Tractable Regularization of Probabilistic Circuits

Anji Liu Guy Van den Broeck
Department of Computer Science Department of Computer Science
UCLA UCLA
Los Angeles, CA 90095 Los Angeles, CA 90095
liuanji@cs.ucla.edu guyvdb@cs.ucla.edu
Abstract

Probabilistic Circuits (PCs) are a promising avenue for probabilistic modeling.
They combine advantages of probabilistic graphical models (PGMs) with those
of neural networks (NNs). Crucially, however, they are tractable probabilistic
models, supporting efficient and exact computation of many probabilistic inference
queries, such as marginals and MAP. Further, since PCs are structured compu-
tation graphs, they can take advantage of deep-learning-style parameter updates,
which greatly improves their scalability. However, this innovation also makes
PCs prone to overfitting, which has been observed in many standard benchmarks.
Despite the existence of abundant regularization techniques for both PGMs and
NN, they are not effective enough when applied to PCs. Instead, we re-think
regularization for PCs and propose two intuitive techniques, data softening and
entropy regularization, that both take advantage of PCs’ tractability and still have
an efficient implementation as a computation graph. Specifically, data soften-
ing provides a principled way to add uncertainty in datasets in closed form,
which implicitly regularizes PC parameters. To learn parameters from a soft-
ened dataset, PCs only need linear time by virtue of their tractability. In en-
tropy regularization, the exact entropy of the distribution encoded by a PC can
be regularized directly, which is again infeasible for most other density estima-
tion models. We show that both methods consistently improve the generalization
performance of a wide variety of PCs. Moreover, when paired with a simple PC
structure, we achieved state-of-the-art results on 10 out of 20 standard discrete
density estimation benchmarks. Open-source code and experiments are available
athttps://github.com/UCLA-StarAI/Tractable-PC-Regularization.

1 Introduction

Probabilistic Circuits (PCs) [1, 2] are considered to be the lingua franca for Tractable Probabilistic
Models (TPMs) as they offer a unified framework to abstract from a wide variety of TPM circuit
representations, such as arithmetic circuits (ACs) [3], sum-product networks (SPNs) [4], and prob-
abilistic sentential decision diagrams (PSDDs) [5]. PCs are a successful combination of classic
probabilistic graphical models (PGMs) and neural networks (NNs). Moreover, by enforcing various
structural properties, PCs permit efficient and exact computation of a large family of probabilistic
inference queries [6, 7, 8]. The ability to answer these queries leads to successful applications in
areas such as model compression [9] and model bias detection [10, 11]. At the same time, PCs are
analogous to NN since their evaluation is also carried out using computation graphs. By exploiting
the parallel computation power of GPUs, dedicated implementations [2, 12] can train a complex PC
with millions of parameters in minutes. These innovations have made PCs much more expressive and
scalable to richer datasets that are beyond the reach of “older” TPMs [13].

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

However, such advances make PCs more prone to overfitting. Although parameter regularization
has been extensively studied in both the PGM and NN communities [14, 15], we find that existing
regularization techniques for PGMs and NNs are either not suitable or not effective enough when
applied to PCs. For example, parameter priors or Laplace smoothing typically used in PGMs, and
often used in PC learning as well [16, 17, 18], incur unwanted bias when learning PC parameters —
we will illustrate this point in Sec. 3. Classic NN methods such as L1 and L2 regularization are not
always suitable since PCs often use either closed-form or EM-based parameter updates.

This paper designs parameter regularization methods that are directly tailored for PCs. We propose two
regularization techniques, data softening and entropy regularization. Both formulate the regularization
objective in terms of distributions, regardless of their representation and parameterization. Yet, both
leverage the tractability and structural properties of PCs. Specifically, data softening injects noise into
the dataset by turning hard evidence in the samples into soft evidence [19, 20]. While learning with
such softened datasets is infeasible even for simple machine learning models, with their tractability, a
class of PCs (i.e., deterministic PCs) can learn the maximum-likelihood estimation (MLE) parameters
given a softened dataset in O(|p|-|D|) time, where |p| is the size of the PC and |D| is the size
of the (original) dataset. For PCs that are not deterministic, every parameter update step can be
done in O(|p|-|D|) time, still allowing efficient parameter learning. Additionally, the entropy of
the distribution encoded by a PC can be tractably regularized. Although the entropy regularization
objective for PC is multi-modal and a global optimum cannot be found in general, we propose an
algorithm that is guaranteed to converge monotonically towards a stationary point.

We show that both proposed approaches consistently improve the test set performance over standard
density estimation benchmarks. Furthermore, we observe that when data softening and entropy
regularization are properly combined, even better generalization performance can be achieved.
Specifically, when paired with a simple PC structure, this combined regularization method achieves
state-of-the-art results on 10 out of 20 standard discrete density estimation benchmarks.

Notation We denote random variables by uppercase letters (e.g., X) and their assignments by
lowercase letters (e.g.,). Analogously, we use bold uppercase letters (e.g., X) and bold lowercase
letters (e.g., x) for sets of variables and their joint assignments, respectively.

2 Two Intuitive Ideas for Regularizing Distributions

A common way to prevent overfitting in machine learning models is to regularize the syntactic
representation of the distribution. For example, L1 and L2 losses add mutually independent priors to
all parameters of a model; other approaches such as Dropout [14], Bayesian Neural Networks (BNNs)
[21], and Bayesian parameter smoothing [22] incorporate more complex and structured priors into the
model [23]. In this section, we ask the question: how would we regularize an arbitrary distribution,
regardless of the model at hand, and the way it is parameterized? Such global, model-agnostic
regularizers appear to be under-explored. Next, we introduce two intuitive ideas for regularizing
distributions, and study how they can be practically realized in the context of probabilistic circuits in
the remainder of this paper.

Data softening Data augmentation is a common technique to improve the generalization perfor-
mance of machine learning models [24, 25]. A simple yet effective type of data augmentation is
to inject noise into the samples, for example by randomly corrupting bits or pixels [26]. This can
greatly improve generalization as it renders the model more robust to such noise. While current noise
injection methods are implemented as a sequence of sampled transformations, we stress that some
noise injection can be done in closed form: we will be considering all possible corruptions, each with
their own probability, as a function of how similar they are to a training data point.

Consider boolean variables' as an example: after noise injection, a sample X =1 is represented as a
distribution over all possible assignments (i.e., X =1 and X =0), where the instance X =1, which
is “similar” to the original sample, gets a higher probability: P(X =1)= . Here S € (0.5,1] is a
hyperparameter that specifies the regularization strength — if =1, no regularization is added; if 3
approaches 0.5, the regularized sample represents an (almost) uniform distribution. For a sample
with K variables X:={X z}szl where the kth variable takes value x, we can similarly ‘soften’ x

"'We postpone the discussion on regularizing samples with non-boolean variables in Appendix B.1.

by independently injecting noise into each variable, resulting in a softened distribution Py, g:

K
Vo' eval(X), Pyps(X=a') pr H(,B-i[mgzxi]+(1—ﬁ)-i[x;7éxi]).

i=1

For a full dataset D := {a:)} 'L, this softening of the data can also be represented through a new,
softened dataset Dg. Its empirical distribution is the average softened distribution of its data. It is a
weighted dataset, where weight(Dg, x) denotes the weight of sample x in Dg:

Ds :={xz|xeval(X)} and weight(Dg,x) =~ ZP o (X =x). (1)

This softened dataset ensures that each possible assignment has a small but non-zero weight in
the training data. Consequently, any distribution learned on the softened data must assign a small
probability everywhere as well. Of course, materializing this dataset, which contains all possible
training example, is not practical. Regardless, we will think of data softening as implicitly operating
on this softened dataset. We remark that data softening is related to soft evidence [27] and virtual
evidence [28], which both define a framework to incorporate uncertain evidence into a distribution.

Entropy regularization Shannon entropy is an effective indicator for overfitting. For a dataset D
with N distinct samples, a perfectly overfitting model that learns the exact empirical distribution
has entropy log(N). A distribution that generalizes well should have a much larger entropy, since it
assigns positive probability to exponentially more assignments near the training samples. Concretely,
for the protein sequence density estimation task [29] that we will experiment with in Sec. 4.3, the
perfectly overfitting empirical distribution has entropy 3, a severely overfitting learned model has
entropy 92, yet a model that generalizes well has entropy 177. Therefore, directly controlling the
entropy of the learned distribution will help mitigate overfitting. Given a model Py parametrized by
0 and a dataset D:= {:c(N |, we define the following entropy regularization objective:

LLent(0;D,7) := — Zlogpg) 4 7 - ENT(Pp), 2)

where ENT(Pg):=—>__ c..x) Po(2) log Po(x) denotes the entropy of distribution Py, and 7 is a
hyperparameter that controls the regularization strength. Various forms of entropy regularization
have been used in the training process of deep learning models. Different from Eq. (2), these methods
regularize the entropy of a parametric [30, 31] or non-parametric [32] output space of the model.

Although both ideas for regularizing distributions are rather intuitive, it is surprisingly hard to
implement them in practice since they are intractable even for the simplest machine learning models.

Theorem 1. Computing the likelihood of a distribution represented as a exponentiated logistic
regression (or equivalently, a single neuron) given softened data is #P-hard.

Theorem 2. Computing the Shannon entropy of a normalized logistic regression model is #P-hard.

Proof of Thm. 1 and 2 are provided in Appendices A.3 and A.4. Although data softening and entropy
regularization are infeasible for many models, we will show in the following sections that they are
tractable to use when applied to Probabilistic Circuits (PCs) [1], a class of expressive TPMs.

3 Background and Motivation

Probabilistic Circuits (PCs) are a collective term for a wide variety of TPMs. They present a unified
set of notations that provides succinct representations for TPMs such as Probabilistic Sentential
Decision Diagrams (PSDDs) [S5], Sum-Product Networks (SPNs) [4], and Arithmetic Circuits (ACs)
[3]. We proceed by introducing the syntax and semantics of a PC.

Definition 1 (Probabilistic Circuits). A PC p that represents a probability distribution over variables
X is defined by a parametrized directed acyclic graph (DAG) with a single root node, denoted n,..
The DAG comprises three kinds of units: input, sum, and product. Each leaf node n in the DAG
corresponds to an input unit; each inner node n (i.e., sum and product units) receives inputs from its

0.29

023

017}

012

Percentage

- 0.058| m H |‘|
vl = Lm [N
Ulsupp(er)| =1 00 >] o
:‘ fsupp(cz)| =2"" Xy =Xy Xy 2 Xy " " Imballanceness10 "
(a) A PC with imbalanced sum unit 7;. (b) Imbalanceness of the PCs learned by Strudel.

