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Abstract

Machine Learning (ML) models trained on data from multiple demographic groups
can inherit representation disparity [7] that may exist in the data: the model
may be less favorable to groups contributing less to the training process; this in
turn can degrade population retention in these groups over time, and exacerbate
representation disparity in the long run. In this study, we seek to understand the
interplay between ML decisions and the underlying group representation, how they
evolve in a sequential framework, and how the use of fairness criteria plays a role in
this process. We show that the representation disparity can easily worsen over time
under a natural user dynamics (arrival and departure) model when decisions are
made based on a commonly used objective and fairness criteria, resulting in some
groups diminishing entirely from the sample pool in the long run. It highlights
the fact that fairness criteria have to be defined while taking into consideration the
impact of decisions on user dynamics. Toward this end, we explain how a proper
fairness criterion can be selected based on a general user dynamics model.

1 Introduction

Machine learning models developed from real-world data can inherit pre-existing bias in the dataset.
When these models are used to inform decisions involving humans, it may exhibit similar discrimi-
nation against sensitive attributes (e.g., gender and race) [6, 14, 15]. Moreover, these decisions can
influence human actions, such that bias in the decision is then captured in the dataset used to train
future models. This closed feedback loop becomes self-reinforcing and can lead to highly undesirable
outcomes over time by allowing biases to perpetuate. For example, speech recognition products such
as Amazon’s Alexa and Google Home are shown to have accent bias against non-native speakers [6],
with native speakers experience much higher quality than non-native speakers. If this difference leads
to more native speakers using such products while driving away non-native speakers, then over time
the data used to train the model may become even more skewed toward native speakers, with fewer
and fewer non-native samples. Without intervention, the resulting model becomes even more accurate
for the former and less for the latter, which then reinforces their respective user experience [7].

To address the fairness issues, one commonly used approach is to impose fairness criteria such that
certain statistical measures (e.g., positive classification rate, false positive rate, etc.) across different
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demographic groups are (approximately) equalized [1]. However, their effectiveness is studied mostly
in a static framework, where only the immediate impact of the learning algorithm is assessed but
not their long-term consequences. Consider an example where a lender decides whether or not to
approve a loan application based on the applicant’s credit score. Decisions satisfying an identical
true positive rate (equal opportunity) across different racial groups can make the outcome seem
fairer [5]. However, this can potentially result in more loans issued to less qualified applicants in
the group whose score distribution skews toward higher default risk. The lower repayment among
these individuals causes their future credit scores to drop, which moves the score distribution of that
group further toward high default risk [13]. This shows that intervention by imposing seemingly fair
decisions in the short term can lead to undesirable results in the long run.

In this paper we are particularly interested in understanding what happens to group representation
over time when models with fairness guarantee are used, and how it is affected when the underlying
feature distributions are also affected/reshaped by decisions. Toward this end, we introduce a user
retention model to capture users’ reaction (stay or leave) to the decision. We show that under relatively
mild and benign conditions, group representation disparity exacerbates over time and eventually
the disadvantaged groups may diminish entirely from the system. This condition unfortunately can
be easily satisfied when decisions are made based on a typical algorithm (e.g., taking objective as
minimizing the total loss) under some commonly used fairness criteria (e.g., statistical parity, equal
of opportunity, etc.). Moreover, this exacerbation continues to hold and can accelerate when feature
distributions are affected and change over time. A key observation is that if the factors equalized
by the fairness criterion do not match what drives user retention, then the difference in (perceived)
treatment will exacerbate representation disparity over time. Therefore, fairness has to be defined
with a good understanding of how users are affected by the decisions, which can be challenging in
practice as we typically have only incomplete/imperfect information. However, we show that if a
model for the user dynamics is available, then it is possible to find the proper fairness criterion that
mitigates representation disparity.

The impact of fairness intervention on both individuals and society has been studied in [7, 9, 10, 12,
13] and [7, 9, 13] are the most relevant to the present study. Specifically, [9, 13] focus on the impact
on reshaping features over two time steps, while we study the impact on group representation over
an infinite horizon. [7] studies group representation disparity in a sequential framework but without
inspecting the impact of fairness criteria or considering feature distributions reshaped by decision.
More on related work can be found in Appendix B.

The remainder of this paper is organized as follows. Section 2 formulates the problem. The impact of
various fairness criteria on group representation disparity is analyzed and presented in Section 3, as
well as potential mitigation. Experiments are presented in Section 4. Section 5 concludes the paper.
All proofs and a table of notations can be found in the appendices.

