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Abstract—An effective solution to the looming capacity crunch
is to use a fine-grained flexible frequency grid for elastic optical
transmission and space division multiplexing (SDM) in conjunc-
tion with spectrally efficient modulation formats. The routing,
modulation, core, and spectrum assignment (RMCSA) problem
is an important lightpath resource assignment problem in SDM
elastic optical networks (SDM-EONs). Intercore Crosstalk (XT)
degrades the quality of parallel transmissions on different cores,
and the RMCSA algorithm must ensure that XT constraints
are met while maximizing network performance. There is a
tradeoff between spectrum efficiency and XT tolerance - higher
modulation formats are spectrum-efficient but are also less
forgiving in terms of XT by allowing fewer connections to exist
on adjacent cores on the overlapping spectrum. Many XT-aware
RMCSA algorithms use a limit on the number of lit cores
on the overlapping spectrum to ensure that XT constraints
are satisfied. In this paper, we propose a machine learning
(ML)-aided threshold optimization approach which improves the
performance of RMCSA algorithms in the literature by up to
three folds in terms of bandwidth blocking probability.

I. INTRODUCTION

Recent increases in bandwidth demands due to cloud-based

services, 5G and 6G communications, high resolution game

streaming, and data center networks can be fulfilled by space

division multiplexed elastic optical networks (SDM-EONs)

[1]. Advancements in coherent optical transmission have made

it possible to fine-tune transmission parameters and increase

spectral efficiency. SDM-EON enables parallel transmission of

optical signals through multicore fibers (MCFs) with distance-

adaptive multicarrier transmission [2], [3]. However, the qual-

ity of transmission (QoT) of signals transmitted through MCF

degrades due to the intercore crosstalk (XT) between weakly

coupled cores [4], [5].

In SDM-EON, lighpaths are routed through cores on the

route’s links with a set of contiguous and continuous frequency

slices (FSs). Theoretically, a multifiber link and an MCF link

bear the same capacity for transmission provided that the

physical parameters and geometry of the cores are the same.

However, the signal transmission in MCF does not resemble

the one in multifiber link due to the compact structure of

weakly coupled cores, and the QoT of a signal on a spectrum

slice degrades due to XT. Therefore, it is important to find

ways to address the effect of XT and handle it carefully

[6]. The selection of multiefficient modulation formats (MFs)

affects XT levels. Choosing a spectrally efficient MF leads

to spectrum saving but offers low tolerance for XT and

shorter transmission reaches (TRs), and vice versa. Thus, the

resource assignment problem becomes more complex with

the selection of multiefficient modulation formats. Several

RMCSA algorithms use a limit on the number of lit adjacent

cores on overlapping spectrum to satisfy XT constraints [6],

[7].

Recently, machine learning (ML) has been used to solve

complex problems in optical networks [8]. The underlying

relationship between the network features and output labels

is learnt and then can be used to design network models.

In this paper, we propose an ML-aided approach to learn

such underlying relationship for better selection of MFs and

achieves a good tradeoff between spectrum utilization and XT

tolerance. A distinguishing feature of our approach is that it

can be used with any RMCSA algorithm. In our recent work

[9], we have developed a heuristic RMCSA algorithm for dy-

namic lightpath requests called Tridental Resource Assignment

(TRA). In this paper, we apply our ML approach to several

RMCSA algorithms including TRA, and demonstrate that

significant further performance improvements are possible.

The paper is organized as follows. We review recent lit-

erature on the topic in Section II. The network model and

problem statement are introduced in Section III. The ML-

aided approach is presented in Section IV. Details of the TRA

algorithm are presented in Sections V. Section VI presents

simulation results, and the last section concludes the work.

II. RELATED WORK

The RMCSA problem involves the selection of resources,

viz., route, MF, core and spectrum for incoming connection

requests. Recent focus has been on the design of complex

but efficient algorithms due to cheaper computing facilities

[4], [10]. Initially, routing, spectrum, and core assignment

(RSCA) algorithms for SDM-EON have been proposed in

[11]–[13]. The RSCA problem is modeled and solved with

the consideration of XT along with fragmentation, congestion,

etc. The sorting of demand sizes, spectrum partitioning, and

core prioritizing are used to reduce fragmentation and to

avoid XT accumulation in a specific area of spectrum or

network. Joint selection of core and spectrum to reduce XT

and fragmentation for on-demand requirements is studied in

[14]. The XT accumulation in a specific link can be avoided



with the help of multipath routing instead of single shortest

path routing [15]. Multipath routing also helps reducing the

bandwidth blocking probability (BBP) by offering alternate

routes for assignment in a congested network.

Variants such as searching for earlier spectrum than earlier

core index [13], [16] and considering maximum value, instead

of average value, of XT experienced by each frequency slot

(FS) in a desired set of FSs [16] are also studied. Various XT-

based algorithmic solutions to reduce BBP are studied in [6]

where instead of worst case estimations, a XT-aware approach

with the dynamic calculation of XT levels is used to assign

spectrum. The XT constraints can be used to model the effect

of XT on signal transmission [6]. It is important to choose a

significant XT threshold based on practical norms [17], which

can be done by choosing a significant value of power coupling

coefficient and span length [5], [7].

