Proxy Convexity: A Unified Framework
for the Analysis of Neural Networks
Trained by Gradient Descent

Spencer Frei Quanquan Gu
Simons Institute for the Theory of Computing Department of Computer Science
University of California, Berkeley University of California, Los Angeles
frei@berkeley.edu ggu@cs.ucla.edu
Abstract

Although the optimization objectives for learning neural networks are highly non-
convex, gradient-based methods have been wildly successful at learning neural
networks in practice. This juxtaposition has led to a number of recent studies on
provable guarantees for neural networks trained by gradient descent. Unfortunately,
the techniques in these works are often highly specific to the particular setup in
each problem, making it difficult to generalize across different settings. To address
this drawback in the literature, we propose a unified non-convex optimization
framework for the analysis of neural network training. We introduce the notions
of proxy convexity and proxy Polyak-Lojasiewicz (PL) inequalities, which are
satisfied if the original objective function induces a proxy objective function that
is implicitly minimized when using gradient methods. We show that stochastic
gradient descent (SGD) on objectives satisfying proxy convexity or the proxy PL
inequality leads to efficient guarantees for proxy objective functions. We further
show that many existing guarantees for neural networks trained by gradient descent
can be unified through proxy convexity and proxy PL inequalities.

1 Introduction

Understanding the ability of gradient-based stochastic optimization algorithms to find good minima
of non-convex objective functions has become an especially important problem due to the success of
stochastic gradient descent (SGD) in learning deep neural networks. Although there exist non-convex
objective functions and domains for which SGD will necessarily lead to sub-optimal local minima,
it appears that for many problems of interest in deep learning, across domains as varied as natural
language and images, these worst-case situations do not arise. Indeed, a number of recent works
have developed provable guarantees for GD and SGD when used for objective functions defined
in terms of neural networks over certain distributions, despite the non-convexity of the underlying
optimization problem [5, 3, 6, 22, 14, 16]. To date, however, there has not been a framework which
could unify the variegated approaches for guarantees in these settings.

In this work, we introduce the notion of proxy convexity and demonstrate that many existing provable
guarantees for learning with neural networks trained by gradient-based optimization fall into a
problem satisfying proxy convexity. First, let us define the learning problem over a distribution D,
where the goal is to minimize the expected loss

wng}l/qu(w) =E,pf(w;2), (1.1)

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

where W is a parameter domain and f (- ; z) is a loss function. We are interested in guarantees using

the online SGD algorithm, which uses a set of i.i.d. samples z; 18D and has updates given by
Wit = wy — NV f(we; 20),

where 1 > 0 is a fixed learning rate. We now introduce the first notion of proxy convexity we will
consider in the paper.

Definition 1.1 (Proxy convexity). We say that a function f : RP — R satisfies (g, h)-proxy convexity
if there exist functions g, h : RP — R such that for all w,v € RP,

(Vf(w),w —v) = g(w) = h(v).

Clearly, every convex function f satisfies (f, f)-proxy convexity. We next introduce the analogy of
proxy convexity for the Polyak—t.ojasiewicz (PL) inequality [23].

Definition 1.2 (g-proxy, {-optimal PL inequality). We say that a function f : RP — R satisfies a
g-proxy, &-optimal Polyak—Eojasiewicz inequality with parameters « € (0,2] and p > 0 (in short,
[satisfies the (g, &, a, u)-PL inequality) if there exists a function g : R? — R and scalars £ € R,
w > 0 such that for all w € R?,

IVF)I* = Sp(g(w) =€)

| —

As we shall see below, the proxy PL inequality is a natural extension of the standard PL inequality.

Our main contributions are as follows.

1. When f satisfies (g, h)-proxy convexity, and f is either Lipschitz or satisfies a particular smooth-
ness assumption, then for any norm bound R > 0, the online SGD algorithm run for polynomial
(in 1/¢ and R) number of iterations satisfies the following in expectation over z1, ..., 27 ~ DT,

ink, . ;2) < min E,oph(w; .
min E, pg(wy; z) < ”gﬁlélR ~ph(w;z) + €

2. When f satisfies a (g, £, «, u)-proxy PL inequality and has Lipschitz gradients, SGD run for a
polynomial (in 1/¢) number of iterations satisfies the following in expectation over 21, . . ., 2y ~

T

s

ItIii%lEzN'Dg(wt; z) <& +e.

3. We demonstrate that many previous guarantees for neural networks trained by gradient descent
can be unified in the framework of proxy convexity.

As we will describe in more detail below, if a loss function ¢ is (g, h)-proxy convex or satisfies a
g-proxy PL inequality, then the optimization problem is straightforward and the crux of the problem
then becomes connecting guarantees for the proxy g with approximate guarantees for f.

