


of graph representation benchmarks (e.g., PROTEINS [5], IMDB [6], REDDIT [6]) is analogous
to MNIST [7] at its height—a staple of the computer vision community, and often the first dataset
researchers would evaluate their methods on. The graph representation community is at a similar
inflection point, as it is increasingly difficult for current databases to characterize and differentiate
modern graph representation techniques [1, 2].

To address these issues, we introduce a new graph database called MALNET, a large-scale ontology of
malicious software function call graphs (FCGs). Each FCG represents calling relationships between
functions in a program, where nodes are functions and edges indicate inter-procedural calls. Through
MALNET, we make three major contributions:

• MALNET: Largest Database for Graph Representation Learning. MALNET contains 1.2
million function call graphs, averaging over 15k nodes and 35k edges per graph, across a hierarchy
of 47 types and 696 families (Figure 1). This makes MALNET the largest public graph database
constructed to date, offering 105× more graphs, 39× larger graphs on average, and 63× more
classes compared to the popular REDDIT-12K database. We release MALNET with a CC-BY
license, allowing users to share and adapt the database for any type of use. We also provide code
on Github: https://github.com/safreita1/malnet-graph.

• Revealing New Discoveries. The unprecedented scale of MALNET enables new and important
discoveries that were previously not possible. Leveraging the function call graphs in MALNET,
we study popular graph representation learning techniques in depth, and reveal: (1) the significant
challenges they face in terms of scalability and their ability to handle large class imbalance and (2)
that simple baselines can be surprisingly effective at the scale of MALNET;

• Enabling New Research Directions. MALNET offers unique opportunities to advance the fron-
tiers of graph representation learning by enabling research into imbalanced classification, explain-
ability and the impact of class hardness. We believe the diversity, scale and natural imbalance of
MALNET will enable it to become a benchmark dataset to meet the future research needs of the
graph representation community. By open-sourcing MALNET, we hope to inspire and invite more
researchers to contribute to this exciting new resource.

2 Properties of MalNet

We begin by analyzing 5 key properties of the MALNET database—(1) scale (number of graphs,
average graph size), (2) class hierarchy (3) class diversity, (4) class imbalance and (5) cybersecurity
applications. In Section 2.1 we compare MALNET against common graph classification datasets,
summarizing the differences in Table 2.

Scale. MALNET contains 1,262,024 function call graphs across 47 types and 696 families of malware.
When stored on disk, MALNET takes over 443 GB of space in edge list format, with each graph
containing 15,378 nodes and 35,167 edges, on average. This makes MALNET the largest public
graph dataset constructed to date in terms of number of graphs, average graph size and number
of classes. In Table 1, we provide descriptive statistics on the number of nodes, edges, and average
degree of ten of the largest graph types (see Appendix Table 4 for a full comparison). We believe that
this scale of data is crucial to the future development of graph representation techniques as current
databases are too small to effectively differentiate and benchmark techniques on non-attributed
graphs [1, 2, 3, 4].
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Figure 2: Example of the graph type
“worm” and its 7 families.

Hierarchy. Function call graphs are assigned a general
type (e.g., Worm) and specialized family label (e.g., Spy-
bot) using the Euphony [8] classification structure (see
Figure 2). To generate these labels, Euphony takes a Virus-
Total [9] report containing up to 70 labels across a variety
of antivirus vendors and unifies the labeling process by
learning the patterns, structure and lexicon of vendors
over time. While Euphony provides state-of-the-art per-
formance, this task is considered an open-challenge due to both naming disagreements [10, 11] and
a lack of adopted naming standards [8] across vendors. To help address this issue, we collect and
release the raw VirusTotal reports containing up to 70 antivirus labels for each graph.
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Nodes Edges Avg. Degree

