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Abstract—An effective solution to the looming capacity crunch
is to use a fine-grained flexible frequency grid for elastic optical
transmission and space division multiplexing (SDM) in conjunc-
tion with spectrally efficient modulation formats. The routing,
modulation, core, and spectrum assignment (RMCSA) problem
is an important lightpath resource assignment problem in SDM
elastic optical networks (SDM-EONSs). Intercore Crosstalk (XT)
degrades the quality of parallel transmissions on different cores,
and the RMCSA algorithm must ensure that XT constraints
are met while maximizing network performance. There is a
tradeoff between spectrum efficiency and XT tolerance - higher
modulation formats are spectrum-efficient but are also less
forgiving in terms of XT by allowing fewer connections to exist
on adjacent cores on the overlapping spectrum. Many XT-aware
RMCSA algorithms use a limit on the number of lit cores
on the overlapping spectrum to ensure that XT constraints
are satisfied. In this paper, we propose a machine learning
(ML)-aided threshold optimization approach which improves the
performance of RMCSA algorithms in the literature by up to
three folds in terms of bandwidth blocking probability.

I. INTRODUCTION

Recent increases in bandwidth demands due to cloud-based
services, 5G and 6G communications, high resolution game
streaming, and data center networks can be fulfilled by space
division multiplexed elastic optical networks (SDM-EONs)
[1]. Advancements in coherent optical transmission have made
it possible to fine-tune transmission parameters and increase
spectral efficiency. SDM-EON enables parallel transmission of
optical signals through multicore fibers (MCFs) with distance-
adaptive multicarrier transmission [2], [3]. However, the qual-
ity of transmission (QoT) of signals transmitted through MCF
degrades due to the intercore crosstalk (XT) between weakly
coupled cores [4], [5].

In SDM-EON, lighpaths are routed through cores on the
route’s links with a set of contiguous and continuous frequency
slices (FSs). Theoretically, a multifiber link and an MCF link
bear the same capacity for transmission provided that the
physical parameters and geometry of the cores are the same.
However, the signal transmission in MCF does not resemble
the one in multifiber link due to the compact structure of
weakly coupled cores, and the QoT of a signal on a spectrum
slice degrades due to XT. Therefore, it is important to find
ways to address the effect of XT and handle it carefully
[6]. The selection of multiefficient modulation formats (MFs)
affects XT levels. Choosing a spectrally efficient MF leads

to spectrum saving but offers low tolerance for XT and
shorter transmission reaches (TRs), and vice versa. Thus, the
resource assignment problem becomes more complex with
the selection of multiefficient modulation formats. Several
RMCSA algorithms use a limit on the number of lit adjacent
cores on overlapping spectrum to satisfy XT constraints [6],
[7].

Recently, machine learning (ML) has been used to solve
complex problems in optical networks [8]. The underlying
relationship between the network features and output labels
is learnt and then can be used to design network models.
In this paper, we propose an ML-aided approach to learn
such underlying relationship for better selection of MFs and
achieves a good tradeoff between spectrum utilization and XT
tolerance. A distinguishing feature of our approach is that it
can be used with any RMCSA algorithm. In our recent work
[9], we have developed a heuristic RMCSA algorithm for dy-
namic lightpath requests called Tridental Resource Assignment
(TRA). In this paper, we apply our ML approach to several
RMCSA algorithms including TRA, and demonstrate that
significant further performance improvements are possible.

The paper is organized as follows. We review recent lit-
erature on the topic in Section II. The network model and
problem statement are introduced in Section III. The ML-
aided approach is presented in Section IV. Details of the TRA
algorithm are presented in Sections V. Section VI presents
simulation results, and the last section concludes the work.

II. RELATED WORK

The RMCSA problem involves the selection of resources,
viz., route, MF, core and spectrum for incoming connection
requests. Recent focus has been on the design of complex
but efficient algorithms due to cheaper computing facilities
[4], [10]. Initially, routing, spectrum, and core assignment
(RSCA) algorithms for SDM-EON have been proposed in
[11]-[13]. The RSCA problem is modeled and solved with
the consideration of XT along with fragmentation, congestion,
etc. The sorting of demand sizes, spectrum partitioning, and
core prioritizing are used to reduce fragmentation and to
avoid XT accumulation in a specific area of spectrum or
network. Joint selection of core and spectrum to reduce XT
and fragmentation for on-demand requirements is studied in
[14]. The XT accumulation in a specific link can be avoided



with the help of multipath routing instead of single shortest
path routing [15]. Multipath routing also helps reducing the
bandwidth blocking probability (BBP) by offering alternate
routes for assignment in a congested network.

