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Abstract—Proton therapy is a unique form of radiotherapy
that utilizes protons to treat cancer by irradiating cancerous
tumors while avoiding unnecessary radiation exposure to sur-
rounding healthy tissues. Real-time imaging of prompt gamma
rays can be used as a tool to make this form of therapy
more effective. The use of Compton cameras is one proposed
method for the real-time imaging of prompt gamma rays that
are emitted by the proton beams as they travel through a
patient’s body. The non-zero time resolution of the Compton
camera, during which all interactions are recorded as occurring
simultaneously, causes the reconstructed images to be noisy and
insufficiently d etailed t o e valuate t he p roton d elivery f or the
patient. Deep Learning has been a promising method used to
remove and correct the different problems existing within the
Compton Camera’s data. Previous papers have demonstrated the
effectiveness of using deep fully connected networks to correct
improperly ordered gamma interactions within the data. We
do a moderately large hyperparameter grid search to find a
promising set which yields competitive performance but contains
fewer neurons making it compact. The studies which have many
neurons, many layers, and a non-zero dropout rate have the
best testing accuracy. These many neuron and many layer
networks still have significantly f ewer t otal n eurons t han the
current neural network implementation. If given considerably
more training time these compact networks could yield equal, if
not superior, testing accuracy when compared to larger networks.
More improvements are still needed for clinical use and we are
currently experimenting with recurrent neural networks to test
the viability of this type of architecture for this application.

I. INTRODUCTION

Because of its many advantages, proton therapy has been
increasingly growing in popularity as a form of cancer treat-
ment. Most types of radiation work with a similar objective
to damage the cellular DNA of target cancer cells that reside
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in the nucleus of every cell. Although X-ray therapy is able
to deliver dosage at the tumor site, the radiation continues
to travel through the body until it exits the other side. This
may potentially cause harm to healthy surrounding tissues
and organs that are unnecessarily exposed to radiation. By
contrast, proton therapy has the advantage to deliver radiation
dosage directly at the tumor site without travelling further
posterior into the body. This advantageous characteristic of
proton therapy is called the Bragg Peak [13]. The Bragg Peak
makes it possible to spare any surrounding healthy tissues from
unnecessary radiation damage. In order to take full advantage
of all of the perks that proton therapy has to offer, we must
have an efficient technique to image the prompt gamma rays
in real-time as they travel through the patient’s body.

The Compton camera is one promising technique to get real-
time imaging of the proton beam, by detecting prompt gamma
rays emitted along the path of the beam [10]. Unfortunately,
some of the data produced by the Compton camera is not
always usable due to the non-zero time resolution of the
Compton camera, during which all interactions are recorded
as occurring simultaneously. The use of the raw data by the
Compton camera with modern reconstruction algorithms yield
noisy and insufficiently detailed images to evaluate the proton
delivery for the patient.

Fully connected neural networks have shown promise in
their ability to detect interaction for true triples in [14]. They
note that the neural network has comparable accuracy to
classical Compton camera sequencing techniques. They go on
to highlight that there are superior methods to neural networks
and the classical method but they are too computationally
intensive for any real-world use case. A different usage of
neural networks was seen in [11] where the authors simply
trained a network to determine whether data was “good” or



“bad” and then used the “good” data for reconstruction. They
use true triples and false events and noticed that the network
had respectable accuracy and improved the good data to bad
data ratio that can be used for reconstruction. Both of these
examples use simpler Monte-Carlo simulations, shallow neural
networks, and do not consider how neural networks can play
a role in a broader clinical application. When dosage rates
change, the amount of data pollution increases greatly to the
point that there is more unusable data than there is usable data
[10].

This work’s specific purpose differs greatly from some of
the previous work done on this topic. The earliest form of
work was seen in tech. report [6] which started training a
neural network to order a single interaction with the hope of
expanding the neural network to do multi-task classification
for interaction ordering. Inevitably this settled on just a single-
task classification method using ordering permutations and
published a portion of those results in [4]. Then in [5]
the neural network structure was changed from a shallow
but wide design to a long but thin design and also trained
using a python generator which feeds one input type (called
double/triple/double-to-triple/false) at a time in an attempt
to improve accuracy without changing the neural network
structure. It is important to note that up to this point all the
doubles-to-triples, false triples, and false doubles had been
generated during a preprocessing step rather than coming
directly from a Monte-Carlo simulation. In the tech. report
[2], several changes had been made to the training process,
data generation, preprocessing, and network design. Doubles
and Triples had been separated into their own categories and a
specialized neural network was trained for each. All data was
generated using a Monte-Carlo simulation instead of stitched
together during preprocessing. A residual block structure was
implemented to allow for a deep fully connected neural
network instead of shallow one. The results for the doubles
only neural network were published in [9] and the results for
the true triples plus doubles-to-triples were published in [3].
The final aim of [2] was to create a neural network which
is capable of quickly and accurately ordering interactions
for triples and doubles while also detecting false couplings.
The ability to reorder and detect false couplings is known
to improve reconstruction quality and can allow for Compton
cameras to be used in a clinical setting. The clinical viability
and impact of the neural network on reconstructions is the
focus of [12]. At this point we have seen that deep neural
networks have great success when ordering interactions and
detecting false couplings. In this publication, we report the
promising attempts to create a more compact neural network
than is seen in [2]. We define a “compact network” as a
network with similar or superior performance but containing
fewer total parameters and fewer neurons than the previous
networks with similar function. The fewer neurons the network
has, the more computationally cheap it is to use, and the faster
the network can classify records.