Notation. We use uppercase letters to refer to matrices, and lowercase letters will either refer to
vectors or scalars depending on the context. For vectors w, we use ||Jw|| to refer to the Euclidean
norm, and for matrices W we use ||W]|| to refer to the Frobenius norm. We use the standard O(+),

Q(-) notations to hide universal constants, with O(-) and Q(-) additionally hiding logarithmic factors.

2 Proxy Convexity in Comparison to Other Non-convex Optimization
Frameworks

In this section, we describe how proxy convexity and proxy PL-inequalities relate to other notions in
non-convex optimization. In Section 6, we will discuss additional related work. First, recall that a
function f is (g, h)-proxy convex if there exist functions g and A such that for all w, v,

(Vf(w),w —v) > g(w) = h(v).
One notion from the non-convex optimization literature that is related to our notion of proxy convexity
is that of invexity [19]. A function f is invex if it is differentiable and there exists a vector-valued
function k(w, v) such that for any w, v,

(Vf(w), k(w,v)) = f(w) = f(v).

It has been shown that a smooth function f is invex if and only if every stationary point of f is a
global minimum [10]. However, for many problems of interest involving neural networks, it is not
the case that every stationary point will be a global optimum, which makes invexity a less appealing
framework for understanding neural networks. Indeed, we shall see in Example 4.2 below that if
one considers the problem of learning a single ReLU neuron x — max (0, (w, x)) under the squared
loss, it is not hard to see that there exist stationary points which are not global minima (e.g., w = 0
assuming the convention ¢’(0) = 0). By contrast, we shall see that the single ReLU neuron does
satisfy a form of proxy convexity that enables SGD to find approximately (but not globally) optimal
minima. Thus even the simplest neural networks induce objective functions which are proxy convex
and non-invex. We shall see in Example 3.3 that proxy convexity appears in the objective functions
induced by wide and deep neural networks as well.

To understand how the proxy PL inequality compares to other notions in the optimization literature,
recall that an objective function f satisfies the standard PL inequality [33, 27] if there exists ;1 > 0
such that

IVF@)I* = S [f(w) = £ v,

where f* = min,, f(w). Clearly, any stationary point of an objective satisfying the standard PL
inequality is globally optimal. Thus, the presence of local minima among stationary points in neural
network objectives makes the standard PL inequality suffer from the same drawbacks that invexity
does for understanding neural networks trained by gradient descent. This further applies to any of the
conditions which are known to imply the PL inequality, like weak strong convexity, the restricted
secant inequality, and the error bound condition (Karimi et al. [23])."

In comparison, the (g, &, o, pt)-proxy PL inequality is satisfied if there exists a function g and constants
&>0,a€(0,2] and o > 0 such that
IVF@)* = Slg(w) - €] Vo

It is clear that if a function f satisfies the standard PL inequality, then it satisfies the (f, f*,2, 1)
proxy PL inequality. Stationary points wg of objective functions satisfying the proxy PL inequality
have ||V f(wo)|| = 0 which imply g(wg) < &. In the case that g = f, the slack error term £ allows
for the proxy PL inequality framework to accommodate the possibility that stationary points may not
be globally optimal (i.e. have objective value f* = min,, f(w)), but could be approximately optimal
by, for example, having objective value at most £ = C - f* or € = C - \/f* for some constant C' > 1.
When g # f, the proxy PL inequality allows for the possibility of analyzing a proxy loss function g
which is implicitly minimized when using gradient-based optimization of the objective f.

At a high level, proxy convexity and the proxy PL inequality are well-suited to situations where
stationary points may not be globally optimal, but may be approximately optimal with respect to a
related optimization objective. The proxy convexity framework allows for one to realize this through
developing problem-specific analyses that connect the proxy objective g to the original objective f.
As we shall see below, rich function classes like neural networks are often more easily analyzed by
considering a proxy objective function that naturally appears when one analyzes the gradient of the
loss.

Finally, we note that [25] introduced a different generalization of the PL inequality, namely the PL*
and PL] inequality, which relaxes the standard PL inequality definition so that the PL condition
only needs to hold on a subset of the domain. In particular, a function f : R? — R satisfies the PL*
inequality on a set S C RP if there exists x> 0 such that

IVf(w)|]> > pf(w) YweS.

Likewise, f satisfies the PL} inequality on S if there exists a set S and € > 0 such that the PL*
inequality holds on the set S, = {w € S : f(w) > €}. One can see that if f satisfies the PL}
inequality on .S, then the function g(w) := f(w) + ¢ satisfies the g-proxy, e-optimal PL inequality
onS.

