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ABSTRACT

Novice programmers often struggle with code understanding and
debugging. Live Programming environments visualize the runtime
values of a program each time it is modified to provide immediate
feedback, which help with tracing the program execution. This
paper presents the use of a Live Programming tool in a CS1 course
to better understand the impact of Live Programming on novices’
learning metrics and their perceptions of the tool. We conducted a
within-subjects study at a large public university in a CS1 course
in Python (N=237) where students completed tasks in a lab setting,
in some cases with a Live Programming environment, and in some
cases without. Through post-lab surveys and open-ended feedback,
we measured how well students understood the material and how
students perceived the programming environment. To understand
the impact of Live Programming, we compared the collected data
for students who used Live Programming with the data for students
who did not. We found that while learning outcomes were the same
regardless of whether Live Programming was used or not, students
who used the Live Programming tool completed some code tracing
tasks faster. Furthermore, students liked the Live Programming
environment more, and rated it as more helpful for their learning.
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1 INTRODUCTION

Novice programmers struggle with various aspects of programming,
among which code tracing and debugging are some of the most
cited challenges [18, 21, 25, 38]. These challenges have been linked
to novices’ inaccurate mental models of code [7, 12, 20, 31]. As such,
tools and techniques that address such challenges among novices
can be invaluable in improving Computer Science (CS) education.

Live Programming [35, 36] is a technique where the development
environment provides immediate feedback about program state,
visualizing runtime values as the code is modified. Such an environ-
ment is low-threshold [24] and assists with code understanding and
debugging without the need for advanced environments [15, 37].
Its visualization of code execution further helps programmers trace
the code and build more accurate mental models [36]. As such, it is
a promising technique that could help novices learn to program.

Meanwhile, Live Programming poses an unavoidable risk of
information overload [17] as it constantly displays such information
at each and every change of the program, which may instead make
programming more overwhelming. Furthermore, interpreting the
Live Programming visualization could be “one more thing” to learn
for novice programmers and thus offset any benefits it provides.

There has been a fruitful line of research on exploring Live Pro-
gramming for CS education. Various techniques, programming en-
vironments and visualizations have also been developed and tested
aiming to assist novices with programming [10, 13, 32]. However,
to our knowledge, no large-scale experimental studies in a natural
educational setting have been conducted to study the effects of Live
Programming environments on novice programmers.

To fill this hole in the research literature, we present the eval-
uation of the Live Programming tool Projection Boxes [17] in a
large CS1 course at a U.S. university. We conducted this experi-
ment across four 50-minute lab programming sessions to assess
the effects of Live Programming on students compared to an envi-
ronment without Live Programming. We used students’ post-lab
test scores and lab task completion times as learning metrics, and
used post-lab surveys to acquire quantitative and qualitative data
on students’ perceptions of the difficulty and helpfulness of the tool
and their preferences. We aim to answer the following questions:

RQ1: How does using Projection Boxes in a lab affect learn-
ing metrics, such as test scores and completion times?
RQ2: What are students’ perceptions of Projection Boxes?

Our main contribution to computing education research is a
large-scale experimental study on investigating the impact of using
a Live Programming environment in a CS1 course.
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2 RELATED WORK

There is along line of work on Live Programming, dating back to the
seminal work of Hancock [10] that introduces many of the impor-
tant concepts in Live Programming. There have been Live Program-
ming environments for general-purpose languages [3, 15, 17, 26],
as well as specific domains [4, 5, 39]. Various empirical studies,
most small lab studies, have shown that Live Programming is posi-
tively perceived by programmers [5, 17, 39]. There have also been
several studies that look specifically at using Live Programming
with novices for educational purposes [9-11, 13, 33]. Our work
distinguishes itself by providing a large-scale study (N=237) in a
naturally occurring educational environment with novices.