Type # graph # fams. min mean max std min mean max std min mean max std

Adware 884K 250 7 14K 211K 16K 4 31K 605K 38K 0.50 2.21 6.24 0.36

Trojan 179K 441 5 15K 228K 18K 4 34K 530K 42K 0.58 2.05 6.74 0.52

Benign 79K 1 5 35K 552K 30K 3 79K 2M 74K 0.58 2.13 5.30 0.31

Riskware 32K 107 5 12K 173K 16K 4 30K 334K 39K 0.58 2.16 5.42 0.56

Addisplay 17K 38 37 13K 98K 15K 37 28K 246K 34K 0.92 1.97 4.38 0.37

Spr 14K 46 12 28K 169K 21K 7 67K 369K 52K 0.58 2.27 4.70 0.44

Spyware 7K 19 12 5K 55K 6K 7 11K 121K 14K 0.58 1.95 4.27 0.46

Exploit 6K 13 19 24K 102K 14K 14 45K 250K 30K 0.74 1.88 3.34 0.33

Downloader 5K 7 37 20K 107K 28K 37 46K 321K 63K 0.96 1.68 3.53 0.66

Smssend++Trojan 4K 25 16 34K 147K 19K 13 82K 387K 48K 0.81 2.39 3.78 0.23

Table 1: Descriptive statistics for 10 largest graph types. See Appendix Table 4 for all graph statistics.

Diversity & Imbalance. MALNET offers 47 types and 696 families of function call graphs following
a long tailed distribution with imbalance ratios of 7,827× and 16,901×, respectively. To put this
in perspective, MALNET’s smallest class contains only 113 samples of the Click graph, while
884,455 of the Adware type. Models learning from long-tailed distributions tend to favor the
majority class, leading to poor generalization performance on rare classes. While class imbalance is
traditionally solved by resampling the data (undersampling, oversampling) [12, 13], reshaping the
loss function (loss reweighting, regularization) [14, 15] or accounting for input-hardness [16], it is
largely unexplored in the graph domain. We hope that MALNET can serve as a source of data to
spark novel research in this critical area.

f4
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f2

f11. Program Start

3. Program Finish3. Program Finish

2. Execution Path2. Execution Path

Figure 3: FCG from the Banker++Trojan
type, and Acecard family. Nodes rep-
resent functions and edges indicate inter-
procedural calls. Highlighted in blue is one
potential execution path.

Cybersecurity Applications. A majority of malware
samples are polymorphic in nature, meaning that sub-
tle source code changes in the original malware vari-
ant can result in significantly different compiled code
(e.g., instruction reordering, branch inversion, register
allocation) [17, 18]. Cybercriminals frequently take
advantage of this to evade signature based detection,
a predominant form of malware detection [19]. Fortu-
nately, these subtle source code changes have minimal
effect on the control flow of the executable, which
can be represented with a function call graph (see
Figure 3). Research has demonstrated that function
call graphs (FCGs) can effectively defeat the polymor-
phic nature of malware through techniques like graph
matching [20, 21, 22, 23, 24] and representation learn-
ing [25, 26]. Unfortunately, prior to the release of
MALNET, no large-scale FCG datasets have been made
publicly available largely due to the proprietary nature
of the data. We note that while open research can sig-
nificantly advance the frontiers of cybersecurity, it can
be used by malicious actors to conduct research on
detection avoidance.

2.1 Graph Representation Learning Databases: Advancing the State-of-the-Art

A number of well labeled small datasets have served as training and evaluation benchmarks for
most of today’s graph representation learning techniques As the field advances, larger and more
challenging datasets are needed for the next generation of algorithms. MALNET offers 105× more
graphs, 39× larger graphs on average, and 63× the classes, compared to the popular REDDIT-12K
database. We compare MALNET with other graph representation learning datasets and summarize
the differences in Table 2, highlighting how MALNET advances the field of graph representation
learning by providing large and diverse data.
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Application Dataset Graphs Classes Ratio Avg. Node Avg. Edge Avg. Degree Avg. CC Hierarchy

Cyber
MALNET 1,262,024 696 16,901 15,378 35,167 4.34 .029 X
CGD [27] 1,361 2 1.49 782 1852 4.33 .095 -

Small

molecule

PCBA [28] 437,929 2 - 26 56 2.16 .002 -

MUV [29] 93,087 2 - 24 53 2.16 .001 -

YEAST [30] 79,601 2 1.26 22 23 2.09 .002 -

HIV [31] 41,127 2 - 26 55 2.15 .002 -

NCI1 [32] 4,110 2 1 30 32 2.16 .003 -

PTC-MR [33] 344 2 1.26 14 15 1.98 .009 -

MUTAG [34] 188 2 1.98 18 20 2.19 .000 -

Computer

vision

Fingerprint [35] 2,800 4 276.5 5 4 1.14 .001 -

Letter-low [35] 2,250 15 1 5 3 1.32 .000 -

Letter-med [35] 2,250 15 1 5 5 1.35 .014 -

Letter-high [35] 2,250 15 1 45 5 1.89 .298 -

FIRSTMM-DB [36] 41 11 3 1377 3074 4.50 .263 -

Bioinfo.