ML approaches have been used recently for specific prob-

lems such as QoT estimation [8] when there is scarcity of data

[18], [19], using complex but efficient regression approaches

[20], with data manipulation [19], [21], etc. However, there is a

vast array of problems in optical networking for which the use

of ML has not been sufficiently explored [4], [8], [22], [23]. A

few studies such as [24] use unsupervised learning approach

to solve resource allocation and fragmentation problems; how-

ever, supervised learning and reinforcement learning show

better outcome [25]. For sub-problems of larger ones, static

planning can be done using supervised learning to simplify

dynamic provisioning [22], [26].

III. MODEL, PROBLEM STATEMENT, AND ILLUSTRATIVE

EXAMPLE

We now present the network model and problem statement

along with an example to illustrate how the XT thresholds

affect the assignment of resources to connections.

A. Network Model and Problem Statement

We assume that the SDM-EON operates with a flexible

grid of 12.5 GHz granularity and is equipped with coherent

transceivers (TRXs). The TRXs support reconfigurable bit-

rates and various MFs. The TRXs operate at a fixed baud

rate of 14 GBaud, and each TRX transmits/receives an optical

carrier allocated on 2 frequency slices (FSs) (i.e., 25 GHz).

If the requested bit-rate exceeds the maximum capacity of

a single TRX using a particular MF, the request is carried

by several optical carriers within one superchannel (SCh).

Each SCh is separated from neighbor SChs by 12.5 GHz

guard-bands [16]. The nodes are connected using optical links

consisting of MCFs. Each fiber link consists of the same set of

MCFs with a specified core geometry in both the directions.1

Two challenging and widely accepted core geometries, 3-core

and 7-core [16], are studied. The effect of XT is dominant

between the cores which are right next to each other called as

adjacent/neighbor cores. For instance, each core in a 3-core

1In this paper, we assume that all the links have a single MCF in each
direction, but the proposed work can be easily generalized for multiple fibers
per link.

fiber has two adjacent cores. Similarly, in 7-core fiber, the

outer cores have three adjacent cores and the center core has

six adjacent cores (see Fig. 1). Furthermore, spatial continuity

is imposed, which means that the same core is assigned to

a lightpath on all MCF links on a route. Lightpath requests

arrive at a specified Poisson rate with exponentially distributed

mean holding time of unity (arbitrary units) and the datarates

are uniformly distributed over a given range.

The set of modulation formats available for assignment is

denoted as D = {f1, f2, . . . , f|D|}, where f1 is the lowest

MF and f|D| is the highest MF. In this paper, we assume 5

modulation formats: QPSK (f1), 8QAM, 16QAM, 32QAM,

and 64QAM (f5). The transmission reach (i.e., maximum

length of a lightpath) depends on the lightpath’s MF as well as

the state of overlapping spectrum on adjacent cores (OsaCs).

The XT model of [27] is used to obtain the TRs for various

MFs and for various values of lit adjacent cores (or litcores for

short) for a XT th of -40dB, as shown in Tab. I (from [28]). We

consider average XT values of -40 dB between two adjacent

cores after a single span of propagation [28]. The total XT

experienced by a core is the sum of individual average XT

contributions from each neighbor. For example, the TR for a

16QAM lightpath is 1950 km if the OsaC has a maximum of 0

litcores (i.e., the OsaC cannot be used for any other lightpath)

and 900 km if the OsaC can be occupied by 6 lightpaths (i.e.,

all adjacent cores can be used by other lightpaths).

The problem is to assign resources (route, MF, core, and

spectrum) to incoming connection requests so that the XT

constraints are met for the incoming request and continue to

be satisfied for all ongoing connections. The overall objective

is to minimize the bandwidth blocking probability (BBP).

Incoming connection requests have a variety of choices of

MFs that may satisfy the XT requirement. While higher MFs

reduce the required spectrum, they also tighten up the core

occupancy constraints for future connections, and a judicious

balance between the two has to be struck. One approach to

choosing an MF judiciously is to introduce a threshold for

the number of allowable litcores, denoted γd for MF d. For

instance, suppose γ3 = 4. This means that if 16QAM (f3) is to

be assigned for a lightpath, then the lightpath’s length cannot

be larger than the TR for γ3 = 4, i.e., 1100 km. Thus, if a

request whose path length is 1200 km arrives, the setting of

γ3 = 4 means that 16QAM cannot be assigned to this request.

Now, if γ3 were set to be 3, then the TR becomes 1250 km,

and the incoming request may be assigned 16QAM.

