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Abstract

Water distribution networks (WDNSs) are critical infrastructure for communi-
ties. The dramatic expansion of the WDNs associated with urbanization makes
them more vulnerable to high-consequence hazards such as earthquakes, which
requires strategies to ensure their resilience. The resilience of a WDN is related
to its ability to recover its service after disastrous events. Sound decisions on the
repair sequence play a crucial role to ensure a resilient WDN recovery. This paper
introduces the development of a graph convolutional neural network-integrated
deep reinforcement learning (GCN-DRL) model to support optimal repair deci-
sions to improve WDN resilience after earthquakes. A WDN resilience evaluation
framework is first developed, which integrates the dynamic evolution of WDN
performance indicators during the post-earthquake recovery process. The WDN
performance indicator considers the relative importance of the service nodes and
the extent of post-earthquake water needs that are satisfied. In this GCN-DRL
model framework, the GCN encodes the information of the WDN. The topology
and performance of service nodes (i.e., the degree of water that needs satisfac-
tion) are inputs to the GCN; the outputs of GCN are the reward values (Q-values)
corresponding to each repair action, which are fed into the DRL process to select
the optimal repair sequence from a large action space to achieve highest system
resilience. The GCN-DRL model is demonstrated on a testbed WDN subjected
to three earthquake damage scenarios. The performance of the repair decisions
by the GCN-DRL model is compared with those by four conventional decision
methods. The results show that the recovery sequence by the GCN-DRL model
achieved the highest system resilience index values and the fastest recovery of
system performance. Besides, by using transfer learning based on a pre-trained
model, the GCN-DRL model achieved high computational efficiency in deter-
mining the optimal repair sequences under new damage scenarios. This novel
GCN-DRL model features robustness and universality to support optimal repair
decisions to ensure resilient WDN recovery from earthquake damages.
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L WILEY
1 | INTRODUCTION

Multiple hazards that occurred in recent years have drawn
increasing attention to ensuring the resilience of com-
munity infrastructures. Critical infrastructure networks,
including the water distribution networks (WDNs), gas
supply networks, transportation networks, and power grid
networks, are the cornerstones for resilient community
services (Karakoc et al., 2019). As critical infrastructure,
WDNs play important roles in ensuring the quality of life
and community functions. Buried pipelines have expe-
rienced a large number of damages during past earth-
quakes (Nair et al., 2018; Pudasaini & Shahandashti, 2018).
For example, 3039 pipe failures were identified after the
Christchurch earthquake on February 22, 2011 (Eidinger
& Tang, 2014). The “effective” completion of the total
repairing work, which returned the WDNs service to the
minimal level of satisfaction, took about 53 days (T. D.
O’Rourke et al., 2014). Disruption of WDNs after earth-
quakes not only caused huge economic loss but also raised
serious public health concerns. Efficient post-earthquake
recovery of WDN improves the resilience of WDNs, which
requires analyzing its seismic resilience and developing
novel methods for resilience improvements.

The term “resilience” is originally derived from the Latin
word “resilo” with the meaning “bounce back” (Hosseini
et al., 2016), which describes the ability of a system or
material or physical structure to bear a disruption and
return to its original performance. For a water distribution
system, resilience can be described as its ability to resist
disruptive hazards (such as natural or man-made haz-
ards) and quickly restore its service after such disruptions.
Correspondingly, the methods for resilience quantification
can be broadly divided into two major categories, that
is, surrogate-based resilience quantification method and
performance-based resilience quantification method. The
surrogate-based quantification method treats the WDNs
as static systems (typically before disruption) without
considering their time-dependent performance during or
after the disruption (Jayaram & Srinivasan, 2008; Prasad
etal., 2004; Pudasaini & Shahandashti, 2020; Todini, 2000;
Zarghami et al., 2018). However, when it comes to the
WDN post-hazard management, the performance-based
method can provide a more straightforward evaluation
method and therefore has been widely used. Previous
studies have proposed different system performance met-
rics and attack-recovery strategies to evaluate infrastruc-
ture resilience, (Diao et al., 2016; Sharkey et al., 2021)
gave a detailed review of the related metrics. The com-
monly considered factors for the system performance eval-
uation include the water availability, water quality, and
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FIGURE 1 [Illustration of the water distribution network
(WDN) system performance prior, during, and after disruption by
hazards, the characteristics of which define system resilience (¢, and
t.nq denote the start and finish of the recovery process, respectively)

network structure (Cimellaro et al., 2016). Figure 1 shows
a schematic illustration of the WDN performance-based
resilience quantification. At each time step, a performance
metric is used to evaluate the current system state, which
can be divided into the prior and post-hazard disturbance.
For the post-hazard part, it can be further divided into the
response stage (Stage II) and the recovery stage (Stage III).
A common resilience quantified method is using the area
under the curve as the system resilience index (SRI) as
shown in the gray area of Figure 1.

The recovery decisions play an important role in the
post-hazards WDN system performance recovery process
or the WDN system resilience. As shown in Figure 1, the
faster the system recovers from disruption, the larger area
under the recovery performance curve (defined as SRI),
the more resilient the system is. Different decision mod-
els have been proposed in previous research to improve
decisions on WDN system restoration sequence. However,
due to the complex hydraulic relationships in a WDN
and the stochastic characteristics of failures, determining
an optimal restoration sequence to maximize the system
resilience remains a challenging problem. Different meth-
ods have been developed to find the optimal WDN restora-
tion sequence, which can be grouped into (1) general-
purpose metaheuristic algorithms, (2) greedy algorithms,
and (3) ranking-based prioritizations (Paez et al., 2020).

The general-purpose metaheuristic algorithms define
the problem of determining the optimal restoration plan
as a global optimization problem, which is solved by using
algorithms such as the genetic algorithm (GA), GA vari-
ants (NSGA-II), multi-objective evolutionary algorithm
(Hosseini et al., 2016; Hossain et al., 2019; W. Liu & Song,
2020; Ouyang & Wang, 2015; Zhang & Wang, 2016). The
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problems are often defined as an integer programming
model (Gonzalez et al., 2016; Nurre et al., 2012).

These algorithms, however, are computationally
demanding and time-consuming. These make the general-
purpose metaheuristic algorithms only suitable for
pre-defined damage scenarios. Given the uncertainties
associated with the exact damages during hazards, the
high computational demand limits the applicability of
this type of algorithms. Compared to the general-purpose
metaheuristic algorithms, the greedy search-based method
efficiently reduces the computing time (Castro-Gama &
Quintiliani, 2018; W. Liu & Song, 2020). A greedy search
method is a sub-optimal solution that selects the actions
based on local optimization. For example, W. Liu and
Song (2020) applied two greedy search methods for the
WDN recovery based on the performance improvement
at each time step. The effectiveness of the greedy search
method has also been proved in the WDN optimal restora-
tion problem (Cormen et al., 2009; Y. Liu et al., 2017;
Pinzinger et al., 2011; Uber et al., 2004). Given its ability
to achieve a decent performance with high computation
efficiency, the greedy search algorithm is regarded as the
most applicable method in the case of an emergency.
However, the mechanism of this method can only achieve
a sub-optimal solution. The ranking-based prioritization
determines the restoration plan based on the ranking
of the pipe importance. For example, Balut et al. (2018)
ranked the pipe importance based on six criteria, that is,
pipe diameter, distance from the source, velocity, flow,
pipe closure impact, and so forth. The results indicate the
diameter prioritized repairing sequence achieved better
performance under most damage scenarios. Brink et al.
(2012) compared four different restoration strategies based
on experts’ knowledge. W. Liu et al. (2020) applied a
damage-based prioritization and prioritized the repairing
strategy based on distance-to-source. The ranking-based
prioritization method is fast since it does not require
conducting any hydraulic simulation during the decision-
making process. It relies on the list of pipes ranked by
their relative importance, which is subjected to expert
judgments.