Figure 1: A Problem of Laplace smoothing. (a) Laplace smoothing cannot properly regularize this
PC as the sum unit n; is imbalanced, i.e., its two children have drastically different support sizes. (b)
A large fraction of sum units learned by a PC structure learning algorithm [17] are imbalanced.

children, denoted in(n). Each unit n encodes a probability distribution p,,, defined as follows:

fn(x) if n is an input unit,
Pn(T) := Dcein(n) One - Pe(@) if nis a sum unit,
[Tecingn) Pe() if n is a product unit,

where f,, is a univariate input distribution (e.g., boolean, categorical or Gaussian), and ,, . repre-
sents the parameter corresponds to edge (n, ¢). Intuitively, a sum unit models a weighted mixture
distribution over its children, and a product unit encodes a factored distribution over its children. We
assume w.l.o.g. that all parameters are positive and the parameters associated with any sum unit n
sumup to 1 (i.e., Zcein(n) 0r..=1). We further assume w.l.o.g. that a PC alternates between sum

and product layers [33]. The size of a PC p, denoted |p|, is the number of edges in its DAG.

This paper focuses on two classes of PCs that support different types of queries: (i) PCs that allow
linear-time computation of marginal (MAR) and maximum-a-posterior (MAP) inferences (e.g.,
PSDDs [5], selective SPNs [34]); (ii) PCs that only permit linear-time computation of MAR queries
(e.g., SPNs [4]). The borders between these two types of PCs are defined by their structural properties,
i.e., constraints imposed on a PC. First, in order to compute MAR queries in linear time, both classes
of PCs should be decomposable (Def. 2) and smooth (Def. 3) [1]. These are properties of the (variable)
scope ¢(n) of PC units n, that is, the collection of variables defined by all its descendent input nodes.

Definition 2 (Decomposability). A PC is decomposable if for every product unit n, its children have
disjoint scopes: Ve, ¢ € in(n) (c1 # c2), d(c1) N P(e) = .

Definition 3 (Smoothness). A PC is smooth if for every sum unit n, its children have the same scope:

Veq, eo € in(n), d(c1) = ¢(ca).

Next, determinism is required to guarantee efficient computation of MAP inference [35].

Definition 4 (Determinism). Define the support supp(n) of a PC unit n as the set of complete
variable assignments € val(X) for which p,, (x) has non-zero probability (density): supp(n) =
{z | xeval(X), p,(x)>0}. A PC is deterministic if for every sum unit n, its children have disjoint
support: Ycy, ce € in(n) (¢1 # c2),supp(c1) Nsupp(cz) = 2.

Since the only difference in the structural properties of both PCs classes is determinism, we denote
members in the first PC class as deterministic PCs, and members in the second PC class as non-
deterministic PCs. Interestingly, both PC classes not only differ in their tractability, which is
characterized by the set of queries that can be computed within poly(|p|) time [6], they also exhibit
drastically different expressive efficiency. Specifically, abundant empirical [17, 13] and theoretical
[36] evidences suggest that non-deterministic PCs are more expressive than their deterministic
counterparts. Due to their differences in terms of tractability and expressive efficiency, this paper
studies parameter regularization on deterministic and non-deterministic PCs separately.

Motivation Laplace smoothing is widely adopted as a PC regularizer [16, 17]. Since it is also
the default regularizer for classical probabilistic models such as Bayesian Networks (BNs) [37] and
Hierarchical Bayesian Models (HBMs) [38], this naturally raises the following question: are there
differences between a good regularizer for classical probabilistic models such as BNs and HBMs
and effective regularizers for PCs? The question can be answered affirmatively — while Laplace

Algorithm 1 Forward pass Algorithm 2 Backward pass

1: Input: A deterministic PC p; sample 1: Input: A deterministic PC p; Vn, value[n]
2: Output: value[n]:=(x € supp(n)) for each unitn 2: Qutput: flow[n,c] := (x € (y,N~.)) for each
3: foreach n traversed in postorder do pair (n, ¢), where n is a sum unit and c€in(n)
if n isa input unit then value[n] < fn(x) : Vn, context[n]+ 0; context[n,| <+ value[n,]
elif 7 isa product unit then : foreach sum unit n traversed in preorder do

| value[n] <], cin(n) value[d] foreach m € pa(n) do (denote g<—pa(m))
else //n is a sum unit Lf el context[g]

value[g]
| value[n]« 3 ;) value[d] context[n| +=£f; flow[g,m] =%

A
N REw

smoothing provides good priors to BNs and HBMs, its uniform prior could add unwanted bias to PCs.
Specifically, for every sum unit n, Laplace smoothing assigns the same prior to all its child parameters
@.e., {0, | c€in(n)}), while in many practical PCs, these parameters should be given drastically
different priors. For example, consider the PC shown in Fig. 1(a). Since c3 has an exponentially
larger support than ¢y, it should be assumed as prior that 615 will be much larger than 64;.

We highlight the significance of the above issue by examining the fraction of sum units with imbal-
anced child support sizes in PCs learned by Strudel, a state-of-the-art structure learning algorithm
for deterministic PCs [5]. We examine 20 PCs learned from the 20 density estimation benchmarks
[39], respectively. All sum units with > 3 children and with a support size > 128 are recorded. We
measure “imbalanceness” of a sum unit n by the fraction of the maximum and minimum support size

maXe, gin(n) [supp(c1)| : .
 TTes ey T50PP(2)]). As demonstrated in Fig. 1(b), more than 20% of the sum

units have imbalanceness > 102, which suggests that the inability of Laplace smoothing to properly
regularize PCs with imbalanced sum units could lead to severe performance degradation in practice.

of its children (i.e.

4 How Is This Tractable And Practical?

In this section, we first provide additional background about the parameter learning algorithms for
deterministic and non-deterministic PCs (Sec. 4.1). We then demonstrate how the two intuitive ideas
for regularizing distributions (Sec. 2), i.e., data softening and entropy regularization, can be efficiently
implemented for deterministic (Sec. 4.2) and non-deterministic (Sec. 4.3) PCs.

4.1 Learning the Parameters of PCs

Deterministic PCs Given a deterministic PC p defined on variables X and a dataset D = {x(}¥ |,

the maximum likelihood estimation (MLE) parameters 07, :=argmax, Zf\; log p(z(?); 0) can be
learned in closed-form. To formalize the MLE solution, we need a few extra definitions.

Definition 5 (Context). The context ,, of every unit n in a PC p is defined in a top-down manner: for
the base case, context of the root node n,. is defined as its support: 7, := supp(n..). For every other
node n, its context is the intersection of its support and the union of its parents’ (pa(n)) contexts:

= |J mNsupp(n).
mé&pa(n)

Intuitively, if an assignment @ is in the context of unit n, then there exists a path on the PC’s DAG
from 7 to the root unit n,. such that for any unit m in the path, we have @ € supp(m). Circuit flow
extends the notation of context to indicate whether a sample @ is in the context of an edge (n, ¢).

Definition 6 (Flows). The flow F,, .(z) of any edge (n,c) in a PC given variable assignments
x eval(X) is defined as 1[x €, N7.], where 1[] is the indicator function. The flow F,, .(D) w.r.t.

dataset D={z("} | is the sum of the flows of all its samples: F,, .(D) ::Zilil Foo(x®).

The flow F,, .(z) for all edges (n, ¢) in a PC p w.r.t. sample « can be computed through a forward
and backward path that both take O(|p|) time. The forward path, as shown in Alg. 1, starts from the
leaf units and traverses the PC in postorder to compute Vn, value[n]:= 1[x €supp(n)]; afterwards,
the backward path illustrated in Alg. 2 begins at the root unit n,- and traverses the PC in preorder to

Aveg. train LL

Full-batch EM
-115 —-=-Mini-batch EM
Mini-batch + full-batch EM

-120
0

100 200 300 400
Epoch

Figure 2: A non-deterministic PC can Figure 3: Average train Figure 4: HCLT is con-
be modified as an equivalent determin- LL on MNIST using dif- structed by adding hidden
istic PC with hidden variables. ferent EM updates. variables in a CLT [43].

compute Vn, context[n]:= 1z €~,] as well as ¥(n, ¢), £low[n, c] :=F,, .(x). By Def. 6, the time
complexity for computing F,, .(D) with respect to all edges (n, ¢) in p is O(|p|-|D|), where |D| is
the size of dataset D. The correctness of Alg. 1 and 2 are justified in Appendix A.6.

The MLE parameters 87, given dataset D can be computed using the flows [5]:

Y(n,c), 0;.=TF,.(D)/ Zcein(n) F,.o(D). 3)

Define hyperparameter o (o > 0), for every sum unit n, Laplace smoothing regularizes its child
parameters (i.e., {0y . | ¢ €in(n)}) by adding a pseudocount a/|in(n)| to every child branch of n,
which is equivalent to adding «/|in(n)| to the numerator of Eq. (3) and « to its denominator.

Non-deterministic PCs As justified by Peharz et al. [40], every non-deterministic PC can be
augmented as a deterministic PC with additional hidden variables. For example, in Fig. 2, the
left PC is not deterministic since the support of both children of n; (i.e., ny and n3) contains
x1%2. The right PC augments the left one by adding input units correspond to hidden variable
Z7, which retains determinism by “dividing” the overlapping support x1Z into x1Z221 €supp(nse)
and z1Z2Z; € supp(ns). Under this interpretation, parameter learning of non-deterministic PCs is
equivalent to learning the parameters of deterministic PCs given incomplete data (we never observe
the hidden variables), which can be solved by Expectation-Maximization (EM) [41, 42]. In fact, EM
is the default parameter learning algorithm for non-deterministic PCs [13, 10].

Under the latent variable model view of a non-deterministic PC, its EM updates can be computed
using expected flows [10]. Specifically, given observed variables X and (implicit) hidden variables Z,
the expected flow of edge (n, ¢) given dataset D is defined as

EFn,c(D; 0) = EmND,szC(-kc;G) [Fn,c(my z)]:

where 0 is the set of parameters, and p.(- | ;@) is the conditional probability over hidden variables
Z given x specified by the PC rooted at unit c¢. Similar to flows, the expected flows can be computed
via a forward and backward pass of the PC (Alg. 5 and 6 in the Appendix). As shown by Choi et al.
[10], for a non-deterministic PC, its parameters for the next EM iteration are given by
") = EF,, o(D;0)/ > EF, (D;6). (4)
c€in(n)

This paper uses a hybrid EM algorithm, which uses mini-batch EM updates to initiate the training
process, and switch to full-batch EM updates afterwards. Specifically, in mini-batch EM, 8("¢®) are
computed using mini-batches of samples, and the parameters are updated towards the taget with a
step size 7: 01 < (1 — 1)0*) 4 n@e®); when using full-batch EM, we iteratively compute the
updated parameters (%) using the whole dataset. Fig. 3 demonstrates that this hybrid approach
offers faster convergence speed compared to using full-batch or mini-batch EM only.