B. An Illustrative Example

We illustrate with an example the effect of the selection of

thresholds on the tradeoff between spectrum utilization and the

XT accumulation in the network with the help of Fig. 1 and

Tab. I. The cross-section of the 7-core MCF is shown on the

top to show the occupancy of cores in spatial domain and the

corresponding occupancy of frequency slots is shown at the

bottom. Three MFs, QPSK (f1, d = 1), 16QAM (f3, d = 3)

and 64QAM (f5, d = 5), and their corresponding thresholds are

used in this example. First fit policy is used in the selection of
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Figure 1: Change in spectrum utilization and XT levels for

two different sets of γd thresholds.

MF. Suppose the first set of γd thresholds is {γ1 = 5, γ3 = 4,

γ5 = 3} which corresponds to the TRs of 4750km, 1100km

and 300km as shown in Tab. I. Suppose a connection request

of 100Gbps arrives with a path length of 270km. The spectrum

requirement for a 100Gbps connection using QPSK, 16QAM,

and 64QAM as per the network model in Section III is 5 FSs

(4 FSs and 1 Guardband), 2 FSs, and 2 FSs, respectively.

Starting from the highest MF, for 64QAM the TR for γ5 =
3 is 300 km, and the TR values for larger values of γ are

less than the path length. Therefore, if 64QAM is selected

for this request, overlapping spectrum on any three cores out

of six adjacent cores are allowed to be lit/occupied. In other

words, overlapping spectrum on any three (total − allowed)

cores is not allowed to be occupied as long as this connection

exists in the network as shown in Fig. 1a. Thus the spectrum

requirement effectively becomes 8 FSs (2 FSs + 3 × 2 FSs) if

64QAM is chosen. For 16QAM, the threshold is γ3 = 4, and

the corresponding TR is 1100 km. As the TR value of 900

km for γ = 6 is greater than the path length of 270 km, none

of the adjacent cores are blocked by the current connection if

16QAM is chosen, which makes the spectrum requirement as

2 FSs as shown in Fig. 1b. Similarly, for QPSK, γ1 = 6, and

the spectrum requirement is 5 FSs as shown in Fig. 1c. Thus,

the available choices of MFs for the connection are 64QAM,

16QAM, and QPSK.

Now, let us suppose that a different set of threshold values

is chosen: γ1 = 5, γ3 = 4, and γ5 = 4. Here, the TR value

corresponding to γ5 = 4 is only 250 km which is less than

the path length, and therefore 64QAM is not a possible MF

choice, and only QPSK and 16QAM are possible MF choices.

This example illustrates how setting the XT threshold values

can affect the possible MF choices and thereby help the

algorithm in finding a good balance between spectrum usage

and XT tolerance. Note that setting all values of γd to 0 cor-

responds to always assigning the highest MF to a connection

at the expense of keeping all adjacent cores unoccupied. At

the other extreme, setting all γd values to 6 corresponds to

considering the worst-case XT scenario [6], [14], [16].

Table I: Transmission reaches (in km) of MFs for different

values of allowable lit core (γ) for a 7-core MCF for a XT of

-40dB per span of 50km (from Table II in [28]).

Modulation Formats (|D| = 5, fd ∈ D)

γ (Litcores) QPSK 8 QAM 16 QAM 32 QAM 64 QAM

0 9050 3600 1950 1000 500

1 7650 3050 1650 850 400

2 6650 2650 1400 700 350

3 5850 2350 1250 650 300

4 5250 2100 1100 550 250

5 4750 1700 1000 500 250

6 4350 1500 900 450 200

IV. MACHINE LEARNING-AIDED LITCORE THRESHOLD

SELECTION

We now present a novel machine learning-aided approach

to select the litcore thresholds. This approach can be used by

any RMCSA algorithm that uses litcore thresholds for meeting

XT constraints. We discuss the prerequisites for the ML model

(MLM) and its working principle. Recall that D is the set of

MFs and γd is the litcore threshold for the dth MF. The first

step is to gather the samples of set of thresholds (STs) and

the second step is to train the MLM. Let the optimal value

of γd be denoted as γd
∗ . The steps in ML-aided Threshold

Optimization (MLTO) to get γd
∗ for all MFs using MLM is

shown in Fig. 2 and is explained below. The aim is to skip

and change the MF using the γd threshold (SCT) using MLTO

for reducing the BBP.

A. Data Aggregation/Approach of Measurements

Generating a single value of BBP from a ST needs a

simulation of dynamic network operations. Thousands of such

STs are possible from Tab. I, and each ST changes the

network performance. The effect of selection of a particular

ST can be seen by simulating that scenario. Since it takes

a prohibitive amount of time to simulate the performance

for all possible STs, we let the MLM learn the relationship

between ST and BBP and let it select the optimal ST. A

few hundreds of samples of STs are generated and are then

used to obtain BBP values. Such STs are then fed to MLM

which learns the relationship and then can predict the BBP

of the remaining STs. The time required by MLM to train

and predict is negligible as compared to the total computation

time required for generating the BBP for each sample. In

addition, the MLM can be easily modified by changing the

hyperparameters, which makes the learning process even more

flexible. The error in predicted and actual values of BBP of

samples of STs with known BBPs is used to tune and calibrate

the MLM for precise predictions.