The remainder of this publication is organized as follows:
Section II contains more in depth information about the
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distinct advantages that proton therapy provides versus other
forms of radiotherapy. Section III describes how Compton
camera imaging can be used to improve the restraints of proton
therapy and how the misordered interactions and the presence
of false events can limit the usage of the Compton camera.
Section IV gives a background on neural networks, as well
as explaining the network’s conception. Section VI describes
288 different hyperparameters studies, some promising results,
and how the network performed on different beam energies.
Section VII discusses the impact, shortcomings, and overall
successes associated with our goals and results as well as
ongoing work.

II. PROTON THERAPY

Radiation therapy is a form of cancer treatment that uses
high doses of radiation that act to kill cancer cells and
ultimately the tumor. X-ray therapy is one common technique
used for cancer treatment. In this type of therapy, the majority
of the radiation dosage is delivered upon entering the body.
Because of this, the tumor does not receive as high of
a concentrated dose as it should. In addition, X-rays will
continue to travel posterior into the human body until it exits
out the other side. This is not ideal as there is no need for extra
radiation exposure within the body. Proton therapy on the other
hand is more efficient in this manner. Rather than depositing
the majority of the dosage at the entry site, proton therapy
works to deposit the majority of the dosage at the tumor site
itself, thus making the process more effective. Proton therapy
also has an advantage over X-ray therapy in the sense that the
proton beam travels no further posterior into the body than the
site of the tumor allowing for minimal exposure to surrounding
tissue.

The proton therapy delivery process is quite unique. The
protons start their journey inside of a vacuum tube that
connects to a linear accelerator that leads to a cyclic particle
accelerator called a synchrotron. This is where the protons stay
until their energies reach a point at which they can reach any
given depth inside the body of the patient. Once this energy
level is reached, protons navigate through a beam-transport
system that consists of many magnets that guide the protons
to their target location. There are two tools involved in this
guiding process. The nozzle-like aperture, acts to shape the
beam of protons while the compensator acts to shape the
protons into a 3-D shape which allows the protons to travel as
deep as they need to into the body to reach the tumor. Once
the proton beam has reached the depth of the tumor, the beam
deposits the majority of its energy into the tumor.

Depending on the size of the tumor, the beam may have to
kill the tumor cells layer by layer. When delivering a dosage to
a tumor, the professional who is treating the patient will create
what is called a safety margin. This safety margin enlarges
the treatment area to ensure that all parts of the tumor are
guaranteed to receive dosage. The safety margin is needed to
account for slight movements in the patient during treatment
as well as sligthly different positioning of the patient from one
treatment to the next over several weeks.



If real-time information on the trajectory of the proton beam
through the patient’s body were available during a treatment,
the safety margin could be smaller. The use of Compton
cameras is one proposed method for the real-time imaging
of prompt gamma rays that are emitted by the proton beams
as they travel through the body.

III. COMPTON CAMERA
A. Background on Compton Camera

Compton Cameras are multistage detectors that generate
images of gamma rays through Compton scattering, [12]. As
the protons penetrate the human body, they interact with atoms
in the body, leading to prompt gamma rays emission. As those
gamma rays exit the body, some of them collide with the
modules in the Compton Camera. Modules of the camera then
measure the energy deposited by the prompt gamma and its
position as it passes through different detection stages of the
camera. For each Compton scatter the camera records z-, y-,
z-coordinates and the energy level of the scatter. The readout
of interactions in a single period is called an event. The raw
output data from the camera for each interaction is in the form
(es, i, yi, 2;) Where i = 1,2, 3, and e; is the energy level.

Image reconstruction algorithms exist that can recover the
path of the proton beam from the Compton camera data. The
Compton camera’s capability to reconstruct full 3D images of
the proton beam range could be used with the patient’s CT to
compare the planned treatment dose and make adjustments.
Radiotherapy treatment requires a conformity between the
treatment plan and the treatment delivery, making sure that
patient’s bone and soft tissue landmarks are aligned as they
were at the time of treatment planning [13]. Having a patient
change position, wiggle, scratch, look the other way, or any
other subtle movement could cause disruption in the treatment
plan. By obtaining reliable information regarding the patient
from the reconstructed images, clinicians have the opportunity
to better ensure that the entire tumor receives the exact dose
as planned while making sure surrounding healthy tissues are
safe.

B. Image Reconstruction and Representation of Scattering
Events

During image reconstruction, existing algorithms require
that the interactions within an event happen sequentially.
The modules residing in the camera that record interactions
have a non-zero time-resolution. This means that the time
it takes for the camera to record interactions is slower than
the time it takes gamma rays to pass through the camera.
This results in the interactions being detected as happening
simultaneously. Reconstruction algorithms assume that inter-
actions happen from a single prompt gamma ray source, yet
the Compton camera may combine several single scatters into
one event. This noisy data makes the reconstruction more
difficult, because the image reconstruction algorithms have set
prerequisites that are not met by the Compton Camera data
output. Usually, at lower energy levels, the raw data recorded
by the Compton Camera can still be directly used with adept
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algorithms for reconstruction. However, it has been observed
that at higher energy levels, such as those used during proton
radiotherapy, the raw data has proven to be ineffective for
image reconstruction [9]. At higher energy levels, the proton
beams tend to emit increased numbers of prompt gamma rays,
which then increases the likelihood for the camera to record
false events, making the reconstructed images noisy.