We wish to emphasize the differences in the framing and motivation of the PL} inequality by [25]
and that of proxy convexity and the proxy PL inequality in this paper. [25] focus on the geometry of

"Karimi et al. [23] shows that these conditions imply the PL inequality under the assumption that the objective
function has Lipschitz-continuous gradients.

optimization in the overparameterized setting where one has a fixed set of samples {(x;, y;)}?_, and
a parametric model class g(x; w) (for w € RP, p > n) and the goal is to solve g(x;; w) = y; for all
i € [n]. In this setting one can view the optimization problem as a nonlinear least squares system
with p unknowns and n equations, and [25] use geometric arguments to show that when p > n the
PL* condition is satisfied throughout most of the domain. They extend the PL* condition to the PL}
condition with the motivation that in underparameterized settings, or when performing early stopping,
there may not exist interpolating solutions. By contrast, we focus on the stochastic optimization
setting, where the goal is to minimize the expected loss over some distribution; it is unclear how
geometric arguments for minimizing the training loss can lead to generalization guarantees in the
overparameterized setting, especially when considering online SGD where samples are observed
one-by-one and ‘overparameterization’ has a less clear meaning. Furthermore, in this work we are not
primarily interested in understanding how overparameterization affects optimization. Rather, our aim
is to develop a framework that allows for formal characterizations of optimization problems where
stationary points are not globally optimal with respect to the original objective but are approximately
optimal with respect to proxy objective functions. We will demonstrate below that such a framework
can help unify a number of works on learning with neural networks trained by gradient descent.

3 Proxy PL Inequality Implies Proxy Objective Guarantees

In this section, we show that for loss functions satisfying a proxy PL inequality, SGD? efficiently
minimizes the proxy. We leave the proofs for Section 5.

Theorem 3.1. Suppose F(w) = E,..p f(w; z) where f(-; z) satisfies the (g(- ; z),&(2), o, p)-proxy
PL inequality for some function g(- ; z) : R? — R for each z. Denote by G(w) := E,.pg(w; 2).
Assume that f is non-negative and has Lo-Lipschitz gradients. Then for any € > 0, provided
n < 1/ Lo, online SGD with fixed step size 1 and run for T = 21~ (ue/2) =2/ f (wo; z0) iterations

results in the following guarantee in expectation over zg, . ..,2r_1 ~ D",
1&1%1 G(wt) <E..p&(z) +e. 3.1

To get a feel for how a proxy PL inequality might be useful for learning neural networks, consider
a classification problem with labels y € {1}, and suppose that N(W;z) is a neural network
function. A standard approach for learning neural networks is to minimize the cross-entropy loss
((yN(W;z)) = log (1 + exp(—yN(W;z))) using gradient descent. Using the variational form of
the norm, we have

IVE(yN(W;z))| = H[S}IﬁI:)l<W(yN(W;$))»U>

> —l'(yN(W;z)) - y(VN(W;z),V), (3.2)

where V' is any matrix satisfying ||V|| = 1. Now, although the function —¢’ is not an upper bound for
¢ (indeed, —¢' <), it is an upper bound for a constant multiple of the zero-one loss, and can thus
serve as a proxy for the classification error.’ This is because for convex and decreasing losses /, the
function —¢’ is non-negative and decreasing, and hence by Markov’s inequality,

P(y # sgn(N(W;z))) =Py - N(W;z) <0)
= P(—{'(yN(w; x)) > —£'(0))

1 /
<) EC OGN O]
Thus, if one can bound the population risk under —¢’, one has a bound for the classification error.
Indeed, this property has been used in a number of recent works on neural networks [6, 13, 22, 16].
This lets the —¢’ term in (3.2) represent the desired proxy g in the definition of the (g, &, o, pt)-proxy
PL inequality. Thus, for neural network classification problems, the problem of showing the neural
network has small classification error is reduced to constructing a matrix V' that allows for the quantity
y(VN(W;x),V) to be large and non-negative. The quantity y(VN(W;z), V) can be thought of

2We focus on online SGD in this paper for simplicity. Analogous optimization guarantees would hold for
other variants of gradient descent that utilize samples in batches.
*In fact, the function z — [£(2)]? is also a proxy for the classification error; see [15, Appendix A].

as a margin function that is large when the gradient of the neural network loss points in a good
direction. Although we shall see below that in some instances one can derive a lower bound for
y(VN(W;z), V) that holds for all W, x, and y, a more general approach would be to show that
along the gradient descent trajectory W (*), a lower bound for (VN (W ®); z), V) holds.*

In the remainder of this section, we will show that a number of recent works on learning neural
networks with gradient descent utilized proxy PL inequalities. In our first example, we consider
recent work by Charles and Papailiopoulos [7] that directly used a (standard) PL inequality.
Example 3.2 (Standard PL inequality for single leaky ReLLU neurons and deep linear networks).
Charles and Papailiopoulos [7] showed that the standard PL inequality holds in two distinct settings.
The first is that of a single leaky ReLU neuron z — o({w,z)), where o(z) = max(c,z, z) for
¢, # 0. They showed that if sp,;n(X) is the smallest singular value of the matrix X € R™*d of
samples, then for a A-strongly convex loss /, the loss f(w) = ¢(o((w,z))) satisfies the standard
u-PL inequality, i.e., the (f, f*,2, u)-proxy PL inequality for g = Aspyin(X)?c2 (Charles and
Papailiopoulos [7, Theorem 4.1]).