The most closely related work is a study of the UUhistle tool
[33] and its impact on students’ learning for predicting program
output. Sorva et al. [30, 32] showed that UUhistle improved student
performance on only one out of four tasks, and students considered
the tool easy to use and helpful for learning output prediction. The
study had 172 students, recruited from a CS1 class, and the study
consisted of one session, which was run outside of the classroom
setting. Their work also states that the tasks provided to the stu-
dents were program reading tasks, and were sometimes beyond the
student’s expected CS1 ability to solve. In contrast: (1) our study
was conducted in a natural educational setting with tasks related
to an existing CS1 curriculum - and thus not intended to go be-
yond expectations for a CS1 curriculum; (2) our labs included code
writing tasks; and (3) our study consisted of multiple sessions.

Besides UUhistle, there have been several other Live Program-
ming tools designed for novices [32], such as Jype [11], Online
Python Tutor [9], and Omnicode [13]. An exploratory study on
Omnicode [13] with 10 post-secondary students found the tool con-
ducive for debugging and forming mental models of Python code.
In a technical report, Alvarado et al. [2] analyzed usage log data of
Codelens, a version of Online Python Tutor [9] embedded in a digi-
tal textbook [22], from a CS1 course (N=61) and demonstrated that
students with more interactions with Online Python Tutor scored
higher on midterm exams (though we found no peer-reviewed
papers on the work). Both studies show the positive educational
impact of Live Programming tools and indicate the need for a large-
scale experimental study to better understand the impact over a
CS1 course. We believe our work is a step in this direction.

There have also been explorations of Live Programming in edu-
cation, but not for college-level CS1 courses. For example, Wilcox
et al. [37] found through a senior-level operating systems course
that students considered Live Programming helpful for debugging.
From a small-scale exploratory study, Cabrera et al. [4] noted Live
Programming improves children’s interactions with physical com-
puting devices and makes learning more engaging.

In addition to Live Programming, which refers to the idea of pro-
viding immediate feedback to the programmer, there is a similarly-
named but different concept of Live Coding. Live Coding refers to
the presentation during class of the explicit step-by-step thought
process of writing code [29]. Live Coding has been used in CS1
education [27, 28] to help novices understand the notional machine
[7] and build correct mental models of computer programs [12],
thus addressing difficulties with code tracing and debugging [21].
Past studies have examined the impact of Live Coding on student
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Figure 1: In-browser online editor with Projection Boxes.

learning. For example, Soosai Raj et al. [28] found that Live Cod-
ing reduces the extraneous cognitive load imposed on students in
learning. Nevertheless, Live Programming, a visualization paradigm
for programming rather than an instructional technique, differs
from Live Coding, and the impact of Live Programming on student
learning remains understudied. Our work aims to fill this gap by
further exploring how Live Programming might address common
struggles faced by novices.

3 METHODOLOGY

3.1 Course Context and Participants

We conducted our study at a large research-intensive public uni-
versity in the United States in a large intro to programming (CS1)
course in Python, which has a mandatory weekly 50-minute lab.
Our study was run in the Fall 2020 offering of this course, which
had an initial enrollment of 610. Due to COVID-19 restrictions, the
course was fully remote, and the weekly lab was run online over
Zoom. Students were split into groups of 4 to 7, and each group was
given a Zoom meeting with a tutor at a particular time. There were
a total of 12 times given throughout the lab day to accommodate
students across different time zones. Students would work on the
lab tasks during this live Zoom session, and could ask questions
of the tutor or interact with other students. We further allowed
students who could not attend any of the assigned lab times to do
the lab tasks on their own time.

We excluded students who could not attend all of their assigned
live Zoom sessions, skipped any lab, missed any post-lab survey,
dropped the class at any point, were less than 18 years of age at the
start of the study, or opted out of the study as per our approved
IRB protocol. We ended up with 237 participants (99 women, 137
men, 1 unknown), including 51 from underrepresented ethnicities!,
with 86 having no prior programming experience.