The recent development in advanced machine learning
(ML) provides civil engineers with more powerful tools
for solving practical problems (Ahmadlou & Adeli, 2010;
Alam et al., 2020; Pereira et al., 2020; Rafiei & Adeli,
2017). This paper explored a novel post-hazard recovery
decision-support framework by integrating the graph con-
volutional neural network (CNN; GCN) into deep rein-
forcement learning (DRL) to determine the optimal WDN
restoration sequence after the earthquake. The artificial
intelligence (AI)-based decision support model is named
the GCN-DRL model. The GCN-DRL model utilizes GCN
to encode the topological information of the WDN and
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uses the DRL framework to learn and identify the opti-
mal restoration sequence that maximizes the SRI during
the recovery process. In principle, this method belongs
to the general-purpose metaheuristic methods that solve
the global optimization problem. However, the GCN-DRL
model can take advantage of the transfer learning strategy,
where the pre-trained GCN-DRL model can be extended
for new disasters. This can significantly reduce the compu-
tational time for new damage situations, which is crucial
for fast emergency responses.

The paper is organized as follows: Section 2 intro-
duces the dynamic demand-based seismic resilience eval-
uation model, which consists of a model for assessing
the damages of WDNs subjected to earthquakes, a model
for WDN recovery, a model for WDN performance mea-
surement, and a model for WDN resilience quantification.
The resilience evaluation model is the key testbed as it
allows to quantify the performance of different repairing
sequences that are determined by different optimization
methods. Section 3 starts with introducing the background
of DRL and GCN. This is followed by the description of
the detailed architecture of the proposed GCN-DRL ML
model. Section 4 describes the application and perfor-
mance of the proposed ML model for a widely used WDN
testbed (Hernadez et al., 2016). The testbed is assumed to
be subjected to different earthquakes so different damage
situations can be generated. The final performance of dif-
ferent optimization methods under different seismic situ-
ations is also compared. Section 5 summarizes the major
conclusions of this study and discussed future research
needs.

2 | THEORETICAL FRAMEWORK FOR
POST-EARTHQUAKE PERFORMANCE
RECOVERY AND RESILIENCE
ASSESSMENT OF WDN SYSTEM

The SRI, which is defined as the integration of the time-
dependent system performance degree (PDW(t)) during
the post-hazard recovery process, is utilized to measure
the system resilience (i.e., Figure 1). In this study, WDN is
assumed to be subjected to earthquakes. The performance
of the WDN system is indicated by its capability to meet the
water-use demands of customers after the earthquake. An
analysis framework is developed for the WDN system seis-
mic damage model, recovery model, and resilience assess-
ment. Figure 2 shows the overall procedures to implement
the proposed recovery-based resilience evaluation frame-
work, which is used to evaluate the performance of dif-
ferent system repairing strategies. Details of these com-
ponents are introduced in the subsequent sections. The
overall procedures include.



Q3

* L WILEY

WDN pipes failure assessment

@ FAN ET AL.

Recovery based resilience evaluation

| Input WDN file |

Get repairing advice from adopted method

Set seismic parameter(magnitude, location,

|

depth)

!

Remove the damages on the pipe

Compute PGV for each pipe (Eq. 1)

!

Record the repairing time based on the number

of damages

Get failure probability, damage number

Change the nodes’ water demand by Eq. 7

{

Create leaking randomly based on the

Run hydraulic simulation by WNTR

number of damages

{

|
Output WDN file with leaking

Compute and record PDW(t) by Eq. 10

situations

¥
Record initial PDW by Eq. 10 |

— o ——

Yes

|
I
I
I
I
I
I
I
I
for each pipe (Eq. 4) |
I
I
I
I
I
I
I
I
I

Get the recovery SRI by Eq. 11 |

FIGURE 2

1. A hydraulic model of the WDN is first constructed. This
requires collecting the basic hydraulic information of the
WDN needed for the hydraulic simulation, such as WDN
topological connection structure, pipe length, water user
demands, and so forth.
2. Then, the earthquake damages on the WDN are ran-
domly generated based on the seismic vulnerability of the
WDN. The damage here indicates the leakage point of each
pipe. Thus, a pipe with a high failure probability may have
more leakage points than that with a low failure proba-
bility. While a pipe with extremely low failure probability
may have zero damage points. After determining the ini-
tial damage situation, a hydraulic simulation is conducted
to obtain the initial performance degree of WDN (PDW)
after the earthquake before the recovery stage begins.
3. The system recovery model includes components that
consider the dynamic changing of user water demand,
pipe repairment, and system performance evaluation. At
each time step, a damaged pipe is selected for repair by
the adopted repairing strategy. The repairing time for a
pipe is assumed to be dependent upon the number of
leakages along the pipe. Once repaired, the leakages on
the pipe are removed for the selected pipe. The user’s
water demand is changed, and subsequently the hydraulic
simulation is conducted. The PDW at each time step is
determined based on the system performance evaluation
indicator. The repairing process is repeated until all the
damaged pipes are restored. The final SRI is determined
(i.e., Equation 11).

To evaluate the performance of the developed GCN-DRL
method (S1), the system recovery processes by this method

Tllustration of framework of the system resilience assessment and recovery

are compared with four other methods for the repair strate-
gies, including two greedy search-based methods (named
S2 and S3; W. Liu et al., 2020), a GA method (S4; Zhang
et al., 2017), and a diameter-based repair prioritization
method (S5; Balut et al., 2018).

2.1 | WDN seismic damage model

Various components of WDN, including pipes, tanks,
pumps, and water treatment facilities, could all be sub-
jected to different extents of damages by earthquakes. To
simplify the analyses without the loss of generality, this
paper focuses on the repair sequence of distributed compo-
nents, that is, pipelines. The localized facilities (i.e., tanks,
pumps, and water treatment facilities) are not considered
in the analyses. Similar assumptions were also used in
previous studies (W. Liu et al., 2020). A number of stud-
ies about the WDN response to seismic have been pro-
posed (Alliance, 2001; M. O’Rourke & Ayala, 1993). The
American Lifeline Alliance model (Alliance, 2001) is one of
the most commonly used models. Moreover, several stud-
ies extended this model by considering factors such as
previous non-seismic records and pipe deterioration (Fra-
giadakis & Christodoulou, 2014). In this study, the damage
model proposed by Mazumder et al. (2020) is used. The
utilized damage model considers the relationship between
peak ground velocity (PGV) and pipe repair rate to describe
the pipe fragility curve. For the PGV estimation of an earth-
quake event, an empirical equation, Equation (1), proposed
by Yu and Jin (2008) is adopted in this paper since it is
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(Mazumder et al., 2020)

developed with a dataset collected at a similar location to
the testbed WDN of this study:

PGV = 10—0.848+0.775M—1.83410g(R+17) (1)

where R is the distance from the epicenter (km) and M is
the magnitude of the earthquake.