The same authors also showed that under certain conditions the standard PL inequality holds
when the neural network takes the form N(W;z) = Wy --- Wiz and the loss is the squared
loss, f(W) = 1/2(y — N(W;x))%. In particular, they showed that if spyi,(W;) > 7 > 0
throughout the gradient descent trajectory, then f satisfies the standard u-PL inequality for

p=Lr=2/| (XXT)_lXHi (Charles and Papailiopoulos [7, Theorem 4.5]).
The standard PL inequality has been used by a number of other authors in the deep learning theory

literature, see e.g. Xie et al. [36, Theorem 1], Hardt and Ma [20, Eq. 2.3], Zhou and Liang [40,
Theorem 1], Shamir [35, Theorem 3].

In our next example, we show that a proxy PL inequality holds for deep neural networks in the neural
tangent kernel (NTK) regime.

Example 3.3 (Proxy PL inequality for deep neural networks in NTK regime). Consider the class of
deep, L-hidden-layer ReLU networks, either with or without residual connections:

N(Wiz)=o(WWz), N(W;z) =N (W;2) + o(WON_ (W;z)),1=2,...,L,

NW;z) = a;[NL(W;)]j,
j=1
where s; = 0 for fully-connected networks and s; = 1 for residual networks. Cao and Gu [6,
Theorem 4.2], Frei, Cao, and Gu [13, Lemma 4.3], and Zou et al. [41, Lemma B.5] have shown that
under certain distributional assumptions and provided the iterates of gradient descent stay close to
their intialization, one can guarantee that for the cross-entropy loss f(W; (z,y)) = {(yN(W;x)),

IVF W (2, 9)]| = Cr - =L/ (yN (W3 2)). (3.3)

By defining g(W; z) = —¢/(yN(W;x)), the loss f satisfies the (g, 0, 1, 2C4)-proxy PL inequality.
Since the ReLU is not smooth, the loss f will not have Lipschitz gradients, and thus a direct
application of Theorem 3.1 is not possible. Instead, the authors show that in the NTK regime, the
loss obeys a type of semi-smoothness that still allows for an analysis simliar to that of Theorem 3.1.

Example 3.4 (Proxy PL inequality for one-hidden-layer networks outside NTK regime). Consider a
one-hidden-layer network with activation function o,

N(W; (z,9)) =Y ajo((w;,z)), (3.4)
Jj=1

where the second layer weights {a; }'/2; are randomly initialized and fixed at initialization, but the
{w;}7L, are trained. Assume o satisfies 0/(z) > ¢, > 0 for all z (e.g., the leaky ReLU activation).
Frei, Cao, and Gu have shown [16, Lemma 3.1] that there exists a matrix V' € R™*? with ||V, = 1
such that for distributions satisfying anti-concentration, for any x,y and W,

y<VN<W,J}), V> Z Cl [CU - f($7y)},

4 Although our results as stated would not immediately apply in this setting, the proof would be the same up
to trivial modifications.

where E[¢(z,y)] = O(VOPT) where OPT is the best classification error achieved by a halfspace
over D. Thus, when f(W; (z,y)) = {(yN(W; (x,y)) is the cross-entropy loss,

VW (z,y)| = sup (V(W;(z,y)), Z)

121 p=1
> —l'(yN(W;x)) - y(VN(W;xz),V)
> Cieo - [0/ (yN(W;z)) — ¢, &z, y)].

As in Example 3.3, by defining g(W;z) = —¢'(yN(W;x)), the loss f satisfies the
(9,¢; (2, y),1,2C ¢,)-proxy PL inequality. Thus, provided we can show that f(-;2) has Lo-
Lipschitz gradients for some constant Ly > 0, Theorem 3.1 shows that

E(x y)~p [(yN (W;)]
. .). < min —&~D !
min Po,y)(y # sgn(N (W 2))) < min [0)]
< 2020;1E(m’y)~D€(x7 y)+e
= O(VOPT) +e.

Provided o is such that ¢’ is continuous and differentiable, then f has Lo-Lipschitz gradients and thus
the guarantees will follow. In particular, this analysis follows if o is any smoothed approximation to
the leaky ReLU which satisfies o’ (z) > ¢, > 0.