In the first stage, several random STs are selected and the

corresponding BBPs are generated using a given RMCSA

algorithm. For each sample, the network model explained in

Section III is used. A total of 100,000 connections arrive
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Figure 2: Machine learning approach for selection of γd
∗ .

dynamically and the network resources such as route, MF,

core and spectrum are dynamically assigned based on the

given RMCSA algorithm. The first 10,000 connections are

discarded as warmup connection requests. Recall that the STs

affect the selection of MFs changes which in turn impacts the

spectrum utilization and XT accumulation, and thereby the

BBP. Each γd in ST is selected such that the corresponding TR

is nonzero,2 to make sure that each MF is used. Let S
γ
i denote

the ith ST (|Sγ
i | = |D|). The STs are randomly generated.

Each ST is used to generate the filtered TR model, denoted

as MT
i , from a TR model in Tab. I for a given baud rate

and XT threshold per span. The filtered model is then used to

dynamically select MFs based on path length of connection

requests. It is important to consider Erlang loads that are high

enough so that the different STs result in different BBPs, else,

the BBPs for all STs may be 0, which is not useful for the

MLM. The ith sample for training MLM is comprised of {Sγ
i ,

BBPi} and is denoted as Si.

B. Machine Learning-aided Threshold Selection

The STs represent features and the corresponding BBP

values represent labels in Sγ for the MLM. The feature-label

samples are then used for training the MLM. The MLM looks

for statistical relationships and learns better if the dataset is

preprocessed before it is fed to the MLM. The steps in training

the model and optimizing the STs is given in Algo. 1.

Data preprocessing is the second step as shown in Fig. 2

and in Line 1 of Algo. 1. It involves feature selection, feature

scaling, and separating samples into training and validation

sets. Each feature value is checked for its contribution in the

label. In other words, if a change in the feature does not affect

the label then such feature is marked and discarded from the

learning process. In our case, we observed that the change in

each candidate γd threshold affects the BBP.

Now, in the final steps of data preprocessing the selected

features are statistically processed. First the complete dataset

is divided into training dataset and validation dataset (Line

2). In general, 80% of the samples are used for training and

the remaining for validation. The features and labels in the

training dataset are denoted as Ft and Pt, respectively. The

2A 0 value of TR (i.e., a TR that is shorter than the shortest network link)
is possible in the case of XT of -25dB per span [28].

rest of the dataset is used for validation and denoted as Fv

and Pv . Both Ft and Fv are scaled around the mean using the

mean and standard deviation of Ft (Line 3). We use k-fold

cross validation (kCV) to get the final assessment score to

check the fit of the model. We use the inbuilt function of kCV

in scikit-learn [29]. We use root mean squared error (RMSE)

and R-squared (R2) score as assessment with inbuilt gridsearch

cross validation approach to tune the hyperparameters (Line

4). Both of these assessments give similar results. The R2

score of 1.0 and RMSE of 0.0 means that the model has a

perfect fit over the samples. As the MLM learns the smaller

dataset and then is used to predict the BBP for rest of the

STs, it has to learn the exact relationship between all STs and

corresponding BBPs. The R2 score (or RMSE value) shows

how well the MLM is fit to the dataset. It is desired to have

the R2 score as 1.0 which means that the MLM has found a

regression line which has a perfect fit to the dataset. However,

the MLM struggles with overfitting which means that it fits

perfectly to the known dataset and offers higher R2 score but

predicts BBP with unacceptable error for unknown samples of

STs and offers lower R2 score. Thus hyperparameter tuning

using training and validation data is an essential step and it

improves the performance of MLM by at least 28% in R2 score

over default hyperparameters. The tuned hyperparameters are

finally used to train the model where it learns the underlying

relationship between STs and the corresponding BBP (Lines

6 and 7). The trained ML model using gridsearch procedure

gives the set of γd
∗ denoted as S

γ
∗ (Line 8).

We observed that the relationship between the γd threshold

values and BBP is not linear. We have tried various MLMs of

regression such as Linear Regression, Polynomial Regression,

Ridge Regression, Lasso Regression, ElasticNet Regression,

Multi-layer Perceptron Regression, Support Vector Regression

(SVR), etc., and observed that K-nearest Neighbour (KNN)

regression model performs better in terms of increasing the

R2 Score (or reducing RMSE) in the prediction phase and

generating optimal outcomes when the training and validation

model are kept the same for all the models. Thus in this paper,

the results are presented for KNN MLM.

V. TRIDENTAL RESOURCE ASSIGNMENT

The MLM in the previous section can be combined with any

RMCSA algorithm that uses XT thresholds. We will apply it
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Algorithm 1 ML-Aided Optimization Model

Input: STs S
γ
i and corresponding BBPi

Output: S
γ
∗

1: Select the desired features

2: Get Ft and Fv , and Pt and Pv from Sγ and BBP

3: Get Ft
s and Fv

s by scaling Ft and Fv using the mean and

standard deviation of Ft

4: Choose hyperparameters by hyperparameter tuning using

GridSearchCV()

5: Feed type of ML model, set of hyperparameters and

evaluation metric

6: Get the desired hyperparameters using Ft and Pt, and Fv

and Pv

7: Train the model with obtained hyperparameters for which

offers best value of the evaluation metric

8: Use GridSearchCV() and trained model to get S∗
γ

to a FF RMCSA algorithm and another algorithm from the lit-

erature in Section VI. Recently, we proposed a novel RMCSA

called Tridental Resource Assignment algorithm (TRA) in [9].