Variants such as searching for earlier spectrum than earlier
core index [13], [16] and considering maximum value, instead
of average value, of XT experienced by each frequency slot
(FS) in a desired set of FSs [16] are also studied. Various XT-
based algorithmic solutions to reduce BBP are studied in [6]
where instead of worst case estimations, a XT-aware approach
with the dynamic calculation of XT levels is used to assign
spectrum. The XT constraints can be used to model the effect
of XT on signal transmission [6]. It is important to choose a
significant XT threshold based on practical norms [17], which
can be done by choosing a significant value of power coupling
coefficient and span length [5], [7].

ML approaches have been used recently for specific prob-
lems such as QoT estimation [8] when there is scarcity of data
[18], [19], using complex but efficient regression approaches
[20], with data manipulation [19], [21], etc. However, there is a
vast array of problems in optical networking for which the use
of ML has not been sufficiently explored [4], [8], [22], [23]. A
few studies such as [24] use unsupervised learning approach
to solve resource allocation and fragmentation problems; how-
ever, supervised learning and reinforcement learning show
better outcome [25]. For sub-problems of larger ones, static
planning can be done using supervised learning to simplify
dynamic provisioning [22], [26].

III. MODEL, PROBLEM STATEMENT, AND ILLUSTRATIVE
EXAMPLE

We now present the network model and problem statement
along with an example to illustrate how the XT thresholds
affect the assignment of resources to connections.

A. Network Model and Problem Statement

We assume that the SDM-EON operates with a flexible
grid of 12.5 GHz granularity and is equipped with coherent
transceivers (TRXs). The TRXs support reconfigurable bit-
rates and various MFs. The TRXs operate at a fixed baud
rate of 14 GBaud, and each TRX transmits/receives an optical
carrier allocated on 2 frequency slices (FSs) (i.e., 25 GHz).
If the requested bit-rate exceeds the maximum capacity of
a single TRX using a particular MF, the request is carried
by several optical carriers within one superchannel (SCh).
Each SCh is separated from neighbor SChs by 12.5 GHz
guard-bands [16]. The nodes are connected using optical links
consisting of MCFs. Each fiber link consists of the same set of
MCFs with a specified core geometry in both the directions.!
Two challenging and widely accepted core geometries, 3-core
and 7-core [16], are studied. The effect of XT is dominant
between the cores which are right next to each other called as
adjacent/neighbor cores. For instance, each core in a 3-core

'In this paper, we assume that all the links have a single MCF in each
direction, but the proposed work can be easily generalized for multiple fibers
per link.

fiber has two adjacent cores. Similarly, in 7-core fiber, the
outer cores have three adjacent cores and the center core has
six adjacent cores (see Fig. 1). Furthermore, spatial continuity
is imposed, which means that the same core is assigned to
a lightpath on all MCF links on a route. Lightpath requests
arrive at a specified Poisson rate with exponentially distributed
mean holding time of unity (arbitrary units) and the datarates
are uniformly distributed over a given range.

The set of modulation formats available for assignment is
denoted as D = {f1, fa,..., fip|}, where f; is the lowest
MF and f|p) is the highest MF. In this paper, we assume 5
modulation formats: QPSK (f1), 8QAM, 16QAM, 32QAM,
and 64QAM (f5). The transmission reach (i.e., maximum
length of a lightpath) depends on the lightpath’s MF as well as
the state of overlapping spectrum on adjacent cores (OsaCs).

The XT model of [27] is used to obtain the TRs for various
MFs and for various values of lit adjacent cores (or litcores for
short) for a XT*" of -40dB, as shown in Tab. I (from [28]). We
consider average XT values of -40 dB between two adjacent
cores after a single span of propagation [28]. The total XT
experienced by a core is the sum of individual average XT
contributions from each neighbor. For example, the TR for a
16QAM lightpath is 1950 km if the OsaC has a maximum of 0
litcores (i.e., the OsaC cannot be used for any other lightpath)
and 900 km if the OsaC can be occupied by 6 lightpaths (i.e.,
all adjacent cores can be used by other lightpaths).

The problem is to assign resources (route, MF, core, and
spectrum) to incoming connection requests so that the XT
constraints are met for the incoming request and continue to
be satisfied for all ongoing connections. The overall objective
is to minimize the bandwidth blocking probability (BBP).

Incoming connection requests have a variety of choices of
MFs that may satisfy the XT requirement. While higher MFs
reduce the required spectrum, they also tighten up the core
occupancy constraints for future connections, and a judicious
balance between the two has to be struck. One approach to
choosing an MF judiciously is to introduce a threshold for
the number of allowable litcores, denoted 'yd for MF d. For
instance, suppose v = 4. This means that if 16QAM (f3) is to
be assigned for a lightpath, then the lightpath’s length cannot
be larger than the TR for 42 = 4, i.e., 1100 km. Thus, if a
request whose path length is 1200 km arrives, the setting of
72 = 4 means that I6QAM cannot be assigned to this request.
Now, if 4> were set to be 3, then the TR becomes 1250 km,
and the incoming request may be assigned 16QAM.