3.2 Experimental Design

We ran the study across 4 different labs: a lab on for loops (Lab F),
a lab on while loops (Lab W), a lab on testing code (Lab T), and a
lab on Python dictionaries (Lab D). We used Projection Boxes as the
Live Programming environment to be evaluated in the study, details
of which can be found in [17]. We had two programming environ-
ments: an online in-browser editor with Projection Boxes (which
we refer to as PB) and the exact same online editor with No Pro-
jection Boxes (which we refer to as No-PB). Figure 1 shows the

!The demographic information was obtained as anonymized aggregates from the
university, and more fine-grained data was not available.



view of PB, where runtime values can be examined inside the boxes.
Students using No-PB examine their code by clicking a “Run” but-
ton at the upper right corner of the interface to see an output box
showing standard output and/or error, which disappears as they
make changes to the program.

For each lab we also generated two partitioning of students. We
first split all the students into two groups to get Group I (N=111)
and Group II (N=126) in Labs F, W and T. To get these two groups,
we randomly assigned each lab time to either Group I or Group
II. We generated the groups in this way so that all the students
doing the lab at the same time would use the same environment.
As we switched to a different experimental design in Lab D (more
details below), we reassigned all the students into two new groups,
independently of the first splitting, to generate Group III (N=119)
and Group IV (N=118). Since all students had used Projection Boxes
by this point, we randomly assigned each Zoom session (instead of
whole lab times) to be either in Group III or Group IV.

In Lab F and Lab W, we used a nonrandomized control group
2 % 2 crossover design [8], where Group I used PB and Group II used
No-PB in Lab F and the opposite in Lab W. This is a nonrandomized
trial because the randomization was only done at the level of lab
times, not for each individual student. This design for Lab F and
Lab W allowed us to measure post-study test scores in all possible
combinations of using vs. not using Projection Boxes.

Noting that this design could result in differences in post-test
scores caused by pre-existing between-group differences rather
than the intervention [6], in Lab T we conducted an A/A test [14],
where all participants used the No-PB environment. We measured
their post-lab test scores to detect any between-group differences.

Finally, recognizing that post-tests only measure knowledge after
the lab, as opposed to learning, in Lab D, we adopted a nonrandom-
ized control group pretest-posttest design [6] where Group III used
PB and Group IV used No-PB. We used a pre-test and a post-test to
measure the amount of learning participants did in the lab.

3.3 Experimental Procedure

Environment Setup (all labs). At the beginning of each lab, the
tutors distributed to students a link to a “starter” document contain-
ing instructions for accessing the in-browser online programming
environment and troubleshooting steps. The document provides a
URL to the environment. When students clicked on this URL, they
would be asked to login using their institutional emails, and in the
back-end we would route each student to the right environment
based on the Lab and the Group. If, due to technical or other difficul-
ties, students still could not access the environment 20 minutes into
the lab, they were asked to use Python IDLE [1] and were hence
excluded from the study.

Tutorials (Labs F and W only). The tutorials were videos with
lengths between 5 and 7 minutes, linked from the online program-
ming environment. Participants had to watch the tutorials before
working on the lab tasks, but could rewatch them throughout the
lab. For Labs F and W we developed two tutorial videos, one for
PB and one for No-PB, on using the environment to work with
programming concepts covered in that lab.

Pre-test (Lab D only). In Lab D, a pre-test (linked from the on-
line environment) was conducted to determine the participants’

understanding of dictionaries (dict) prior to the lab. There were
5 multiple-choice questions (1 point each) on code understanding
covering 5 concepts: list-to-dict conversion, dict-to-1list con-
version, dict with non-primitive keys, key existence checking, and
entry insertion/update. The chosen concepts were covered in lec-
tures prior to Lab D but not in any hands-on labs. Participants could
not work on the lab tasks until after they completed the pre-test.