4.2 Regularizing Deterministic PCs

We demonstrate how the intuitive ideas for regularizing distributions presented in Sec. 2 (i.e., data
softening and entropy regularization) can be efficiently applied to deterministic PCs.

Data softening As hinted by Eq. (1), we need exponentially many samples to represent a softened
dataset, which makes parameter learning intractable even for the simple logistic regression model
(Thm. 1), let alone more complex probabilistic models such as VAEs [44] and GANSs [45]. Despite

Algorithm 3 PC Entropy regularization

1: Input: A deterministic PC p; flow F,, .(D) for every edge (n, ¢) in p; hyperparameter 7.

2: Output: A set of log-parameters, {¢, . : (n,c) € p}, which are the solution of Eq. (2).

3: Vn, node_prob[n| + 0; node_prob[n,] < 1 //n, is the root node of p

4: while not converge do

5: | Vn, entropy[n] + The entropy of the sub-PC rooted at n (see Alg. 4 in Appendix A.2)
: | foreach sum unit n traversed in preorder (parent before children) do

6:
7. | | di Fpe(D)/|D]; b=r1-node_probln] //{c;}"") is the set of children of n
8 Solve for {p,, ., }L'i(ln)‘ in the following set of equations (y is a variable):

die=fmei — by, +b-entropy[e;] =y (Vi€ {1,...,]in(n)|}) 5)
S o,

9: for each c € in(n) and each m € in(c) do //Update node_prob of grandchildren

10: | | | node_prob[m] < node_prob[m] 4 e# - node_prob|n]

this negative result, the MLE parameters of a PC p w.r.t. D can be computed in time O(|p|-|D|),
which is linear w.r.t. the model size as well as the size of the original dataset.

Theorem 3. Let f,(x) = f-1[x € supp(n)] + (1—25)-1[xz & supp(n)] in Alg. 1. Given a
deterministic PC p, a boolean dataset D, and hyperparameter 3 € (0.5,1], the set of all flows
{F...c(Dg) | V edge (n,c)} w.rt. the softened dataset Dg can be computed by Alg. I and 2 within
O(lpl- D) time.

Proof of this theorem is provided in Appendix A.1. Since the MLE parameters (Eq. (3)) w.r.t. Dg
can be computed in O(|p|) time using the flows, the overall time complexity to compute the MLE
parameters is again O(|p|-|D|).

Entropy regularization The hope for tractable PC entropy regularization comes from the fact that
the entropy of a deterministic PC p can be exactly computed in O(|p|) time [6, 46]. However, it is
still unclear whether the entropy regularization objective LLeyt (0; D, 7) (Eq. (2)) can be tractably
maximized. We answer this question with a mixture of positive and negative results: while the
objective is multi-modal and the global optimal is hard to find, we propose an efficient algorithm that
(i) guarantees convergence to a stationary point, and (ii) achieves high convergence rate in practice.
We start with the negative result.

Proposition 1. There exists a deterministic PC p, a hyperparameter T, and a dataset D such that
LLent (0; D, 7) (Eq. (2)) is non-concave and has multiple local maximas.

Proof is given in Appendix A.7. Although global optimal solutions are generally infeasible, we
propose an efficient algorithm that guarantees to find a stationary point of LL., (6; D, 7). Specifically,
Alg. 3 takes as input a deterministic PC p and all its edge flows w.r.t. D, and returns a set of learned
log-parameters that correspond to a stationary point of the objective.? In its main loop (lines 4-10),
the algorithm alternates between two procedures: (i) compute the entropy of the distribution encoded
by every node w.r.t. the current parameters (line 5),> and (ii) update PC parameters with regard to the
computed entropies (lines 6-10). Specifically, in the parameter update phase (i.e., the second phase),
the algorithm traverses every sum unit n in preorder and updates its child parameters by maximizing
the entropy regularization objective (LLent (8; D, 7)) with all other parameters fixed. This is done by
solving the set of equations in Eq. (5) using Newton’s method (lines 7-8).# In addition to the child
nodes’ entropy computed in the first phase, Eq. (5) uses the top-down probability of every unit n (i.e.,
node_prob[n]), which is progressively updated in lines 9-10.

Theorem 4. Alg. 3 converges monotonically to a stationary point of LLent (0; D, 7) (Eq. (2)).

Proof. The high-level idea of the proof is to show that the parameter update phase (lines 6-10) opti-
mizes a concave surrogate objective of LLpt (6; D, 7), which is determined by the entropies computed

>We compute parameters in the logarithm space for numerical stability.
3This can be done by Alg. 4 shown in Appendix A.2. Lem. 1 proves that Alg. 4 takes O(|p|) time.
*Details for solving Eq. (5) is given in Appendix B.2.

Entropy regularization

. Data softening o . Data softening + Entropy reg. -

éoe o § 04 °’ éos & 08 [l Data softening

] K4 g ° o g K4 0.5 [Entropy reg.

805 g g o3) 806 s & gM [IData softening + Entropy reg.
g

£ e £ . £ of ¢ £

S04 . 30 - 304 H gos

- L ™~ - ° ;

] 2 01 ° E 2 0.2

g § o0 4 g o

I of € ¥ & \A\ g 0 ' l)

K Ea 2 0

-02 -01 0 0.1 02 03 02 -04 0 0.1 02 03 02 -041 0 0.1 02 03 0o 01 02 03 04 05 06 07
Degree of overfitting Degree of overfitting Degree of overfitting Aveg. test set LL improvement

Figure 5: Both data softening and entropy regularization effectively improve the test set log-likelihood
(LL) across various datasets [39] and PC structures [17]. LL improvement (higher is better) represents
the gain of test set LL compared to Laplace smoothing. The test-set LLs are reported in Table 3.

in line 5. Specifically, we show that whenever the surrogate objective is improved, LLen (0; D, 7) is
also improved. Since the surrogate objective is concave, it can be easily optimized. Therefore, Alg. 3
converges to a stationary point of LLe,y (6; D, 7). The detailed proof is in Appendix A.5. (]

Alg. 3 can be regarded as a EM-like algorithm, where the E-step is the entropy computation phase
(line 5) and the M-step is the parameter update phase (lines 6-10). Specifically, the E-step constructs
a concave surrogate of the true objective (LLeyt (6; D, 7)), and the M-step updates all parameters by
maximizing the concave surrogate function. Although Thm. 4 provides no convergence rate analysis,
the outer loop typically takes 3-5 iterations to converge in practice. Furthermore, Eq. (5) can be
solved with high precision in a few (< 10) iterations. Therefore, compared to the computation of all
flows w.r.t. D, which takes O(|p|-|D|) time, Alg. 3 takes a negligible O(|p|) time.

In response to the motivation in Sec. 3, we show that both proposed methods can overcome the
imbalanced regularization problem of Laplace smoothing. Again consider the example PC in
Fig. 1(a), we conceptually demonstrate that both data softening and entropy regularization will
not over-regularization #;; compared to 6;5. First, data softening essentially add no prior to the
parameters, and only soften the evidences in the dataset. Therefore, it will not over-regularize children
with small support sizes. Second, entropy regularization will add a much higher prior to ;5. Suppose
n =10, consider maximizing Eq. (2) with an empty dataset (i.e., we maximize ENT(p,,,) directly), the
optimal parameters would be 611 ~0.002 and 6,5~ 0.998. Therefore, entropy regularization will tend
to add a higher prior to children with large support sizes. More fundamentally, the reason why both
proposed approaches do not add biased priors to PCs is that they are designed to be model-agnostic,
i.e., their definitions as shown in Sec. 2 are independent with the model they apply to.

Empirical evaluation We empirically evaluate both proposed regularization methods on the twenty
density estimation datasets [39]. Since we are only concerned with parameter learning, we adopt PC
structures (defined by its DAG) learned by Strudel [17]. 16 PCs with different sizes were selected
for each of the 20 datasets. For all experiments, we performed a hyperparameter search for all three
regularization approaches (Laplace smoothing, data softening, and entropy regularization)® using the
validation set and report results on the test set. Please refer to Appendix B.3 for more details.

Results are summarized in Fig. 5. First look at the scatter plots on the left. The x-axis represents
the degree of overfitting, which is computed as follows: denote LL;,4;, and LL,,; as the average
train and validation log-likelihood under the MLE estimation with Laplace smoothing (ov=1.0), the
degree of overfitting is defined as (LL,q; — LLt7qin) /LLyai, which roughly captures how much the
dataset/model pair suffers from overfitting. The y-axis represents the improvement on the average
test set log-likelihood compared to Laplace smoothing. As demonstrated by the scatter plots, despite
a few outliers, both proposed regularization methods steadily improve the test set LL over various
datasets and PC structures, and the LL improvements are positively correlated with the degree of
overfitting. Furthermore, as shown by the last scatter plot and the histogram plot, when combining
data softening and entropy regularization, the LL improvement becomes much higher compared to
using the two regularizers individually.

4.3 Regularizing Non-Deterministic PCs

By viewing every non-deterministic PC as a deterministic PC with additional hidden variables
(Sec. 4.1), the regularization techniques developed in Sec. 4.2 can be directly adapted. Specifically,

SSpecifically, o € {0.1,0.4,1.0,2.0,4.0,10.0}, 8 € {0.9996,0.999,0.996}, 7 € {0.001,0.01, 0.1}.

Table 1: Test set log-likelihood in 20 density estimation benchmarks. We compare our method
(HCLT) with the best performance (Best PSDD) over 2 deterministic PC learner: Strudel [17]
and LearnPSDD [16] as well as the best performance (Best SPN) over 4 SPN learning algorithms:
EinSumNet [13], LearnSPN [18], ID-SPN [47], and RAT-SPN [48]. With the help of data softening
and entropy regularization (a=0.1, 5=0.998, and 7=0.001), HCLT achieved the best performance
over 10 out of 20 datasets. All experiments for HCLT were repeated 5 times, and the average and
standard deviation are reported.