B. An lllustrative Example

We illustrate with an example the effect of the selection of
thresholds on the tradeoff between spectrum utilization and the
XT accumulation in the network with the help of Fig. 1 and
Tab. I. The cross-section of the 7-core MCF is shown on the
top to show the occupancy of cores in spatial domain and the
corresponding occupancy of frequency slots is shown at the
bottom. Three MFs, QPSK (f1, d = 1), 16QAM (f3, d = 3)
and 64QAM (f5, d = 5), and their corresponding thresholds are
used in this example. First fit policy is used in the selection of



© e
CON NO)
®

@2@ @2@
®®® ®®®

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

o
o
o

at the expense of keeping all adjacent cores unoccupied. At
the other extreme, setting all v values to 6 corresponds to
considering the worst-case XT scenario [6], [14], [16].

Table I: Transmission reaches (in km) of MFs for different
values of allowable lit core () for a 7-core MCF for a XT of
-40dB per span of 50km (from Table II in [28]).
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Figure 1: Change in spectrum utilization and XT levels for
two different sets of 4¢ thresholds.

MF. Suppose the first set of 4 thresholds is {y} = 5, v* = 4,
4% = 3} which corresponds to the TRs of 4750km, 1100km
and 300km as shown in Tab. I. Suppose a connection request
of 100Gbps arrives with a path length of 270km. The spectrum
requirement for a 100Gbps connection using QPSK, 16QAM,
and 64QAM as per the network model in Section III is 5 FSs
(4 FSs and 1 Guardband), 2 FSs, and 2 FSs, respectively.

Starting from the highest MF, for 64QAM the TR for 7® =
3 is 300 km, and the TR values for larger values of 7 are
less than the path length. Therefore, if 64QAM is selected
for this request, overlapping spectrum on any three cores out
of six adjacent cores are allowed to be lit/occupied. In other
words, overlapping spectrum on any three (total — allowed)
cores is not allowed to be occupied as long as this connection
exists in the network as shown in Fig. 1a. Thus the spectrum
requirement effectively becomes 8 FSs (2 FSs + 3 x 2 FSgs) if
64QAM is chosen. For 16QAM, the threshold is v = 4, and
the corresponding TR is 1100 km. As the TR value of 900
km for v = 6 is greater than the path length of 270 km, none
of the adjacent cores are blocked by the current connection if
16QAM is chosen, which makes the spectrum requirement as
2 FSs as shown in Fig. 1b. Similarly, for QPSK, 71 =6, and
the spectrum requirement is 5 FSs as shown in Fig. 1c. Thus,
the available choices of MFs for the connection are 64QAM,
16QAM, and QPSK.

Now, let us suppose that a different set of threshold values
is chosen: v' = 5, ¥3 = 4, and °> = 4. Here, the TR value
corresponding to ¥° = 4 is only 250 km which is less than
the path length, and therefore 64QAM is not a possible MF
choice, and only QPSK and 16QAM are possible MF choices.

This example illustrates how setting the XT threshold values
can affect the possible MF choices and thereby help the
algorithm in finding a good balance between spectrum usage
and XT tolerance. Note that setting all values of v¢ to 0 cor-
responds to always assigning the highest MF to a connection

Modulation Formats (|D| = 5, f; € D)
~ (Litcores) | QPSK | 8 QAM | 16 QAM | 32 QAM | 64 QAM
0 9050 3600 1950 1000 500
1 7650 3050 1650 850 400
2 6650 2650 1400 700 350
3 5850 2350 1250 650 300
4 5250 2100 1100 550 250
5 4750 1700 1000 500 250
6 4350 1500 900 450 200

IV. MACHINE LEARNING-AIDED LITCORE THRESHOLD
SELECTION

We now present a novel machine learning-aided approach
to select the litcore thresholds. This approach can be used by
any RMCSA algorithm that uses litcore thresholds for meeting
XT constraints. We discuss the prerequisites for the ML model
(MLM) and its working principle. Recall that D is the set of
MFs and ¢ is the litcore threshold for the d*® MF. The first
step is to gather the samples of set of thresholds (STs) and
the second step is to train the MLM. Let the optimal value
of v be denoted as y¢. The steps in ML-aided Threshold
Optimization (MLTO) to get v¢ for all MFs using MLM is
shown in Fig. 2 and is explained below. The aim is to skip
and change the MF using the ¢ threshold (SCT) using MLTO
for reducing the BBP.

