) by
maximizing Eq. (23). We can re-arrange the entropy ENT(pnr

) as follows:

ENT(pnr
)
(a)
= −

∑

(n′,c′)∈edges(pnr )

Pnr
(n′) · θn′,c′ log θn′,c′

= −
∑

(n′,c′)∈edges(pn)

Pnr
(n′) · θn′,c′ log θn′,c′ + const

= −
∑

(n′,c′)∈edges(pn)

( ∑

m∈pa(n)

Pnr
(m)

)

· Pn(n
′) · θn′,c′ log θn′,c′ + const

= −
∑

(n′,c′)∈edges(pn)

Pnr
(n) · Pn(n

′) · θn′,c′ log θn′,c′ + const

= Pnr
(n) · ENT(pn) + const

(b)
= Pnr

(n) ·
∑

c∈in(n)

(

−θn,c log θn,c+θn,c ·ENT(pc)
)

+ const,

where const denotes terms that do not depend on {θn,c′ | c
′ ∈ in(n)}; (a) and (b) directly apply

Lem. 4 and Lem. 1, respectively.

Thus, the true objective Eq. (2) can be written as follows:

1

N

N∑

i=1

log p(x(i)) + τ · ENT(p)

=
1

N

N∑

i=1

log p(x(i)) + τ · Pnr
(n) ·

∑

c∈in(n)

(

−θn,c log θn,c+θn,c ·ENT(pc)
)

+ const (24)

Compare Eq. (24) and Eq. (22), we can see that they only differs in some constant terms. Therefore,
maximizing Eq. (22) w.r.t. {θn,c′ | c

′ ∈ in(n)} will lead to an increase in the true objective
Eq. (2).

• Statement #3: The surrogate objectives can always be improved unless the original objective
Eq. (2) has zero first-order derivative.

Proof. Recall from Eq. (24) that for any sum unit n, the true objective Eq. (2) can be written as the
sum of Eq. (22) and terms that are independent with the parameters of n (i.e., {θn,c′ | c

′ ∈ in(n)}).
Therefore, the true objective can always be improved by maximizing the surrogate objective Eq. (23)
as long as the true objective has non-zero first-order derivative w.r.t. the parameters.

• Statement #4: Solving Eq. (5) is equivalent to maximizing the surrogate objective.

Proof. We want to maximize the surrogate objective given the assumption that the parameters w.r.t. a
sum unit sum up to 1:

maximize
θn,c

Lsurr(θn,c;θ
ref), such that

∑

c∈in(n)

θn,c = 1. (25)
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Algorithm 5 Forward pass (expected flows)

1: Input: A non-deterministic PC p; sample x

2: Output: value[n]:=(x∈supp(n)) for each unit n
3: foreach n traversed in postorder do
4: if n isa input unit then value[n]←fn(x)
5: elif n isa product unit then
6: value[n]←

∏
c∈in(n) value[c]

7: else //n is a sum unit
8: value[n]←

∑
c∈in(n) θn,c · value[c]

Algorithm 6 Backward pass (expected flows)

1: Input: A non-deterministic PC p; ∀n, value[n]
2: Output: eflow[n, c] := Ez∈pc(·|x;θ)((x, z) ∈

(γn∩γc)) for each pair (n, c), where n is a sum
unit and c∈ in(n)

3: ∀n, context[n]←0; context[nr]←value[nr]
4: foreach sum unit n traversed in preorder do
5: foreach m ∈ pa(n) do (denote g←pa(m))

6: f← value[m]
value[g]

· context[g] · θg,m

7: context[n] += f; flow[g,m] = f

Since the surrogate objective Lsurr(θn,c;θ
ref) is concave, maximizing the surrogate objective is

equivalent to finding its stationary point. Specifically, we solve Eq. (25) with the Lagrange multiplier
method (variable λ corresponds to the constraint):

maximize
θn,c

minimize
λ

Lsurr(θn,c;θ
ref)− λ(1−

∑

c∈in(n)

θn,c)

Its KKT conditions can be written as:
{

Fn,ci
(D)

|D|·θn,ci

− τ · Pnr
(n;θref)(log θn,ci + 1 + ENT(pci ;θ

ref)) + λ = 0 (∀1 ≤ i ≤ |in(n)|),
∑

c∈in(n) θn,c = 1.

It is easy to verify that the above equation is equivalent to Eq. (5) by substituting the definitions in
Lines 7-8 in Alg. 3.