2 Problem Formulation

Consider two demographic groups Ga, Gb distinguished based on some sensitive attribute K ∈ {a, b}
(e.g., gender, race). An individual from either group has feature X ∈ R

d and label Y ∈ {0, 1}, both

can be time varying. Denote by Gj
k ⊂ Gk the subgroup with label j, j ∈ {0, 1}, k ∈ {a, b}, f j

k,t(x)

its feature distribution and αj
k(t) the size of Gj

k as a fraction of the entire population at time t. Then

αk(t) := α0
k(t) + α1

k(t) is the size of Gk as a fraction of the population and the difference between
αa(t) and αb(t) measures the representation disparity between two groups at time step t. Denote by

gjk,t =
αj

k(t)

αk(t)
the fraction of label j ∈ {0, 1} in group k at time t, then the distribution of X over Gk

is given by fk,t(x) = g1k,tf
1
k,t(x) + g0k,tf

0
k,t(x) and fa,t �= fb,t.

Consider a sequential setting where the decision maker at each time makes a decision on each
individual based on feature x. Let hθ(x) be the decision rule parameterized by θ ∈ R

d and θk(t) be
the decision parameter for Gk at time t, k ∈ {a, b}. The goal of the decision maker at time t is to find
the best parameters θa(t), θb(t) such that the corresponding decisions about individuals from Ga, Gb

maximize its utility (or minimize its loss) in the current time. Within this context, the commonly
studied fair machine learning problem is the one-shot problem stated as follows, at time step t:

min
θa,θb

OOOt(θa, θb;αa(t), αb(t)) = αa(t)Oa,t(θa) + αb(t)Ob,t(θb) s.t. ΓC,t(θa, θb) = 0 , (1)
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where OOOt(θa, θb;αa(t), αb(t)) is the overall objective of the decision maker at time t, which consists
of sub-objectives from two groups weighted by their group proportions.2 ΓC,t(θa, θb) = 0 charac-
terizes fairness constraint C, which requires the parity of certain statistical measure (e.g., positive
classification rate, false positive rate, etc.) across different demographic groups. Some commonly
used criteria will be elaborated in Section 3.1. Both Ok,t(θk) and ΓC,t(θa, θb) = 0 depend on fk,t(x).
The resulting solution (θa(t), θb(t)) will be referred to as the one-shot fair decision under fairness C,
where the optimality only holds for a single time step t.

In this study, we seek to understand how the group representation evolves in a sequential setting over
the long run when different fairness criteria are imposed. To do so, the impact of the current decision
on the size of the underlying population is modeled by the following discrete-time retention/attrition
dynamics. Denote by Nk(t) ∈ R+ the expected number of users in group k at time t:

Nk(t+ 1) = Nk(t) · πk,t(θk(t)) + βk , ∀k ∈ {a, b}, (2)

where πk,t(θk(t)) is the retention rate, i.e., the probability of a user from Gk who was in the system at
time t remaining in the system at time t+ 1. This is assumed to be a function of the user experience,
which could be the actual accuracy of the algorithm or their perceived (mis)treatment. This experience
is determined by the application and is different under different contexts. For instance, in domains of
speaker verification and medical diagnosis, it can be considered as the average loss, i.e., a user stays
if he/she can be classified correctly; in loan/job application scenarios, it can be the rejection rates,
i.e., user stays if he/she gets approval. βk is the expected number of exogenous arrivals to Gk and
is treated as a constant in our analysis, though our main conclusion holds when this is modeled as
a random variable. Accordingly, the relative group representation for time step t+ 1 is updated as

αk(t+ 1) = Nk(t+1)
Na(t+1)+Nb(t+1) , ∀k ∈ {a, b}.

For the remainder of this paper,
αa(t)
αb(t)

is used to measure the group representation disparity at time t.

As αk(t) and fk,t(x) change over time, the one-shot problem (1) is also time varying. In the next

section, we examine what happens to
αa(t)
αb(t)

when one-shot fair decisions are applied in each step.

3 Analysis of Group Representation Disparity in the Sequential Setting

Below we present results on the monotonic change of
αa(t)
αb(t)

when applying one-shot fair decisions in

each step. It shows that the group representation disparity can worsen over time and may lead to the
extinction of one group under a monotonicity condition stated as follows.

Monotonicity Condition. Consider two one-shot problems defined in (1) with objectives
ÔOO(θa, θb; α̂a, α̂b) and ÕOO(θa, θb; α̃a, α̃b) over distributions f̂k(x), f̃k(x) respectively. Let (θ̂a, θ̂b),
(θ̃a, θ̃b) be the corresponding fair decisions. We say that two problems ÔOO and ÕOO satisfy the monotonic-
ity condition given a dynamic model if for any α̂a + α̂b = 1 and α̃a + α̃b = 1 such that ̂αa

̂αb
<

˜αa

˜αb
,

the resulting retention rates satisfy π̂a(θ̂a) < π̃a(θ̃a) and π̂b(θ̂b) > π̃b(θ̃b).

Note that this condition is defined over two one-shot problems and a given dynamic model. It is not
limited to specific families of objective or constraint functions; nor is it limited to one-dimensional
features. The only thing that matters is the group proportions within the system and the retention
rates determined by the decisions and the dynamics. It characterizes a situation where when one
group’s representation increases, the decision becomes more in favor of this group and less favorable
to the other, so that the retention rate is higher for the favored group and lower for the other.