A. Data Aggregation/Approach of Measurements

Generating a single value of BBP from a ST needs a
simulation of dynamic network operations. Thousands of such
STs are possible from Tab. I, and each ST changes the
network performance. The effect of selection of a particular
ST can be seen by simulating that scenario. Since it takes
a prohibitive amount of time to simulate the performance
for all possible STs, we let the MLM learn the relationship
between ST and BBP and let it select the optimal ST. A
few hundreds of samples of STs are generated and are then
used to obtain BBP values. Such STs are then fed to MLM
which learns the relationship and then can predict the BBP
of the remaining STs. The time required by MLM to train
and predict is negligible as compared to the total computation
time required for generating the BBP for each sample. In
addition, the MLM can be easily modified by changing the
hyperparameters, which makes the learning process even more
flexible. The error in predicted and actual values of BBP of
samples of STs with known BBPs is used to tune and calibrate
the MLM for precise predictions.

In the first stage, several random STs are selected and the
corresponding BBPs are generated using a given RMCSA
algorithm. For each sample, the network model explained in
Section III is used. A total of 100,000 connections arrive
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Figure 2: Machine learning approach for selection of 7.

dynamically and the network resources such as route, MF,
core and spectrum are dynamically assigned based on the
given RMCSA algorithm. The first 10,000 connections are
discarded as warmup connection requests. Recall that the STs
affect the selection of MFs changes which in turn impacts the
spectrum utilization and XT accumulation, and thereby the
BBP. Each 7% in ST is selected such that the corresponding TR
is nonzero,? to make sure that each MF is used. Let SZ denote
the i*h ST (|S]| = |D|). The STs are randomly generated.
Each ST is used to generate the filtered TR model, denoted
as MZT , from a TR model in Tab. I for a given baud rate
and XT threshold per span. The filtered model is then used to
dynamically select MFs based on path length of connection
requests. It is important to consider Erlang loads that are high
enough so that the different STs result in different BBPs, else,
the BBPs for all STs may be 0, which is not useful for the
MLM. The i'!" sample for training MLM is comprised of {7,
BBP;} and is denoted as S;.

B. Machine Learning-aided Threshold Selection

The STs represent features and the corresponding BBP
values represent labels in 57 for the MLM. The feature-label
samples are then used for training the MLM. The MLM looks
for statistical relationships and learns better if the dataset is
preprocessed before it is fed to the MLM. The steps in training
the model and optimizing the STs is given in Algo. 1.

Data preprocessing is the second step as shown in Fig. 2
and in Line 1 of Algo. 1. It involves feature selection, feature
scaling, and separating samples into training and validation
sets. Each feature value is checked for its contribution in the
label. In other words, if a change in the feature does not affect
the label then such feature is marked and discarded from the
learning process. In our case, we observed that the change in
each candidate ¢ threshold affects the BBP.

Now, in the final steps of data preprocessing the selected
features are statistically processed. First the complete dataset
is divided into training dataset and validation dataset (Line
2). In general, 80% of the samples are used for training and
the remaining for validation. The features and labels in the
training dataset are denoted as F; and P, respectively. The

2A 0 value of TR (i.e., a TR that is shorter than the shortest network link)
is possible in the case of XT of -25dB per span [28].

rest of the dataset is used for validation and denoted as F;,
and P,. Both F}; and F), are scaled around the mean using the
mean and standard deviation of F} (Line 3). We use k-fold
cross validation (kCV) to get the final assessment score to
check the fit of the model. We use the inbuilt function of kCV
in scikit-learn [29]. We use root mean squared error (RMSE)
and R-squared (R2) score as assessment with inbuilt gridsearch
cross validation approach to tune the hyperparameters (Line
4). Both of these assessments give similar results. The R2
score of 1.0 and RMSE of 0.0 means that the model has a
perfect fit over the samples. As the MLM learns the smaller
dataset and then is used to predict the BBP for rest of the
STs, it has to learn the exact relationship between all STs and
corresponding BBPs. The R2 score (or RMSE value) shows
how well the MLM is fit to the dataset. It is desired to have
the R2 score as 1.0 which means that the MLM has found a
regression line which has a perfect fit to the dataset. However,
the MLM struggles with overfitting which means that it fits
perfectly to the known dataset and offers higher R2 score but
predicts BBP with unacceptable error for unknown samples of
STs and offers lower R2 score. Thus hyperparameter tuning
using training and validation data is an essential step and it
improves the performance of MLM by at least 28% in R2 score
over default hyperparameters. The tuned hyperparameters are
finally used to train the model where it learns the underlying
relationship between STs and the corresponding BBP (Lines
6 and 7). The trained ML model using gridsearch procedure
gives the set of 7¢ denoted as S7 (Line 8).

We observed that the relationship between the ¢ threshold
values and BBP is not linear. We have tried various MLMs of
regression such as Linear Regression, Polynomial Regression,
Ridge Regression, Lasso Regression, ElasticNet Regression,
Multi-layer Perceptron Regression, Support Vector Regression
(SVR), etc., and observed that K-nearest Neighbour (KNN)
regression model performs better in terms of increasing the
R2 Score (or reducing RMSE) in the prediction phase and
generating optimal outcomes when the training and validation
model are kept the same for all the models. Thus in this paper,
the results are presented for KNN MLM.