Dataset HCLT Best PSDD Best SPN | Dataset HCLT Best PSDD Best SPN
accidents -26.74+0.03 -28.29 -26.98 | jester -52.46+0.01 -54.63 -52.56
ad -16.07+0.06 -16.52 -19.00 | kdd -2.18+0.00 -2.17 -2.12
baudio -39.77+0.01 -41.51 -39.79 | kosarek -10.66+0.01 -10.98 -10.60
bbc -251.04+1.19 -258.96 -248.33 | msnbc -6.05+0.01 -6.04 -6.03
bnetflix -56.27+0.01 -58.53 -56.36 | msweb -9.98+0.05 -9.93 -9.73
book -33.83+0.01 -35.77 -34.14 | nltcs -5.99+0.01 -6.03 -6.01
c20ng -153.40+3.83 -160.43 -151.47 | plants -14.26+0.16 -13.49 -12.54
cr52 -86.26+3.67 -92.38 -83.35 | pumbs* -23.64+0.25 -25.28 -22.40
cwebkb -152.77£1.07 -160.5 -151.84 | tmovie -50.81+0.12 -55.41 -51.51
dna -79.05+0.17 -82.03 -81.21 tretail -10.84+0.01 -10.90 -10.85

data softening can be regarded as injecting noise in both observed and hidden variables. Since the
dataset provides no information about the hidden variables anyway, data softening essentially still
“perturbs” the observed variables only. On the other hand, entropy regularization will have different
behaviors when applied to non-deterministic PCs. Specifically, since it is coNP-hard to compute the
entropy of a non-deterministic PC [6], it is infeasible to optimize the entropy regularization objective
LLent (0; D, 7) (Eq. (2)). However, we can still regularize the entropy of the distribution encoded by
a non-deterministic PC over both of its observed and hidden variables, since explicitly representing
the hidden variables renders the PC deterministic (Sec. 4.1).

On the implementation side, data softening is performed by modifying the forward pass of the
algorithm used to compute expected flows (i.e., Alg. 5 and 6 in the Appendix). Entropy regularization
is again performed by Alg. 3 at the M-step of each min-batch/full-batch EM update, except that the
input flows (i.e., F) are replaced by the corresponding expected flows (i.e., EF).

Empirical evaluation We use a simple yet effective

PC structure, hidden Chow-Liu Tree (HCLT), as demon- -168
strated in Fig. 4. Specifically, on the left is a Bayesian -169
network representation of a Chow-Liu Tree (CLT) [43] -170

over 5 variables. For any CLT over variables {X;}¥_,,
we can modify it as a HCLT through the following steps.

471

Test LL

-172

First, we introduce a set of & latent variables {Z;}%_,. 473

Next, we replace all observed variables in the CLT with its 174 e e g ropy es.
corresponding latent variable (i.e., Vi, X; is replaced by 175 - - — =
Z;). Finally, we add an edge from every latent variable to Epoch

its corresponding observed variable (i.e., Vi, add an edge Figure 6: Average (+std) test LL over 5
Z;— X;). The HCLT structure is then compiled into a PC trjals on the protein dataset.

that encodes the same probability distribution. We used

the hybrid mini-batch + full-batch EM as described in Sec. 4.1. For all experiments, we trained the
PCs with 100 mini-batch EM epochs and 100 full-batch EM epochs. Please refer to Appendix B.4
for hyperparameters related to the HCLT structure and the parameter learning process. Similar to
Sec. 4.2, we perform hyperparameter search for all methods using the validation set, and report results
on the test set.

We first examine the performance on a protein sequence dataset [29] that suffers from severe
overfitting. Specifically, the training LL is typically above —100 while the validation and test set
LL are around —170. Fig. 6 shows the test LL for Laplace smoothing and the hybrid regularization
approach as training progresses. With the help of data softening and entropy regularization, we were
able to obtain consistently higher test set LL. Next, we compare our HCLT model (with regularization)
with the state-of-the-art PSDD (Strudel [17] and LearnPSDD [16]) and SPN (EinSumNet [13],
LearnSPN [18], ID-SPN [47], and RAT-SPN [48]) learning algorithms. Results are summarized
in Table 1. With proper regularization, HCLT out-performed all baselines in 10 out of 20 datasets.
Comparing with individual baselines, HCLT out-performs both PSDD learners on all datasets; HCLT

achieved higher log-likelihood on 18, 19, 10, and 17 datasets compared to EinSumNet, LearnSPN,
ID-SPN, and RAT-SPN, respectively.

5 Conclusions

This paper proposes two model-agnostic distribution regularization techniques: data softening and
entropy regularization. While both methods are infeasible for many machine learning models, we
theoretically show that they can be efficiently implemented when applied to probabilistic circuits. On
the empirical side, we show that both proposed regularizers consistently improve the generalization
performance over a wide variety of PC structures and datasets.

Acknowledgement This work is partially supported by NSF grants #11S-1943641, #11S-1956441,
#CCF-1837129, DARPA grant #N66001-17-2-4032, a Sloan Fellowship, Intel, and Facebook.

References

[1] YoolJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. 2020.

[2] Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. Juice:
A julia package for logic and probabilistic circuits. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence (Demo Track), 2021.

[3] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the
ACM (JACM), 50(3):280-305, 2003.

[4] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages
689-690. IEEE, 2011.

[5] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential
decision diagrams. In Proceedings of the 14th international conference on principles of
knowledge representation and reasoning (KR), pages 1-10, 2014.

[6] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A composi-
tional atlas of tractable circuit operations: From simple transformations to complex information-
theoretic queries. arXiv preprint arXiv:2102.06137, 2021.

[7] Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. On
tractable computation of expected predictions. In Advances in Neural Information Processing
Systems 32 (NeurIPS), dec 2019.

[8] Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of
probabilistic models. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 3943-3951. Citeseer, 2016.

[9] Yitao Liang and Guy Van den Broeck. Towards compact interpretable models: Shrinking of
learned probabilistic sentential decision diagrams. In IJCAI 2017 Workshop on Explainable
Artificial Intelligence (XAI), August 2017.

[10] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic
modeling with latent fair decisions. arXiv preprint arXiv:2009.09031, 2020.

[11] YooJung Choi, Golnoosh Farnadi, Behrouz Babaki, and Guy Van den Broeck. Learning fair
naive bayes classifiers by discovering and eliminating discrimination patterns. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 10077-10084, 2020.

[12] Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola
Di Mauro, Pascal Poupart, and Kristian Kersting. Spflow: An easy and extensible library for
deep probabilistic learning using sum-product networks. arXiv preprint arXiv:1901.03704,
2019.

[13] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,
Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and
scalable learning of tractable probabilistic circuits. In International Conference on Machine
Learning, pages 7563-7574. PMLR, 2020.

10

[14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

[15] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448-456. PMLR, 2015.

[16] Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learning the structure of probabilistic
sentential decision diagrams. In Proceedings of the 33rd Conference on Uncertainty in Artificial
Intelligence (UAI), 2017.

[17] Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: Learning structured-
decomposable probabilistic circuits. arXiv preprint arXiv:2007.09331, 2020.

[18] Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In
International conference on machine learning, pages 873—880. PMLR, 2013.

[19] Hei Chan and Adnan Darwiche. On the revision of probabilistic beliefs using uncertain evidence.
Artificial Intelligence, 163(1):67-90, 2005.

[20] Rong Pan, Yun Peng, and Zhongli Ding. Belief update in bayesian networks using uncertain
evidence. In 2006 18th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’06), pages 441-444. IEEE, 2006.

[21] Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and survey. In
Case Studies in Applied Bayesian Data Science, pages 45-87. Springer, 2020.

[22] Nicola Di Mauro, Antonio Vergari, and Floriana Esposito. Learning accurate cutset networks
by exploiting decomposability. In Congress of the Italian Association for Artificial Intelligence,
pages 221-232. Springer, 2015.

[23] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050-1059.

PMLR, 2016.

[24] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification
using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[25] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818-2826, 2016.

[26] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096-1103, 2008.

[27] Richard C Jeffrey. The logic of decision. University of Chicago press, 1990.

[28] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

[29] William P Russ, Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich,
Peter Kast, Donald Hilvert, Remi Monasson, Simona Cocco, Martin Weigt, et al. An evolution-
based model for designing chorismate mutase enzymes. Science, 369(6502):440-445, 2020.

[30] Yves Grandvalet and Yoshua Bengio. Entropy regularization., 2006.

[31] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223-2232, 2017.

[32] Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein
variational gradient descent. arXiv preprint arXiv:1707.06626, 2017.

[33] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and
strengthening sum-product network structure learning. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 343-358. Springer, 2015.

[34] Robert Peharz, Robert Gens, and Pedro Domingos. Learning selective sum-product networks.
In LTPM workshop, volume 32, 2014.

11

[35] Jun Mei, Yong Jiang, and Kewei Tu. Maximum a posteriori inference in sum-product networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[36] Arthur Choi and Adnan Darwiche. On relaxing determinism in arithmetic circuits. In Interna-
tional Conference on Machine Learning, pages 825-833. PMLR, 2017.

[37] David Heckerman. A tutorial on learning with bayesian networks. Innovations in Bayesian
networks, pages 33-82, 2008.

[38] Greg M Allenby and Peter E Rossi. Hierarchical bayes models. The handbook of marketing
research: Uses, misuses, and future advances, pages 418-440, 2006.

[39] Jan Van Haaren and Jesse Davis. Markov network structure learning: A randomized feature gen-
eration approach. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26,
2012.

[40] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable

interpretation in sum-product networks. IEEE transactions on pattern analysis and machine
intelligence, 39(10):2030-2044, 2016.

[41] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge university
press, 2009.

[42] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1-22, 1977.

[43] CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence
trees. IEEE transactions on Information Theory, 14(3):462—467, 1968.

[44] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[45] Tan J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[46] Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete
graphical models. In Advances in Neural Information Processing Systems 33 (NeurlPS),
december 2020.

[47] Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct
and indirect variable interactions. In International Conference on Machine Learning, pages
710-718. PMLR, 2014.

[48] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and
effective approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pages
334-344. PMLR, 2020.

[49] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability of
SHAP explanations. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb
2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , Or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section X.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

12

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Contributions are clearly stated in lines 42-52 and
match the referred theorems and algorithms.

(b) Did you describe the limitations of your work? [Yes] Sec. 4.2 discusses the limitation
of Thm. 4; Sec. 4.3 discusses the limitation of applying entropy regularization to
non-deterministic PCs.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All theorems
in the main text formally state all assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are included
in the appendix. We added a reference to the corresponding proof after each theorem
statement.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Code and
instructions to reproduce the experimental results are included in the supplementary
material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All details for reproducibility are specified in Appendices B.3
and B.4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Error bars and standard deviations over 5 runs are reported
in Fig. 6 and Table 1, respectively.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Details about computing resources
can be found in Appendix B.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited all PC
learning algorithms as well as the datasets/benchmarks we adopted in Sec. 4.