For reader convenience, we explain how the TRA algorithm

works. We start with a few definitions and then present the

algorithm.

We call a set of desired number of FSs as a slice window

(SW). A different candidate SW is obtained by shifting the

starting index of a current SW towards right by one on a given

core. The capacity, capacity loss (CL), and tridental coefficient

(TC) of a candidate SW are defined as follows.

A. Capacity of an SW

The capacity of the nth SW on kth shortest path (SP)

on route r, denoted as rk, for a given MF fd, denoted by

υk,d
n , is the number of cores on the whole path on which

the SW can be assigned in the current network state (i.e.,

before resource assignment for the incoming request). Here,

the current network state includes the litcore restriction of

the already established connections on Overlapping spectrum

on adjacent Cores (OsaCs). When an SW is assigned to the

incoming request on a core with MF fd, the capacity would

decrease by an amount that depends on allowable γd of fd
and number of adjacent cores of the current core. Thus, the

remaining capacity of the nth SW on cth core on rk using

fd, denoted as υ
′k,d
n,c , is the capacity of the SW if it were to

be assigned to the incoming request, with the actual value of

γ of selected MF fd, denoted as γd, and the actual network

state.

B. Capacity Loss and Tridental Coefficient of a Slice Window

The remaining capacity of a SW after the resource as-

signment of a connection varies based on the selected core

and XT tolerance of the selected MF fd. Thus, for every

core and MF pair, υ
′k,d
n,c varies. The decrease in capacity

after the hypothetical provisioning from the capacity before

provisioning gives the total CL. Finally, the CL for the nth

SW on cth core on rk using fd is calculated using (1).

ψk,d
n,c = υk,d

n − υ
′k,d
n,c . (1)

The optimal choice of spectrum is when shared resources

in the network are still available for future demands. When

an SW on a path is assigned to a request, there is a CL for

the SW on all the overlapping (shared) paths as well. Let,

Zk be the set of all the shared paths; Zk = i1, i2, . . . , iz . Let

∆(r,m) denote incoming request which arrived on route r and

has datarate m. The number of FSs required to accommodate

datarate m using MF fd is denoted as βm
d . We assume a

lightpath tuple, l∆(r,m)(k, c, n, β
m
d ), which represents the nth

SW of size βm
d on cth core on rk for request ∆(r,m). The

total CL of l∆(r,m)(k, c, n, β
m
d ) is shown in (2); where, ψrk,d

n,c

is the CL (ψk,d
n,c) on rk and ψiz,d

n,c is the CL (ψk,d
n,c) on the zth

shared path iz (iz ∈ Zk).

Finally, the TC of l∆(r,m) is defined as the sum of normal-

ized values of CL, size of SW in terms of number of FSs, and

the starting index of SW. It is denoted as Ψ(l∆(r,m)) and is

given in (4). The normalization is done using the respective

maximum values, viz., maximum possible CL denoted by

maxψ
′

(l∆(r,m)) given in (3), largest possible demandsize of

datarate m denoted as βm
1 , and highest possible index of a

SW is equal to S − βm
d + 1 where S is the total number of

FSs. The maximum CL can be C and thus maxψ
′

(l∆(r,m))
is obtained using (3).

ψ′(l∆(r,m)) = ψrk,d
n,c +

|Zk|∑

z=1

ψiz,d

n,c. (2)

maxψ′(l∆(r,m)) = C +

|Zk|∑

z=1

C = (1 + |Zk|)C. (3)

Ψ(l∆(r,m)) =
ψ′(l∆(r,m))

maxψ′(l∆(r,m))
+

βm
d

βm
1

+
n

S − βm
d + 1

. (4)

C. Tridental Resource Assignment (TRA)

We now briefly describe our proposed TRA algorithm. The

algorithm we use here is a simplified version of the presented

in [9].

As spatial continuity is imposed, a FS on a core is consid-

ered as free only if it is free on the same core index on all the

links on the path. We refer the SW as available if this free

SW can be occupied by current connection and does not affect

ongoing connections on OsaCs. The pseudo-code for TRA is

given in Algorithm 2.