The scattering events can be classified into five groups:
True Triples, True Doubles, False Triples, False Doubles, and
Double to Triple. A True Double and True Triple implies that
the gamma-ray interacted exactly with the camera twice or
three times, respectively. These are the events needed for the
reconstruction of the images. A False Double event consists
of two separate gamma rays interacting simultaneously with
the camera, thus recorded as a True Double. Similarly, a True
Triple encloses three separate gamma rays that interacting with
the camera at the same time, thus falsely recorded by the
module of the camera. These two False events need to be
removed from the data, as they cause noise and corruption.
Lastly, the Double to Triple occurs when two interactions were
made by a single gamma ray and another interaction made by
a different gamma-ray. The last interaction should be removed
from the event for a better reconstruction process.

IV. DEEP LEARNING
A. Introduction to Deep Learning

Deep learning is a subfield of Machine Learning. It uses a
successive multi-layer structure, thus the “deep” in the name,
called neural network. Neural networks serve the purpose of
helping the model learn by identifying patterns present in the
data and classifying information based on the learned patterns.
A fully connected deep neural network (DNN) contains a
series of fully connected layers that work to connect each
node or “neuron” in one layer to each in the next layer.
Figure 1 exhibits the architecture of a fully-connected network.
A DNN is composed of an input layer, which takes in the data,
hidden layers that specifically transforms the data using some
function and an output layer that returns a specific format of
the transformed data. Normally, a data set is divided into two
parts, a training set and a testing set. Within the training set,
the data is divided into training data and validation data. The
training data are used to find an optimal set of connection
weights, the test data are used to choose the best network
configuration, and once an optimal network has been found, a
validation set is required in order to test the true generalization
ability of the model [7]. When the entire training data goes
through the network is called an epoch.

We run the data through the network for thousands of
epochs, in order to improve its accuracy. There is a way to
evaluate the network after each epoch to track the network’s
learning ability throughout the learning process. Moreover,
deep learning models do not evaluate the entire data in the
model at once, rather they separate it in different batches. One
of the biggest challenges in machine learning is the dynamics
between generalization and optimization. Optimization refers
to the process of adjusting a model to get the best performance
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Fig. 1. A fully connected neural network architecture.

possible on the training data, whereas generalization is how the
network performs on data it had never seen before. At the be-
ginning of the training phase, generalization and optimization
are correlated and the network has not learned all the patterns
in the training data yet. This phenomenon is referred to as
underfitting. After a certain number of epochs, the network’s
generalization stagnates and there is no improvement, this is
called overfitting [7]. It performs well on the training data, but
does not do as well on new data that it has not trained on rather
the network starts to memorize the data. For this application,
the network should have the ability to transform each scatter
event in a way that it orders the interactions originated from
the same prompt gamma ray in the correct order.

B. Fully Connected Residual Blocks

Neural networks, especially fully connected ones, break
down once they start becoming notably deep and complex
[2]. The issues encountered with deep networks is that the
values become smaller and smaller until getting to zero and
like non-zero values as you go deeper and deeper. During back
propagation we start to see the gradient becoming like-zero
causing little to no update to existing weights which causes
learning stagnation. This phenomenon is discussed more in
details in [8] where they further explain the process. The
takeaway from [8] is that they create ResNet, a network built
from “residual blocks” as a solution to this issue. A visual
representation of a residual block can be seen in Figure 2.
Consider some record x. We pass it as an input to a small
group of n layers with their own activators. The result of the
layer output we can call y. Finally we concatenate = and v,
using addition. This addition operation helps push non-zero
values through the forward propagation process which helps
keep input data to each block new and non-zero. This also
helps prevent vanishing gradients during the back propagation
process. We use this residual block for our deep connected
network. Our residual blocks only use fully connected layers
with post-activation concatenation for the classification of
prompt gamma events. The fully connected residual blocks
allows us to create a thin yet super deep fully connected neural
network which avoids problems, mentioned above.
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V. HARDWARE AND SOFTWARE

We used the Graphic Processing Unit (GPU) clusters in
the taki system in the UMBC High Performance Computing
Facility (www.hpcf.umbc.edu) for our hyperparameter studies.
For the studies that have 256 neurons or 256 layers we use
the gpu2018 partition. This 1 GPU node has four NVIDIA
Tesla V100 GPUs (5120 computational cores over 84 SMs,
16 GB onboard memory) connected by NVLink, two 18-core
Intel Skylake CPUs, and 384 GB of memory (12 x 32 GB
DDR4 at 2666 MT/s). For all other studies that has fewer than
256 neurons or layers, we use the gpu2013 partition which
has 18 hybrid CPU/GPU nodes, each with two NVIDIA K20
GPUs (2496 computational cores over 13 SMs, 4 GB onboard
memory), two 8-core Intel E5-2650v2 Ivy Bridge CPUs (2.6
GHz clock speed, 20 MB L3 cache, 4 memory channels), and
64 GB of memory (8 x 8 GB DDR3). For the gpu2018 we
use 1 GPU per job, a time limit of 4 to 5 hours, and 35 GB of
memory. For the gpu2013 we use 2 GPUs per job, a time limit
of 4 to 16 hours, and MaxMemPerNode memory. the neural
network backbone [9]. The training was done using Keras’
Model.fit method on two NVIDIA K20 GPUs