DD [37] 1,178 2 1.42 284 716 4.98 .479 -

PROTEINS [5] 1,113 2 1.47 39 73 3.73 .514 -

ENZYMES [5] 600 6 1 33 62 3.86 .453 -

Social

network

Reddit-T [38] 203,088 2 15 24 12 2.01 .047 -

Twitch-E [38] 127,094 2 1.16 30 72 5.39 .549 -

Github-S [38] 12,725 2 1.15 114 117 3.19 .191 -

REDDIT-12K [6] 11,929 11 5.05 391 457 2.28 .033 -

Deezer-E [38] 9,629 2 1.32 23 33 4.29 .510 -

COLLAB [39] 5,000 3 3.35 74 2458 37.37 .891 -

REDDIT-5K [6] 4,999 5 1 509 595 2.25 .027 -

REDDIT-B [6] 2,000 2 1 430 498 2.34 .048 -

IMDB-M [6] 1,500 3 1 13 66 8.10 .969 -

IMDB-B [6] 1,000 2 1 20 97 8.89 .947 -

Table 2: Comparison of MALNET properties with common graph classification datasets. MALNET

offers over 1.2 million graphs averaging 15k nodes and 35k edges with a hierarchical class structure
containing 47 types and 696 families. This makes MALNET the largest public graph database
constructed to date, offering 105× more graphs, 39× larger graphs on average, and 63× more
classes compared to the popular REDDIT-12K database. CC is the clustering coefficient.

Cybersecurity datasets. Aside from MALNET, CGD [27] is the only publicly available cybersecurity
dataset we could identify for the task of graph classification. In surveying the extensive FCG malware
detection literature [20, 25, 21, 26, 22, 23, 24] we observed that almost all data is closed-source;
likely due to a combination of security concerns and issues regarding private company data.

Small molecule datasets. There are numerous small molecule datasets, including: HIV [31],
MUTAG [34], MUV [29], PCBA [28], NCI1 [32], PTC-MR [33], and YEAST [30]. The HIV
dataset, introduced by the Drug Therapeutics Program AIDS Antiviral Screen [40], tests the ability of
chemical compounds to inhibit HIV replication into one of three classes. MUTAG contains chemical
compound graphs divided into two classes according to their mutagenic effect on bacterium. MUV
and PCBA are constructed from PubChem BioAssay [41], and contain numerous compounds across
17 tasks and 128 tasks respectively, where each task is a binary classification problem. NCI1 contains
chemical compounds, screened for their ability to inhibit the growth of a panel of human tumor
cell lines. PTC-MR contains graphs across 2 classes, reporting the effects of chemical compound
carcinogenicity on rats. YEAST contains molecule graphs screened for anti-cancer tests, with the
binary classification of active or inactive.

Bioinformatic datasets. Three popular bioinformatic datasets are: DD [37], ENZYMES [5] and
PROTEINS [5]. DD is a data set containing protein structures grouped into 2 categories (enzyme
and non-enzyme). ENZYMES contains graphs of protein tertiary enzyme structures with the task of
assigning each enzyme to one of 6 levels. Similarly, PROTEINS contains protein graphs classified
into either enzyme or non-enzyme.

Computer vision datasets. Three common computer vision datasets are: Fingerprint [35],
FIRSTMM-DB [36] and Letter (low, med, high) [35]. Fingerprint contains fingerprint graphs
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across four classes: arch, left, right, and whorl. FIRSTMM-DB contains object point clouds belong-
ing to an object ontology of 11 categories. Letter contains 3 datasets and 15 character classes with
varying levels of distortion (low, med, high) added to letter graphs.

Social network datasets. Common social network datasets include: COLLAB [39], Deezer Ego-
Nets [38], Github Stargazers [38], IMDB (BINARY, MULTI) [42], REDDIT (BINARY, 5K, 12K,
Threads) [42, 38] and Twitch Ego-Nets [38]. COLLAB is a collaboration dataset of ego-networks
across 3 domains of physics. Deezer Ego-Nets contains user ego-nets across 2 genders from the
Deezer music service. Github Stargazers contains graphs of developers who starred either machine
learning or web development repositories. IMDB BINARY contains ego-network graphs representing
actors and their collaborations across 2 movie genres. IMDB MULTI extends IMDB BINARY with
more graphs and 3 movie genres. REDDIT-BINARY contains thread graphs across two content
classes (discussion and QA based). REDDIT MULTI-5K contains thread graphs across 5 Reddit
thread types. REDDIT MULTI-12K extends REDDIT-5K, containing online discussion thread graphs
across 11 classes. REDDIT Threads contains thread graphs across 2 graph classes (discussion,
non-discussion). Twitch Ego-Nets contains ego graphs across 2 classes of Twitch users.