All the possible SWs of spectrum for datarate m using MF

fd on all the cores are stored in set Bm
d . For datarate m, Hm

is the set of all Bm
d sets for all MFs. The SW of index n on

core c in Bm
d is denoted by bm,d

c,n . For the datarate m, V m

is the set of βm
d for all MFs. If the spectrum requirement of

two MFs for a connection are the same, then the MF with

larger spectrum is marked unavailable for the connection and

such sorted MFs are stored in Dm. The TR of MF fd for

the corresponding value of γ is denoted as T
γ
d . The optimal
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Algorithm 2 TRA Algorithm

Input: Network topology, ∆(r,m), set of SPs P (r), their

path lengths lkr , V m, Hm

Output: l∗∆(r,m)(k
∗, c∗, n∗, β∗)

1: l∗∆(r,m) ← ∅, Ψ(l∗∆(r,m)) ← ∞, k ← 1
2: while l∗∆(r,m) = ∅ ∧ k 6= K do

3: for all (fd ∈ Dm ∧ T 0
d ≥ lkr ) do

4: lit core γd ← γ for which T
γ
d ≥ lkr

5: Get βm
d and βm

1 from V m

6: for all bm,d
c,n ∈ Bm

d , Bm
d ∈ Hm do

7: lightpath l∆(r,m) ← (k, c, n, βm
d )

8: if SW is available then

9: Calculate Ψ(l∆(r,m)) of bm,d
c,n SW

10: if Ψ(l∆(r,m)) < Ψ(l∗∆(r,m)) then

11: l∗∆(r,m) ← l∆(r,m), k
∗ ← k, c∗ ← c, n∗ ←

n, β∗ ← βm
d

12: end if

13: end if

14: end for

15: end for

16: if l∗ = ∅ then

17: k ← k + 1
18: else

19: break

20: end if

21: end while

lightpath l∗∆(c,m)(k
∗, c∗, n∗, β∗), corresponding TC and SP are

initialized in Line 1. Here, the desired path index, core index,

index of SW and demandsize are denoted by k∗, c∗, n∗, and

β∗. In Line 2, the algorithm continues until either the SW with

the lowest (best) TC is found or the search over all the SPs is

completed. In Line 3, the search is initiated for those MFs in

Dm whose maximum TR, i.e., TR without the consideration

of XT at γ = 0 (T 0
d ) is higher than path length of the kth

SP. In Line 4, the allowable litcore value γd is the γ value

for which the TR value T
γ
d is grater than the path length of

the kth SP. In Line 5, the actual and largest sizes of SW

are obtained. In Line 6, loop iterating over all the choices of

SWs in Bm
d is started. The candidate lightpath l is initiated

in Line 7. If the SW is available, the TC is calculated for

the current SW bm,d
c,n on lightpath l in Line 9. In Lines 10-12,

the information of SW which offers the least value of TC is

stored as the desired lightpath l∗. In Line 17, the algorithm

checks whether the desired lightpath l∗∆(r,m) is obtained or

not. If it is obtained then the algorithm stops in Line 19;

otherwise, the algorithm continues with the next SP in Line

17. Finally, after all the SWs on all the cores on the whole path

are processed, the optimal lightpath l∗∆(r,m) is selected for a

given connection, and the network resources are assigned to

the connection request accordingly. If an SW is not found on

all the SPs (i.e., l∗∆(r,m) = ∅), the request is rejected.

(a) (b)

Figure 3: Network topologies a) DT (Fig. 3a), b) EURO (Fig.

3b).

VI. SIMULATION RESULTS

We now present simulation results comparing the chosen

RSA with and without ML-aided optimization for a variety of

scenarios. We use two practical topologies: generic German

(DT) and European (EURO) shown in Fig. 3. The spectrum

of 4 THz is considered on each link with each slice of 12.5

GHz (δ = 12.5) i.e., 320 FSs (S = 320). Poisson connection

arrival process with exponentially distributed holding time of

1 (arbitrary time unit) is assumed. The Erlang loads were

chosen so that the BBP values generally range between 10−5

and 10−1. A total of 100,000 requests are generated per

trial, with the first 10,000 warm up requests being discarded.

95% confidence intervals with 10 trials are obtained for each

experiment. The data rates are uniformly distributed between

40-400 Gbps with the granularity of 40 Gbps. There exist 3

SPs between every s-d pair (K = 3). Five MFs (|D| = 5), i.e.,

f1 to f5 are used viz., QPSK (f1, d = 1), 8 QAM, 16 QAM,

32 QAM and 64 QAM (f5, d = 5). The TR model for each

MF with the average XT threshold per span of -40 dB with

14 GBaud TRX with the span length of 50 km is used from

[28]. Around 400-1000 samples are generated and 80% of the

samples are used for training, and the remaining for validation.

The kCV uses k=5 folds to get assessment scores.