This network was built using Tensorflow v2.4.0 (www.
tensorflow.org) with the bundled Keras module8. We also used
scikit-learn v0.22.1 (https://scikit-learn.org/stable/) to prepro-
cess and normalize the data. Moreover pandas v1.0.4 (https:
/lpandas.pydata.org/) and numpy v1.19.5 (www.numpy.org)
were also used to help preprocess the data. Finaly we used
the matplotlib v3.2.1 (www.matplotlib.org) library to graph
our results.

VI. RESULTS

For our studies, we trained the neural network on a data
set that was generated using a Monte Carlo simulation and
that consisted of 1,821,255 records and 15 features. These
features represent spatial coordinates, Euclidean distance, and
energy deposition for each interaction. An interaction is a
grouping of three spatial coordinates and an energy level.
Each row is either a triple, double-to-triple, or a false triple
and consists of three interactions each. Our training data set
only consisted of True Triples, Double-to-Triple scatter, and
False events. Furthermore, when testing the neural network we
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Fig. 2. Our fully connected residual block takes an input and passes it through n layers eventually adding it to the output of the n layers

used datasets that used 150MeV (Mega electron Volt) beams
with three different dosage rates: 20kMU (kilo Monitor Unit),
100kMU, and 180kMU. The larger kMU values correspond to
more intense dosage rates.

A. Baseline Hyperparameter Studies

A total of 288 studies were run based on a combination
of hyperparameters. In each of our studies, the validation
rate, the number of epochs, and the residual block size were
held constant at 0.2, 1024, and 8 respectively, to act as a
control. The normalization method used also stayed consistent
throughout all 288 studies. The energy values were normalized
using a power transformer (Yeo-Johsnon), while the spatial
coordinates were normalized using MaxAbsScaler from the
sklearn library. Other hyperparameters such as dropout rate,
number of neurons per layer, number of layers, and batch size
were changed for each study. The values used for the changing
variables are as follows:

e Drop out rate: 0, 0.1, 0.4

« Number of neurons per layer: 32, 64, 128, 256
o Number of layers: 8, 16, 32, 64, 128, 256

o Batch size: 1024, 2048, 4096, 8192

Thus, the total number of studies is (3)(6)(4)(4) = 288.

After all 288 studies were complete, each study that reported
a peak validation accuracy greater than 0.76 was considered to
be promising. We report here on one promising study in detail;
more studies are detailed in [1]. This subsection contains a
hyperparameters table, a training and validation plot, and
three confusion matrices of the MCDE model testl at 20kMU,
100kMU, and 180kMU dosage rates. The hyperparameter
table in Table I lists validation rate, dropout rate, neurons per
layers, number of layers, batch size, and epochs.

In the training and validation plot in Table 3, the accuracy,
denoted as a decimal percent, is plotted against the number of
epochs. The peak validation accuracy is displayed at the top
of each plot in addition to the total wall clock time the study
took to run. The blue line represents the training accuracy and
the orange line represents the validation accuracy. We can see
that both the training and validation accuracies start at 40%
at 0 epochs, then proceed to increase significantly in the first
few epochs, where both accuracies increase to 60%. Then, the
slope becomes flatter as the network struggles to learn more
information about the data.
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The three confusion matrices are provided in Figures 4, 5, 6.
In these confusion matrices, the left most column is the correct
input class and the percentage in the other columns represents
the amount of data put into the class at the top of the column.
These percentages sum to 100% in each row. Each cell is
colored from white to dark green proportional to the maximum
value in the entire matrix. The darkest entry in each row is the
dominant classification of the input class. Within the matrices,
there are thirteen different labels: 123, 132, 213, 231, 312, 321,
124, 214, 134, 314, 234, 324, and 444. Label 123 represents
the case where all three interactions are correctly ordered and
no adjustments need to be made. Label 132 represents the
case where the third interaction should happen second and the
second interaction should happen third. Label 213 represents
the circumstance the second interaction should happen first,
the first should occur second and the third is correctly labeled.
Label 231 represents the scenario where the third interaction
should be first, the second interaction should be third and the
first interaction should be second. The label 312 represents
the case where the first interaction should be third, the second
interaction first whereas the last interaction should be second.
The label 321 is the scenario where the first interaction should
happen third, the second is labeled correctly, and the third
interaction should happen first. The label 124 indicates that
the first two interactions are a correctly ordered double and
the third interaction should be disposed of. The label 214
indicates that the first two interactions are a incorrectly ordered
double and the third interaction should be disposed of. The
label 234 indicates that the last two interactions are a correctly
ordered double and the first interaction should be disposed of.
The label 324 indicates that the last two interactions are a
incorrectly ordered double and the first interaction should be
disposed of. The label 134 indicates that the first and third
interactions are a correctly ordered double and the second
interaction should be disposed of. The label 314 indicates
that the first and third interactions are a incorrectly ordered
double and the second interaction should be disposed of.
The thirteenth label 444, is a false event, where the three
interactions should be thrown away.