3 Constructing MalNet

3.1 Collecting Candidate Graphs

The first step in constructing MALNET was to identify a source of graph containing the desired
properties outlined in Section 2. We determined that the natural abundance, large graph size, and
class diversity provided by function call graphs (FCGs) make them an ideal source of graphs. While
FCGs, which represent the control flow of programs (see Figure 3), can be statically extracted
from many types of software (e.g., EXE, PE, APK), we use the Android ecosystem due to its
large market share [43], easy accessibility [44] and diversity of malicious software [45]. With the
generous permission of the AndroZoo repository [46, 44], we collected 1,262,024 Android APK
files, specifically selecting APKs containing both a family and type label obtained from the Euphony
classification structure [8]. This process took about a week to download and 10TB in storage space
when using the maximum allowed 40 concurrent downloads. In addition, we spent about 1 month
collecting raw VirusTotal (VT) reports to release with MALNET, through VT’s academic access,
which allows 20k queries per day. Each VT report contains up to 70 antivirus labels per graph.

3.2 Processing the Graphs

Once the APK files and labels were collected, we extract the function call graphs by running the
files through Androguard [47], which statically analyzes the APK’s DEX file. Distributed across
Google Clouds General-purpose (N2) machine with 16 cores running 24 hours a day, the process
took about 1 week to extract the graphs. We leave each graph in its original state—retaining its edge
directionality, disconnected components and node isolates (i.e., single nodes with no incident edges).
On average, each graph has 15, 378 nodes and 35, 167 edges; and typically contains a single giant
connected component, many small disconnected components, and numerous node isolates. Table 1
describes the 10 graph types (out of 47) that have the highest number of graphs. Appendix Table 4
provides a full analysis on all graph type. Each graph is stored in a standard edge list format for its
wide support, readability, and ease of use. In total, the graphs’ edge list files consume over 443 GB
of hard disk space. Since we are dealing with highly malicious software, our goal is to mitigate the
risk of releasing information that could potentially be used to reverse engineer malware. Thus, we
numerically relabel the nodes of each graph, removing any associated attribute information, which
makes reverse engineering highly unlikely. However, malicious actors could develop new variants of
detection-resistant malware that looks structurally similar to benign function call graphs, by gleaning
graph structure knowledge from MALNET in the absence of node and edge labels.

3.3 MalNet-Tiny

We construct MALNET-TINY, containing 5, 000 graphs across balanced 5 types. In addition, we limit
each graph to contain at most 5k nodes so that the dataset is truly “tiny”. The goal of MALNET-TINY

is to enable users to rapidly prototype new ideas, since it requires only a fraction of the time needed to
train a new model. MALNET-TINY is released alongside the full dataset at https://mal-net.org.
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3.4 Online Exploration of the Data

To assist researchers and practitioners in exploring MALNET, we have designed and developed
MALNET EXPLORER, an interactive graph exploration and visualization tool. It runs on most modern
web browsers (Chrome, Firefox, Safari, and Edge), platforms (Windows, Mac OS, Linux), and
devices (Android and iOS). Our goal is to enable users to easily explore the data before download-
ing. MALNET EXPLORER’s user interface uses a responsive design that automatically adjusts its
component layout, based on the users’ device types and screen resolutions. MALNET EXPLORER is
available online at: https://mal-net.org.

4 MalNet for New Research & Discoveries

MALNET is substantially larger than existing graph databases used for graph representation learning
research, with many more graphs, much larger graphs, and many more classes of graphs. Such
unprecedented advancements provides exciting opportunities to make new discoveries and explore
new research directions previously not possible. In this section, we present our findings to demonstrate
such possibilities. We discuss the experimental setup below, followed by an overview of the graph
representation techniques in Section 4.1. Section 4.2 discusses the new discoveries we found by
studying MALNET; and Section 4.3 highlights new research directions enabled by MALNET.