Theorem 1. [Exacerbation of representation disparity] Consider a sequence of one-shot problems (1)
with objectiveOOOt(θa, θb;αa(t), αb(t)) at each time t. Let (θa(t), θb(t)) be the corresponding solution
and πk,t(θk(t)) be the resulting retention rate of Gk, k ∈ {a, b} under a dynamic model (2). If the
initial states satisfy Na(1)

Nb(1)
= βa

βb
, Nk(2) > Nk(1),3 and one-shot problems in any two consecutive

time steps, i.e., OOOt, OOOt+1, satisfy the monotonicity condition under the given dynamic model, then
2This is a typical formulation if the objective OOOt measures the average performance of decisions over

all samples, i.e., OOOt = 1
|Ga|+|Gb| (

∑
i∈Ga

Oi
t +

∑
i∈Gb

Oi
t) = 1

|Ga|+|Gb| (|Ga|Oa,t + |Gb|Ob,t), where Oi
t

measures the performance of each sample i and Ok,t =
1

|Gk|
∑

i∈Gk
Oi

t is the average performance of Gk.
3This condition will always be satisfied when the system starts from a near empty state.
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the following holds. Let � denote either “ < ” or “ = ” or “ > ”, if πa,1(θa(1)) � πb,1(θb(1)), then
αa(t+1)
αb(t+1) �

αa(t)
αb(t)

and πa,t+1(θa(t+ 1)) � πa,t(θa(t)) � πb,t(θb(t)) � πb,t+1(θb(t+ 1)), ∀t.

Theorem 1 says that once a group’s proportion starts to change (increase or decrease), it will continue
to change in the same direction. This is because under the monotonicity condition, there is a feedback
loop between representation disparity and the one-shot decisions: the former drives the latter which
results in different user retention rates in the two groups, which then drives future representation.

The monotonicity condition can be satisfied under some commonly used objectives, dynamics and
fairness criteria. This is characterized in the following theorem.

Theorem 2. [A case satisfying monotonicity condition] Consider two one-shot problems defined in
(1) with objectives Õ(θa, θb; α̂a, α̂b) = α̂aOa(θa)+ α̂bOb(θb) and Ô(θa, θb; α̃a, α̃b) = α̃aOa(θa)+

α̃bOb(θb) over the same distribution fk(x) with α̂a + α̂b = 1 and α̃a + α̃b = 1. Let (θ̂a, θ̂b), (θ̃a, θ̃b)
be the corresponding solutions. Under the condition that Ok(θ̂k) �= Ok(θ̃k) for all possible α̂k �= α̃k,
if the dynamics satisfy πk(θk) = hk(Ok(θk)) for some decreasing function hk(·), then Õ and Ô
satisfy the monotonicity condition.

The above theorem identifies a class of cases satisfying the monotonicity condition; these are cases
where whenever the group proportion changes, the decision will cause the sub-objective function
value to change as well, and the sub-objective function value drives user departure.

For the rest of the paper we will focus on the one-dimensional setting. Some of the cases we consider
are special cases of Theorem 2 (Sec. 3.2). Others such as the time-varying feature distribution fk,t(x)
considered in Sec. 3.3 also satisfy the monotonicity condition but are not captured by Theorem 2.

3.1 The one-shot problem

Consider a binary classification problem based on feature X ∈ R. Let decision rule hθ(x) = 1(x ≥ θ)
be a threshold policy parameterized by θ ∈ R and L(y, hθ(x)) = 1(y �= hθ(x)) the 0-1 loss incurred
by applying decision θ on individuals with data (x, y).

The goal of the decision maker at each time is to find a pair (θa(t), θb(t)) subject to criterion C
such that the total expected loss is minimized, i.e., OOOt(θa, θb;αa(t), αb(t)) = αa(t)La,t(θa) +

αb(t)Lb,t(θb), where Lk,t(θk) = g1k,t
∫ θk
−∞ f1

k,t(x)dx + g0k,t
∫∞
θk

f0
k,t(x)dx is the expected loss Gk

experiences at time t. Some examples of ΓC,t(θa, θb) are as follows and illustrated in Fig. 1.

1. Simple fair (Simple): ΓSimple,t = θa − θb. Imposing this criterion simply means we ensure
the same decision parameter is used for both groups.

2. Equal opportunity (EqOpt): ΓEqOpt,t =
∫∞
θa

f0
a,t(x)dx −

∫∞
θb

f0
b,t(x)dx. This requires the

false positive rate (FPR) be the same for different groups (Fig. 1(c)),4 i.e., Pr(hθa(X) =
1|Y = 0,K = a) = Pr(hθb(X) = 1|Y = 0,K = b).

3. Statistical parity (StatPar): ΓStatPar,t =
∫∞
θa

fa,t(x)dx −
∫∞
θb

fb,t(x)dx. This requires

different groups be given equal probability of being labelled 1 (Fig. 1(b)), i.e., Pr(hθa(X) =
1|K = a) = Pr(hθb(X) = 1|K = b).