V. TRIDENTAL RESOURCE ASSIGNMENT

The MLM in the previous section can be combined with any
RMCSA algorithm that uses XT thresholds. We will apply it



Algorithm 1 ML-Aided Optimization Model
Input: STs S; and corresponding BBP;
Output: S7

1: Select the desired features

2: Get F; and I, and P; and P, from SY and BBP

3: Get Iy and F; by scaling F; and F, using the mean and
standard deviation of F}

4: Choose hyperparameters by hyperparameter tuning using
GridSearchCV()

5: Feed type of ML model, set of hyperparameters and
evaluation metric

6: Get the desired hyperparameters using F; and P;, and F),
and P,

7: Train the model with obtained hyperparameters for which
offers best value of the evaluation metric

8: Use GridSearchCV() and trained model to get S

to a FF RMCSA algorithm and another algorithm from the lit-
erature in Section VI. Recently, we proposed a novel RMCSA
called Tridental Resource Assignment algorithm (TRA) in [9].
For reader convenience, we explain how the TRA algorithm
works. We start with a few definitions and then present the
algorithm.

We call a set of desired number of FSs as a slice window
(SW). A different candidate SW is obtained by shifting the
starting index of a current SW towards right by one on a given
core. The capacity, capacity loss (CL), and tridental coefficient
(TC) of a candidate SW are defined as follows.

A. Capacity of an SW

The capacity of the n'* SW on k*™" shortest path (SP)
on route 7, denoted as r*, for a given MF f;, denoted by
vFd is the number of cores on the whole path on which
the SW can be assigned in the current network state (i.e.,
before resource assignment for the incoming request). Here,
the current network state includes the litcore restriction of
the already established connections on Overlapping spectrum
on adjacent Cores (OsaCs). When an SW is assigned to the
incoming request on a core with MF f,, the capacity would
decrease by an amount that depends on allowable y¢ of f,
and number of adjacent cores of the current core. Thus, the
remaining capacity of the n*® SW on ¢t core on r* using
fa. denoted as v,*:d, is the capacity of the SW if it were to
be assigned to the incoming request, with the actual value of
v of selected MF f,;, denoted as 4, and the actual network
state.

B. Capacity Loss and Tridental Coefficient of a Slice Window

The remaining capacity of a SW after the resource as-
signment of a connection varies based on the selected core
and XT tolerance of the selected MF f;. Thus, for every
core and MF pair, U;’f’cd varies. The decrease in capacity
after the hypothetical provisioning from the capacity before
provisioning gives the total CL. Finally, the CL for the n'!

SW on ¢*® core on r* using f; is calculated using (1).

k,d k,d 'k,d
n,c Un™ — Un,c . (1)

The optimal choice of spectrum is when shared resources
in the network are still available for future demands. When
an SW on a path is assigned to a request, there is a CL for
the SW on all the overlapping (shared) paths as well. Let,
ZF be the set of all the shared paths; Z* = iy,is,...,4.. Let
A(r,m) denote incoming request which arrived on route r and
has datarate m. The number of FSs required to accommodate
datarate m using MF f; is denoted as ('. We assume a
lightpath tuple, Ia (. m)(k, ¢, n, B7"), which represents the nth
SW of size 87 on c'" core on r* for request A(r,m). The
total CL of I (m)(k, ¢, n, B7") is shown in (2); where, W”Z:‘i
is the CL (¢£-¢) on r* and WZ% is the CL (¥f'%) on the 2
shared path i, (i, € Z%).

Finally, the TC of A () is defined as the sum of normal-
ized values of CL, size of SW in terms of number of FSs, and
the starting index of SW. It is denoted as W(la(r,m)) and is
given in (4). The normalization is done using the respective
maximum values, viz., maximum possible CL denoted by
max 1/)/(1 A(r,m)) given in (3), largest possible demandsize of
datarate m denoted as (37", and highest possible index of a
SW is equal to .S — 7" + 1 where S is the total number of
FSs. The maximum CL can be C' and thus max %(lMT’m))
is obtained using (3).

1Z*|

rk i2,d
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C. Tridental Resource Assignment (TRA)

V(la@rm)) = 4)

We now briefly describe our proposed TRA algorithm. The
algorithm we use here is a simplified version of the presented
in [9].

As spatial continuity is imposed, a FS on a core is consid-
ered as free only if it is free on the same core index on all the
links on the path. We refer the SW as available if this free
SW can be occupied by current connection and does not affect
ongoing connections on OsaCs. The pseudo-code for TRA is
given in Algorithm 2.