The improvement in performance of all the algorithms is

observed for the average XT thresholds per span of -25dB [28],

[30] and -40dB [28]; only the results for -40dB are presented

due to space constraints. We compare the performance of

algorithms such as a baseline XT-aware first fit (xtFF), P-

XT in [16] and our algorithm TRA in [9] with and without

the use of ML-aided optimization. xtFF chooses the highest

possible MF and the first available slice window (SW) on the

lowest numbered possible core for assignment. P-XT does XT-

aware spectrum assignment with exhaustive search on all the

routes. The spectrum available on the earliest index among

the ones available on all the path-core pairs is selected. The

algorithms are compared for the same parameters; especially,

for the same XT th, with imposed spatial continuity constraint,

and spectrum choices available for spectrum search. K shortest

paths are used in these algorithms. xtFF and TRA search for

the next SP only if an SW is not available on the current

SP. P-XT always searches the spectrum choices on all the

SPs to choose the earliest SW on any core on all the SPs.
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All the algorithms are XT-aware, meaning only SWs that

satisfy the XT constraints are assigned. The new variants

of the algorithms that use ML-aided Threshold Optimization

(MLTO) are denoted with ’-ML’ in front of the algorithms’

names.

The variation in BBP with respect to change in traffic loads

in DT topology (Fig. 4a and Fig. 4b) and EURO topology (Fig.

4c and Fig. 4d) is shown in Fig. 4. The distribution of utilized

MFs for all the algorithms with and without the use of MLTO

for different values of C for XT th of -40dB in DT topology

(Fig. 5a and Fig. 5b) and EURO topology (Fig. 5c and Fig. 5d)

is shown in Fig. 5. In all the scenarios of topology-core pairs,

TRA outperforms P-XT and xtFF by a huge margin.3 TRA

is designed to choose a MF while considering the effect of

selection of MFs on the spectrum utilization-XT tradeoff. As

explained in Section V, TRA calculates the loss in capacity

for each MF-core pair by using the respective γd value for

a specific SW. xtFF and P-XT do not give emphasis on the

selection of MFs but on spectrum. We can observe from Fig.

5 that the distribution of MFs for TRA is quite different from

xtFF and P-XT for all the scenarios. In addition, TRA shows

a nearly uniform selection of all the MFs as compared to xtFF

and P-XT which rely on choosing only 40-60% of the available

MFs. It is also observed that the distribution of the MFs is

similar for C = 3 and C = 7 for a given topology. Such minor

variation for C = 7 is due to the presence of a central core

which has six adjacent cores instead of a smaller and constant

value (of three cores for non-central in C = 7 and two cores

in C = 3).

The ML-aided version of each algorithm is obtained by

using the γd
∗ thresholds generated by the MLM for SCT.

These optimized thresholds are shown in Tab. II. The MLM

learns the underlying and unquantifiable relationship between

the samples of STs and corresponding BBP values and then

generates the optimal set of thresholds. We observed that

the MLM learns that the samples that do not follow the

constraint are not essential and treated as outliers based on

the corresponding BBP value. It is evident from the fact

that the corresponding TRs of all the optimal outcomes by

MLM follow the constraint in such cases. In addition, when

the threshold generation is completely random, the ML au-

tomatically learns that keeping the threshold for the lowest

MF (γ1
∗) such that the corresponding TR is high enough to

accommodate longer paths is essential to lower connection

blocking. Especially, when the TR at thresholds of higher MFs

are lower, MLM learns the necessity of keeping γ1
∗ to low

values to offer high TR to accommodate longer path lengths.

However, we believe that this is due to the use of first fit policy

in MF selection, and the results may vary if the first higher

MF which can satisfy the QoT constraints is used. In both

the policies, having constrained samples can always make the

MLM learn efficiently and converge quickly. Setting up the

3Note that some BBP values are lower than 10
−4 because some trials gave

0 blocked requests at loads. Confidence intervals have uneven lengths due to
logarithmic scale on y-axis. The lengths are larger if the variation is huge for
different traffic patterns.

threshold of the lowest MF to a lower value to offer higher

corresponding value of TR at threshold makes selection of

MFs for longer paths easier and reduces the complexity of the

MLM. However, we observed that the MLM learns the effect

of TR of the lowest MF on BBP, and thus selects the γ1
∗ so

that the corresponding TR is equal to or nearly equal to the

highest value as shown in Tab. II.

Table II: ML-based S
γ
∗ for SCT.

Algorithm Topology, C Optimal Thresholds {γ1
∗

, γ2
∗

, . . . , γ5
∗
}

TRA DT, C=3 {0, 2, 2, 2, 0}
TRA DT, C=7 {2, 6, 2, 3, 5}
TRA EURO, C=3 {2, 2, 2, 1, 1}
TRA EURO, C=7 {3, 3, 3, 3, 3}
P-XT DT, C=3 {2, 2, 2, 2, 2}
P-XT DT, C=7 {5, 5, 4, 5, 6}
P-XT EURO, C=3 {1, 1, 2, 0, 2}
P-XT EURO, C=7 {0, 6, 2, 0, 6}
xtFF DT, C=3 {2, 2, 2, 2, 2}
xtFF DT, C=7 {3, 3, 1, 3, 5}
xtFF EURO, C=3 {2, 2, 2, 2, 2}
xtFF EURO, C=7 {0, 3, 3, 5, 3}

It is important to know that each RSA algorithm reacts to

a particular set of threshold values differently. We observed

that the variation of BBP values with respect to the samples

of STs is different for different algorithms for each scenario

(not shown here). This is because STs decide the selection

pattern of MFs for SCT. The selection approach is different

for xtFF and P-XT, and TRA. The selection of spectrum choice

is different for xtFF and P-XT, which in turn decides the future

occupancy of remaining spectrum and thus affects the overall

selection pattern of MFs. As the selection pattern is unique for

each RSA algorithm, a common set of thresholds cannot be

provided for a given topology-core scenario. Hence the STs

are different for each scenario as shown in Tab. II.