4. Equalized loss (EqLos): ΓEqLos,t = La,t(θa) − Lb,t(θb). This requires that the expected
loss across different groups be equal (Fig. 1(d)).

Notice that for Simple, EqOpt and StatPar criteria, the following holds: ∀t, (θa, θb), and (θ′a, θ
′
b)

that satisfy ΓC,t(θa, θb) = ΓC,t(θ′a, θ
′
b) = 0, we have θa ≥ θ′a if and only if θb ≥ θ′b.

Some technical assumptions on the feature distributions are in order.
We assume f0

a,t(x), f
1
a,t(x), f

0
b,t(x), f

1
b,t(x) have bounded support on

[a0t , a
0
t ], [a

1
t , a

1
t ], [b

0
t , b

0

t ] and [b1t , b
1

t ] respectively, and that f1
k,t(x) and

f0
k,t(x) overlap, i.e., a0t < a1t < a0t < a1t and b0t < b1t < b

0

t < b
1

t . The

main technical assumption is stated as follows.

k0t k1t k
0
t k

1
t

0.00

0.02

0.04

pr
ob
ab
ili
ty

de
ns
it
y

f 0
k,t(x)

f 1
k,t(x)

Fig. 2: f j
k,t(x), k ∈ {a, b}

4Depending on the context, this criterion can also refer to equal false negative rate (FNR), true positive rate
(TPR), or true negative rate (TNR), but the analysis is essentially the same.
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ty

(a) each f j
k(x) for Gj

k (b) Statistical parity (c) Equal opportunity (d) Equalized Loss

Fig. 1: For Ga, Gb with group proportions α1
a = 0.55, α0

a = 0.15, α1
b = 0.1, α0

b = 0.2, a pair of (θa, θb) is
fair under each criterion stated in Fig. 1(b)-1(d) requires the corresponding colored areas be equal.

Assumption 1. Let Ta,t = [a1t , a
0
t ] (resp. Tb,t = [b1t , b

0

t ]) be the overlapping interval between f0
a,t(x)

and f1
a,t(x) (resp. f0

b,t(x) and f1
b,t(x)). Distribution f1

k,t(x) is strictly increasing and f0
k,t(x) is

strictly decreasing over Tk,t, ∀k ∈ {a, b}.

For bell-shaped feature distributions (e.g., Normal, Cauchy, etc.), Assumption 1 implies that f1
k,t(x)

and f0
k,t(x) are sufficiently separated. An example is shown in Fig. 2. As we show later, this

assumption helps us establish the monotonic convergence of decisions (θa(t), θb(t)) but is not
necessary for the convergence of group representation. We next find the one-shot decision to this
problem under Simple, EqOpt, and StatPar fairness criteria.

Lemma 1. Under Assumption 1, ∀k ∈ {a, b}, the optimal decision at time t for Gk without
considering fairness is

θ∗k(t) = argmin
θk

Lk,t(θk) =

⎧⎪⎨
⎪⎩
k1t , if g1k,tf

1
k,t(k

1
t ) ≥ g0k,tf

0
k,t(k

1
t )

δk,t, if g1k,tf
1
k,t(k

1
t ) < g0k,tf

0
k,t(k

1
t ) & g1k,tf

1
k,t(k

0

t ) > g0k,tf
0
k,t(k

0

t )

k
0

t , if g1k,tf
1
k,t(k

0

t ) ≤ g0k,tf
0
k,t(k

0

t )

where δk,t ∈ Tk,t is defined such that g1k,tf
1
k,t(δk,t) = g0k,tf

0
k,t(δk,t). Moreover, Lk,t(θk) is decreas-

ing in θk over [k0t , θ
∗
k(t)] and increasing over [θ∗k(t), k

1

t ].

Below we will focus on the case when θ∗a(t) = δa,t and θ∗b (t) = δb,t, while analysis for the other
cases are essentially the same. For Simple, StatPar and EqOpt fairness, ∃ a strictly increasing

function φC,t, such that ΓC,t(φC,t(θb), θb) = 0. Denote by φ−1
C,t the inverse of φC,t. Without loss of

generality, we will assign group labels a and b such that φC,t(δb,t) < δa,t and φ−1
C,t(δa,t) > δb,t, ∀t. 5

Lemma 2. Under Simple, EqOpt, StatPar fairness criteria, one-shot fair decision at time t satisfies
(θ∗a(t), θ

∗
b (t)) = argminθa,θb αa(t)La,t(θa)+αb(t)Lb,t(θb) ∈ {(θa, θb)|θa ∈ [φC,t(δb,t), δa,t], θb ∈

[δb,t, φ
−1
C,t(δa,t)],ΓC,t(θa, θb) = 0} �= ∅ regardless of group proportions αa(t), αb(t).

Lemma 2 shows that given feature distributions fa,t(x), fb,t(x), although one-shot fair decisions can
be different under different group proportions αa(t), αb(t), these solutions are all bounded by the
same compact intervals (Fig. 3). Theorem 3 below describes the more specific relationship between

group representation
αa(t)
αb(t)

and the corresponding one-shot decision (θa(t), θb(t)).