All the possible SWs of spectrum for datarate m using MF
fa on all the cores are stored in set B)j*. For datarate m, H™
is the set of all B} sets for all MFs. The SW of index n on
core ¢ in BJ' is denoted by b’g};ﬁ. For the datarate m, V™
is the set of 37 for all MFs. If the spectrum requirement of
two MFs for a connection are the same, then the MF with
larger spectrum is marked unavailable for the connection and
such sorted MFs are stored in D™. The TR of MF f; for
the corresponding value of + is denoted as 7). The optimal



Algorithm 2 TRA Algorithm

Input: Network topology, A(r,m), set of SPs P(r), their
path lengths [X, V™, H™

Output: I}, (K", c",n", 57)

1: Z*A(T,m) — O, \Ij(l*A(r,m)) —o00, k1

2: while Z*A(r,m) =@ Nk # K do

3 forall (f; € D™ AT? > 1%) do

4 lit core 4 < ~y for which T} > [¥

5: Get 37" and 87" from V'™

6: for all b7%% € B}, By* € H™ do

7 lightpath Iz, m) < (k, ¢, n, B8

8 if SW is available then

9 Calculate W(Ia(y,m)) of b7%% SW

10: if V(la@rm)) < ‘I’(ZZ(r,m)) then

1 IAGrmy < lagmys B < K, ¢" < ¢, n*
n, * < BT

12: end if

13: end if

14: end for

15:  end for
16: if I* = @ then

17: k+—k+1
18:  else

19: break

20:  end if

21: end while

lightpath I3 (.. ..\ (k*,c*,n*, B*), corresponding TC and SP are
initialized in Line 1. Here, the desired path index, core index,
index of SW and demandsize are denoted by k*, ¢*, n*, and
B*. In Line 2, the algorithm continues until either the SW with
the lowest (best) TC is found or the search over all the SPs is
completed. In Line 3, the search is initiated for those MFs in
D™ whose maximum TR, i.e., TR without the consideration
of XT at v = 0 (TY) is higher than path length of the &'}
SP. In Line 4, the allowable litcore value ~4 is the v value
for which the TR value 7] is grater than the path length of
the k'™ SP. In Line 5, the actual and largest sizes of SW
are obtained. In Line 6, loop iterating over all the choices of
SWs in BJ' is started. The candidate lightpath [ is initiated
in Line 7. If the SW is available, the TC is calculated for
the current SW bg};bd on lightpath / in Line 9. In Lines 10-12,
the information of SW which offers the least value of TC is
stored as the desired lightpath [*. In Line 17, the algorithm
checks whether the desired lightpath Z*A(r_’m) is obtained or
not. If it is obtained then the algorithm stops in Line 19;
otherwise, the algorithm continues with the next SP in Line
17. Finally, after all the SWs on all the cores on the whole path
are processed, the optimal lightpath l*A(r,m) is selected for a
given connection, and the network resources are assigned to
the connection request accordingly. If an SW is not found on
all the SPs (i.e., Z*A(T’m) = ), the request is rejected.

(a) (b)

Figure 3: Network topologies a) DT (Fig. 3a), b) EURO (Fig.
3b).

VI. SIMULATION RESULTS

We now present simulation results comparing the chosen
RSA with and without ML-aided optimization for a variety of
scenarios. We use two practical topologies: generic German
(DT) and European (EURO) shown in Fig. 3. The spectrum
of 4 THz is considered on each link with each slice of 12.5
GHz (6 = 12.5) i.e., 320 FSs (S = 320). Poisson connection
arrival process with exponentially distributed holding time of
1 (arbitrary time unit) is assumed. The Erlang loads were
chosen so that the BBP values generally range between 107>
and 107!, A total of 100,000 requests are generated per
trial, with the first 10,000 warm up requests being discarded.
95% confidence intervals with 10 trials are obtained for each
experiment. The data rates are uniformly distributed between
40-400 Gbps with the granularity of 40 Gbps. There exist 3
SPs between every s-d pair (K = 3). Five MFs (|D| = 5), i.e.,
fi1 to f5 are used viz., QPSK (f1, d = 1), 8 QAM, 16 QAM,
32 QAM and 64 QAM (f5, d = 5). The TR model for each
MF with the average XT threshold per span of -40 dB with
14 GBaud TRX with the span length of 50 km is used from
[28]. Around 400-1000 samples are generated and 80% of the
samples are used for training, and the remaining for validation.
The kCV uses k=5 folds to get assessment scores.