With the information of PGV, the pipe failure probability
with the consideration of pipe materials and deterioration
by aging is determined by Equation (2):

P(f) = 1- e—klkc*0.00187*PGV ()

where P(f) is the pipe failure probability every 1000 feet
(304.8 m). k; is the correction factor by the pipe material,
and k. is are the correction factors that consider the effects
of pipe material, size, soil type (electrical conductivity),
and age (deterioration). The recommended values of k;, k.
for different pipes can be found in the sub-table in Figure 3.
k. for cast iron is dependent upon the soil electrical con-
ductivity and age.

Previous studies often use predefined damage status for
each pipe, such as “leak” or “break,” to describe the extent
of damages. For example, Paez et al. (2018) used different
emitter coefficients for leaks and breaks. This study sim-
plified the treatment of the extent of damage by using dif-
ferent numbers of leakage points along the pipe based on
its failure probability. The larger the number of leakages,
the more the pipe behaves like “break” status and requires
a longer time to repair. The occurrence of leak numbers
along a pipe is assumed to follow Poisson’s distribution
(Cimellaro et al., 2016; Equation 3):

P (m)= %ﬂ»’” e‘*(i) 3)

where P(m) is the probability of m damages occurring in
the pipe, L is the total length of the pipe, and L, is a refer-
ence length of 1000 ft (304.8 m).
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The parameter A of Poisson’s distribution in Equation (3)
can be estimated based on the probability where no failure
occurs on the pipe by using Equations (4) and (5):

P(m=0)=1-P(f) =e_’l<%) 4

A= _1H(E:£P(>f)) ©
0

To determine the consequence of a seismic hazard, the
number of failure locations along each pipe is ran-
domly sampled with the corresponding Poisson distribu-
tion (Equation 3). The position of a pipe failure is assumed
to occur at a random location along a pipe.

The effects of seismic damages on the operation of WDN
are simulated by assuming that the damages will cause
leakages in the pipelines. In principle, the leaking sizes
may vary with the extent of damages to the pipes. For sim-
plicity, the damages are simulated as leaks with the same
leakage model as shown in Equation (6). This, however,
can be easily extended when more accurate information is
available for a specific WDN. The seismic failure assess-
ment of the water pipe network is coded by Python scripts:

dieak = Cq Ay/28h (6)

where dj,, is the leakage water flow, A is the leakage area,
C, is the discharge coefficient, and h is the water pressure
at the leakage point. In this study, the discharge coefficient
is used 0.75 by assuming a turbulent flow (Lambert, 2001),
and the leakage area A is selected based on an empirical
equation A = 7%0.25%*d? (Shi & O’Rourke, 2008).

The hydraulic conditions of the WDN under normal
operation and post-earthquake failure conditions are sim-
ulated by the hydraulic simulation solver WNTR (Klise
et al., 2020). WNTR is an open-source python package
for hydraulic simulations of the water pipe system, which
solves similar sets of hydraulic equations as EPANET 2.2
(Rossman et al., 2020). By treating earthquake damages
and repair as the proper boundary conditions, the water
pressure at any location in the WDN can be determined.

2.2 | WDN system recovery model

As only pipe damages are considered in the WDN sys-
tem damage model, the only action at each timestep is

Q4
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to decide which pipe should be repaired. However, more
types of actions can be considered by extending this frame-
work (such as close valve, pipe replacement, pipe inspec-
tion, etc.) as long as the influence on pipe hydraulic
conditions and repair time are available. This study also
considers the possible dynamic change of user’s water
demand during the recovery process. Didier et al. (2018)
studied the post-earthquake water demand behaviors after
the 2015 Gorkha Earthquake. The results indicated that the
expected water demand decreased significantly when sub-
jected to a high level of damages to buildings and equip-
ment. Although the buildings and equipment restoration
should be independent of the WDN restoration process,
we assume the user-expected water demand is restored
to the level before the earthquake, which is a simplifi-
cation due to the lack of data. Specifically, a quadratic
model is assumed to describe the time evolution trends
of water demand post-earthquake, that is, disruption and
then recovery process in Equation (7):

2
t #7140
— ) *D? >0
D? (t) = (ttolal ) ! (7)
0.0001*D?  t=0

where D? is the expected water demand before the earth-
quake, t is the time step during the recovery process and
t = 0 corresponds to the time when repair of pipes starts. It
is assumed that users will still use a small amount of water
even when the facilities are damaged at the beginning. t >
0 corresponds to the recovery period. ¢, is the total recov-
ery time, which is determined by the initial damage situa-
tion or the total number of pipe failures due to the earth-
quake hazard.

To consider the influence of water leakages, the
pressure-dependent hydraulic model is adopted. The real-
time water supply to each node on the WDN is determined
by the expected water demand and the actual water pres-
sure. The relationship between the real-time water sup-
ply (D;) and the expected water demand (D?) is shown in
Equation (8) (Wagner et al., 1988). The hydraulic simula-
tion is conducted at each time step after a selected pipe is
repaired:

0 1 Pi < Do
Di (t) = DlO< Pi—Po )E Do < Di < Dy (8)
Pu—Po
Dy pi > Py

where p; is the actual water pressure at the node, pj is the
predefined lower bound of water pressure (under which no
water is supplied), p,, is the upper bound of water pressure
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(the minimum pressure to ensure water supply to meet the
design water demand). p, and p,, are set as 0 and 30 m as
recommended by Zhou et al. (2019).

To focus on the key problem without loss of general-
ity, the following assumptions are made in developing a
decision support model for the optimal repair sequence to
restore the WDN service.

1. Repair time for pipe damages: Different types of damaged
pipes may require different repairing times. For example,
the Federal Emergency Management Agency provided the
estimated repairing time of different WDN components
(Federal Emergency Management Agency, 2003). To sim-
plify the analyses, it is assumed an equal amount of time is
needed to fix a leakage point in a pipe. With this assump-
tion, the repairing time of each pipe is determined by the
total leakage locations alongside this pipe. The number of
leakages along a given pipe is affected by the pipe mate-
rial, age, soil type, location, and uncertainty (i.e., Poisson
distribution; Equations 3-5).

2. Binary working status of damaged pipes: The typical pipe
repairing process involves closing the pipe end connec-
tions. A damaged pipe is re-open only when all repairs
along this pipe are finished. This study assumes that a dam-
aged pipe is either closed (when damaged) or open (when
repaired) based on the status of the repair. This assumption
simplifies the hydraulic model of the WDN.

3. Resource for repair: A single repair team is assumed,
that is, the WDN is repaired with one repairing team
with no resource limits. No parallel repairs by multiple
teams are considered. This is also a common assump-
tion used in prior research in determining the optimal
recovery sequence of WDN (Almoghathawi et al., 2019;
W. Liu et al., 2020). This assumption ensures the failed
pipes are recovered sequentially one by one. However,
it is noted that more sophisticated assumptions on the
number of repair teams and their work efficiency can be
incorporated.