Programming tasks (all labs). Following the tutorials or the pre-
test, participants were asked to perform several programming tasks
on the topic of each lab. In all labs but Lab T, participants were
given 30 minutes; they were given 45 minutes in Lab T as the
only non-task component of the lab was the post-test. The task
descriptions were provided as an online document linked from the
programming environment. For each lab, we created two separate
versions of this document for students using PB and No-PB, which
were identical, except for the attached tutorial videos and small
variations in the task instructions to account for the environment
(e.g., “examine the value of variable x using Projection Boxes” vs. “...
using a print statement”). The tasks were developed jointly with
the course instructors and teaching assistants (TAs) to align with
the learning objectives of the course. They largely mirrored the lab
tasks that were used in prior instances of the course.

Post-test (all labs). All participants answered post-lab question-
naires after they completed all tasks for the lab or reached the time
limit. The first part of the questionnaire was a post-test consisting
of multiple-choice code understanding questions (1 point each) on
the topic of the lab. The questions were also developed jointly with
the course instructors and TAs. We did not time the participants
on the completion of the post-test. There were 6, 4 and 4 questions
in the post-tests for Labs F, W, and T, respectively. There were 5
questions for Lab D covering the same concepts tested in the pre-
test, but with the questions reordered and each question modified
from the corresponding question in the pre-test.

Experience survey (Labs F, W and D only). The second part
of the post-lab questionnaire was an experience survey, where
students were asked to rate the helpfulness of the programming
environment for understanding lab materials and difficulty of using
the environment. In Labs W and D, we also asked students to
compare PB to No-PB. We asked which one they preferred, and
which one they found more helpful. Each rating used a 5-point
Likert scale. Finally, we collected open-ended feedback on the tool.

Data Collection. For all 237 participants, we collected demographic
information, lab task durations, and all the test and survey data. A
complete collection of the tasks, test questions and surveys can be
found at this link: http://bit.do/live_programming_cs1.

4 RESULTS

4.1 Learning Metrics

For all of Labs F, W, T and D, we used pre- and post-test scores and
task durations as our metrics to measure student learning.

Pre-Test/Post-Test. We conducted Welch’s Two Sample t-test (all
labs but Lab T had unequal sample variances) for each test in each
lab. In all cases we used p < .05 as a threshold for statistical signifi-
cance. We checked the following: (1) the data is continuous; (2) both
groups are random samples chosen from respective populations
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Table 1: Post-test scores for Labs F (on For Loops), W (on
While Loops) and T (on Testing Code). N = group size, M =
mean, SD = standard deviation.

Lab | Group | Env. N | M SD
L PB 111 | 5.48 (out of 6) | 0.77
I No-PB | 126 | 5.51 (out of 6) | 0.79
w LI No-PB | 111 | 3.14 (out of 4) | 0.94
I PB 126 | 3.13 (out of 4) | 0.99
+ |1 No-PB | 111 | 2.07 (out of 4) | 1.34
I No-PB | 126 | 2.03 (out of 4) | 1.34

Table 2: Pre-test, post-test, and gain scores (the difference
between post-test and pre-test) for Lab D (on Dictionaries).

Pre-Test || Post-Test || Gain
Group | Env. N M |SD | M | SD M | SD
I PB 119 || 35 | 1.3 4.0 | 1.1 0.5 1.0
v No-PB | 118 || 3.6 | 1.3 4.0 | 1.1 03| 1.2

and are independent of each other. Although none of the labs had
normally distributed pre-test/post-test scores, our samples are large
enough that assumptions of normality were not required [19].
First, we compared the post-test scores of students using PB
vs. No-PB in Labs F and Lab W (Table 1). We found no significant
difference in post-test scores between the two groups, both in Lab F
(t = —.30,df = 232.25,p = .77,d = .04, 95% CI = [-.23, .17]) and in
Lab W (t = —.07,df = 233.6,p = .94,d = .01, 95% CI = [-.26, .24]).
We then compared the post-test scores in Lab T where both
Group I and Group II used No-PB to understand if there are any
pre-existing between-group differences (Table 1). We found no
significant difference in post-test scores between the two groups
(t = .23,df = 231.19,p = 0.82,d = .03, 95% CI = [-.30, .38]) even
when they used the same programming environment in the lab.
Finally, for Lab D, we compared pre-test/post-test differences for
students using PB vs. No-PB to measure learning gain. We reassigned
students to Groups III (using PB) and IV (using No-PB) to equalize

groups on existing characteristics prior to Lab D (detailed in Sec. 3.2).