Theorem 3. [Impact of group representation disparity on the one-shot decision] Consider the
one-shot problem with group proportions αa(t), αb(t) at time step t, let (θa(t), θb(t)) be the corre-
sponding one-shot decision under either Simple, EqOpt or StatPar criterion. Under Assumption 1,
(θa(t), θb(t)) is unique and satisfies the following:

ΨC,t(θa(t), θb(t)) =
αa(t)

αb(t)
, (3)

where ΨC,t is some function increasing in θa(t) and θb(t), with details illustrated in Table 1.

5If the change of fa,t(x) and fb,t(x) w.r.t. the decisions follows the same rule (e.g., examples given in
Section 3.3), then this relationship holds ∀t.
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θa ∈ [a0
t , a

1
t ], θb ∈ Tb,t θa ∈ Ta,t, θb ∈ Tb,t θa ∈ Ta,t, θb ∈ [b

0
t , b

1
t ]

EqOpt
(

g1b,t
g0
b,t

f1
b,t(θb)

f0
b,t

(θb)
− 1

)
g0b,t
g0a,t

g1b,t

g0
b,t

f1
b,t(θb)

f0
b,t

(θb)
−1

1−
g1a,t

g0a,t

f1
a,t(θa)

f0
a,t(θa)

g0b,t
g0a,t

StatPar 1− 2
g1
b,t

g0
b,t

f1
b,t

(θb)

f0
b,t

(θb)
+1

(
1− 2

g1
b,t

g0
b,t

f1
b,t

(θb)

f0
b,t

(θb)
+1

)(
2

1−
g1a,tf

1
a,t(θa)

g0a,tf
0
a,t(θa)

− 1
)

2

1−
g1a,t

g0a,t

f1
a,t(θa)

f0
a,t(θa)

− 1

Simple
g1b,tf

1
b,t(θb)−g0b,tf

0
b,t(θb)

g0a,tf
0
a,t(θa)−g1a,tf

1
a,t(θa)

Table 1: The form of ΨC,t(θa, θb) for C = EqOpt, StatPar, Simple.6

Note that under Assumption 1, both
g1
k,tf

1
k,t(θk)

g0
k,tf

0
k,t(θk)

and g1k,tf
1
k,t(θk)− g0k,tf

0
k,t(θk) are strictly increasing

in θk ∈ Tk,t, k ∈ {a, b}, and θa(t) = φC,t(θb(t)) for some strictly increasing function. According

to ΨC,t(θa, θb) given in Table 1, the larger
αa(t)
αb(t)

results in the larger
g1
k,tf

1
k,t(θk)

g0
k,tf

0
k,t(θk)

and g1k,tf
1
k,t(θk)−

g0k,tf
0
k,t(θk), thus the larger θa(t) and θb(t). The above theorem characterizes the impact of the

underlying population on the one-shot decisions. Next we investigate how the one-shot decision
impacts the underlying population.

3.2 Participation dynamics

How a user reacts to the decision is captured by the retention dynamics (2) which is fully characterized
by the retention rate. Below we introduce two types of (perceived) mistreatment as examples when
the monotonicity condition is satisfied.

(1) User departure driven by model accuracy: Examples include discontinuing the use of products
viewed as error-prone, e.g., speech recognition software, or medical diagnostic tools. In these
cases, the determining factor is the classification error, i.e., users who experience low accuracy
have a higher probability of leaving the system. The retention rate at time t can be modeled as
πk,t(θk) = ν(Lk,t(θk)) for some strictly decreasing function ν(·) : [0, 1] → [0, 1].

(2) User departure driven by intra-group disparity: Participation can also be affected by intra-
group disparity, that between users from the same demographic group but with different labels, i.e.,

Gj
k for j ∈ {0, 1}. An example is in making financial assistance decisions where one expects to

see more awards given to those qualified than to those unqualified. Denote by Dk,t(θk) = Pr(Y =
1, hθk(X) = 1|K = k)−Pr(Y = 0, hθk(X) = 1|K = k) =

∫∞
θk

(
g1kf

1
k,t(x)−g0kf

0
k,t(x)

)
dx as intra-

group disparity of Gk at time t, then the retention rate can be modeled as πk,t(θk) = w(Dk,t(θk))
for some strictly increasing function w(·) mapping to [0, 1].

Theorem 4. Consider the one-shot problem (1) defined in Sec. 3.1 under either Simple, EqOpt or
StatPar criterion, and assume distributions fk,t(x) = fk(x) are fixed over time. Then the one-
shot problems in any two consecutive time steps, i.e., OOOt,OOOt+1, satisfy the monotonicity condition
under dynamics (2) with πk(·) being either ν(Lk(·)) or w(Dk(·)).7 This implies that Theorem 1
holds and (θa(t), θb(t)) converges monotonically to a constant decision (θ∞a , θ∞b ). Furthermore,
lim
t→∞

αa(t)
αb(t)

= βa

βb

1−πb(θ
∞
b )

1−πa(θ∞
a ) .