3. Non-preemptive recovery: It is assumed that the repair-
ing team has to finish the repairing work on the current
pipe before moving to repair the next pipe. This assump-
tion is often used in analyzing infrastructure repair pro-
cesses such as roads, bridges, and power grids, and so forth.
4. Dynamic changing post-earthquake water demands: The
water demand at each node of WDN is assumed to grad-
ually restore to the pre-hazard condition as the restora-
tion of WDN continues. A single post-hazard dynamic
water demand recovery process is used in this study. It
is noted that different nodes in the WDN could experi-
ence different dynamic water demand restoration process
depending upon the function and location of the nodes.
However, multiple dynamic water demand patterns can be
easily added when such data is available.
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2.3 | WDN system performance
evaluation model

The performance of the WDN is measured by its capabil-
ity to meet the customers’ water use demands. Given the
essential role of clean water supply to public life, it should
also be one of the most important criteria for post-hazard
restoration decisions (Romero et al., 2010). The water-user
nodes satisfaction degree (NSD) is used to quantify the per-
formance of the system in this study. The NSD is defined
as a ratio of the expected water use at the node and actual
water supplied to the node (Equation 9). NSD value larger
than 1 is assumed to be 1 (or water demand at the node is
fully met). The NSD is defined as follows:

1 Di(t)=D? ()

Di(1) 0
20 pm<p® o

NSDl (t) =

where D;(t) is the actual water supply to the node at t and
D?(t) is the expected post-earthquake water demand at .
The units of both two variables are flow rate (m?3/s).

Based on the NSD defined for each node, the overall
degree of performance of a complete WDN is defined as
the performance degree of the water network, which is
calculated as the weighted sum of the NSD at each node
in the WDN (Equation 10). The weight factor considers
the relative importance of the node. Using NSD to mea-
sure the overall WDN performance allows considering the
importance of critical water supply nodes by assigning
appropriate weight to the nodes (i.e., Equation 10). For
example, restoring water supply to critical facilities such as
hospitals, firefighting stations, schools, and so forth is
more critical than less safety critical facilities. The impor-
tant nodes can be prioritized in the restoration plan by
assigning proper weights to the NSD, which can be con-
sidered for the seismic consequence analysis (Shahata &
Zayed, 2016):

PDW () = %wi*NSDi 0) (10)

i=1

where NSD;(¢) is the node satisfactory degree at time ¢ that
belongs to (0, 1] and wj; is the weight factors that consider
the relative importance of the nodes w;; the weight factor

for each node i is calculated by w; = Z"L , Where n is
j=1%j
the total number of service nodes. The weight of a node w;

should be subjected to Zinzl w; = 1. Therefore, the PDW
at any time ¢ falls within the range [0, 1].

As some prior studies indicated, the weight or impor-
tance of a water supply node may also change during
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the restoration process. A detailed method to quantify
the importance of different nodes is out of the scope
of this study. A pre-defined fixed weight for each water
supply node is used in this paper. Dynamic changing of
node importance can be considered by using the proposed
framework, which is similar to the consideration of the
dynamic changing of user’s expected water demands.

2.4 | WDN system resilience index and
resilient restoration

Based on the definition of the PWD(t) (Equation 10), the
SRI during the recovery process is defined using the area
of under-recovery curve of PWD(¢) (Figure 1), that is, Equa-
tion (11):

Lend fend
SRI = [ PDW (t)dt = Y PDW (t) (1)
to

t=ty

where t.,q is the time of ending recovery, ¢ is the time
of beginning recovery; the integration is normalized by
(tend — to) to consider the effects of recovery time.

To obtain a resilient restoration plan, the repairing
sequence of damaged pipes is expected to achieve a higher
SRI value at the end of the recovery process. In this study,
we use the SRI function (Equation 11) as the only opti-
mization objective. Although previous studies used differ-
ent standards for recovery evaluation (Paez et al., 2018),
the problem can still be taken as a single objective opti-
mization problem by assigning appropriate weights to each
standard.

To obtain a resilient restoration plan, the repairing
sequence of damaged pipes is expected to achieve a higher
SRI value at the end of the recovery process. In this study,
the SRI value is set as the optimization goal (i.e., maxi-
mization of SRI by proper decision sequence). It is noted
that some of the previous studies used different measure-
ments of the recovery-based system resilience, and these
resilience measurements can be easily adapted as the opti-
mization goal.

2.5 | Optimal restoration problem

Given the aforementioned description of the seismic dam-
age model, recovery model, and evaluation model, the
efficiency of different decision-making methods can be
easily quantified by using the SRI value (Equation 11).
Hence, the optimal restoration problem in this study can
be defined as finding the most optimal repairing sequence
that can achieve the highest SRI value. Mathematically, the
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problem of optimal repairing sequence is defined in Equa-
tions (12) to (14). Equation 12 defines the main objective
function for optimization, which aims to maximize SRI
given a decision vector a. The decision vector is the repair-
ing decision at each time step, that is, (ay, ay,...,a;_,)-
Equations (13) and (14) define the constraints when solving
the optimization problems, that is, the repairing decision
at each time step should not be repeated, and the union of
repaired decisions should equal the set of damaged pipes:

argmax SRI(a) 12)

S.t.
a #a #a3... # (13)
@V auUa,..Uag =K (14)

where SRI(-) is the resilience of WDN with the given
repairing sequence a, a, is the selected pipe for repairing
in time step ¢, and K is the set of damaged pipes due to the
hazards.

3 | GCN-DRL MODEL

3.1 | DRL and GCN

311 | DRL

DRL is an impactful development in ML model. It pro-
vides a powerful new approach to solve optimization prob-
lems based on a series of actions. DRL achieves promis-
ing results to identify the optimal action sequence from
a massive set of action spaces and based on the corre-
sponding system states and interactions with the environ-
ment. Andriotis and Papakonstantinou (2019) provided a
detailed introduction about the successful DRL applica-
tions in the management system. DRL has also been suc-
cessfully applied in areas such as vehicle control (Y. Wang
et al., 2020) and pavement maintenance (Yao et al., 2020),
which have proven the ability of DRL for global optimiza-
tion problems with high efficiency.

For the WDN restoration, the problem of optimal repair
sequence is a global optimization problem. A decision-
maker is expected to decide which pipe should be repaired
under the current system state and then make the next
decision based on the next system state. This problem can
be illustrated in Figure 4; at each time step, the agent
makes a decision on which pipe should be repaired, that
is, a;, from the defined action space K (the set of dam-
aged pipes). This action changes the system state from s;
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FIGURE 4 Illustration of Q-learning (Note: s, € S is the states
of the system, a; € K is the space of action, 7; is the reward of action
a; when the station is s;)
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to s;,1 as the NSD of each point changed due to this repair-
ing action. In the meanwhile, the system will feedback
a reward r; to reward the agent based on how good this
action is to positively change the system state. To achieve
a global optimal repairing sequence, the agent should not
only consider the instant reward of each action but also
consider its potential influence in the future. However,
such a decision-making process is extremely challenging
for humans as the influence of current decisions on the
future is hard to be quantified. To overcome this chal-
lenge, the reinforcement learning (RL) algorithm is uti-
lized to evaluate the performance of each action based on
its instant reward and future reward.