We found no significant difference in pre-test scores (t = —.74,df =
234.81,p = .46,d = .10, 95% CI = [-.45, .20]), post-test scores (¢ =
06,df = 234.93,p = .95,d = .01, 95% CI = [-.28, .30]), and gain
scores (f = .91,df = 228.05,p = .36,d = .12, 95% CI = [-.15, .42])
between the two groups (Table 2). That is, we saw no significant
difference in either knowledge of dictionaries prior to the lab or
knowledge gain about dictionaries between Groups III and IV.
Combining the results from the above, we conclude:

Takeaway 1: Between students using PB vs. No-PB, we de-
tected no pre-existing between-group differences, no between-
group differences in the ability to understand the lab, and no
difference in the knowledge gain on Python dictionaries.

Task Durations. We used Welch’s Two Sample t-test to compare
the task durations of students using PB vs. No-PB in Labs F, W and
D. A Q-Q plot showed that the distributions are not normal, but we
considered the test to be applicable for our large sample size [19].

Out of 19 tasks and subtasks (6 for Lab F, 8 for Lab W, and 5 for
Lab D), we found 5 tasks to have statistically significant difference
(p < .05), and in all these cases students using PB took less time

2¢ - t-statistic; p - p-value; d - Cohen’s d effect size; CI - Confidence interval.

Table 3: Statistically significant task durations. ** indicates
p < .001. N = number of students who started the task.

Lab | Task | Group | Env. N M (min.) | SD (min.)
r g LI PB 71 | 2.33 1.33
II No-PB | 85 3.65 2.27
o I No-PB | 110 | 5.91 3.27
II PB 126 | 4.19 1.96
911 I No-PB | 106 | 1.91 1.53
W 1I PB 123 | 1.52 1.17
3.1 I No-PB | 104 | 3.17 2.70
1I PB 124 | 2.55 1.73
41 I No-PB | 80 1.23 1.05
I PB 104 | 0.81 0.66

than with No-PB: F-4 (t = —4.52,p < .001,d = —.70, 95% CI =
[-1.02, -.37]), W-1 (¢t = —4.82,p < .001,d = —.65, 95% CI = [-.91,
-39]), W-2.1.1 (t = —=2.11,p = .04,d = —.29, 95% CI = [-.55, -.02]),
W-3.1(t = —2.04, p = .04,d = —.28, 95% CI = [-.54, -.02]), and W-4.1
(t = =3.15,p < .01,d = —.50, 95% CI = [.79, -.20]). Table 3 shows
the results. Since not all students started all tasks, N differs for each
task and can be less than the group sizes. Note that both tasks F-4
and W-1 ask students to trace multiple variables inside a loop, and
because doing so using PB is intuitively faster than using No-PB,
we observe large time difference and high statistical significance
between PB and No-PB in these two tasks.
Based on our analysis of task duration times, we conclude:

Takeaway 2: Students using Projection Boxes completed some
code tracing tasks more quickly.

4.2 Students’ Perceptions

After each of Labs F, W and D, students rated the helpfulness and
difficulty of using the environment (the Environment Rating).
After Labs W and D, all participants (having used both PB and
No-PB) were asked which one they found more helpful and which
one they preferred (the Preference Rating). For each rating in
each lab, we performed a two-sided Mann-Whitney U test to identify
statistical significance. We converted each Likert scale rating to a
value between 1 and 5 and checked the following assumptions: (1)
the data is on an ordinal scale; (2) there is one independent variable
consisting of two categorical variables (group); (3) the groups are
independent; (4) the data have similar shapes.