Figure 4 is a confusion matrix created from our fully
connected network, whose parameters are displayed in Table
L. It classifies the MCDE model testl 150MeV 20kMU beam.
We can observe that the maximum classification in each class



TABLE I
HYPERPARAMETERS USED IN SECTION VI-A.

Validation Rate 0.2
Dropout Rate 0
Neurons per Layer 64
Layers 256
Batch Size 2048
Epochs 1024

is the input class itself in dark green. The accuracies for the
true triples range from 66.3% to 74.6%., the double-to-triples’
accuracies range from 62.2% to 71.5%, and the false events are
~ 63%. Which means that when given any input class the will
classify it the majority of the time. However there is still some
discussion to be had about the dominant misclassifications of
events. For some true triples the second highest classification
percent is the double-to-triple version of itself. For instance,
if we look at input class 132, the second highest at the 134
in the top column. This means that the network is able to
classify correctly the first two interactions, but might have a
harder time distinguishing the last interaction from a falsely
coupled single. The other dominant misclassification case is
where the second highest percentage is still a true triple but
not correctly ordered. Finally we observe that the true triples
are rarely classified as false events. For the double-to-triple
data, we see that the second-highest ordering is the reverse
ordered double-to-triple. This suggest that the network is able
to correctly identify the interaction that does not belong in
the event. However, it fails to order them once it takes out
the single interaction that is not part of the pair. The third
most likely misclassification of the doubles-to-triples are false
events, which means that the network will drop just those
events from the data. This is helpful for the reconstruction
phase as it decrease noise in the data even if the data could
have been used if correctly classified. There is still a large
amount of doubles-to-triples that are still incorrectly labeled
as true triples that will leads to noise in the reconstruction.
For the false events we notice that second and third highest
misclassification percentages are doubles-to-triples. When this
happens we are unintentionally adding pure noise to the recon-
struction algorithm leading to poorer results. Even though the
percentages in Figures 4, 5 and 6 are different, the trends and
conclusions drawn from the network’s performance remain the
same.

We have seen that the networks ability to classify events
of all input classes is good enough to warrant further exper-
imentation but not nearly as high as we suspect they could
be. The percentages in Figure 4, 5, 6 are still 5% to 10%
worse than the more complex networks seen in [2] for all input
classes. The positive side is that while our network is worse it
is significantly faster and more memory efficient since it uses
fewer layers and neurons per layer than the more complex
networks. Additionally neither our network nor more complex
networks meet the 80% to 90% real-world use threshold.
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Fig. 3. Training and validation plot using a fully connected network in
Section VI-A.

B. Reducing the Hyperparameter Space to Enable Long Run-
ning Studies

In this section we used the results from Section VI-A to pick
a reduced set of hyperparameters for searching while using a
larger number of epochs. The idea is that we pick our best
performers and give them more time to learn and possibly
plateau. This should give us additional insights into what
configurations are optimal for learning with a more compact
network.

A total of 12 studies were run based on a our reduced
combination of hyperparameters. The validation rate and the
residual block size as well as the normalization method used
stayed consistent with Section VI-A, but we are training for
4096 epochs now. Our varied hyperparameters such as dropout
rate, number of neurons per layer, number of layers, and batch
size were reduced in scope changed for each study. The values
used for the changing variables are as follows:

o Drop out rate: 0.1

o Number of neurons per layer: 64, 128
o Number of layers: 64, 128

« Batch size: 2048, 4096, 8192

Thus, the total number of studies is (1)(2)(2)(3) = 12. The
most promising study is reported here in detail; more studies
are detailed in [1].

Figure 7 is a training and validation plot for our fully con-
nected network, whose parameters are displayed in Table II.
As we can see at 0 epochs we have a validation accuracy of
a little less than 40%, then we have a sudden spike to a little
over 60% at around 100 epochs. After that, the network seems
to learn steadily with a slight increase over 3000 epochs, as it
drops more neurons.

Figure 8 is a confusion matrix created from our fully
connected networkclassifying the MCDE model testl 150MeV
20kMU beam. We can observe that the maximum classification
in each class is the input class itself in dark green. The
accuracies for the true triples range from 70% to 78%, the
doubles-to-triples’ accuracies range from 62% to 75%, and
the false events are ~ 66%. Which means that when given



123 132 213 231 312 321 124 214 134 314 234 324 444
123 | 66.3 8.1 2.1 34 3.0 2.7 8.1 0.6 0.1 0.1 35 1.4 0.6
132 3.8 | 712 2.6 22 2.9 3.1 0.3 0.1 7.8 0.8 1.4 33 0.5
213 33 3.5 | 70.6 34 2.0 2.9 1.1 6.7 4.4 1.2 0.3 0.0 0.6
231 1.5 32 4.8 | 71.1 3.0 54 0.1 0.4 1.6 2.5 4.8 1.1 0.3
312 2.7 2.7 23 2.7 | T4.6 4.0 3.0 1.5 0.9 5.1 0.1 0.2 0.3
321 2.5 33 2.8 22 59 @ 721 1.4 2.8 0.0 0.3 0.7 5.6 0.3
124 3.5 04 0.6 0.1 3.2 2.1 | 71.5 9.3 0.9 04 04 1.7 5.8
214 0.8 0.3 4.5 0.3 23 33| 13.6 66.8 0.5 1.2 0.8 0.5 5.0
134 0.4 4.0 3.7 2.5 0.4 0.1 1.0 06 @ 713 8.8 1.8 0.5 5.0
314 0.1 0.8 2.1 5.1 6.8 0.4 0.3 1.4 89 | 66.5 0.6 0.9 6.1
234 2.6 24 0.3 7.6 0.1 1.5 0.8 1.1 1.3 07 | 622 138 5.7
324 1.3 4.6 0.2 0.8 0.2 8.0 1.1 0.6 0.9 0.6 89  67.6 52
444 0.6 0.3 0.9 0.6 0.6 0.3 6.3 6.6 4.1 5.0 8.5 6.3 | 599