Note that the above optimization analysis is an original contribution of this work as we utilize a
completely different proof technique than that of [16]. In that paper, the authors utilize a Perceptron-
style proof technique that analyzes the correlation (T (), V) of the weights found by gradient descent
and a reference matrix V. Their proof relies crucially on the homogeneity of the (non-smooth) leaky
ReLU activation, namely that zo’'(z) = o(z) for z € R, and cannot accommodate more general
smooth activations. By contrast, the proxy PL inequality proof technique in this example relies
upon the smoothness of the activation function and is more similar to smoothness-based analyses of
gradient descent.

4 Proxy Convexity Implies Proxy Objective Guarantees

In this section, we show that if f satisfies (g, h)-proxy convexity, we can guarantee that by minimizing
f with gradient descent, we find a hypothesis for which g(w) is at least as small as the best norm-
bounded predictor as measured by the loss /. We present two versions of our result: one that relies
upon fewer assumptions on the loss f but needs a small step size, and another that requires a proxy
smoothness assumption on f but allows for a constant step size. The proofs for the theorem are given
in Section 5.

Theorem 4.1. Suppose that F(w) :=E,.pf(w;z) and f(-;2) is (g(-; 2), h(+; 2))-proxy convex for
each z. Denote H(w) := E,.ph(w; z) and G(w) := E,..pg(w; z).

(a) Assume there exists Ly > 0 such that for all w, E..p[|Vf(w;2)|?] < L2 Then for any
v € R? and any € > 0, performing online SGD on F(w) from an arbitrary initialization wq with

fixed step size n < e:Lf2 forT = n~te™ 1 |Jwy — v||2 iterations implies that, in expectation over
(207 R} ZT*I) ~ DT)
inGG <H .

min G(we) < H(v) +¢
(b) Assume there exists Ly > 0 such that for all w, B, p[|V f (w; 2)||*] < 2LsE,pg(w; z). Then
for any v € R? and any € > 0, performing online SGD on F(w) from an arbitrary initialization
with fixed step size 1 < Ly'/2 for T = n~ e~ |lwo — UH2 implies that, in expectation over
(z0,-..,27—1) ~ DT,

Itnin} G(w) < (14 2nL2)H(v) + €.
<

In order for (g, h)-proxy convexity to be useful, there must be a way to relate guarantees for g into
guarantees for the desired objective function f. In the remainder of this section, we will discuss two
neural network learning problems which are non-convex and yet satisfy proxy convexity which leads
to generalization guarantees. Our first example is the problem of learning a neural network with a
single nonlinear unit.

Example 4.2 (Single neuron satisfies proxy convexity). Consider the problem of learning a single
neuron = — o ({w, x)) under the squared loss, where o is the ReLU activation. The objective function

of interest is)
F(w) =E@ y~p'/2(c((w, z)) —y)°.
Denote

It is known that F" is non-convex [37]. Under the assumption that learning sparse parities with noise
is computationally hard, it is known that no polynomial time algorithm can achieve risk F'* exactly;
moreover, it is known that (unconditionally) the standard gradient descent algorithm cannot achieve
risk F* [18].°> However, Frei, Cao, and Gu [14] showed that although F is non-convex and no
algorithm can achieve risk F'*, F' does satisfy a form of proxy convexity that allows for gradient
descent to achieve risk O(v/F*). They showed that the loss function

Flw; (2,)) = V2(0((w, 2)) - y)?

satisfies (g, h)-proxy convexity, where

g(w; (z,y)) = 2 [o((w,z)) = o((v*,2))" o' ((w, 2)),

h(v; (z,y)) = lo({v,2)) =yl = V2[(v; (2,9),
where v* is the population risk minimizer of F(w) (see their Eq. (3.13)). Moreover, they showed
(see their Eq. (3.9))

IV f (w; 2)[|* < 8g(w; 2).

Thus Theorem 4.1(b) implies that SGD with step size n < /s and T = 2~ e~ |lwo — v*|?
iterations will find a point w; satisfying

Gluwy) = 2E(s.y) [(o((wr, @) = (", 2))° o' (uw, 2))
§(1+877)H()+
< (14 S0)Blo (0,2 i + =
< L+ 80) VBl) 7+

O(VF?).

The authors then show that under some distributional assumptions on D, G(w;) = O(v/ F*) implies

F(w) = O(VF*) [14, Lemma 3.5]. Thus, the optimization problem for F' induces a proxy convex
optimization problem defined in terms of G which yields guarantees for G in terms of H, and this in
turn leads to approximate optimality guarantees for the original objective F'.

In our next example, we show that a number of works on learning one-hidden-layer ReLU networks
in the neural tangent kernel regime [21] can be cast as problems satisfying proxy convexity.

Example 4.3 (Proxy convexity for one-hidden-layer ReLU neural networks in the NTK regime).
Consider the class of one-hidden-layer ReLU networks consisting of m neurons,

N Za] wj,

where the {a;}* | are randomly initialized and fixed at initialization, but the {w;}7", are trained.