(b) Did you mention the license of the assets? [Yes] We specified both the used algorithm
and data are publicly available in Sec. 4.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We included our code in the supplementary material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

13

Supplementary Material

A Proofs

This section provides the full proof of the theorems stated in the main paper.

A.1 Proof of Theorem 3

High-level idea The high-level idea of this proof is by separately showing the correctness of the
forward pass (Alg. 1) and the backward pass (Alg. 2). Specifically, for a “softened” sample x, we aim
to show that (i) in the forward pass, the value of w.r.t. any PC unit n corresponds to the likelihood
of « (note that since & can be represented as a weighted sum of exponentially many “hard” samples,
the target likelihood is also the weighted sum of the respective likelihoods), and (ii) in the backward
pass, the flow of x w.r.t. any PC unit corresponds to the weighted sum of the flows of the “hard”
samples “contained” in . Both claims are proved by induction: for the forward pass, we first show
that the base cases (leaf nodes) satisfy the claim, then by assuming all children of a PC unit satisfy
the claim, we prove the inductive case of sum and product units; for the backward pass, induction is
also applied in the preorder (parents before children).

As stated in the theorem, assume that we are given a deterministic PC p, a boolean dataset D
containing N samples {(¥}~ |, and hyperparameter 3 € (0.5,1]. Define K as the number of
variables in X, i.e., X = {Xk}szl.

Correctness of the forward pass We show that the value of each node n w.r.t. sample (*) (by
slightly abusing notation, denoted as value;[n]) computed by Alg. 1 (with the specific choice of

fu(x) = B-1[x € supp(n)] + (1 — 8)-1[x & supp(n)]) is defined as
K
value;[n Z H (=z + (1—5)'1[37;?) #* CUk]) - 1 €supp(n)], (6)
val(X) k=1

where x; denotes the kth feature of .

e Base case: input units. Suppose node 7 is a literal w.r.t. variable Xj. That is, € supp(n) iff
xp = Lit(n), where Lit(n) is either true or false defined by the PC. Denote —Lit(n) as the
negation of Lit(n). Vi € {1,..., N} we have

value;[n] :ﬁ-l[m(i) € supp(n)] + (1 — 5)']1[117(i) ¢ supp(n)]
=B-1[z) =Lit(n)] + (1 — #) 1[z}) = ~Lit(n)]

K
- 2 [I (816 =)+ 1-8) 10’ #)

ze{x:xeval(X)Azr=Lit(n)} [=1,l#k

(81 = Lis()] + (1 - B) 1zl = ~Lit(n)))
K
- > 1T (ﬁ-ﬂ[wl(i) =]+ (1-p)-1[z" # xl])

ze{x:xeval(X)Azp=Lit(n)} I=1,l#k

: (5'1[33](;) = 2] -1[zr = Lit(n)] + (1 — 5).]1[:55:) + 2] L[z, = Lit(n)})
K
=) [T (510 =wl+0-8)10f” #)

zwe{xz:xeval(X)Azp=Lit(n)} I=1,l#k

: (ﬁ-ﬂ[w%ﬁ’ = ag] + (1= B)-1[ef” £ ay]) Lok = Lit(n)]

® Z H (5 1[x (Z) =x] + (1—5).]1[xl(7?) ” xz}) Az = Lit(n)]

ze{x:xeval(X)} =1

14

=

= Y II(s1el? =al+ 0-8)1kf" #) 1@ € supp(n)],

ze{x:xecval(X)} =1

where (a) holds because the added term

> T1 (3ot = o+ (-9 1fef? 4) =

ze{x:xeval(X)Azr=Lit(n)} I=1,l#k
the sum condition x;, = Lit(n) after (b) can be lifted thanks to the indicator 1[z); = Lit(n)].

o Inductive case: product units. Suppose 7 is a product unit with children {c; }‘j'n:(ln)| Recall that the
scope of the child ¢; is denoted as ¢(c;). Since the PC is decomposable, the contexts of different

children are non-overlapping. Suppose the value of any child unit ¢; is defined according to Eq. (6),
i.e.,

value;|c;] Z H <B L[z, = x| + (1—5)-1[3@,(;) # xk]> - L[z esupp(c;)).

zeval(X) k=1
Denote K, as the set of index for the variables in ¢(c;). We have

m(n)\
valuez H valuel c]

- { > H (5~]l[x§€¢) = 2]+ (1-8) [z} # xk}) :]l[wesupp(cj)]}

xzeval(X) k=1

lin(n)]
- { Z H (»3']1[5653) =g + (1-5)-1 [x,(f) £ xk]) .]l[:BESUpp(Cj)]}

2 > [T (81 =ad+0-8)10 #)

weval(U)27 ¢(c;)) keU" ! K

: (linﬁ)]l[wESUPp(Cz)]>

=1

e ¥ [T (31l =al+(1-8)-1[" # x]) 1z esupp(n)]

weva|(u‘f",<">‘ #(e;)) keUn P Ko,

Y H (810" = 2] + (1)1l # 2]) 1w supp(n)],

zeval(X

where (a) holds by line 6 of Alg. 1; (b) holds since Vc;, ¢; € in(n)(¢; # ¢;), we have ¢(c;)Nd(c;) =
@ and K., N K., = @ thanks to decomposability of the PC; (c) is satisfied by the definition of

product units: supp(n) = [.¢in(n) SUPP(c); (d) holds since Ulﬁi(")‘ @(c;) is a subset of X.
o Inductive case: sum units. Suppose 7 is a sum unit with children {c; }I'n(" | Suppose the value
value;|c;] of any child unit ¢; is defined according to Eq. (6), we have
\m(n)l
valueZ Z valuez c]

Im(n)\

_ Z{ S TL (168 =l + (1-5) 1) #22]) -t csupote))

Jj=1 zeval(X) k=1

15

=
3

K)]
= Z H (3'1[96,(3) =xi] + (1_5)'1[371(:) # xk]) . (]l[acEsupp(cj)])

zeval(X) k=1 =1
K

@ Z H(ﬁ.]l[x?:xkpr(lf)-1[z (’)#ka 1[x € supp(n)],
zeval(X) k=1

where (a) follows line 8 of Alg. 1; (b) holds because the sum unit » is deterministic: Ve;, ¢; €
in(n)(ci # ¢;),supp(c;) Nsupp(c;) = @; (c) follows from the definition of sum units: supp(n) =
UcEin(n) supp(c).

We have shown that for any unit n, the value stored in value;[n] follows the definition in Eq. (6).
We proceed to show the correctness of the backward pass.

Correctness of the backward pass Similar to the forward pass, we show that the context
context;[n] of each sum unit w.r.t. sample «(*) computed by Alg. 2 is defined as

context;| Z H(,B]l zi] + (1-5)- [#xk]) 1z €vy), (7

zeval(X) k=1

and the flow £1low;[n, | of each edge (n, ¢) s.t. n is a sum unit is:

flow;[n, c] Z H (ﬁ 1[z (1) =]+ (1-0)-1[z) (&) #mk]) llxey, A€y (8)

zeval(X) k=1

e Base case: root unit n,.. Without loss of generality, we assume the root node represents a sum unit.’
According to Def. 5, the context of the root node n, equals its support, i.e., v, = supp(n,). Since
in line 3 of Alg. 2, the value context;[n] is set to value;[n], we know that

context;[n] = Y H(ﬂﬂ (M) _ 4]+ (175).1[x§€i)7gxk])-]l[mesupp(n)]

zeval(X) k=1

= Z H (ﬁ-]l[xg) = xp] + (1_5)']1[3555) # xk]) -1z €7yl

xzeval(X) k=1

e Inductive case: sum unit. Suppose n is a sum unit with parent product units {m; }L”:(ln)l. Denote

the parent of product unit m; as g;.” Suppose the contexts of {g; }lpa(n)l satisfy Eq. (7). For ease of
presentation, denote H (z, 2, k) := (8- 1el) = 2] + (1= 8)-1[z) #).
flow| | value;[m;] ——
OoWw; i,yMm;| =————— - context; ;
il95, 1M value;[g;] il9;

Y evaix) LLiey H (@, 20, k) - Lz ey,]
ZmEval(X) Hk{(:l H(ma m(z)v k)) l[w Esupp(gj)]

K
Z H H(x,x% k) - 1z csupp(m;)] ©)

zeval(X) k=1

Define vy := Ucepa(gj) e, Def. 5 suggests that v,; = v Msupp(g;). Thus,

Lz €v,,] = L[z evy,] - Lz esupp(g))]. (10)

®Note that if the root unit is not a sum, we can always add a sum unit as its parent and set the corresponding
edge parameter to 1.
"W.l.o.g. we assume all product unit only have one parent.

16

Consider conditioning supp(g;) and 'y;j on the variables ¢(g;) (i.e., the variable scope of g;). For
any partial variable assignment e over ¢(g;), if € € supp(g;), then e € 7, . Denote K, as the set
of index for the variables in qﬁ(gj). We have

3 HHaca:()k: 1w e,] - L[z esupp(g))]

xzeval(X) k=1

_< > I H=x k) Jl[wésupp(gj)])

zeval(é(gy)) keKy;
: < > 11 H(x,z k) - 1[:;:67;_7_]) (11)
zeval(X\¢(g;)) ke{l,.... K\ Ky,
Plug Egs. (11) and (10) into Eq. (9), we have
ZmEvaI(aﬁ(gﬂ) erng H(iE, m(l)’ k) ’]1[:1: Esupp(gj)]
K .
ZwEvaKX) Hk:l H(ma w(l)a k) :]l[wesupp(g])]

) (Z H H(a:,:z:(i),k)-]l[wE’y;j])

zeval(X\¢(g;)) ke{l,...,K}\ Ky,

(3 ﬁH(a:,sc(i)7k)-]l[OJESUPP(mj)])

zeval(X) k=1

(¥ [ee®n eey,))

weval(X\é(g;)) ke{1,...K N\ K,

. (Z H H(xz,z" k) - ﬂ[mESUpp(mj)]) (12)

xzcval(¢(g;)) kKEK;

flOWi [gja m]-] =

Since m; is a child of g;, the support of m; is a subset of g;’s support: supp(m;) C supp(g;).
Therefore, for any partial variable assignment e over ¢(g;), if e € supp(m;), then e € supp(g;).
Since {e | e € val(¢(g;)) A e € supp(g;)} C {e | e € val(¢(g;)) A e € g, }, we conclude that for
any partial variable assignment e over ¢(g,), if e € supp(m;), then e € 'yéj. Therefore, the two
product terms in Eq. (12) can be joined with a Cartesian product:

flow;[gj, m;] = Z H H(z,z", k) - 1[z € v N supp(m;)]. (13)
zeval(X) k=1

Note that fy;j N supp(m;) = 7;3_ U supp(g;) Nsupp(m;) = g, Nsupp(m;). Since vy, = 74, N
supp(m;) (according to Def. 5), we have
Vg, Nsupp(m;) = 4, Nsupp(m;)
= g, N supp(g;) N supp(m;)
=Yg; M Ym;-
Plug the above equation into Eq. (13), we have

flow;[gj, m;| = Z H H(xz,z9 k) 1]z € Yg; N VYmy),

xzeval(X) k
which is equivalent to Eq. (7).