Therefore, by following the parameter update procedure, we can always make progress since the
surrogate objective is concave (statement #1) and the true objective improves as long as the surrogate
objective increases (statement #2). Finally, the learning procedure will not terminate unless a local
maximum is achieved (statement #3).

A.6 Correctness of Algorithms 1 and 2

The correctness of Alg. 1 and 2 can be justified directly by the proof of Thm. 3. Specifically, since
with β = 1, the softened dataset Dβ is equivalent to D, we can use the proof in Appendix A.1 and set
β = 1 (the proof holds for any β ∈ (0.5, 1]).

A.7 Proof of Proposition 1

The first statement (i.e., Eq. (2)) could be non-concave) is proved in Lem. 2. The second statement
(i.e., Eq. (2) could have multiple local maximas) is proved in Lem. 5.

B Method or Experiment Details

B.1 Soften non-boolean datasets

As a direct extension of softening boolean datasets, datasets with categorical variables can be similarly
softened. Suppose X is a categorical variable with k categories. For an assignment x = j, we can
soften it as follows

{
P (x = i) = 1−β

k
(i 6= j),

P (x = j) = β.

To compute the flow Fn,c(Dβ) w.r.t. a softened categorical dataset, we can again adopt Alg. 1 and 2
by choosing

fn(x) = β ·1[x ∈ supp(n)] +
1− β

k
·1[x 6∈ supp(n)].
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B.2 Solving Equation 5

Denote γci :=entropy[ci], our goal is to solve the following set of equations:
{

die
−ϕn,ci − b · ϕn,ci + b · γci = y (∀i ∈ {1, . . . , |in(n)|}),

∑|in(n)|
i=1 eϕn,ci = 1.

We break down the problem by iteratively solve for {ϕn,ci}
|in(n)|
i=1 and y, respectively.

• Solve for y. Given variables {ϕn,ci}
|in(n)|
i=1 , we update y as

y =
1

|in(n)|

|in(n)|
∑

i=1

die
−ϕn,ci − b · ϕn,ci + b · γci .

• Solve for {ϕn,ci}
|in(n)|
i=1 . Given y, we first update each ϕn,ci individually by solving the equation

die
−ϕn,ci − b · ϕn,ci + b · γci = y.

Specifically, this is done by iterative Newton method update:

ϕn,ci +=

di

ϕn,ci

+ b · (γci − ϕn,ci) + y

di

ϕn,ci

+ b

After one Newton method update step for every parameter in {ϕn,ci}
|in(n)|
i=1 , we enforce the constraint

∑|in(n)|
i=1 eϕn,ci = 1 by

ϕn,ci −= log
( |in(n)|

∑

i=1

eϕn,ci

)

.

B.3 Details of the Experiments on Deterministic PCs

PC structures For each dataset, we adopt 16 PCs by running Strudel [17] for
{1000, 1200, 1400, . . . , 4000} iterations except for the dataset “dna”, which we ran Strudel for
{50, 100, 150, . . . , 800} iterations since the learning algorithm takes significantly longer for this
dataset.

Hyperparameters We always perform hyperparameter search using the validation set, and report
the final performance on the test set. Whenever we use data softening or entropy regularization, we
also add pseudocount α=1 since it yields better performance.

Server specifications All our experiments were run on a server with 72 CPUs, 512G Memory, and
2 TITAN RTX GPUs.

Detailed results See Table 3 for extended numerical results.

B.4 Details of the Experiments on Non-Deterministic PCs

The HCLT structure For the experiments on the twenty datasets, we set the hidden size of the
HCLT structure as 12, i.e., every latent variable Z is a categorical variable with 12 categories.
Additionally, following [17, 16], we learn a mixture of 4 HCLTs to achieve better performance. For
the protein sequence dataset, we adopted a mixture of 2 HCLTs with hidden size 32.

Hyperparameters Due to the complexity of running EM iteratively, we were not able to perform
a grid-search for hyperparameters since that would take too long. In our experiments, we tried the
following sets of hyperparameters (for α, β, and τ ): (0.1, 1.0, 0.0), (0.2, 1.0, 0.0), (0.4, 1.0, 0.0),
(0.1, 0.998, 0.0), (0.1, 1.0, 0.001), and (0.1, 0.998, 0.001). Among these hyperparameter choices,
(0.1, 0.998, 0.001) achieved the best validation LL in most datasets, and thus we reported this set
of results. Therefore, for non-deterministic PCs, it is also beneficial to combine both proposed
regularization techniques.
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Table 2: Full results on the 20 density estimation benchmarks. As an extension of Table 1, we report
the average test-set log-likelihood of all baselines: Strudel [17], LearnPSDD [16], EinSumNet [13],
LearnSPN [18], ID-SPN [47], and RAT-SPN [48].