When distributions are fixed, the discrepancy between πa(θa(t)) and πb(θb(t)) increases over time
as (θa(t), θb(t)) changes. The process is illustrated in Fig. 3, where θa(t) ∈ [φC(δb), δa], θb(t) ∈
[δb, φ

−1
C (δa)] are constrained by the same interval ∀t. Left and right plots illustrate cases when

πk(θk) = ν(Lk(θk)) and πk(θk) = w(Dk(θk)) respectively.

Note that the case considered in Theorem 4 is a special case of Theorem 2, with distributions fk,t(x) =
fk(x) fixed, Ok(θk) = Lk(θk) and both dynamics πk(·) = ν(Lk(·)) and πk(·) = w(Dk(·)) some

6The cases represented by blank cells cannot happen. When C = Simple, the table only illustrates the result
when δa,t, δb,t ∈ Ta,t ∩ Tb,t �= ∅.

7When fk,t(x) = fk(x), ∀t, subscript t is omitted in some notations (φC,t, δk,t, πk,t, etc.) for simplicity.
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decreasing functions of Lk(·).8 In this special case we obtain the additional result of monotonic
convergence of decisions, which holds due to Assumption 1.

Once
αa(t)
αb(t)

starts to increase, the corre-

sponding one-shot solution (θa(t), θb(t))
also increases (Theorem 3), meaning that
θa(t) moves closer to θ∗a = δa and θb(t)
moves further away from θ∗b = δb (solid ar-
rows in Fig. 3). Consequently, La(θa(t))
and Db(θb(t)) decrease while Lb(θb(t))
and Da(θa(t)) increase. Under both dy-
namics, πa(θa(t)) increases and πb(θb(t))
decreases, resulting in the increase of
αa(t+1)
αb(t+1) ; the feedback loop becomes self-

reinforcing and representation disparity
worsens.

Fig. 3: Illustration of Lk(θk) and Dk(θk) w.r.t. θk: Each black
triangle represents the one-shot decision θk; size of the colored
area represents the value of Lk(θk) (left) or Dk(θk) (right). Note
that for the right plot, there are two gray regions and the darker
one is for compensating the lighter one thus they are of the same
size; the smaller gray regions result in the larger Da(θa).

3.3 Impact of decisions on reshaping feature distributions

Our results so far show the potential adverse impact on group rep-
resentation when imposing certain fairness criterion, while their
underlying feature distributions are assumed fixed. Below we
examine what happens when decisions also affect feature distri-
butions over time, i.e., fk,t(x) = g1k,tf

1
k,t(x) + g0k,tf

0
k,t(x), which

is not captured by Theorem 2. We will focus on the dynamics
πk,t(θk) = ν(Lk,t(θk)). Since G0

k, G1
k may react differently to the

same θk, we consider two scenarios as illustrated in Fig. 4, which
shows the change in distribution from t to t + 1 when G1

k (resp.

G0
k) experiences the higher (resp. lower) loss at t than t− 1 (see

Appendix I for more detail): ∀j ∈ {0, 1},

k0
t k1

t k
0
t k

1
t

0.00

0.03

0.05

de
ns
it
y

g0
k,tf

0
k(x) ↑

g1
k,tf

1
k(x) ↓

g0
k,t+1f

0
k(x)

g1
k,t+1f

1
k(x)

Case (i)

f jk(x) gj
k,tf

j
k,t(x) gj

k,t+1f
j
k,t+1(x)

k0
t k1

t k
0
t k

1
t

0.00

0.03

0.05

de
ns
it
y g0

kf
0
k,t(x) = g0

kf
1
k,t(x) →g0

kf
0
k,t+1(x)

g1
kf

1
k,t+1(x)

Case (ii)

Fig. 4: Visualization of decisions
shaping feature distributions.

Case (i): f j
k,t(x) = f j

k(x) remain fixed but gjk,t changes over time given Gj
k’s retention determined

by its perceived loss Lj
k,t,

9 In other words, for i ∈ {0, 1} and t ≥ 2 such that Li
k,t(θk(t)) <

Li
k,t−1(θk(t− 1)), we have gik,t+1 > gik,t and g−i

k,t+1 < g−i
k,t, where −i := {0, 1} \ {i}.

Case (ii): gjk,t = gjk but for subgroup Gi
k that is less favored by the decision over time, its members

make extra effort such that f i
k,t(x) skews toward the direction of lowering their losses.10 In other

words, for i ∈ {0, 1} and t ≥ 2 such that Li
k,t(θk(t)) > Li

k,t−1(θk(t − 1)), we have f i
k,t+1(x) <

f i
k,t(x), ∀x ∈ Tk, while f−i

k,t+1(x) = f−i
k,t(x), ∀x, where −i := {0, 1} \ {i}.