Environment Rating. Table 4 summarizes the results from the
two-sided Mann-Whitney U test on the helpfulness rating (Lab F:
U = 8745,p < .001,r = .24; Lab W: U = 8374.5,p = .004,r = .19;
Lab D: U = 8554.5,p = .002,r = .20)3. We can see that the mean
helpfulness rating for PB is higher than No-PB in all labs, and the
difference is statistically significant (p < 0.05 for all labs). For
difficulty of use of the environment (results also in Table 4), we see
that in the first two labs, Labs F and W, the Mann-Whitney U test
reveals no statistical significance (Lab F: U = 6430.5,p = .25,r =
.075; Lab W: U = 6994.5,p = .998,r < .001; all with p < .05).
However, we see that later in the academic term, in Lab D, there
is a statistically significant difference for the difficulty rating for
Lab D (U = 8046.5,p = .04,r = .14), where students found the
environment with Projection Boxes easier to use.

3U - Mann-Whitney U statistic; r - Rank-biserial correlation effect size.



Table 4: Helpfulness (1 = not at all helpful, 5 = very helpful)
and difficulty (1 = very difficult to use, 5 = very easy to use)
of using the environment provided in each lab. All medians
are4. " =p <.05and ** = p < .001.

Item Lab | Group | Enw. N M SD
e L1 PB 126 | 4.17 | .70

I No-PB | 111 | 3.79 | .83

T No-PB | 111 | 4.01 | .75

Helpfulness | W™ —p PB 126 | 4.27 | 71
b+ | PB 119 | 4.18 | .79

v No-PB | 118 | 3.83 | .87

r L PB 126 | 4.06 | .80

i No-PB | 111 | 4.18 | .75

, I No-PB | 111 | 4.16 | .82
Difficulty | W 7 PB 126 | 419 | 73
b+ LI PB 119 | 4.22 | .82

v No-PB | 118 | 4.02 | .81

Table 5: Comparison of helpfulness for learning program-
ming concepts (1 = Using No-PB is much more helpful, 5 =
Using PB is much more helpful) and preference (1 = strongly
prefer No-PB, 5 = strongly prefer PB) for the environments
the students had used so far. All have p < .001; medians = 4.

Item Lab | Group | Enw. N M SD
W I No-PB | 111 | 3.60 | .97

Comparison II PB 126 | 4.16 | .77
of Helpfulness D I PB 119 | 4.07 | .75
v No-PB | 118 | 3.56 | .86

W I No-PB | 111 | 3.70 | .99

Preference II PB 126 | 4.12 | .83
D III PB 119 | 4.03 | .87

v No-PB | 118 | 3.49 | .98

The findings above lead us to the following takeaway:

Takeaway 3: At the end of each lab, students consistently rated
PB as more helpful than No-PB. Although at the beginning of
the academic term, students rated PB just as easy-to-use as
No-PB, later in the term, students rated it easier to use.

Preference Rating. Figures 2 and 3 show the distributions of the
ratings. The visual intuition is that the “blue-ish” bars (light-blue
and dark-blue) are the ones leaning toward PB and the “red-ish”
bars (red and pink) are the ones leaning toward No-PB; the grey
bars are neutral. We can see that students generally prefer PB and
find PB more helpful.

Table 5 shows the Mann-Whitney U test results for the compari-
son of helpfulness for learning (Lab W: U = 9280.5, p < .001,r = .30;
Lab D: U = 9208,p < .001,r = .29) and environment preference
(Lab W: U = 8654.5,p < .001,r = .221; LabD: U = 9174.5,p <
.001, r = .28). First, we see that all means are over 3 (neutral) and
often close to 4, while all medians are 4. This means that in general
students leaned toward PB (as the visuals from Figures 2 and 3
already showed). Second, we can also see that students leaned more
toward PB when PB was the last environment they used. More
specifically, notice how in Table 5, when the “Env.” column is PB,
the means are higher than the corresponding row where “Env.” is

Lab W, PB4 13% 49%
Lab W, No-PB 112% 28% 41%
LabD,PB{ 22% 47%
Lab D, No-PB 18% 33% 46%
0% 25% 50% 75% 100%

Figure 2: Experience survey question: “PB vs. No-PB, which
helped you learn the lab material better?” m No-PB - much
more helpful; = No-PB - More helpful;  About the same;
PB - More helpful; m PB - Much more helpful.