The MLTO improves the selection pattern of MFs which

results in reduced BBP values. In all the scenarios of topology-

core pairs, the versions of RSA with the use of MLTO perform

better than the actual algorithm without its use. However, the

improvement is different for different algorithms for different

scenarios. In case of C = 3, the performance of P-XT-ML is

better than all the algorithms and their variants as shown in

Fig. 4a and Fig. 4c. Here, the pattern of resource selection

of P-XT-ML is similar to that of xtFF-ML but the selection

of earliest spectrum choice reduces fragmentation to a greater

extent. The modified selection pattern leverages this spectrum

selection and improves the network performance. With the

help of ML, the share of 16QAM is increased in the case

of DT topology and the share of 8QAM is increased in the

scenario of EURO topology for C = 3 as shown in Fig. 5a

and Fig. 5c. This is because, the threshold values of 64QAM

and 32QAM, and 16QAM are set to higher values which offer

reduced TR values. However, the corresponding TR value for

16QAM is still higher than the TRs of 64QAM and 32QAM

which increases its share. The increased selection of 16QAM,

with reduction in the selection of 64QAM and 32QAM,

saves spectrum and also offers the higher value of litcore

(2, See Tab. II), which makes all the Overlapping spectrum
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Figure 4: Variation in BBP wrt traffic for different values of C for XT th of -40dB in DT (Fig. 4a and Fig. 4b) and EURO

(Fig. 4c and Fig. 4d) topologies.
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Figure 5: Distribution of utilized MFs for all the algorithms with and without MLTO for different values of C for XT th of

-40dB in DT (Fig. 5a and Fig. 5b) and EURO (Fig. 5c and Fig. 5d) topologies.

on adjacent Cores (OsaCs) available for future connections.

A similar effect is observed for the EURO topology with

higher selection of 8QAM after the use of MLTO. The optimal

thresholds and distribution of MFs are different for both the

topologies because of the difference in link lengths and node

distributions which offer different path lengths of SPs in

both the topologies. xtFF-ML performs better than TRA-ML

because of better selection of MFs. A similar explanation for

P-XT-ML is applicable to xtFF-ML as the selection pattern of

MFs is similar for both the algorithms.

For the scenario of C = 7 with DT and EURO topologies,

TRA-ML outperforms all the RSA algorithms and their vari-

ants as shown in Fig. 4b and Fig. 4d. The core geometry

with C = 7 offers a different challenge of core selection

as the selection of the central core has increased effect of

XT on adjacent cores. TRA assigns the cores and MFs after

considering the effect of the γd in terms of capacity loss and

thus balances the tradeoff. Using MLTO, the selection of MFs

improves a little more. Unlike the case of xtFF-ML and P-

XT-ML in all scenarios, it is observed that TRA-ML shows

an increased selection of (central MFs) 32QAM and 16QAM

in DT topology (Fig. 5b), and 16QAM and 8QAM (Fig. 5d) as

compared to TRA. The selection of central MFs offer higher

values of γd and lower values of spectrum utilization. Proper

selection of MFs manifests itself as reduced BBP, because

when a more XT-sensitive MF is chosen it may save spectrum

but prevents future connections to be assigned on OsaCs.

It is evident from the performance evaluation that TRA

efficiently balances the tradeoff among various factors for

different core geometries and path lengths in different topolo-

gies. In addition, we can also observe that the variation in

pattern of selection of MFs in RSA-ML is slightly different

from the pattern in RSA; however, the decrease in the BBP

is huge. Thus, a proper selection of MFs can improve the

performance of the network dramatically, and ML can greatly

help in selecting the optimal thresholds.

VII. CONCLUSION

We considered crosstalk-aware RMCSA algorithms for

space division multiplexed elastic optical networks. There is

a tradeoff between spectrum utilization and increased inter-

core crosstalk (XT) depending on the selected modulation

format. Many RMCSA algorithms use a constraint on the

number of litcores on overlapping spectrum to satisfy XT

constraints. In this paper, we proposed a machine learning-

aided approach that optimizes the thresholds to control the

selection of MFs. The approach can be used with any RMCSA

allocation algorithm that limits the number of litcores to satisfy

XT constraints. We compared the performance of a few RM-

CSA algorithms in the literature with the ML-aided variants,

and showed that the ML-aided variants dramatically improve

the bandwidth blocking probability of dynamic connection re-

quests in a variety of scenarios. A very interesting observation

is that the ML-aided variant of the worst performing baseline

algorithm outperforms the best-performing algorithm without

ML-aided threshold optimization.
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