Dataset HCLT EiNet LearnSPN ID-SPN RAT-SPN Strudel LearnPSDD

accidents -26.78 -35.59 -40.50 -26.98 -35.48 -29.46 -28.29
ad -16.04 -26.27 -19.73 -19.00 -48.47 -16.52 -20.13
baudio -39.77 -39.87 -40.53 -39.79 -39.95 -42.26 -41.51
bbc -250.07 -248.33 -250.68 -248.93 -252.13 -258.96 -260.24
bnetflix -56.28 -56.54 -57.32 -56.36 -56.85 -58.68 -58.53
book -33.84 -34.73 -35.88 -34.14 -34.68 -35.77 -36.06
c20ng -151.92 -153.93 -155.92 -151.47 -152.06 -160.77 -160.43
cr52 -84.67 -87.36 -85.06 -83.35 -87.36 -92.38 -93.30
cwebkb -153.18 -157.28 -158.20 -151.84 -157.53 -160.50 -161.42
dna -79.33 -96.08 -82.52 -81.21 -97.23 -87.10 -83.02
jester -52.45 -52.56 -75.98 -52.86 -52.97 -55.30 -54.63
kdd -2.18 -2.18 -2.18 -2.13 -2.12 -2.17 -2.17
kosarek -10.66 -11.02 -10.98 -10.60 -10.88 -10.98 -10.99
msnbc -6.05 -6.11 -6.11 -6.04 -6.03 -6.05 -6.04
msweb -9.90 -10.02 -10.25 -9.73 -10.11 -10.19 -9.93
nltcs -6.00 -6.01 -6.11 -6.02 -6.01 -6.06 -6.03
plants -14.31 -13.67 -12.97 -12.54 -13.43 -13.72 -13.49
pumbs* -23.32 -31.95 -24.78 -22.40 -32.53 -25.28 -25.40
tmovie -50.69 -51.70 -52.48 -51.51 -53.63 -59.47 -55.41
tretail -10.84 -10.91 -11.04 -10.85 -10.91 -10.90 -10.92

Table 3: Results comparing different regularization approaches using the 20 density estimation
benchmarks. This table contains the part of the results summarized in Fig. 5. Specifically, we report
performance of the PC generated by running Strudel [17] for 4,000 steps, except for dna, where we
ran the learner for 1,000 steps.

Dataset Laplace smoothing Data softening Entropy reg. Data softening + Entropy reg.

accidents -29.37 -29.37 -29.39 -29.37
ad -16.39 -16.39 -16.55 -16.39
baudio -42.89 -42.75 -42.78 -42.59
bbc -258.82 -258.64 -258.71 -258.35
bnetflix -59.51 -59.34 -59.19 -59.07
book -36.93 -36.81 -37.05 -36.69
c20ng -160.84 -160.80 -160.81 -160.73
cr52 -91.97 -91.91 -91.99 -91.86
cwebkb -159.93 -159.78 -159.97 -159.67
dna -95.63 -94.90 -95.24 -94.87
jester -56.19 -55.95 -55.83 -55.62
kdd -2.19 -2.18 -2.19 -2.17
kosarek -11.03 -11.00 -11.04 -10.97
msnbc -6.04 -6.04 -6.04 -6.04
msweb -10.11 -10.08 -10.12 -10.06
nltcs -6.18 -6.10 -6.17 -6.09
plants -13.56 -13.42 -13.56 -13.41
pumbs* -25.66 -25.66 -25.69 -25.68
tmovie -59.56 -59.44 -59.53 -59.35
tretail -11.34 -11.30 -11.35 -11.27

Detailed results As an extension of Table 1, Table 2 provides the average test set log-likelihood for
all adopted baselines.

Hyperparameters of RAT-SPN We took the RAT-SPN results on the twenty density estimation
benchmarks from the original paper. Therefore, the hyperparameter settings for RAT-SPN are the
same as reported in the original paper: cross-validate the split-depth D ∈ {1, 2, 3, 4} and the number
of sum-weights Ws ∈ {1e3, 1e4, 1e5}, and used Eq. (1) in [48] to select R, S, and I. Following the
original paper, dropout is not used for training the generative models.
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