Suppose we consider a binary classification problem, where y € {£1} and we minimize the cross-
entropy loss,

F(W) =E@ypyopf(W;(z,y), [(W;(x,y) =LyNW;(z,y)), £(2) =log(l+exp(—2)).

Ji and Telgarsky [22, Proof of Lemma 2.6] showed that there exists a function h(a, W, V; (z,y))
such that the iterates of gradient descent satisfy

(VW (2,y)),w —v) > f(W; (,y)) — h(a, W,V (z,)).

3This stands in contrast to learning a single leaky ReLU neuron z max(az, x) for a # 0, which as we
showed in Example 3.2 can be solved using much simpler techniques.

Under the assumption that the iterates of gradient descent stay close to the initialization (i.e., the neural
tangent kernel regime), they show that h(a, W, V; (z,y)) < e under distributional assumptions, and
thus F(w) will satisfy (f, h = ¢)-proxy convexity. The cross entropy loss satisfies [¢/(2)]? < £(z),
and thus we can apply Theorem 4.1(b) to get guarantees of the form min,.r F'(w;) < ¢ for the
cross-entropy loss F'(WW) of SGD-trained neural networks in the NTK regime.

In another problem of learning one-hidden-layer networks, Allen-Zhu, Li, and Liang [3, Proof of
Lemma B.4] show that there exists a proxy loss function g(a, W; (z,y)) such that provided the
neural network weights stay close to their initialized values, f(a, W; (z,y)) satisfies (g, g + €) proxy
convexity. Again using that the cross-entropy loss satisfies [¢/(z)]? < £(z), Theorem 4.1(b) shows
that SGD-trained neural networks in the NTK regime satisfy min;«r G(W;) < miny G(V) + .
They further show that the proxy loss g is close to the cross entropy loss, i.e. |[E[g(a, W; (z,y))] —
E[f(a, W; (x,y))]| < &, implying a bound of the form min;«7 F(W;) < miny F(V) + ¢.

5 Proof of the Main Results

In this section we provide the proofs of the theorems given in Sections 3 and 4.

We first give the proof of Theorem 3.1 which provides guarantees for learning with objectives
satisfying proxy PL inequalities.

Proof of Theorem 3.1. Since f has Lo-Lipschitz gradients, we have for any w, w’ and fixed z,
L
flwi2) < fu's2) + (Vw3 2), 0 —w') + F Jw— |

Taking w = wyy1, W = wy, and z = z,
+

2
L
J(weaiz) < flwesz0) =0 [V (w2l + 752 [V (wis 20|
= flwisze) =01 = nLa/2] IV f(we; 20)|I”. 5.1
Since) < 1/Ls, we have (1 — nLo/2)~! < 2, and thus we can rearrange the above to get
1
V f(we; 2 2§7 wy; z¢) — f(wegt; 2
H f(t t)” n(l_nL2/2) [f(t t) f(t+1 t)]
2
< 5[f(wt;zt) — flwegr; z)]. (5.2)

Summing the above from ¢ = 0 to t = T" — 1 and using that f is non-negative, we get

T—1
1 Z 2 _ 2f(wo; 20)
— \V4 . < = — 7.

Using the definition of proxy PL inequality, this implies

1= o . o _ 2f(wo;20)
7 2 (120" (g(wis2) — 6G) < =

Taking the minimum over ¢ < 7" and re-arranging terms, this means
) 2f (wo; 20)
) o 2/a < 05 <0
?il%}(g(whzt) g(zt)) — ’I’}T(,U/Q)Z/a

Therefore, we have

2

. a/2
m}lg(wt;zt) < &(z) + h <2f(w0’20)> _

nT
Taking T = 21~ f(wo; 20)(pe/2)~2/* and taking expectations over zg, . .., z7_1, we get (3.1). [

t<

We next prove guarantees for SGD when the objective satisfies proxy convexity.

Proof of Theorem 4.1. By the definition of proxy convexity,
[we = vl = fJwerr = ol* = 20V f(wi; 2), wr — v) =7 |V f (wi; 20|

> 2ng(wy; 20) — h(vi 2)] — 17 |V (wes 20) |-
Conditional on the values of zg, ..., 2:—1 (and hence on the value of w,), taking expectations of both
sides with respect to z; ~ D results in

lwe = 0l* = Ezpop wesr = ol|* > 20[G(wy) — H(v)] = °Eepmp [V (wisz)|*. (5.3)
For case (a), this results in
lwy = vl|* = Ezpn wisr — o)) = 29[G(w,) — H(v) = n/2L3).
Dividing both sides by 217" and summing from¢ = 0,...,7T — 1, we get

T-1 T-1 9 9

L 1 nLi | llwo —v|” = E.p jop [wr — v
— G < = H 1]

t=0 t=0
Taking expectations over zg.; = (2o, .. .,2_1) ~ D, we get

T-1 2

; 1 nLi | flwo — v
I;Ii%lEZO:tNDtG(wt) S T ; EZO:tNDtG(wt) S H(U) + T + 2177]-.