Unlike the greedy search-based method that only com-
putes the instant reward, RL gives a Q value to each action
under different system states. In this study, the system state
is represented by the NSD value considering the system
topological structure. According to the theory of RL, the
Q value integrates the action’s instant reward and the max
Q value of the next state after taking this action. Such a Q
value is defined as the Bellman equation (Bellman, 1952) as
shown in Equation (15). As demonstrated by (Mnih et al.,
2013), by iteratively sampling all the actions under all the
states, the RL model will compile the Q values of each
action under each state to get a Q table. Then, the RL model
determines the most optimal action by choosing the action
with the highest Q value:

max Q" (s,a") 1] @15)
————
optimal future reward

Q(s,a) =E[ ot

instant
reward

where the E denotes the expectation of Q value (Sutton &
Barto, 2018), r is the immediate reward after taking action
a, and y is the return discount for future rewards by follow-
ing optimal policy of next state s;,;. Q*(s’,a*) indicates
the Q values of all the actions at next state s’.

However, for most real-world problems, the aforemen-
tioned Q table is extremely hard to obtain due to the infi-
nite number of combinations of states and actions. For
the WDN restoration problem, 50 damaged pipes could
lead to 50! possible restoration sequences. To overcome this

Q5

Q6
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FIGURE 5 Illustrative concept of deep reinforcement learning

(DRL) that uses artificial neural network as the Deep Q function

challenge of searching for the optimal action from an infi-
nite large action space, DRL is proposed. The DRL intends
to leverage the advancement in deep learning to solve the
traditional RL problem Mnih et al. (2013) as shown in
Figure 5. Moreover, a deep Q function is utilized to esti-
mate the Q value of each action based on the current sys-
tem state. Hence, such a Deep Q function should have the
ability to interpret the current system state and approxi-
mate the Q value of each action. Traditional DRL typically
uses common types of artificial neural networks (ANN) as
the Deep Q function. However, the ANN models typically
use a tabular- type of input data. They are not effective
when dealing with graph type of data such as the data from
infrastructure networks. To further advance this domain, a
GCN is incorporated in this study to be the Deep Q func-
tion to encode the network structure of WDN and the cor-
responding data.

312 | GCN
The GCN was first proposed by LeCun et al. (1998) as
inspired by the motivation of the CNN (Guo et al., 2020,
2021; Jeong et al., 2020; Tang et al., 2021; F. Wang et al.,
2021). Graph neural network is a special neural network
that can directly operate on graphic structural data. The
GCN utilized the key ideas of a CNN, such as local connec-
tion, shared weights, and the use of multi-layers. It, how-
ever, convolves the neighborhood’s feature of each node,
which overcame the limitation of CNN that can only per-
form on regular Euclidean data such asimage (2D) and text
(1D). In the civil engineering area, GCN has been applied
for traffic flow prediction by treating the traffic network
as a special type of graph (Li et al., 2017) and traffic con-
trol (Chen et al., 2021). The successful applications of GCN
in different domains have proven the potentials of GCN in
understanding the complex relationships in a graph struc-
ture.

In the decision-making process, understanding the rela-
tionships in the current graph structure plays the most
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important part when targeting a global optimization. How-
ever, unlike some local optimization methods, there is no
determined mathematical equation that can be used in this
process. The neural network provides a novel approach
to mimic human neural activity. By integrating the GCN-
DRL and WDN recovery model, the parameters inside the
GCN can be trained to mimic the expert’s experience and
intuitive accumulation process to obtain a global optimiza-
tion decision. Specifically, the input of the GCN is the
current state of WDN, including the WDN structure
(including pipe length and connection matrix), and the
satisfactory degree of each node (Equation 9). The out-
put of the GCN is a matrix of vectors that represents the
understanding of the current WDN by the GCN. Such
output is difficult to be interpreted but it will be trans-
formed into a list of action scores by the following neural
network layer. The process is introduced in the following
section.

In this paper, the GCN implemented by Kipf and Welling
(2016) is utilized for WDN network analysis. The layer
of GCN performs a convolutional process on a graph-
structured dataset. Unlike the traditional 2D convolutional
process of CNN, which focused on extracting the feature
via a selected convolution filter, the GCN layer conducts
the feature extraction of each vertex and its neighbors.
Therefore, the structure of the graph is considered. Mathe-
matically, a graph convolutional layer in GCN will project
the nodes of the WDN network into a latent space by using
Equation (16):

1 1
HH =g <ﬁ‘5[m‘5HlWl> (16)

where H! is input to the Ith layer of GCN neural network.
At the input layer | = 0, H° = X, where X is the fea-
ture matrix of the graph whose dimension is N X D, N is
the number of nodes, D is the number of features of each
node; A = A+ 1, where A is the representative descrip-
tion of the graph structure. An adjacency matrix is used
in this study to describe the graph structure. I is the iden-
tity matrix with the same dimension as A; D is the diagonal
node degree matrix of A; o(-) denotes the activation func-
tion. The commonly used ReLU activation function is used
in this study; W' is the weight matrix of the Ith layer.

The input to the GCN is the feature matrix of the graph,
X, whose dimension is N X D, N is the number of nodes, D
is the number of features of each node. In this study, one
feature is used for node attribute, which is the NSD defined
in Equation (9). The output of the GCN is a matrix that
contains the embedding information of the current WDN
by the GCN. Each row of the matrix represents the latent
space value of each node. The number of rows equals the
number of total nodes in the WDN.
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The architecture of graph convolutional neural network-DRL hybrid machine learning model (step: record current training

times, episode: one recovery revolution, E: initial value of ¢, E4.,,: decay rate of ¢ during the training process, episode,,;: total training
revolutions, s,: WDN state at time ¢, 3: random value, and a: pipe ID for repairing)

3.2 | Proposed GCN-DRL model

A GCN-integrated DRL (noted as GCN-DRL) model is pro-
posed in this study to optimize WDN recovery by combin-

ing the GCN and DRL. Recent studies have also proved the
power of using GCN and DRL in different areas such as 2.
radio networks (Zhao et al., 2020), virtual networks (Yan

et al., 2020), and manufacturing systems (Hu et al., 2020).

This study is the first attempt to integrate GCN and DRL

to extract information from the WDN and make optimal
decisions for post hazards restoration.

The architecture of the proposed GCN-DRL model is
shown in Figure 6. The left side of Figure 6 illustrates the
reinforcement training framework (DRL) to train the Deep
Q function, and the right side of Figure 6 provides the
architecture of the proposed Deep Q function that inte-
grates two GCN layers and one neural network layer. The 3.
framework is illustrated as follows:

1. At the beginning stage, the parameters that are used to
control the training process should be initialized, that
is, the E, Egecay, and episode,,. The first two param- 4.
eters are used to determine €. This € is used to control
the probability of “taking actions randomly” and “tak-
ing actions based on Deep Q function,” which is also

known as epsilon-greedy policy (Wiering & Van Otterlo,
2012). The benefit of taking random actions is that this
process could prevent the agent from being trapped by
the local optimal solution especially when its experi-
ence is limited.