Fig. 4. Confusion Matrix using a fully connected network trained on triples, double to triples, and false data from a 150MeV beam over 1024 epochs in

Section VI-A. The testing data used is from the MCDE model test]l 150MeV 20kMU beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 | 66.8 6.1 2.7 2.7 29 3.8 7.3 0.5 0.3 0.1 4.6 1.9 0.4
132 36 712 3.1 1.9 2.1 1.8 0.2 0.0 9.6 1.2 1.3 3.4 0.5
213 39 3.6 @ 68.1 4.8 33 2.5 1.1 59 4.7 1.3 04 0.0 04
231 1.3 3.0 4.8 | 73.0 1.8 5.6 0.3 0.3 1.7 2.0 4.4 1.0 0.6
312 1.9 2.3 2.7 2.7 769 4.2 29 1.1 0.4 4.4 0.0 04 0.1
321 2.1 34 3.8 2.5 7.3 70.7 1.3 3.7 0.0 0.2 0.6 4.1 0.4
124 53 04 0.8 0.1 3.4 24 | 708 8.9 0.6 04 04 1.5 5.0
214 0.8 0.1 4.8 0.5 1.7 4.0 | 140 @ 65.5 0.8 1.1 0.9 0.7 5.1
134 0.2 4.9 3.0 2.1 0.7 0.1 0.5 0.7 © 700 | 10.4 1.6 0.4 5.4
314 0.1 0.5 1.6 43 6.1 0.2 0.3 1.4 100 | 68.1 0.6 1.1 5.8
234 2.8 2.2 04 6.2 0.2 2.0 1.1 0.7 1.4 07 634 13.6 54
324 1.2 4.6 0.1 1.3 0.5 6.7 1.3 0.7 0.8 0.5 84 674 6.6
444 0.5 0.3 0.2 0.6 0.6 0.6 5.5 5.7 5.6 5.0 4.6 55| 654

Fig. 5. Confusion Matrix using a fully connected network trained on triples, double to triples, and false data from a 150MeV beam over 1024 epochs in

Section VI-A. The testing data used is from the MCDE model testl 150MeV 100kMU beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 | 69.7 7.5 29 1.2 24 1.7 7.9 0.2 0.2 0.2 34 2.2 0.5
132 46 @ 72.1 24 1.2 22 2.6 0.0 0.2 7.9 0.7 1.4 3.6 1.0
213 29 1.4 = 733 4.6 3.1 0.7 1.9 6.0 3.6 1.4 0.2 0.2 0.5
231 1.4 3.1 4.1 | 723 34 53 0.2 0.0 1.2 2.9 5.1 1.0 0.0
312 29 3.1 1.0 22 | 749 3.9 3.1 1.4 1.0 5.1 0.0 0.2 1.2
321 29 3.6 2.7 1.0 46 723 1.7 5.5 0.0 0.2 0.7 4.3 0.5
124 44 0.5 0.3 0.2 3.6 19 | 71.0 9.5 1.0 0.6 0.6 0.7 5.8
214 1.0 0.1 4.2 0.7 2.1 32 | 140 670 0.5 1.4 0.7 0.3 5.0
134 04 52 2.7 2.0 1.3 0.0 0.7 06 @ 724 8.0 1.5 0.7 4.4
314 0.2 0.6 1.4 4.2 6.4 0.5 0.4 1.3 9.1 | 68.5 0.3 0.7 6.4
234 2.8 2.1 04 5.6 0.3 1.4 0.6 0.4 1.5 0.6 = 65.1 128 6.4
324 1.4 4.3 0.1 1.0 0.3 6.8 2.1 0.3 0.6 0.6 9.7 = 66.2 6.4
444 0.5 1.0 0.3 0.6 0.3 0.7 5.8 5.7 5.1 5.7 6.3 44 | 63.5

Fig. 6. Confusion Matrix using a fully connected network trained on triples, double to triples, and false data from a 150MeV beam over 1024 epochs in

Section VI-A. The testing data used is from the MCDE model testl 150MeV 180kMU beam.

5654




TABLE II
HYPERPARAMETERS USED IN SECTION VI-B.