In particular, for < eL72and T = 5~ Le =1 |lwy — v||>, we get
?ii;lEzO:tNDtG(wt) < H(U) +e.

For case (b), (5.3) becomes
lwe = v)|* = Eepop [[wess — vl* > 20[G(wr) — H(v) = nLaG(wy)]
=2n[(1 = nL2)G(we) — H(v)] .

Dividing both sides by 2nT'(1 — nL2) and summing from¢ = 0,...,T — 1, we get

132 Gy < — Ly 4 L0 =01 = By yom Jor = of?
= T 2nT (1 —nL2)
(1 + 2nLs) ||wo — v||*
< (1+2nLs)H
where in the last line we have used that 7 < L;*/2 and that 1/(1 —) < 14 2z on [0, 1/2]. Taking
expectations over zo.; = (2o, ..,2_1) ~ D!, we get
1 Il
?ii:pEZO:tND”G(wt) < f pa]EZO;tNDtG<wt)

2HU}0—U”2
<(1+2nL)H(v)+ ——.
7(n 2) (v) 277T

Le=1jwg — v, we get

gni%l E.,,~ptG(w) < (14 2nLe)H(v) + €.
<

In particular, for T' = n~

O

We note that under additional assumptions on D and the loss function, we could improve the results
from holding in expectation over the draws of the sample to high probability guarantees by using
standard concentration arguments. This is easily done when the objective function satisfies proxy
convexity: we can make a slight modification to the proof of Theorem 4.1 to argue inductively that
until we reach a point with G (w;) < H (v)+nL2+¢, we have that that ||w; — v||*—||we41 — v||* > .
This implies that the norm of the predictors remain bounded throughout the trajectory of gradient
descent until we reach the desired point with G(w;) < H(v) + nL? + &, which can then be used in
Rademacher complexity-type arguments [4]. This type of argument was previously used by e.g., Frei
etal. [14].

6 Additional Related Work

The Polyak-Lojasiewicz inequality can be dated back to the original works of Polyak [33] and Lo-
jasiewicz [27]. Recent work by Karimi et al. [23] proved linear convergence under the PL condition
and showed that the PL condition is one of the weakest assumptions under which linear convergence
is possible. In particular, they showed that the error bound inequality [28], essential strong convex-
ity [26], weak strong convexity [31], and the restricted secant inequality [38] are all assumptions under
which linear convergence is possible and that each of these assumptions implies the PL inequality.

As we described in Section 2, the standard PL condition was shown to hold under certain assumptions
for neural network objective functions [20, 36, 40, 7]. In addition to those covered in this paper, there
are a number of other provable guarantees for generalization of SGD-trained networks which rely on
a variety of different techniques, such as tensor methods [24] and utilizing connections with partial
differential equations by way of mean field approximations [29, 9, 30, 8].

In the optimization literature, recent work has shown that SGD can efficiently find stationary points
and can escape saddle points [17, 12]. As the proxy PL inequality implies guarantees for the proxy
objective function at stationary points of the original optimization objective, our framework can
naturally be used for other optimization algorithms that are known to efficiently find stationary points,
such as SVRG [2, 34], Natasha2 [1], SARAH/SPIDER [32, 11], and SNVRG [39].

7 Conclusion

In this paper we have introduced the notion of proxy convexity and proxy PL inequality and developed
guarantees for learning with stochastic gradient descent under these conditions. We demonstrated
that many recent works in the learning of neural networks with gradient descent can be framed in
terms of optimization problems that satisfy either proxy convexity or a proxy PL inequality. While
the proxy convexity framework cannot unify all existing analyses of learning neural networks, we
hope that it can reveal some of the principles underlying the success of SGD-trained neural networks.

Acknowledgments and Disclosure of Funding

QG is partially supported by the National Science Foundation CAREER Award 1906169, IIS-
1855099 and I1S-2008981. SF acknowledges the support of the NSF and the Simons Foundation for
the Collaboration on the Theoretical Foundations of Deep Learning through awards DMS-2031883
and #814639. The views and conclusions contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

References

[1] Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[2] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In Interna-
tional Conference on Machine Learning (ICML), 2016.

[3] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural
networks, going beyond two layers. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[4] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research (JMLR), page 463-482, 2003.

[5] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. SGD learns over-parameterized
networks that provably generalize on linearly separable data. In International Conference on
Learning Representations (ICLR), 2018.

[6] Y. Cao and Q. Gu. Generalization error bounds of gradient descent for learning over-
parameterized deep relu networks. In AAAI Conference on Artificial Intelligence, 2020.