We proceed to show that the context of unit n follows Eq. (8). According to lines 6 and 7 of Alg. 2,
context;[n] is computed as

pa(n)]
context,| Z flow;[g;, m;]
J=1

17

lpa(n)]

K
- Z Z H H(z, 2", k) 1z € 4, N Yom,]
j=1 x€eva k=1

[pa(n)]

K
Z H (z, 2D k) (Z]l[:cevgjﬂ’ymj]). (14)
(k=1

j=1

Next, we show that Vm,, m; € pa(n) (mi # M), Ym; N Ym; = @. We prove this claim using its
contrapositive form. Suppose there exists = € val(X) such that x € ,,,, and & € y,,;. According
to the definition of context, if € ,,,, then there must be a path between m,; and the root node n,.
where all nodes in the path are “activated”, i.e., for any unit c in the path, € .. Similarly, there
much exists a path of “activated” units between m; and n,.. We note that the two paths must share a
set of identical nodes since their terminal are both the root node n,.. Therefore, there must exist a
sum unit n” along the intersection of the two path where at least two of its children are activated, i.e.,
Jer, e € in(n')(e1 # c2), such that € 4., and @ € ~,.,. This contradicts the assumption that the
PC is deterministic. Therefore, the claim at the beginning of this paragraph holds. Thus,

|pa(n)| Ipa n)|

Z]l[a:e%jﬂvmj Z 1z € Ym,]
; =

(b) Ipa(n)|
= 1z € U Ym;]

J=1
© [pa(n)|
1[x U) Ym, M supp(n)]

Jj=

@ 1z €],

where (a) follows from ,,,; C 7,5 (b) holds because the statement made in the previous paragraph
(.e., Vmi,m; € pa(n)(m; # m;),Ym, N Ym; = @); (c) holds since supp(m;) C supp(n) and
Ym; C supp(my); (d) directly applies the definition of context (i.e., Def. 5).

Plug in Eq. (14), we have

Ipa(n)]

context;[n] = Z H H(x,z" k) (Lz € vy, m%nj])
zeval(X) k=1 Jj=1

K
= [[H@ 2D, k) - 1z € 7).
zeval(X) k=1

Computing F,, .(Dg) Finally, we can compute F,, .(Dg) from the flows (i.e., f1ow;[n, ¢]) com-
puted by Alg. 2:

Fpn.c(Dpg) = Z weight(Dg,x) - L{x €y A T €]

xeval(X)

N K
S ST (510 =wil + (1-)- 1) # ax]) Awern Awer.]

zeval(X) i=1 k=1

weight(Dg,x)

N K
=3 5 L (sl =l + 1-) 10 # a]) Awer Awerd

flow;[n,c]

N
= Z flow;[n,cl.
i=1

Finally, we note that Alg. 1 and 2 both run in time O(|p|-|D|).

18

Algorithm 4 PC entropy

1: Input: A deterministic PC p
2: Output: entropy[n] := ENT(p,,) for every unit n
3: foreach n traversed in postorder do
4: | if n isa input unit then entropy[n] = ENT(p,,) //entropy of the input distribution
5: | elif n isa product unit then entropy[n] = >_ ;(,) entropy|c]
6: | else//nis a sum unit then
entropy(n] Z Orn,clog On c + Z On,c - entropy|c]
c€in(n) c€in(n)

A.2 Useful Lemmas
This section provides several useful lemmas that are later used in the proof of Thm. 4.

. . . . d
Lemma 1. Given a deterministic PC p whose root node is n.., its entropy ENT(p) =) ENT(ps,,.) can
be decomposed recursively as follows:

Zcein(n) (- an,c IOg en,c + en,c . ENT(pc)) lf’fl is a sum unit,
> cein(n) ENT(pc) if n is a product unit,

ENT(p,) — {

where the entropy of an input unit is defined by the entropy of the corresponding univariate distribution.
Following this decomposition, we construct Alg. 4 that computes the entropy of every nodes in a
deterministic PC in O(|p|) time.

Proof. We show the correctness of the entropy decomposition over a sum unit and a product unit
respectively.

e Sum units. If n is a sum unit:

ENT(p,) =~ D (Z O, cpe(T)IOg(> Onepe(a)

zeval(p(n)) c€in(n) c€in(n)
=— > (> bnepe(z)Lfa € supp(c)log(> Onepe()lz € supp(C)])
zeval(p(n)) c€in(n) c€in(n)

@ Z Z [€ supp(c)] - O - pe(x) - (log On,c + long(w))

xzeval(¢p(n)) c€in(n)

- > 9nclog9nc(> Il[wGSUPp(C)]pc(w))

c€in(n) xzeval(p(n))

=1

+ 3 (= Y pe@)lognela))

c€in(n) xzeval(e(n))
=ENT(p)
= 3 (= Onclogbhc+ e ENT(.)) (1s)

c€in(n)
where (a) uses the assumption that the sum unit is deterministic, i.e., Vei,co € in(n) (1 #
¢2),supp(c1) Nsupp(cz) = 2.
e Product units. If n is a product unit:

ENT(p,) = — D (11 pc(w)) log(11 pc(w))

zeval(p(n)) c€in(n) c€in(n)

Z(> pc(w)logpc(w))

c€in(n) =xeval(¢(c))

19

Figure 7: An example PC to show that PC entropy is neither convex nor concave.

= > ENT(p.). (16)

c€in(n)

O

Lemma 2. The entropy of a deterministic PC p is neither convex nor concave w.r.t. its parameters.

Proof. Consider the example PC in Fig. 7. Assume n = 20 and define parameters 8, = {0, =
0.1,0, = 0.1} and 8, = {6, = 0.12,0 = 0.12}. Denote 8. = (6, + 6;)/2, we have

2 - ENT(p; 0..) — ENT(p; 8,) — ENT(p; 8,) ~ —0.0047898 < 0.
Hence the entropy is not concave.

Define parameters 8; = {6, = 0.4,0, = 0.8} and 6, = {f; = 0.42,6, = 0.82}. Denote
0 = (6 + 6.)/2, we have

2 - ENT(p; 6) — ENT(p; 84) — ENT(p; 6.) ~ 0.0056294 > 0.

Hence the entropy is not convex. O

Lemma 3. For any dataset D = {:c(N | and any deterministic PC p with parameters 0, the
following formula is concave w.r.t. 9:

N
Z log p(x?; 6). 17)
=1

Proof. For any input &, log p(x; 8) can be decomposed over sum and product units:
e Sum units. Suppose n is a sum unit, then

log pn(; 6) log(Z Onc - el)

c€in(n)
=log (Y buepel@)llz € supp(c)])
c€in(n)
= Z 1z € supp(c)](log bn,c + log p.(x)), (18)
c€in(n)
where the last equation holds because unit n is deterministic: Ve;, ¢; € in(n)(c; # ¢j),supp(c;) N
supp(c;) = @.
e Product units. Suppose n is a product unit, then

log py (; 0) log< H pe(@) > logp(x (19)

c€in(n) c€in(n)

According to Egs. (18) and (19), for any « € val(X), log p(; 0) can be decomposed into the sum
over a set of log-parameters (e.g., log 6,). Therefore, Eq. (17) is concave. O

20

Lemma 4. Given a deterministic PC p with root node n.., its entropy ENT(p) can be decomposed as
Sfollows:

ENT(pnT) = - Z PIL7~(n) . HTL,C 1Og en,w

(n,c)€edges(pn,.)

where edges(p) denotes all edges (n, ¢) in the PC with sum unit n; P, _(n) is defined in Eq. (21).

Proof. We prove the lemma by induction.
e Base case. Suppose m is a sum unit such that all its decendents are either input units or product
unit. By definition, we have P,,,(m) = 1, and edges(p,,) = {(m,c) | ¢ € in(m)}. Thus,

— > Pun) Oncloglne=— > 0 c10gbm . =ENT(pp).

(n,c)€edges(pm) c€in(m)

e Inductive case: product units. Suppose m is a product unit such that for each of its children
¢ € in(m), we have

ENT(pC) - — Z Pc(n') . Qn’,c’ 10g inyc/,
(n’,c’)€edges(pc)
Then by Lem. 1 we know that

ENT(pm): Z ENT(pm)
c€in(m)

== > X R fwelogbue

c€in(m) (n’,c’)Eedges(pc)

DT Y Ra) g

c€in(m) (n’,c’)Eedges(pc)

(b)

= - Z Pm(n/) : en’,c’ log en/,c/a
(n’,c’)€edges(pm)

where (a) holds since for any sum unit n’, P.(n’) = P,,(n’), and (b) follows from the fact that
edges(pm) = U, cin(m) €dges(pc).-

o Inductive case: sum units. Suppose m is a sum unit such that for each of its children ¢ € in(m), we
have

ENT(pe) =— Y. Pe(n)Ops o log by o
(n’,c’)Eedges(pc)

Then by Lem. 1 we have

ENT(pp,) = Z (= 0nclogyc+ 0y ENT(p.))

c€in(m)

= Z _en,c log en,c - Z Gm,c : Pc(n/) 'en’,c’ log en’,c’
c€in(m) c€in(n) (n’,c’)Eedges(pc) W

= Z _Pm(m)en,c 10g en,c - Z Z Pm(’I’L/) : en’,c’ log en’,c’
c€in(m) c€in(n) (n’,c’)Eedges(p.)

(;) - Z P’rn (n/) : en’,c’ log ‘9n’,c’7

(n’,c’)Eedges(pm)
where (a) holds because edges(pm) = (U, cin(m) edges(pe)) U ({(m,¢) | ¢ €in(m)}). O

Lemma 5. The entropy regularization objective in Eq. (2) w.r.t. a deterministic PC p and a dataset
D could have multiple local maximas.

21

Figure 8: An example PC to show that Eq. (2) could have multiple stationary points.