Lab W, PB{7112% 48%
Lab W, No-PB 9% 19% 50%
LabD, PB{" 18% 44%
Lab D, No-PBl14% 25% 47%
0% 25% 50% 75% 100%

Figure 3: Experience survey question: “PB vs. No-PB, which
do you prefer?” m Strongly prefer No-PB; = Prefer No-PB;
No preference; = Prefer PB; m Strongly prefer PB.

No-PB. The Mann-Whitney U test shows that these differences are
statistically significant.
Putting all of the data together, we conclude the following:

Takeaway 4: Regardless of the environment used in each lab,
students rated PB as more helpful and preferable for under-
standing lab materials, and those who used PB right before
submitting the surveys rated these two items higher.

Open-Ended Feedback Themes. Two authors analyzed open-
ended feedback collected at the end of Labs F, W and D by open
coding for thematic analysis, following the procedure similar to the
one in [23]. To establish reliability of the analysis, we calculated
percentage agreement [34] using 25% of the coded data. We consider
two coders agreed on a data if they had at least one code in common
or neither assigned codes to it. The two authors agreed upon 126 out
of 138 sample data, yielding a high percentage agreement [16] of
91.3%. We identified the following themes along with quotes (note
that thematic analysis does not indicate frequency of the themes,
just their existence):

PB helpful for programming. As Projection Boxes visualize run-
time values at every statement, students considered them helpful
for understanding the behavior of “each line of code” and for notic-
ing and locating errors faster “without having to run the program.”
Students found the assistance of tracing and bug locating altogether
served as a more efficient alternative to print statements: T use
the print statements to [see the behavior of my functions], and with
the Projection Boxes, I get work done much faster” A few also felt
Projection Boxes helped them with writing code to produce desired
outputs following the lab instructions.

Mixed views upon how PB assist with learning. As for how Pro-
jection Boxes helped with learning, we observed mixed views. Some
students believed Projection Boxes assisted with learning new con-
cepts and better understanding existing knowledge, and were espe-
cially “helpful for beginners” and “good for visual learners.” However,



some students argued that Projection Boxes were “not more helpful”
or “no different” than tools without PB in assistance with learning
and understanding a concept, especially with concepts they were
“already familiar with.” A few students compared both critically:
“Without Projection Boxes, I don’t have the ‘training wheels’ provided
to me, so it takes a bit longer to run through [the code], but it also
pushes me to try understand the code without help.”

Frustration with PB. A theme that emerged is students’ concerns
with Projection Boxes “cluttering up the screen" and “distracting
when [they] try to work on the code.” Some found the clutter “obtru-
sive,” while others felt it made navigating Projection Boxes confus-
ing: “I first need to understand which part of the code the variables
in the Projection Boxes come from.”

Suggestions for PB. Our analysis also uncovered another theme,
which is students’ suggestions on the outlook and the usage of
PB. Some students suggested customizability of the view: “There
should be 3 options: 1. Keep all boxes on. 2. Keep all boxes off. 3. When
all boxes are off the option to cursor over is available.” One student
noted it might be more helpful to use Projection Boxes for larger,
more complex programs because it was rather easy to “run and see
the outputs” for smaller code snippets as the ones in the labs. In
addition, we noticed a few complaining about “not [having] enough
time” to finish the lab and hoping to use Projection Boxes for an
extended duration, even “for [their] homework assignment.”