10

[7] Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that
converge to global optima. In International Conference on Machine Learning (ICML), 2018.

[8] Z. Chen, Y. Cao, Q. Gu, and T. Zhang. A generalized neural tangent kernel analysis for two-layer
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[9] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[10] B. D. Craven and B. M. Glover. Invex functions and duality. Journal of the Australian
Mathematical Society. Series A. Pure Mathematics and Statistics, 39(1):1-20, 1985.

[11] C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via
stochastic path integrated differential estimator. Preprint, arXiv:1807.01695, 2018.

[12] C. Fang, Z. Lin, and T. Zhang. Sharp analysis for nonconvex sgd escaping from saddle points.
In Conference on Learning Theory (COLT), 2019.

[13] S. Frei, Y. Cao, and Q. Gu. Algorithm-dependent generalization bounds for overparameterized
deep residual networks. In Advances in Neural Information Processing Systems (NeurlPS),
2019.

[14] S. Frei, Y. Cao, and Q. Gu. Agnostic learning of a single neuron with gradient descent. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[15] S. Frei, Y. Cao, and Q. Gu. Agnostic learning of halfspaces with gradient descent via soft
margins. In International Conference on Machine Learning (ICML), 2021.

[16] S.Frei, Y. Cao, and Q. Gu. Provable generalization of sgd-trained neural networks of any width
in the presence of adversarial label noise. In International Conference on Machine Learning
(ICML), 2021.

[17] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points — online stochastic gradient
for tensor decomposition. In Conference on Learning Theory (COLT), 2015.

[18] S. Goel, S. Karmalkar, and A. R. Klivans. Time/accuracy tradeoffs for learning a relu with
respect to gaussian marginals. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[19] M. A. Hanson. On sufficiency of the kuhn-tucker conditions. Journal of Mathematical Analysis
and Applications, 80(2):545-550, 1981.

[20] M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on Learning
Representations (ICLR), 2017.

[21] A.Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[22] Z. Ji and M. Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow relu networks. In International Conference on Learning
Representations (ICLR), 2020.

[23] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-lojasiewicz condition. In European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML-KDD), 2016.

[24] Y. Li, T. Ma, and H. R. Zhang. Learning over-parametrized two-layer relu neural networks
beyond ntk. In Conference on Learning Theory (COLT), 2020.

[25] C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Preprint, arXiv:2003.00307, 2021.

[26] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. Journal of Machine Learning Research, 16(10):285-322, 2015.

11

[27] S. Lojasiewicz. A topological property of real analytic subsets. Collogues internationaux du
C.N.R.S, 117, 1963.

[28] Z. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods: a
general approach. Annals of Operations Research, 46-47(1):157-178, 1993.

[29] S.Mei, A. Montanari, and P-M. Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences (PNAS), 115(33):E7665-E7671,
2018.

[30] S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks:
dimension-free bounds and kernel limit. In Conference on Learning Theory (COLT), 2019.

[31] I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-
strongly convex optimization. Mathematical Programming, 175(1-2):69-107, 2019.

[32] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Tak4c. Stochastic recursive gradient algorithm for
nonconvex optimization. Preprint, arXiv:1705.07261, 2017.

[33] B. T. Polyak. Gradient methods for the minimisation of functionals. Zhurnal Vychislitel’no¥
Matematiki i Matematicheskot Fiziki, 3:643—653, 1963. ISSN 0044-4669.

[34] S.J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for
nonconvex optimization. In International Conference on Machine Learning (ICML), 2016.

[35] O. Shamir. Exponential convergence time of gradient descent for one-dimensional deep linear
neural networks. In Conference on Learning Theory (COLT), 2019.

[36] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions. In Conference
on Artificial Intelligence and Statistics (AISTATS), 2017.

[37] G. Yehudai and O. Shamir. Learning a single neuron with gradient methods. In Conference on
Learning Theory (COLT), 2020.

[38] H. Zhang and W. Yin. Gradient methods for convex minimization: better rates under weaker
conditions. Preprint, arXiv:1303.4645, 2013.

[39] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduction for nonconvex optimization.
In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[40] Y. Zhou and Y. Liang. Characterization of gradient dominance and regularity conditions for
neural networks. In NeurIPS Workshop on Deep Learning Theory, 2017.

[41] D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep
ReLU networks. Machine Learning, 2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the conclusion.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
is seeking to develop a mathematical understanding of the non-convex optimization
principles underlying neural network optimization. So we don’t think there is any
potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

12

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Proxy Convexity in Comparison to Other Non-convex Optimization Frameworks
	Proxy PL Inequality Implies Proxy Objective Guarantees
	Proxy Convexity Implies Proxy Objective Guarantees
	Proof of the Main Results
	Additional Related Work
	Conclusion