Validation Rate 0.2
Dropout Rate 0.1
Neurons per Layer 128
Layers 128
Batch Size 8192
Epochs 4096

any input class the will classify it the majority of the time.
However there is still some discussion to be had about the
dominant misclassifications of events. For the true triples, the
matrix shows that the second-highest classification accuracies
are either a true triple, or the corresponding double-to-triple
event. This means that the network recognizes true events but
struggles to reorder the events correctly; other times, it is able
to identify the ordering of the first two interactions but improp-
erly decouples the third interaction. Both these cases could
cause pollution in the data used for reconstruction. We also
observe that the true triples are barely classified as false events.
For the doubles-to-triples, we can see that the second-highest
percentage is another double-to-triple event. In most cases we
see that it correctly determines the falsely coupled interaction
but cannot determine the correct the order of the remaining
pair. Even so there are some still some cases where doubles-
to-triples are also classified as true triples. The presence of
this extra interaction will cause noise during reconstruction.
We observe that the false events are classified correctly most
of the time but occasionally they are classified as doubles-to-
triples. Any false data that leaks into the reconstruction data
will always cause noise during reconstruction.

By choosing a study whose dropout rate was greater than
0 we fixed the discrepancy between validation and testing
accuracy seen in Section VI-A. Even when only using 0.1
dropout, just a small amount of dropout has brought our
confusion matrices’ accuracies much closer to our validation
accuracy seen in the training and validation plots. If we had
picked something larger we may have not seen any favorable
results within 4096 epochs. The triples now have comparable
accuracy to a more complex network but the doubles-to-triples
and false data are still 1% to 7% worse than the more complex
network. This is an improvement over our previously trained
networks which used no dropout rate. Our training time for
these studies are high but we cannot locate bugs within our
code or TensorFlow. The results are unaffected by this increase
in training time. Currently this network configuration still does
not have the classification performance for real-world use but
is with more tuning could approach the lower bounds.

VII. CONCLUSIONS AND FUTURE WORK

Section VI contains the promising highlights of our attempts
to create a more compact neural network than is seen in [2].
We define a “compact network” as a network with similar
or superior performance but contains fewer total parameters
and fewer neurons than the previous networks with similar
function. The fewer neurons the network has, the more com-
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Fig. 7. Training and validation plot using a fully connected network in
Section VI-B.

putationally cheap it is to use, and the faster the network can
classify records. If a network is sufficiently cheap one may
not even need a GPU for real-world use! Under this same
idea we refer to the networks in [2] as “complex networks”
because the networks contain significantly more neurons and
parameters than the networks we are attempting to create here.
To create a more compact network we conduct hyperparameter
studies using the grid search method.

In Section VI-A we have seen that our networks’ ability to
classify events of all input classes is good enough to warrant
further experimentation but there are still many problems that
plague us. All of our promising studies that used a dropout rate
of 0 had high peak validation accuracies but this performance
did not carry over into the testing data. For example when we
examine the peak validation in Figure 3 we have 77%. Yet,
when we look at the confusion matrices we see that correct
classification percentages fall into the mid 60’s to low 70’s.
When we look at our worst results with the worst validation
accuracy, not listed under our results in this work, we see that
the common factor is a dropout rate greater than 0. This is
not a huge surprise as dropout rate is known to cause lower
initial accuracy in exchange for better network generalization
when trained for more epochs. When using a dropout rate
of 0 we cannot take the training and validation plots as the
definitive proof of performance. Instead we would need to
run hyperparameters studies which include dropout rates only
greater than O while providing enough epochs for learning
to potentially plateau. The first 288 studies yielded high
performance during training and validation but substandard
performance during testing. Even if the performance of these
networks were, in general, not high enough to replace those in
past works, we can still use their outcomes to guide our future
hyperparameter decisions when trying to do more searches in
the future.

In Section VI-B we attempted to demonstrate this by taking
sets of hyperparameters that had the best performance and
running them for longer with the hope that we may see
improved testing performance. We also chose to only consider
studies whose dropout rate was greater than 0 with the hope



123 132 213 231 312 321 124 214 134 314 234 324 444
123 | 71.0 6.4 1.4 1.9 1.9 2.0 5.0 0.4 0.1 0.0 2.5 1.0 0.3
132 3.8 | 728 1.9 24 6.4 2.7 0.2 0.0 5.1 1.0 1.0 2.6 0.2
213 3.1 25 713 9.1 1.8 2.5 0.5 5.0 2.1 1.7 0.1 0.0 0.2
231 2.5 2.6 29 | 735 24 8.0 0.0 0.1 0.9 2.1 34 1.4 0.2
312 34 1.8 1.9 29 @ TI.1 32 23 1.3 0.6 53 0.0 0.1 0.1
321 2.6 3.0 3.1 2.1 34 | 718 0.6 2.1 0.0 0.1 0.6 43 0.3
124 5.0 04 1.0 0.1 3.7 21| 689 11.1 0.6 0.6 04 1.3 4.7
214 0.8 0.3 54 0.6 1.8 4.0 70 @ 743 0.3 1.0 0.3 04 3.8
134 0.7 4.5 2.6 2.8 1.1 0.2 0.6 02 638 | 18.1 1.3 0.8 33
314 0.1 0.7 1.8 5.0 6.1 0.4 0.6 1.2 6.8 | 72.1 0.2 0.8 4.2
234 3.0 23 0.1 6.5 0.1 1.5 0.5 0.8 1.1 06 | 623 16.7 4.5
324 1.5 4.5 0.1 0.6 0.3 7.2 0.9 0.4 0.5 0.8 7.8 | 72.0 3.5
444 0.6 0.6 0.3 0.9 0.0 0.6 4.1 53 4.7 3.8 5.6 7.5 | 65.8

Fig. 8. Confusion Matrix using a fully connected network trained on triples, double to triples, and false data from a 150MeV beam over 4096 epochs in
Section VI-B. The testing data used is from the MCDE model testl 150MeV 20K beam.