A fixed pipe list is also initiated to record fixed pipes.
This list is used to prevent any pipes from being repaired
repeatedly. As shown in Figure 6, a pipe is either ran-
domly selected from the remaining failure pipes or
determined based on the Deep Q function. In this study,
the output of the proposed Deep Q function is a list
of repairing scores. Hence, the pipe with the highest
repairing score will be selected. This is the first time
interaction between the deep learning framework and
the Deep Q function as shown by the top arrow in
Figure 6.

The WDN is repaired based on the selected pipe. Conse-
quently, the hydraulic situation of the WDN is changed.
The supplied water of each node is recalculated by run-
ning the hydraulic simulation (Section 2.2), in which
the next state s;,; of the WDN is obtained.

Two reward values are essential to determine the award
score (Q) of each action, that is, the instant reward func-
tion and the future reward function (Equation 15). In
this study, the instant reward is set proportional to the
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improvement in the PDW with the consideration of
repairing time (Equation 17). The WNTR model is used
to calculate the PDW of the current state and one-step
forward stat. The future reward is obtained by feeding
the updated state of WDN into the Deep Q function to
get the maximum output. This is shown by the middle
arrow in Figure 6.

5. After obtaining the instant reward r; and potential
future reward (max Q*(s’,a*)), the Q value of the
selected action will be computed by Equation (15). Then
it is fed back to the Deep Q function to train the inside
neural networks. While such future reward is inaccu-
rate at the beginning, However, with the training pro-
cess development, this predicted value will be closer to
the real Q function. This process is shown by the bottom
arrow in Figure 6.

6. The training process will be repeated with a number of
episode,,, . Each episode denotes a full recovery rev-
olution that contains a trial repairing sequence. The
WDN state is also updated whenever an action is made.
This trial-and-error process can be seen as a process
mimicking an export accumulating the experience. For
each integration, the parameters of the neural networks
are calibrated and updated by the backward propaga-
tion process.

The integrated Deep Q function is shown on the right
side of Figure 6, which contains two layers of GCN and two
layers of ANN. As the output of the GCN layer is a matrix of
N x D (refer to Equation 16), it cannot be directly fed into
the following ANN layer. Inspired by CNN, we averaged
the node values into a 1D vector space and then fed it into
the ANN layer.

The detailed architecture of the Deep Q function emu-
lated by the GCN is described as follows. The input to the
Deep Q function is the WDN state, which is a graph struc-
ture data represented by the network structure and NSD.
It is projected by the first graph convolution layer with 64
dimensions. The outputs are then projected to 128 dimen-
sions by the second GCN layer. The output of the second
GCN layer is aggregated by taking the average values of
the projected node attribute in each dimension, which is
128 dimensions as well. Then this vector is fed into a neu-
ral network. The first layer of the neural network contains
128 neurons to accept the input data of 128 dimensions. The
number of neurons in the second layer or the output layer
of the neural network equals the dimension of the action
space, which is the total number of initially damaged pipes.
A linear activation function is used in the last layer of the
neural network:

= PDWi(H)-PDW(-1)
= o

a7)
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FIGURE 7 The testbed WDN of Fairfield, California, with
annotation of node importance and ground soil types

where PDW;(t) is the degree of performance of WDN after
taking repair action i, PDW(t — 1) is the degree of perfor-
mance of WDN after previous repair action, and T; is the
duration needed in repairing pipe i. This study assumes
that the repairing time is determined by the number of
leakages in the damaged pipe.

The proposed GCN-DRL model is used to determine the
pipe repair sequence. To achieve a smooth and stable train-
ing result, the technique “experience replay” described by
Mnih et al. (2015) is also used in this study. The graph neu-
ral network and RL used in this study is implemented by
the python deep graph library (M. Wang et al., 2019) and
PyTorch library (Paszke et al., 2019).

4 | CASESTUDY
4.1 | Case study Rancho Solano Zone III
WDN

The GCN-DRL-based repair decision-making model based
on the recovery-based WDN seismic resilience evaluation
framework is applied to analyze the seismic recovery of
a testbed WDN located in Fairfield, California. The com-
plete dataset about this WDN is publicly available from
the database maintained by the University of Kentucky
(Hernadez et al., 2016). The original water demand and
water supply conditions are used in the study. The influ-
ence of pipe ages, materials, customer importance, and soil
types is also considered in this case. The detailed informa-
tion about the testbed is summarized in Table 1. The WDN
structure, levels of node importance, and the soil types are
shown in Figure 7. These attributes of each pipe and the
seismic PGV are used to obtain the damage probability of
each pipe.
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TABLE 1 Summary of the information about the testbed
Variable name Value Description
Water distribution Number of pipes 126 Total number of edges
network (WDN)
structure
Number of nodes 112 Total number of vertices
Node elevation (above sea [90, 139] This is predefined by the dataset
level; m)
Pipes Pipe length (m) [90, 1200] This is predefined by the input
file
Pipe age (years) [50, 100] Randomly assigned to each pipe
based on uniform distribution
Pipe material “ast iron,” Randomly assigned to each pipe

“ductile iron,”
“steel,”

“« ”

pve,
“asbestos”
Customers Number of customers 63 Vertices whose basic water
demand is larger than O
Weights of customers Lw =25 Different types of customers. I
(unitless) Iw = 3 denotes the most important
:w =2 node and III denotes the least
important
Soil Soil type I: Ry < 1500 Q Different types of soil, Ry

IT: 1500 Q < Ry < 2000 Q
III: Ry, > 2000 Q

ﬁ
Pipe PGV value (cnvs)
.\> _—
Leakage points

(a) (b)

FIGURE 8 (a)Distribution of peak ground velocity (PGV)
along the pipelines (cm/s); and (b) number of leakage points
alongside the damaged pipe (see Supplementary materials)

4.2 | Water pipes seismic failure
prediction and GCN-DRL hybrid model
training

The WDN is first assumed to be subjected to a magnitude
6.5 earthquake with the epicenter located at the left bottom
of the WDN (red star annotated in Figure 8). The depth
of the earthquake is assumed to be 5 km. The earthquake-
induced PGV is calculated using Equation (1) and shown in
Figure 8a. The corresponding numbers of pipe damages are
determined considering the influences of pipe material,

denotes the soil electrical
resistivity. Distribution of soil
type is shown in Figure 7

pipe age, pipe length, and soil material based on the
equations described in the earlier context (Equations 1-5).
The final number of damages on each pipe is shown in
Figure 8b. In summary, the earthquake causes 69 total
damages points affecting 44 pipes. The initial PDW imme-
diately after the earthquake is computed to be about
0.00564.

The proposed GCN-DRL model is trained to repair the
damaged pipes in the WDN according to the framework
described in Section 3.2. Table 2 shows the key parame-
ters used in training the GCN-DRL mode. The total episode
of training (or the number of complete repair sequences)
is set as 500. Since 44 pipes are damaged, this means the
Deep Q function is trained 22,000 times. The parameter ¢,
which determines if repair is by random decision or by RL
learning, started withe = 1and continues to decrease to a
small value with progress in WDN repairment. The Eg,qy
is set as 5000 so the € value could be nearly 0 at the end of
training (0.0122).