The improvement in performance of all the algorithms is
observed for the average XT thresholds per span of -25dB [28],
[30] and -40dB [28]; only the results for -40dB are presented
due to space constraints. We compare the performance of
algorithms such as a baseline XT-aware first fit (xtFF), P-
XT in [16] and our algorithm TRA in [9] with and without
the use of ML-aided optimization. xtFF chooses the highest
possible MF and the first available slice window (SW) on the
lowest numbered possible core for assignment. P-XT does XT-
aware spectrum assignment with exhaustive search on all the
routes. The spectrum available on the earliest index among
the ones available on all the path-core pairs is selected. The
algorithms are compared for the same parameters; especially,
for the same X7T*", with imposed spatial continuity constraint,
and spectrum choices available for spectrum search. K shortest
paths are used in these algorithms. xtFF and TRA search for
the next SP only if an SW is not available on the current
SP. P-XT always searches the spectrum choices on all the
SPs to choose the earliest SW on any core on all the SPs.



All the algorithms are XT-aware, meaning only SWs that
satisfy the XT constraints are assigned. The new variants
of the algorithms that use ML-aided Threshold Optimization
(MLTO) are denoted with -ML’ in front of the algorithms’
names.

The variation in BBP with respect to change in traffic loads
in DT topology (Fig. 4a and Fig. 4b) and EURO topology (Fig.
4c and Fig. 4d) is shown in Fig. 4. The distribution of utilized
MFs for all the algorithms with and without the use of MLTO
for different values of C for XT*" of -40dB in DT topology
(Fig. 5a and Fig. 5b) and EURO topology (Fig. 5S¢ and Fig. 5d)
is shown in Fig. 5. In all the scenarios of topology-core pairs,
TRA outperforms P-XT and xtFF by a huge margin.> TRA
is designed to choose a MF while considering the effect of
selection of MFs on the spectrum utilization-XT tradeoff. As
explained in Section V, TRA calculates the loss in capacity
for each MF-core pair by using the respective v¢ value for
a specific SW. xtFF and P-XT do not give emphasis on the
selection of MFs but on spectrum. We can observe from Fig.
5 that the distribution of MFs for TRA is quite different from
xtFF and P-XT for all the scenarios. In addition, TRA shows
a nearly uniform selection of all the MFs as compared to xtFF
and P-XT which rely on choosing only 40-60% of the available
MFs. It is also observed that the distribution of the MFs is
similar for C' =3 and C' = 7 for a given topology. Such minor
variation for C' = 7 is due to the presence of a central core
which has six adjacent cores instead of a smaller and constant
value (of three cores for non-central in C' = 7 and two cores
in C = 3).

The ML-aided version of each algorithm is obtained by
using the ¢ thresholds generated by the MLM for SCT.
These optimized thresholds are shown in Tab. II. The MLM
learns the underlying and unquantifiable relationship between
the samples of STs and corresponding BBP values and then
generates the optimal set of thresholds. We observed that
the MLM learns that the samples that do not follow the
constraint are not essential and treated as outliers based on
the corresponding BBP value. It is evident from the fact
that the corresponding TRs of all the optimal outcomes by
MLM follow the constraint in such cases. In addition, when
the threshold generation is completely random, the ML au-
tomatically learns that keeping the threshold for the lowest
MF (!) such that the corresponding TR is high enough to
accommodate longer paths is essential to lower connection
blocking. Especially, when the TR at thresholds of higher MFs
are lower, MLM learns the necessity of keeping ~! to low
values to offer high TR to accommodate longer path lengths.
However, we believe that this is due to the use of first fit policy
in MF selection, and the results may vary if the first higher
MF which can satisfy the QoT constraints is used. In both
the policies, having constrained samples can always make the
MLM learn efficiently and converge quickly. Setting up the

3Note that some BBP values are lower than 104 because some trials gave
0 blocked requests at loads. Confidence intervals have uneven lengths due to
logarithmic scale on y-axis. The lengths are larger if the variation is huge for
different traffic patterns.

threshold of the lowest MF to a lower value to offer higher
corresponding value of TR at threshold makes selection of
MFs for longer paths easier and reduces the complexity of the
MLM. However, we observed that the MLLM learns the effect
of TR of the lowest MF on BBP, and thus selects the ! so
that the corresponding TR is equal to or nearly equal to the
highest value as shown in Tab. II.

Table II: ML-based S7 for SCT.

Algorithm | Topology, C' | Optimal Thresholds {vi, 72, ..., 72}
TRA DT, C=3 10,2, 2,2, 0}
TRA DT, O=7 (2.6,2.3.5)
TRA EURO, C=3 {2,2,2,1, 1}
TRA | EURO, C=7 {3.3.3.3,3}
PXT DT, C=3 {2.2,2,2.2}
PXT DT, O=7 {(5.5.4,5,6)
P-XT EURO, C=3 1,1,2,0, 2}
P-XT EURO, C=7 0,6,2,0, 6}
xtFF DT, C=3 2,2,2,2,2}
xtFF DT, C=7 3,3,1,3,5}
xtFF EURO, C=3 2,2,2,2,2}
xtFF EURO, C=7 0,3,3,5,3}

It is important to know that each RSA algorithm reacts to
a particular set of threshold values differently. We observed
that the variation of BBP values with respect to the samples
of STs is different for different algorithms for each scenario
(not shown here). This is because STs decide the selection
pattern of MFs for SCT. The selection approach is different
for xtFF and P-XT, and TRA. The selection of spectrum choice
is different for xtFF and P-XT, which in turn decides the future
occupancy of remaining spectrum and thus affects the overall
selection pattern of MFs. As the selection pattern is unique for
each RSA algorithm, a common set of thresholds cannot be
provided for a given topology-core scenario. Hence the STs
are different for each scenario as shown in Tab. II.