5 DISCUSSION

Connections to Prior Work. Our results reaffirm observations
from prior work, but in the setting of a large introductory class with
beginner programmers. Indeed, our results agree with: Sorva et al.
[30, 32], who observed that students considered the Live Program-
ming tool UUhistle helpful for understanding program behavior
and predicting program output; Wilcox et al. [37], who found that
participants felt Live Programming was helpful for debugging tasks;
Kramer et al. [15], who noted Live Programming speeds up debug-
ging because the programmer could constantly check their code’s
correctness after each incremental change; Lerner [17], who found
that information overload hinders the use of Live Programming,
and that participants had different preferences on the amount of
information they found helpful. Moreover, visualizing runtime val-
ues at every statement through Projection Boxes is one way of
visualizing a notional machine. Our qualitative results agree with
Sorva’s theory that teaching about an explicit notional machine is
helpful for forming correct mental models of a notional machine
and thus understanding program behavior [31].

Contradiction between Test Scores and Student Perceptions.
In post-lab experience surveys, participants preferred Projection
Boxes and rated Projection Boxes as more helpful for learning. And
yet, we observed no impact of PB on performance in post-lab tests.

There are several ways of making sense of this apparent contra-
diction. One possibility is that learning did improve with Projection
Boxes, but our post-tests with only code tracing questions did not
detect this improvement. Another possibility is that while Projec-
tion Boxes could help students with code tracing, they could not
improve students’ own ability to trace the code without help and
hence there were no improvements in code tracing task perfor-
mance. In this situation the results are still interesting: our study

demonstrates that we can provide students with an environment
they prefer, while still achieving the same learning metrics (and in
some cases, also having students go through the content faster). It
would be interesting to conduct further studies that can differentiate
between these possibilities.

This apparent contradiction should also be placed in the context
of related studies. Both Campusano et al. [5] and Wilcox et al. [37]
found that quantitative measurements of Live Programming didn’t
show an improvement in performance for debugging or code un-
derstanding. These two studies were small in scale, conducted with
experienced programmers using in-lab controlled experiments, and
assessed participants while using Live Programming. In contrast,
our study involved a large sample of novices in a natural educa-
tional setting and assessed how students performed after they had
used Live Programming. Also, Campusano et al. conducted longer
interventions (4 hours) than Wilcox et al. or us (both 30 minutes), al-
though we repeated the intervention four times in total. Since some
of our participants suggested using Projection Boxes for longer
durations with larger programs, future studies could investigate if
such longer interventions might reveal any impact on performance
in post-lab tests.

Limitations and Threats to Validity. One of the main threats to
validity comes from the design of post-lab tests. First, we did not
include code writing questions in the post-lab tests and thus have
nothing to report on the acquisition of code writing skills. Second,
participants answered up to six questions on small code snippets in
the post-lab tests; additional questions might have revealed unde-
tected impacts of using vs. not using Live Programming on learning.
Third, we conducted the tests immediately after each lab; a more
ecologically-valid study would be to evaluate the long-term effects
by examining student grades on assignments and exams.

Another threat to validity relates to the length of the intervention.
Our weekly 50-minute labs (with instructional video and post-test)
limited the length of the intervention to 30 minutes once a week.
Had students used Live Programming longer, possibly even in pro-
gramming assignments, we would have been able to understand
the effects on student learning with extended use of the tool.

Finally, the study was conducted remotely due to COVID-19
restrictions, and so there remain questions about how these results
would translate to an in-person lab.

6 CONCLUSION

While we found no significant difference in students’ performance
on any post-lab test regardless of whether Live Programming was
used or not, students using Live Programming completed some
code tracing tasks faster. We also found that students rated the Live
Programming environment as preferable and more helpful for their
learning. We recognized that students’ perceptions of the tool did
not match their performance on post-lab tests, and we call for more
work to better measure learning outcomes and evaluate how Live
Programming affects student learning in an educational setting.
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