Figure 9 shows the SRI of the WDN system under
500 training episodes and the corresponding € values.
The smoothing SRI is derived from Savitzky-Golay fil-
ter (Schafer, 2011) as shown by the dashed line. The con-
trol parameter ¢ determines if the repair decision is made
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TABLE 2 Key parameters used for the graph convolutional neural network integrated deep reinforcement learning model

Parameter Description Value

€ The parameter controls the probability of action taken by randomly or GCN-based e=EX e_]X Edf;

E The initial value of 1

Egecay € decay rate 5000

episode;,;q Total revolution number for training. One episode means one complete recovery process 500
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FIGURE 9 [Illustration of the learning curve of proposed
methods

randomly (large €) or from the Deep Q function (small €).
The results imply that the SRI values in the first 70 episodes
are relatively low and unstable since the control parame-
ter € is relatively large, these restoration actions are mainly
randomly chosen (Figure 9). As the training process con-
tinues, the control parameter € decreases, so the probabil-
ity of taking actions guided by GCN increases. The agent
makes decisions mostly based on the GCN after around 350
episodes, which achieved stable solutions with high SRI
values. The fluctuations of the SRI are due to the inherent
randomness of the neural networks and the high dimen-
sional state space.

4.3 | Conventional decision-making
methods for pipe recovery sequence

The performance of the repair sequence by the GCN-
DRL ML model is compared with four conventional
decision-making methods, including two greedy search-
based strategies (S2 and S3; W. Liu et al., 2020), a GA
method (S4; Moscato, 1989; Zhang et al., 2017), and a
diameter-based repair prioritization method (S5; Balut
et al., 2018). Although other repairing methods have been
used in the previous studies, most of the methods belong to
these classes and are different variants of these four meth-
ods. The detailed mechanisms of these conventional meth-
ods (named as S2 to S5) are briefly described as follows:

431 | S2:Static importance-based method
This method prioritizes pipe repair based on ranking the
improvements of the PDW after repairing the pipe over the
initial damaged status. The larger the ranking factor, the
higher the priority for the pipe to be fixed. The ranking fac-
tor of pipe i is defined as

PDW;—PDW,
I, = S as)
where PDW; is the PDW after repairing pipe i, PDW,, is the
PDW before any recovery, and T; is the repairing time for
pipe i, which equals the number of damages on the pipe.

432 |
method

S3: Dynamic importance-based

This method determines the pipe repair priority by the
dynamic importance during the recovery of the WDN.
Unlike S2 that only compares the performance improve-
ment with the initial damage status, S3 compares the per-
formance between the pipe recovery and current WDN
state by the following equation. The importance of pipe i
is ranked based on I;;(¢)

PDW;(t)—PDW (t—1)

Iy; (6) = .

19)
where PDW,(t) is the PDW at time ¢t after repairing pipe
i, PDW(t — 1) is the PDW before the last time step, and T;
is the repairing time for pipe i, which equals its damage
number.

433 | S4: GA-based method

GA is a global optimization algorithm. As a combinatorial
optimization problem, the crossover method proposed by
Moscato (1989) is used in this study as shown in Figure 10.
First, a random subset of Parent 1 is selected and filled into
the sequence in Parent 2. The mutation of each individ-
ual is performed by randomly exchanging two genes with

Q7
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FIGURE 11 Trajectories of WDN recovery using repair

sequences by different decision methods (i.e., S1 to S5)

TABLE 3 System resilience index (SRI) and computing time
among different recovery methods
Method S1 S2 S3 S4 S5
SRI 41.67 36.977 39.225 30.868 26.464
Time 23h 3 min 15 min 32h 2 min

a very low probability. In this study, this probability is set
as 0.03.

4.3.4 | S5:Diameter-based repairing
prioritization method

This method determines the repair sequence based on the
ranking of the pipe diameter. The damaged pipes will be
ranked based on the size of their diameter. The repairing
sequence follows this ranked sequence.

4.4 | Evaluation of the computational
performance

The computational performance of each method is evalu-
ated by the final SRI value of the recovery trajectory, the
recovery time to achieve a satisfactory level of system per-
formance, and the computational time.

The recovery trajectories by using methods from S1 to
S5 are shown in Figure 11 and the corresponding SRI val-
ues are summarized in Table 3. Compared with conven-
tional methods (S2 to S5), the proposed GCN-DRL method

FAN ET AL.
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(S1) improves the area under the trajectory curve, which
corresponds to a higher SRI value. It is noted that the GA-
based method (S4) is also a general-purpose metaheuristic
method. The under-curve area of the recovery process by
GCN-DRL (S1) is much larger than that by the GA method
(S4) even when the GA method used two times the num-
ber of trials. This result indicates the GCN-DRL outper-
forms the GA as a global optimization method for repair
sequence.

The recovery time to achieve a satisfactory level of sys-
tem performance is critical for infrastructure restoration.
Figure 11 also shows the recovery time to achieve certain
performance levels of WDN based on repair sequences
by different decision methods. The results imply that the
repair sequences by S1, S2, and S3 achieved 20% and 50%
performance degrees in a similar amount of time. After
that, the repair sequence by the GCN-DRL (S1) method
ensures the fastest recovery until the system is completely
restored. The observations are attributed such that the
developed GCN-DRL model (S1) can efficiently consider
the future impact of repair decisions, compared to greedy
search methods (S2 and S3) and therefore achieve a global
optimal repairing sequence. The performance of the GA
method (S4) lagged until the system recovers to about
95% of its original performance. Assuming 80% system
performance is a satisfactory level, the proposed GCN-
DRL method (S1) achieved around two time-steps ahead
of S3 and around five time-steps ahead of GAs (S4). These
demonstrate the superior performance of the GCN-DRL
model in determining the optimal repair sequence, com-
pared to conventional methods.

The computational time to determine the repair
sequence by methods Sl to S5 is also shown in Table 3. The
GCN-DRL ML model takes more computational time than
S2, S3, and S5 since a large number of training iterations
are involved. For example, in this case, the GCN-DRL
model takes 500 training episodes, each training episode
contains 44 times of repairing process (44 damaged pipes).
Therefore, 22,000 hydraulic simulations were conducted
to capture the WDN performance. The Deep Q function
was also trained 22,000 times.

To further demonstrate the robustness of the developed
method, two additional earthquake scenarios with differ-
ent epicenters or magnitudes are considered, named as the
second scenario and the third scenario. The second earth-
quake scenario is a magnitude 6.75 earthquake close to the
center of the WND map, which caused 59 pipes to be dam-
aged with 107 leaking locations. The third scenario is a
magnitude 7 earthquake occurring at the top right, which
caused 73 pipes to be damaged with 151 leaking locations.
The initial PGV values and the corresponding water pipe
damages under these two seismic scenarios are shown in
Figure 12. The same parameters, that is, pipe material, age,
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FIGURE 13
different decision methods under different earthquake scenarios

The final system resilience index values by

(Scenario 1: 44 pipes damaged with 69 leakages, Scenario 2: 59 pipes
damaged with 107 leakages, Scenario 3: 73 pipes damaged with 151
leakages), Scenario 2: 59 pipes damaged with 107 leakages, Scenario
3: 73 pipes damaged with 151 leakages)

soil type, and consumer importance as the first seismic sce-
nario are used in the damage and recovery analyses.