In both cases, under the condition that fk,t(x) is relatively insensitive to the change in one-shot
decisions, representation disparity can worsen and deterioration accelerates. The precise conditions
are formally given in Conditions 1 and 2 in Appendix I, which describes the case where the change

from fk,t(x) to fk,t+1(x) is sufficiently small while the change from
αa(t)
αb(t)

to
αa(t+1)
αb(t+1) and the

resulting decisions from θk(t) to θk(t+ 1) are sufficiently large. These conditions hold in scenarios
when the change in feature distributions induced by the one-shot decisions is a slow process.

Theorem 5. [Exacerbation in representation disparity can accelerate] Consider the one-shot problem
defined in (1) under either Simple, EqOpt or StatPar fairness criterion. Let the one-shot decision,
representation disparity and retention rate at time t be given by θfk (t),

αf
a(t)

αf
b (t)

, and πf
k,t(θ

f
k (t))

when distribution fk(x) is fixed ∀t. Let the same be denoted by θrk(t),
αr

a(t)
αr

b(t)
, and πr

k,t(θ
r
k(t))

when fk,t(x) changes according to either case (i) or (ii) defined above. Assume we start from the

8By Fig. 3, we have Dk(θ) = g1k − Lk(θ).
9Here L1

k,t(θk) =
∫ θk
−∞ f1

k,t(x)dx and L0
k,t(θk) =

∫∞
θk

f0
k,t(x)dx.

10Suppose Assumption 1 holds for all f j
k,t(x) and their support does not change, then f1

k,t(x) and f0
k,t(x)

overlap over Tk = [k1, k
0
], ∀t.
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same distribution fk,1(x) = fk(x). Under Conditions 1 and 2 in Appendix I, if πf
a,1(θ

f
a(1)) =

πr
a,1(θ

r
a(1)) � πf

b,1(θ
f
b (1)) = πr

b,1(θ
r
b (1)), then αr

a(t+1)
αr

b(t+1) �
αr

a(t)
αr

b(t)
(disparity worsens) and αr

a(t+1)
αr

b(t+1) �
αf

a(t+1)

αf
b (t+1)

(accelerates), ∀t, where � represents either “ < ”or “ > ”.

3.4 Potential mitigation & finding the proper fairness criterion from participation dynamics

The above results show that when the objective is to minimize the average loss over the entire
population, applying commonly used and seemingly fair decisions at each time can exacerbate
representation disparity over time under reasonable participation dynamics. It highlights the fact
that fairness has to be defined with a good understanding of how users are affected by the algorithm,
and how they may react to it. For instance, consider the dynamics with πk,t(θk) = ν(Lk,t(θk)),
then imposing EqLos fairness (Fig. 1(d)) at each time step would sustain group representations, i.e.,

lim
t→∞

αa(t)
αb(t)

= βa

βb
, as we are essentially equalizing departure when equalizing loss. In contrast, under

other fairness criteria the factors that are equalized do not match what drives departure, and different
losses incurred to different groups cause significant change in group representation over time.

In reality the true dynamics is likely a function of a mixture of factors given the application context,
and a proper fairness constraint C should be adopted accordingly. Below we illustrate a method for
finding the proper criterion from a general dynamics model defined below when fk,t(x) = fk(x), ∀t:

Nk(t+ 1) = Λ(Nk(t), {πm
k (θk(t))}Mm=1, βk), ∀k ∈ {a, b}, (4)

where user retention in Gk is driven by M different factors {πm
k (θk(t))}Mm=1 (e.g. accuracy, true

positives, etc.) and each of them depends on decision θk(t). Constant βk is the intrinsic growth
rate while the actual arrivals may depend on πm

k (θk(t)). The expected number of users at time
t+ 1 depends on users at t and new users; both may be effected by πm

k (θk(t)). This relationship is
characterized by a general function Λ. Let Θ be the set of all possible decisions.

Assumption 2. ∃(θa, θb) ∈ Θ × Θ such that ∀k ∈ {a, b}, N̂k = Λ(N̂k, {πm
k (θk)}Mm=1, βk) and

|Λ′(N̂k, {πm
k (θk)}Mm=1, βk)| < 1 hold for some N̂k, i.e., dynamics (4) under some decision pairs

(θa, θb) have stable fixed points, where Λ′ denotes the derivative of Λ with respect to Nk.

To find the proper fairness constraint, let C be the set of decisions (θa, θb) that can sustain group
representation. It can be found via the following optimization problem; the set of feasible solutions is
guaranteed to be non-empty under Assumption 2.

C = argmin
(θa,θb)

∣∣∣Ña

Ñb

− βa

βb

∣∣∣ s.t. Ñk = Λ(Ñk, {πm
k (θk)}Mm=1, βk) ∈ R+, θk ∈ Θ, ∀k ∈ {a, b}.