Proof. Consider the deterministic PC p in Fig. 8 and dataset D with a single sample * =
(true,...,true). The objective in Eq. (2) can be re-written as follows

Lent(0;n1,7) :=log pn, (x) + 7 - ENT(pn,),
where n; is the root node of the PC as denoted in Fig. 8. We further decompose Lyt (0; 11, 7):
Lent(0;n1,7) =log 6y + 67 -log 6 + 7 - ENT(py,,)
=log6; + 67 -logfs + ’7"(—61log 6y — (1-04) log(1791))
+ 761 -ENT(pp,) + 7 (1—61) - ENT(pny)-

First, we observe that to maximize Le,:(6;n1,7), 03 should always be 0.5 since the only term that
depends on 05 is (1—0;) - ENT(py,) and 1—6; > 0. Therefore, we have

ENT(pn,) = 78 - log 2 ~ 54.065.
Next, for any fixed 6 € (0, 1], the objective Lent(0; 11, T) is concave w.r.t. f:
Leont(0;n1,7) =67 - (log Oy — 7-01-(0210og O + (1—02) log(lfﬁg))) + const, (20)

where the constant term does not depend on 5. Therefore, for any 6;, we can uniquely compute
the optimal value of 6. We are left with determining the optimal value of §;. Choose 7 = 1.5, the
derivative of Lont(0;n1,7) w.r.t. 8; is (denote entg := — (A2 log 65 + (1—63) log(1—065)))

_ OLent(0;m1,7) 1

9(6r) 1= I = 15 (108(1-61) — log 1 + ENT(p,) — ENT(p,,))

1
=3 +15- (log(l—ﬂl) —log 6 + 67 - enty — ENT(pn3))
1

where ENT(p,,,) can be viewed as a constant and ent depends on ;. Specifically, for any 6;, we
compute 0 and hence enty by maximizing Eq. (20). Putting everything together, we have

9(0.02) ~ 1.772730 > 0,
9(0.7) ~ —0.190743 < 0,
9(0.9) ~ 2.055231 > 0,
9(0.99) ~ —0.216938 < 0.

Since g is continuous in range (0, 1], there exists a local maxima of §; between 0.02 and 0.7 as well
as between 0.9 and 0.99. Therefore, the entropy regularization objective could have multiple local
maximas.

O

A.3 Proof of Theorem 1

This theorem is a direct corollary of Theorem 5 in [49], which has the following statement:
Computing the expectation of a logistic regression model w.r.t. a uniform data distribution is #-hard.

Note that with 3 = 0.5, the distribution Dy is essentially uniform, Thm. 1 follows directly from [49].

22

A.4 Proof of Theorem 2

This proof largely follows the proof of Theorem 5 in [49]. The proof is by reduction from #NUMPAR,
which is defined as follows. Given n positive integers k1, . . . , k,, we want to count the number of

subset S C [n] that satisfies } ;g ki = >, ki. #NUMPAR is known to be #P-hard.

Fix an instance of #NUMPAR, ki, ..., k,, and assume w.L.o.g. that the sum of the numbers is even,
ie., > ; ki = 2c for some natural number c. Define P := {S' | S C [n],> ;. ki = c}. By definition
| P| is the solution to the #NUMPAR problem. Note that for each S € P, its complement .S should
also be a member of P, and hence | P| is even.

Define a logistic regression model as F(z1,...,2,) = o(wy + Y_;_, w; - x;), where o is the
sigmoid function. Define the normalized model of F' as G(x1,...,x,) = F(x1,...,2,)/Z,
where Z := 3" .ix) F'(z1,. .., 2). Denote the entropy of a normalized logistic regressor G as

ENT(G) = Zvaal(X) G(.T) log G(m)

We now describe an algorithm that computes | P| using an oracle for ENT(G), where G is a normalized
logistic regression model. Denote m as a large natural number to be chosen later, and define the
following weights

m

wo = — o —me, W = mk; (Vi € [n]).

Let F' be the logistic regressor corresponds to the above weights and G the normalized model of F'.
We can represent ENT(G) as follows:

F(x) F(x) F(x)log F(x) F(x)
ENT(G) = — Z 710g7:— Z (7 - logZ)
xeval(X) xeval(X)
B L L
xeval(X)

For large enough m, F'(x) will approach either O or 1. Therefore, the first term in the above equation
will approach 0. Therefore, for large enough m, we have

ENT(G) = log Z = log (Z o(wy + iwl . xl)) = log (Z o(wo + iwl . mz))
i=1

zcval(X) =1 xcval(X)
For each S C [n], we define weight(S) := — — mc+m(D_;. g ki). Then,
exp(ENT(G Z a———mc—l—m kaz
zeval(X) 1€[n]

If S is a solution to #NUMPAR, then
o(weight(S)) + o(weight(S)) = 20(—m/2).
Othervise, one of weight(.S) and weight(S) is > m/2 and the other is < —3m/2, and hence
a(m/2) < o(weight(S)) + o(weight(S)) < 1+ a(—3m/2).
For a large enough m such that 20(—m/2) < eand 1 — 0(m/2) < €, we have
SeP: 0 < o(weight(S)) + o(weight(9)) < ¢,
S¢gP: 1—e¢<o(weight(S)) + o(weight(S)) <1 +e.

23

Therefore, we have

-7 _2 7] (1 —¢) < exp(ENT(G)) < ‘—}23‘6 i Uil _2 I (1+¢)
P> 2n - 2exp1(ENT(G))
— €

|P| < 2™(1+ €) — 2exp(ENT(G))

This gives a lower and upper bound for |P|. For small enough e (governed by large enough m),
the difference between the lower and upper bound is less than 1, and hence | P| can be uniquely
determined, which proves the theorem.

A.5 Proof of Theorem 4

First note that according to Lem. 2, Eq. (2) is not a convex optimization problem. The key idea of
Alg. 3 is to propose a set of surrogate objective functions, and maximize the objective function Eq. (2)
by iteratively maximizing the surrogate objective. Concretely, we show the monotonic convergence
property of Alg. 3 by checking the correctness of the following three statements:

o Statement #1: The surrogate objective is easy to maximize as it is a concave function w.r.t. the
parameters.

o Statement #2: The surrogate objective is consistent with the original objective Eq. (2). That is,
whenever a set of surrogate objectives are improved, the true objective is also improved.

o Statement #3: The surrogate objectives can always be improved unless the original objective
Eq. (2) has zero first-order derivative.

o Statement #4: Solving Eq. (5) is equivalent to maximizing the surrogate objective.

Before verifying the statements, we first formally define the surrogate. Denote ENT(p,,; 0) as the
entropy of the PC rooted at n and with parameters 8; the top-down probability of n, denoted P, (n),
is recursively defined as follows:

1 if n is the root node n,.,
Py, (n) := S X mepa(n) Pnr (M) if n is a sum unit, 21)
mepa(n) Omn + Pn, (m) if nis a product unit.

Given a set of reference parameters 8™', we define the surrogate objective w.r.t. parameter Or c as

N
1 .
L (O, c; 0°1) = > logp(a'; 0"\ {05".}, 0,.c)
=1

Term 1

+ 7P, (n; 0ref)- (— On,.clog 0y c+0,, - ENT(pe; Href)) . (22)

Term 2

Given parameters 8°'¢, we now describe an update procedure to obtain a set of new parameters ™",

Parameter update procedure We start with an empty set of parameters §°P%¢ := g°¢ and
iteratively update its entries with updated parameters 0;°y. For every sum unit n traversed in pre-
order, we update the parameters {0, . | ¢ € in(n)} by maximizing the sum of surrogate objectives:

> Larr(Onc; 0°7%). (23)
c€in(n)

After solving the above equation, the updated parameters {6,, . | ¢ € in(n)} replace the corresponding

original parameters in 8"P9%¢_ As we will proceed to show in statement #4, maximizing Eq. (23) is
done in Lines 7 to 7 in Alg. 3.

Given the formal definition of the surrogate objective and the corresponding update process, we
re-state the three statements and prove their validity in the following.

o Statement #1: The surrogate objective Eq. (23) is concave w.r.t. parameters {6,, . | ¢ € in(n)}.

24

Proof. This statement can be proved by showing that V(n, ¢), VO, Lay(0,,.c; 0) is concave. Specif-
ically, according to Lem. 3, the first term of Eq. (22) is concave; the second term of Eq. (22) is
concave since (i) —x log z is concave w.r.t. x, and (i) P, (n; ™) and ENT(p,.; 0™) are independent
of {0, | ¢ €in(n)}.

o Statement #2: For any sum unit n and any parameters 6, if we update n’s parameters (i.e.,
{0n.c | ¢ € in(n)}) by maximizing Eq. (23), the true objective Eq. (2) will also improve.

Proof. Consider updating the parameters correspond to sum unit n (i.e., {0, | ¢ € in(n)}) by
maximizing Eq. (23). We can re-arrange the entropy ENT(p,,,.) as follows:

ENT(pn,) (é) — Z PnT (n/) . 071170/ 10g Gn',c’

(n’,c')€edges(pn,.)
= - Z P, (n') -0, o 10g 0, o + const

(n',c’)€edges(pn)

- Z (Z Py, (m)) - Po(n) - 0 o 10g 0, o+ + const

(n’,c’)Eedges(pn) meEpa(n)

=— Z P, (n) - Py(n') -0, 10g 0, o + const
(n’,c’)€edges(pn)
= P,,.(n) - ENT(p,) + const

® P, (n)- Z (—Gn,clog 9n,5+9n’c-ENT(pc)) + const,

c€in(n)
where const denotes terms that do not depend on {6, .~ | ¢ € in(n)}; (a) and (b) directly apply
Lem. 4 and Lem. 1, respectively.

Thus, the true objective Eq. (2) can be written as follows:

N

1 .

~ E log p(zV) + 7 - ENT(p)
i=1

N
1 ,
=~ g logp(w(l)) +7-P, (n)- E (—9n7clog Gn,C+9n7c-ENT(pC)) + const (24)
i=1

c€in(n)

Compare Eq. (24) and Eq. (22), we can see that they only differs in some constant terms. Therefore,
maximizing Eq. (22) w.r.t. {0, | ¢ € in(n)} will lead to an increase in the true objective
Eq. (2). O

o Statement #3: The surrogate objectives can always be improved unless the original objective
Eq. (2) has zero first-order derivative.

Proof. Recall from Eq. (24) that for any sum unit n, the true objective Eq. (2) can be written as the
sum of Eq. (22) and terms that are independent with the parameters of n (i.e., {0, | ¢ € in(n)}).
Therefore, the true objective can always be improved by maximizing the surrogate objective Eq. (23)
as long as the true objective has non-zero first-order derivative w.r.t. the parameters. O

o Statement #4: Solving Eq. (5) is equivalent to maximizing the surrogate objective.