The final performance of system resilience, indicated by
the final SRI values, of different repairing decision meth-
ods to recover from these three earthquakes, is summa-
rized in Figure 13. As can be seen, the GCN-DRL model
consistently outperforms the other decision methods for
all these earthquakes. It is also noted that the more severe
the earthquake damages, the more significant the GCN-
DRL model improves the final SRI values. Or the more ben-
efits in improving system resilience via globalized optimal
decisions with the GCN-DRL model. Besides, compared
with the other global optimization method, that is, the GA
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model, the GCN-DRL model is much more computation-
ally efficient.

4.5 | Transfer learning for rapid
responses

As pointed out by Paez et al. (2020), the general-
purpose metaheuristic algorithms require high computa-
tional demands. These make the general-purpose meta-
heuristic algorithms only suitable for pre-defined damage
scenarios. Given the uncertainties associated with the
exact damages during hazards, the high computational
demand limits the applicability of this type of algorithms.
A novel transfer learning strategy is explored for the GCN-
DRL for new disaster scenarios. That is, when training
the GCN-DRL model, the parameters of the Deep Q func-
tion are saved as the “training experience.” Therefore,
unlike conventional decision algorithms that need to start
from scratch for each new damage scenario, the GCN-
DRL model can use the “training experience” from pre-
vious training results as long as the new damaged pipes
have been considered in the training model. Consequently,
high computational efficiency is achieved, which is advan-
tageous for emergency response.

To demonstrate the benefits of transfer learning, the
performance of the GCN-DRL model and computational
time based on transfer learning for new damage scenar-
ios is compared with those by the conventional methods.
The new damages are randomly chosen from a subset of
the predicted pipe damages (i.e., Figure 8b) as the ini-
tial damage situation. Figure 14 shows the selected dam-
age situations with 36, 31, and 24 damaged pipes. The “
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TABLE 4
time for different damage scenarios

Scenario no./method Performance indicator
1 (36 damaged pipes) SRI
Time
2 (31 damaged pipes) SRI
Time
3 (24 damaged pipes) SRI
Time

training experience” of the pre-trained model described in
Section 4.2 is loaded to the GCN-DRL model (S1). Meth-
ods S2, S3, S3, and S5 are used for comparison purposes.
The pre-trained GCN-DRL was trained with 10 episodes for
each new WDN damage situation.

Table 4 summarizes the performance as well as the cor-
responding computational time to determine the repair
sequence by different methods on the new damage scenar-
ios. The require sequence identified by GCN-DRL model
(S1) with transfer learning achieved the highest SRI value
among all the methods, including the highest resilience.
The SRIvalue of the repair sequence by S1is larger than the
other four repair methods by 1.16, 0.252, 1.706, and 21.737
under the earthquake scenarios causing 36 damaged pipes.
The SRI value based on repair decision by S1 improved by
0.034, 0.003, 1.386, and 4.809 for the earthquake scenario
causing 24 damaged pipes.

The results indicate that the larger the number of pipes
damaged, the more advantages of GCN-DRL in achieving
an optimal decision sequence than conventional methods.
This makes sense since the larger the number of pipes
damaged, the more difficult it takes to identify the global
optimum with conventional methods. This is also an indi-
cation of the strength of the GCN-DRL model in making
global optimal decisions among a large decision space.

In terms of the computational time for decisions, the
use of transfer learning significantly reduced the time
needed for the GCN-DRL model to determine the optimal
repair sequence. The computational time is comparable to
those needed by the greedy search algorithm and diameter-
based prioritization method. It is noted that the GCN-
DRL model significantly outperformed the GA method,
another general-purpose metaheuristic global optimiza-
tion method, both in terms of performance and computa-
tional efficiency.

5 | CONCLUSION

Optimal repair decisions play an important role in improv-
ing WDN resilience by accelerating the post-disasters

EiEp

Summary of SRI of WDN recovery based on repair sequence by different methods as well as the corresponding computational
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S1 S2 S3 S4 S5
35.449 34.286 35.197 33.743 13.712
6 min 3 min 15 min 4.0h ~1 min
33.243 31.746 32.414 29.674 20.406
5 min 4 min 11 min 2.6h ~1 min
27.551 27.517 27.548 26.165 22.742
4 min 4 min 10 min 21h ~1 min

recovery of the system performance. This study proposed
a novel AI based decision-making model to achieve a
resilience-oriented restoration plan. A resilience evalua-
tion framework is first developed, which consists of a
model for pipe failure prediction, a model for WDN per-
formance measurement, and a model for WDN resilience
quantification. The SRI is proposed for the system
resilience quantification, which is defined based on the
time evolution of PDW during the recovery process. The
PDW considers the NSDs, which measure the extent of
the post-hazards dynamic water demands at WDN supply
nodes so that the demands are met, weighted by the rela-
tive importance of these nodes. With SRI, a novel GCN-
DRL ML model is developed to determine the optimal
repairing decision. The GCN-DRL model combines the
advantages of DRL and GCN. The GCN is used to embed
the WDN including the topological connections and infor-
mation of NSDs at each node. The DRL framework is used
to train the GCN to learn and determine the optimal repair
actions under a given damage situation.

The GCN-DRL model is demonstrated to determine the
optimal repair sequence of a testbed WDN subjected to
earthquake damages. Three different damage scenarios
are analyzed considering the magnitudes of the earth-
quake, distance to the epicenter, soil type, pipe deterio-
ration, and so forth. The performance of the pipe repair
sequences by the GCN-DRL model is compared with the
results by four traditional decision-making methods. The
results show that the GCN-DRL model consistently identi-
fied repairing sequences that lead to the highest SRI under
different damage scenarios. Besides, the transfer learn-
ing strategy can be used to train the GCN-DRL model
for new damage scenarios by taking the advantage of the
prior training experience. The transfer learning strategy
was demonstrated in three new damage situations of the
WDN. The results show that the transfer learning of GCN-
DRL decision-making model achieved the most resilient
WDN recovery with significantly shortened computational
time. Therefore, the new GCN-DRL model is promising
to be a high-performance robust decision-support tool for
post-hazard repairing decisions to ensure resilient WDN
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recovery. However, it is noted that conventional methods
such as S2 and S3 feature simplicity and good interpretabil-
ity. The proposed GCN-DRL model is more advantageous
with the increasing dimension of the decision space (asso-
ciated with a larger number of damages). As with most
ML models, improvement of interpretability is an area that
requires further research.

It is noted that several simplified assumptions are used
in this study, which is intended to allow the analyses to
focus on the most important contributions, that is, the
development of the innovative GCN-DRL-based frame-
work to support WDS recovery decisions. For example, the
repairing time for the damaged pipe is assumed to be only
dependent upon the number of leakage points along the
pipe. However, a more advanced model for pipe repair-
ing time and repair crew task assignment can be easily
accommodated. The study only considered the damages
of pipes. Damages to the water towers or pump stations
are not considered, although this is a common assumption
used in most existing WSN research. The damage assess-
ment and recovery analyses can readily incorporate other
components of the WDS. Besides, this study used the water
satisfaction degree to quantify the serviceability of the post-
hazard performance of the water distribution system. Fur-
ther advancement can incorporate multiple measurement
metrics to quantify the WDN performance. Overall, the
GCN-DRL model framework is developed with scalabil-
ity and generality in mind, which can be readily adapted
to analyze different types of WDS and accommodate more
sophisticated assumptions.
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