The idea is to first select decision pairs whose
corresponding dynamics can lead to stable fixed

points (Ña, Ñb); then among them select those
that are best in sustaining group representation,
which may or may not be unique. Sometimes
guaranteeing the perfect fairness can be unre-
alistic and a relaxed version is preferred, in

which case all pairs (θa, θb) satisfying | Ña

Ñb
−

βa

βb
| ≤ min{| Ña

Ñb
− βa

βb
|}+Δ constitute the Δ-fair

set. An example under dynamics Nk(t + 1) =
Nk(t)π

2
k(θk(t)) + βkπ

1
k(θk(t)) is illustrated in

Fig. 5, where all curves with ε ≤ Δ βb

βa
consti-

tute Δ-fair set (perfect fairness set is given by
the deepest red curve with ε = 0). See Appendix
K for more details.

Fig. 5: Left plot: π2
k(θk) = ν(

∫∞
θk

fk(x)dx), π
1
k(θk) =

ν(Lk(θk)); right plot: π2
k(θk) = ν(Lk(θk)), π

1
k(θk) =

1, and ν(x) = 1− x. Value of each pair (θa, θb) corre-

sponds to | Ña

Ñb
− βa

βb
| measuring how well it can sustain

the group representation. All points (θa, θb) with the

same value of | Ña

Ñb
− βa

βb
| = βa

βb
ε form a curve of the

same color with ε ∈ [0, 1] shown in the color bar.

4 Experiments

We first performed a set of experiments on synthetic data where every Gj
k, k ∈ {a, b}, j ∈ {0, 1}

follows the truncated normal (Fig. 2) distributions. A sequence of one-shot fair decisions are used
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and group representation changes over time according to dynamics (2) with πk(θk) = ν(Lk(θk)).
Parameter settings and more experimental results (e.g., sample paths, results under other dynamics
and when feature distributions are learned from data) are presented in Appendix L.

(a) Simple fair (b) StatPar fair (c) EqOpt fair (d) EqLos fair

Fig. 6: Each dot in Fig. 6(a)-6(d) represents the final group proportion limt→∞ αa(t) of one sample path under
a pair of arriving rates (βa, βb). If the group representation is sustained, then limt→∞ αa(t) =

1
1+βb/βa

for

each pair of (βa, βb), as shown in Fig. 6(d) under EqLos fairness. However, under Simple, StatPar and

EqOpt fairness, limt→∞ αa(t) = 1/(1 +
βb(1−ν(La(θ

∞
a )))

βa(1−ν(Lb(θ
∞
b

)))
).

Fig. 6 illustrates the final group proportion (the converged state) limt→∞ αa(t) as a function of the
exogenous arrival sizes βa and βb under different fairness criteria. With the exception of EqLos

fairness, group representation is severely skewed in the long run,
with the system consisting mostly of Gb, even for scenarios when
Ga has larger arrival, i.e., βa > βb. Moreover, decisions under an
inappropriate fairness criterion (Simple, EqOpt or StatPar) can
result in poor robustness, where a minor change in βa and βb can
result in very different representation in the long run (Fig. 6(b)).

We also consider the dynamics presented in Fig. 5 and show the

effect of Δ = εβa

βb
-fair decision found with method in Sec. 3.4

on αa(t). Each curve in Fig. 7 represents a sample path under
different ε where (θa(t), θb(t)) is from a small randomly selected
subset of Δ-fair set, ∀t (to model the situation where perfect
fairness is not feasible) and βa = βb. We observe that fairness
is always violated at the beginning in lower plot even with small
ε. This is because the fairness set is found based on stable fixed
points, which only concerns fairness in the long run.

We also trained binary classifiers over Adult dataset [4] by min-
imizing empirical loss where features are individual data points
such as sex, race, and nationality, and labels are their annual
income (≥ 50k or < 50k). Since the dataset does not reflect
dynamics, we employ (2) with πk(θk) = ν(Lk(θk)) and βa = βb.
We examine the monotonic convergence of representation dis-
parity under Simple, EqOpt (equalized false positive/negative
cost(FPC/FNC)) and EqLos, and consider cases where Ga, Gb

are distinguished by the three features mentioned above. These
results are shown in Fig. 8.
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0.50
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)

π2
k(θk) = ν(Lk(θk)), π

1
k(θk) = 1

ε = 0.02

ε = 0.1

ε = 0.3

ε = 0.7

ε = 1.0
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∫∞
θk
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1
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ε = 0.1

ε = 0.3

ε = 0.5
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Fig. 7: Effect of Δ-fair decisions
found with proposed method.

Fig. 8: Illustration of group represen-
tation disparity using Adult dataset.

5 Conclusion

This paper characterizes the impact of fairness intervention on group representation in a sequential
setting. We show that the representation disparity can easily get exacerbated over time under relatively
mild conditions. Our results suggest that fairness has to be defined with a good understanding of
participation dynamics. Toward this end, we develop a method of selecting a proper fairness criterion
based on prior knowledge of participation dynamics. Note that we do not always have full knowledge
of participation dynamics; modeling dynamics from real-world measurements and finding a proper
fairness criterion based on the obtained model is a potential direction for future work.
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