Proof. We want to maximize the surrogate objective given the assumption that the parameters w.r.t. a
sum unit sum up to 1:

maximize Ly (0, c;), such that Z Ope=1. (25)

c€in(n)

25

Algorithm 5 Forward pass (expected flows) Algorithm 6 Backward pass (expected flows)

1: Input: A non-deterministic PC p; sample x 1: Input: A non-deterministic PC p; Vn, value[n]
2: Output: value[n]:=(x €supp(n)) for each unitn 2: Output: eflow[n,c] := E.cp.(|a0)((®,2) €
3: foreach n traversed in postorder do (Y N7e)) for each pair (n, ¢), where n is a sum
4: | if n isa input unit then value[n] < fu(x) unit and c€in(n)
5: | elif n isa product unit then 3: Vn, context[n] <+ 0; context[n,]+ value[n,|
6: | value[n] <[] .cin(,) value[d] 4: foreach sum unit n traversed in preorder do
7: | else //n is a sum unit 5: | foreach m € pa(n) do (denote g+« pa(m))
8: [value[n]« > ci(n) On.c - value[d] 6: £ 22111\112[&] - context[g] - Og.m

7: context[n] +=£f; flow[g,m]=1f

Since the surrogate objective Ly (0 c; O“’f) is concave, maximizing the surrogate objective is
equivalent to finding its stationary point. Specifically, we solve Eq. (25) with the Lagrange multiplier
method (variable A corresponds to the constraint):

N e . f

maﬁrinze minimize Lourr(0,c;0°) — N1 — Z On.c)
' c€in(n)

Its KKT conditions can be written as:

{F"’Ci@) — 7 Py, (0% (log 0.c, + 1+ ENT(pe,; 0°)) + A =0 (V1 <1 < [in(n)]),

|D"9n,ci
Zcein(n) 9"70 =1

It is easy to verify that the above equation is equivalent to Eq. (5) by substituting the definitions in
Lines 7-8 in Alg. 3.

O
Therefore, by following the parameter update procedure, we can always make progress since the
surrogate objective is concave (statement #1) and the true objective improves as long as the surrogate

objective increases (statement #2). Finally, the learning procedure will not terminate unless a local
maximum is achieved (statement #3).

A.6 Correctness of Algorithms 1 and 2

The correctness of Alg. 1 and 2 can be justified directly by the proof of Thm. 3. Specifically, since
with 3 = 1, the softened dataset Dg is equivalent to D, we can use the proof in Appendix A.1 and set
B = 1 (the proof holds for any 8 € (0.5, 1]).

A.7 Proof of Proposition 1
The first statement (i.e., Eq. (2)) could be non-concave) is proved in Lem. 2. The second statement

(i.e., Eq. (2) could have multiple local maximas) is proved in Lem. 5.

B Method or Experiment Details

B.1 Soften non-boolean datasets

As a direct extension of softening boolean datasets, datasets with categorical variables can be similarly
softened. Suppose X is a categorical variable with k categories. For an assignment = j, we can
soften it as follows

{P<x=z’>=1,f (i # 9),
Ple=j)=F.

To compute the flow F), .(Dg) w.r.t. a softened categorical dataset, we can again adopt Alg. 1 and 2
by choosing

fu(z) = B-1[x € supp(n)] + %]1[:10 ¢ supp(n)].

26

B.2 Solving Equation 5

Denote 7., :=entropy|c;], our goal is to solve the following set of equations:

die=Pmei —b-ppe, +b7, =y Vie{l,...,|in(n)]}),
R,

We break down the problem by iteratively solve for {¢,, ., }l'i(ln)‘ and y, respectively.
o Solve for y. Given variables {¢,, ., } Lii(ln)‘, we update y as

inn)|
1
= S diem e — b e, b,

e Solve for {¢@,, ., } L'i(ln” Given y, we first update each ¢, ., individually by solving the equation
die_tpn’ci —b- Pn,c; +0b- Ye; = Y-

Specifically, this is done by iterative Newton method update:

wf,ic,i +b (Yo, = Pnyei) +Y

Pn,e; T= di 4+

@n,

After one Newton method update step for every parameter in {¢,, ., } Lii(ln) | , we enforce the constraint
lin(P)] Jpn,c; —
Doiny tePme =1 by

lin(n)]

i=1
B.3 Details of the Experiments on Deterministic PCs

PC structures For each dataset, we adopt 16 PCs by running Strudel [17] for
{1000, 1200, 1400, . . ., 4000} iterations except for the dataset “dna”, which we ran Strudel for
{50, 100, 150, ...,800} iterations since the learning algorithm takes significantly longer for this
dataset.

Hyperparameters We always perform hyperparameter search using the validation set, and report
the final performance on the test set. Whenever we use data softening or entropy regularization, we
also add pseudocount v =1 since it yields better performance.

Server specifications All our experiments were run on a server with 72 CPUs, 512G Memory, and
2 TITAN RTX GPUs.

Detailed results See Table 3 for extended numerical results.

B.4 Details of the Experiments on Non-Deterministic PCs

The HCLT structure For the experiments on the twenty datasets, we set the hidden size of the
HCLT structure as 12, i.e., every latent variable Z is a categorical variable with 12 categories.
Additionally, following [17, 16], we learn a mixture of 4 HCLTs to achieve better performance. For
the protein sequence dataset, we adopted a mixture of 2 HCLTs with hidden size 32.

Hyperparameters Due to the complexity of running EM iteratively, we were not able to perform
a grid-search for hyperparameters since that would take too long. In our experiments, we tried the
following sets of hyperparameters (for «, 3, and 7): (0.1,1.0,0.0), (0.2,1.0,0.0), (0.4,1.0,0.0),
(0.1,0.998,0.0), (0.1,1.0,0.001), and (0.1,0.998,0.001). Among these hyperparameter choices,
(0.1,0.998,0.001) achieved the best validation LL in most datasets, and thus we reported this set
of results. Therefore, for non-deterministic PCs, it is also beneficial to combine both proposed
regularization techniques.

27

Table 2: Full results on the 20 density estimation benchmarks. As an extension of Table 1, we report
the average test-set log-likelihood of all baselines: Strudel [17], LearnPSDD [16], EinSumNet [13],
LearnSPN [18], ID-SPN [47], and RAT-SPN [48].

Dataset HCLT EiNet LearnSPN ID-SPN RAT-SPN Strudel LearnPSDD

accidents -26.78 -35.59 -40.50 -26.98 -35.48 -29.46 -28.29
ad -16.04 -26.27 -19.73 -19.00 -48.47 -16.52 -20.13
baudio -39.77 -39.87 -40.53 -39.79 -39.95 -42.26 -41.51

bbc -250.07 -248.33 -250.68 -248.93 -252.13 -258.96 -260.24
bnetflix -56.28 -56.54 -57.32 -56.36 -56.85 -58.68 -58.53
book -33.84 -34.73 -35.88 -34.14 -34.68 -35.77 -36.06
c20ng -151.92 -153.93 -155.92 -15147 -152.06 -160.77 -160.43
cr52 -84.67 -87.36 -85.06 -83.35 -87.36 -92.38 -93.30
cwebkb -153.18 -157.28 -158.20 -151.84 -157.53 -160.50 -161.42
dna -79.33 -96.08 -82.52 -81.21 -97.23 -87.10 -83.02
jester -52.45 -52.56 -75.98 -52.86 -52.97 -55.30 -54.63
kdd -2.18 -2.18 -2.18 -2.13 -2.12 -2.17 -2.17

kosarek -10.66 -11.02 -10.98 -10.60 -10.88 -10.98 -10.99
msnbc -6.05 -6.11 -6.11 -6.04 -6.03 -6.05 -6.04

msweb -9.90 -10.02 -10.25 -9.73 -10.11 -10.19 -9.93

nltcs -6.00 -6.01 -6.11 -6.02 -6.01 -6.06 -6.03

plants -14.31 -13.67 -12.97 -12.54 -13.43 -13.72 -13.49
pumbs* -23.32 -31.95 -24.78 -22.40 -32.53 -25.28 -25.40
tmovie -50.69 -51.70 -52.48 -51.51 -53.63 -59.47 -55.41

tretail -10.84 -1091 -11.04 -10.85 -10.91 -10.90 -10.92

Table 3: Results comparing different regularization approaches using the 20 density estimation
benchmarks. This table contains the part of the results summarized in Fig. 5. Specifically, we report
performance of the PC generated by running Strudel [17] for 4,000 steps, except for dna, where we
ran the learner for 1,000 steps.

Dataset Laplace smoothing Data softening Entropy reg. Data softening + Entropy reg.

accidents -29.37 -29.37 -29.39 -29.37
ad -16.39 -16.39 -16.55 -16.39
baudio -42.89 -42.75 -42.78 -42.59
bbc -258.82 -258.64 -258.71 -258.35
bnetflix -59.51 -59.34 -59.19 -59.07
book -36.93 -36.81 -37.05 -36.69
c20ng -160.84 -160.80 -160.81 -160.73
cr52 -91.97 -91.91 -91.99 -91.86
cwebkb -159.93 -159.78 -159.97 -159.67
dna -95.63 -94.90 -95.24 -94.87
jester -56.19 -55.95 -55.83 -55.62
kdd -2.19 -2.18 -2.19 -2.17

kosarek -11.03 -11.00 -11.04 -10.97
msnbc -6.04 -6.04 -6.04 -6.04

msweb -10.11 -10.08 -10.12 -10.06
nltcs -6.18 -6.10 -6.17 -6.09

plants -13.56 -13.42 -13.56 -13.41

pumbs* -25.66 -25.66 -25.69 -25.68
tmovie -59.56 -59.44 -59.53 -59.35
tretail -11.34 -11.30 -11.35 -11.27

Detailed results As an extension of Table 1, Table 2 provides the average test set log-likelihood for
all adopted baselines.

Hyperparameters of RAT-SPN We took the RAT-SPN results on the twenty density estimation
benchmarks from the original paper. Therefore, the hyperparameter settings for RAT-SPN are the
same as reported in the original paper: cross-validate the split-depth D € {1,2,3,4} and the number
of sum-weights W € {1e3, 1e4, 1e5}, and used Eq. (1) in [48] to select R, S, and I. Following the
original paper, dropout is not used for training the generative models.

28

	Introduction
	Two Intuitive Ideas for Regularizing Distributions
	Background and Motivation
	How Is This Tractable And Practical?
	Learning the Parameters of PCs
	Regularizing Deterministic PCs
	Regularizing Non-Deterministic PCs

	Conclusions
	Proofs
	Proof of Theorem 3
	Useful Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	Correctness of Algorithms 1 and 2
	Proof of Proposition 1

	Method or Experiment Details
	Soften non-boolean datasets
	Solving Equation 5
	Details of the Experiments on Deterministic PCs
	Details of the Experiments on Non-Deterministic PCs