The MLTO improves the selection pattern of MFs which
results in reduced BBP values. In all the scenarios of topology-
core pairs, the versions of RSA with the use of MLTO perform
better than the actual algorithm without its use. However, the
improvement is different for different algorithms for different
scenarios. In case of C' = 3, the performance of P-XT-ML is
better than all the algorithms and their variants as shown in
Fig. 4a and Fig. 4c. Here, the pattern of resource selection
of P-XT-ML is similar to that of xtFF-ML but the selection
of earliest spectrum choice reduces fragmentation to a greater
extent. The modified selection pattern leverages this spectrum
selection and improves the network performance. With the
help of ML, the share of 16QAM is increased in the case
of DT topology and the share of 8QAM is increased in the
scenario of EURO topology for C' = 3 as shown in Fig. 5a
and Fig. 5c. This is because, the threshold values of 64QAM
and 32QAM, and 16QAM are set to higher values which offer
reduced TR values. However, the corresponding TR value for
16QAM is still higher than the TRs of 64QAM and 32QAM
which increases its share. The increased selection of 16QAM,
with reduction in the selection of 64QAM and 32QAM,
saves spectrum and also offers the higher value of litcore
(2, See Tab. II), which makes all the Overlapping spectrum
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on adjacent Cores (OsaCs) available for future connections.
A similar effect is observed for the EURO topology with
higher selection of 8QAM after the use of MLTO. The optimal
thresholds and distribution of MFs are different for both the
topologies because of the difference in link lengths and node
distributions which offer different path lengths of SPs in
both the topologies. xtFF-ML performs better than TRA-ML
because of better selection of MFs. A similar explanation for
P-XT-ML is applicable to xtFF-ML as the selection pattern of
MFs is similar for both the algorithms.

For the scenario of C' = 7 with DT and EURO topologies,
TRA-ML outperforms all the RSA algorithms and their vari-
ants as shown in Fig. 4b and Fig. 4d. The core geometry
with C = 7 offers a different challenge of core selection
as the selection of the central core has increased effect of
XT on adjacent cores. TRA assigns the cores and MFs after
considering the effect of the 4 in terms of capacity loss and
thus balances the tradeoff. Using MLTO, the selection of MFs
improves a little more. Unlike the case of xtFF-ML and P-
XT-ML in all scenarios, it is observed that TRA-ML shows
an increased selection of (central MFs) 32QAM and 16QAM
in DT topology (Fig. 5b), and 16QAM and 8QAM (Fig. 5d) as
compared to TRA. The selection of central MFs offer higher
values of v¢ and lower values of spectrum utilization. Proper
selection of MFs manifests itself as reduced BBP, because
when a more XT-sensitive MF is chosen it may save spectrum
but prevents future connections to be assigned on OsaCs.

It is evident from the performance evaluation that TRA
efficiently balances the tradeoff among various factors for

different core geometries and path lengths in different topolo-
gies. In addition, we can also observe that the variation in
pattern of selection of MFs in RSA-ML is slightly different
from the pattern in RSA; however, the decrease in the BBP
is huge. Thus, a proper selection of MFs can improve the
performance of the network dramatically, and ML can greatly
help in selecting the optimal thresholds.

VII. CONCLUSION

We considered crosstalk-aware RMCSA algorithms for
space division multiplexed elastic optical networks. There is
a tradeoff between spectrum utilization and increased inter-
core crosstalk (XT) depending on the selected modulation
format. Many RMCSA algorithms use a constraint on the
number of litcores on overlapping spectrum to satisfy XT
constraints. In this paper, we proposed a machine learning-
aided approach that optimizes the thresholds to control the
selection of MFs. The approach can be used with any RMCSA
allocation algorithm that limits the number of litcores to satisfy
XT constraints. We compared the performance of a few RM-
CSA algorithms in the literature with the ML-aided variants,
and showed that the ML-aided variants dramatically improve
the bandwidth blocking probability of dynamic connection re-
quests in a variety of scenarios. A very interesting observation
is that the ML-aided variant of the worst performing baseline
algorithm outperforms the best-performing algorithm without
ML-aided threshold optimization.
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