123 132 213 231 312 321 124 214 134 314 234 324 | 444
123 | 77.0 7.2 1.8 1.7 1.5 1.7 39 0.8 0.0 0.0 2.5 1.6 0.2
132 3.5 0 731 1.5 22 6.3 1.5 0.0 0.0 6.5 1.3 0.9 2.7 0.3
213 4.3 1.9 @ 66.6 | 12.5 2.3 1.9 0.7 5.0 23 1.9 0.2 0.1 0.1
231 1.8 2.6 25 | 76.5 1.7 8.5 0.1 0.0 1.1 1.5 2.5 1.1 0.1
312 29 1.3 2.8 2.8 | 78.0 3.8 2.0 1.0 0.4 4.8 0.0 0.1 0.1
321 2.6 3.2 3.6 22 3.6  76.7 0.8 3.1 0.0 0.2 0.3 3.5 0.3
124 6.7 0.3 0.6 0.0 3.2 2.1 | 71.0 9.8 0.7 04 04 1.0 3.7
214 1.0 0.1 5.6 0.6 1.6 4.6 7.2 73.0 0.5 0.9 0.3 0.3 4.4
134 0.3 5.5 2.8 22 0.8 0.0 0.5 05 653 | 163 1.3 0.2 4.2
314 0.1 0.7 1.6 4.2 5.6 0.3 0.2 0.7 7.3 | 73.7 04 0.9 4.5
234 39 24 0.5 5.2 0.2 1.9 0.4 0.5 0.8 02 610 181 4.7
324 1.3 2.8 0.1 1.0 0.5 7.1 0.6 0.5 0.6 0.5 7.1 724 5.5
444 0.8 0.3 0.3 0.8 0.6 0.8 4.1 4.7 5.5 5.0 4.1 44 | 68.6

Fig. 9. Confusion Matrix using a fully connected network trained on triples, double to triples, and false data from a 150MeV beam over 4096 epochs in

Section VI-B. The testing data used is from the MCDE model test] 150MeV 100K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 | 75.5 8.7 1.7 1.4 1.9 1.9 43 0.5 0.0 0.0 2.6 1.4 0.0
132 24 | 769 1.9 1.7 53 1.7 0.0 0.0 4.1 0.5 0.7 4.3 0.5
213 24 22 | 7335 9.2 1.4 1.0 1.0 6.0 22 1.2 0.0 0.0 0.0
231 2.2 2.7 29 | 71.8 34 8.7 0.0 0.2 1.0 2.2 3.6 1.2 0.2
312 29 24 1.4 1.9 | 77.8 3.4 24 1.0 0.2 5.8 0.0 0.5 0.2
321 1.7 2.7 3.6 1.9 3.6 | 78.6 1.2 3.1 0.0 0.0 1.0 2.7 0.0
124 6.3 0.4 0.3 0.2 3.3 22| 70.1 10.2 0.5 0.0 04 1.0 52
214 1.3 0.0 4.8 0.6 1.4 4.4 6.6 745 0.4 1.2 0.2 0.5 43
134 04 4.7 2.2 29 1.7 0.1 0.6 04 @ 647 | 174 1.3 0.6 3.0
314 0.2 0.5 1.0 4.0 5.8 0.4 0.2 1.2 74 | 73.8 0.2 0.8 4.5
234 3.1 2.0 0.3 4.8 0.3 2.0 0.1 0.5 0.7 04 625 183 4.9
324 2.3 3.6 0.1 0.7 0.2 6.6 1.0 0.2 0.6 0.3 7.0 @ 721 5.2
444 0.5 1.0 0.2 0.7 0.4 0.5 4.4 4.8 5.6 5.1 6.2 50 | 655

Fig. 10. Confusion Matrix using a fully connected network trained on triples, double to triples, and false data from a 150MeV beam over 4096 epochs in

Section VI-B. The testing data used is from the MCDE model test] 150MeV 180K beam.
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that this would help fix the discrepancy between validation and
testing accuracy seen in the previous studies. In our extension
studies we see that our best performing studies plateaued early
in their training process. We see that the usage of even a
small amount of dropout has brought our confusion matrices’
accuracies much closer to our validation accuracy seen in the
training and validation plots. The triples now have comparable
accuracy to a more complex network but the doubles-to-triples
and false data are still 1% to 7% worse than the more complex
network. This is an improvement over our previously trained
networks which used no dropout rate. Our training time for
these studies was eerily high and we were not able to locate
bugs or problems within TensorFlow; the results are unaffected
by this strange increase in training time. The more compact
networks show great promise in terms of achieving comparable
accuracy to the best performing networks seen in [2]. Currently
our networks still do not have the classification performance
for clinical use. They also fall short in their classification
accuracies, but if we can tackle the long training times then,
with more hyperparameter tuning we can most likely create a
network that is easier to train and cheaper to use than previous
networks.

Particular studies, if given considerably more training time,
could yield competitive, if not superior, testing accuracy to
existing architectures while maintaining a simpler structure.
More improvements are still needed for clinical use and we
are currently experimenting with recurrent neural networks to
test the viability of this type of architecture for this application.
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