Experimental Setup. We divide MALNET into three stratified sets of data: training, validation and
test, with a split of 70/10/20, respectively; repeated for graph type, family and MALNET-TINY labels.
Each model is evaluated on its macro-F1 score, however, we report three performance metrics—
macro-F1, precision and recall, as is typical for highly imbalanced datasets [16, 48]. We perform our
experiments in Python3 using a DGX A-100 containing 128 CPU cores and 8 A-100 GPUs.

4.1 Graph Representation Techniques

We present results for 7 strong, recent, scalable, and readily available graph representation tech-
niques [49, 38]. Specifically, we evaluate 2 graph neural network (GNN) models [50, 51] and 5 data
mining techniques [1, 3, 52, 53]. We leave the graph in its natural state for each GNN i.e., directed
graph with isolates; and follow recommended preprocessing steps from the paper of each data mining
technique. In addition, each data mining embedding techniques uses a random forest model for
the task of graph classification, where we run a grid search across the validation set to identify the
number of estimators ne ∈ [1, 5, 10, 25, 50] and tree depth td ∈ [1, 5, 10, 20]. All hyperparameters
are individually tuned for type, family and tiny classification levels. We briefly summarize each
method and its configuration below:

1. GCN [50] is a graph neural network which learns network embeddings by aggregating node
features over neighborhoods. Following [51], we use 5 GNN layers and an Adam optimizer [54].
We set node features using LDP [1], and add self loops which has been shown to improve
performance [55]. We tune hyperparameters for (1) the number of hidden units ∈ {32, 64} and
(2) the learning rate ∈ {0.001, 0.0001}, repeated for both type and family classification levels. We
find that 64 units with a learning rate of 0.0001 performs best. Running this search took over 26
days using the Nvidia DGX A100, their most powerful commercial GPU server.

2. GIN [51] is a state-of-the-art GNN with strong theoretical backing. Following [51], we set ε = 0,
use 5 GNN layers, and an Adam optmizer [54]. We set node features using LDP [1], and add self
loops which has been shown to improve performance [55]. We tune hyperparameters for (1) the
number of hidden units ∈ {32, 64} and (2) the learning rate ∈ {0.001, 0.0001}. We find that 64
units with a learning rate of 0.0001 performs best. Running this search took over 23 days using
the Nvidia DGX A100.

3. LDP [1] is a simple representation scheme that summarizes each node and its 1-hop neighborhood
using using 5 degree statistics. These node features are then aggregated into a histogram where
they are concatenated into feature vectors. We use the parameters suggested in [1]. Running this
method took 4 hours parallelized across all 128 CPU cores of the Nvidia DGX A100.

4. NoG [3] ignores the topological graph structure, viewing the graph as a two-dimensional feature
vector of the node and edge count. Running this method took approximately 1 hour parallelized
across all 128 CPU cores of the Nvidia DGX A100.
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Type Family TINY

Method Macro-F1 Precision Recall Macro-F1 Precision Recall Accuracy

Feather [52] .41 .71 .35 .34 .56 .29 .86

LDP [1] .38 .69 .31 .34 .55 .28 .86

GIN [51] .39 .57 .36 .28 .32 .28 .90

GCN [50] .38 .51 .35 .21 .24 .21 .81

Slaq-LSD [53] .33 .62 .26 .24 .42 .19 .76

NoG [3] .30 .62 .25 .25 .42 .21 .77

Slaq-VNGE [53] .04 .07 .04 .01 .01 .01 .53

Table 3: Comparison of macro-F1, precision and recall scores achieved by 7 methods at the type (low
diversity, with 47 classes) and family (high diversity, with 696 classes) and tiny (5k graphs across 5
balanced classes) classification levels. Comparing methods across type and family, the classification
task becomes increasingly difficult as diversity and data imbalance increase.

5. Feather [52] is a more complex representation scheme that uses characteristic functions of node
features with random walk weights to describe node neighborhoods. We perform a search over the
key order ∈ {4, 5, 6}parameter, which controls how much information is seen from higher order
neighborhoods. We find that an order of 5 performs best. For the remaining parameters, we use
the values suggested in [52]. Running this search took over 19 hours parallelized across all 128
CPU cores of the Nvidia DGX A100.

6. Slaq-VNGE [53] approximates the spectral distances between graphs based on the Von Neumann
Graph Entropy (VNGE), which measures information divergence and distance between graphs [56].
We perform a search over 2 key parameters: number of random vectors nv ∈ {10, 15, 20} and the
number of Lanczos steps s ∈ {10, 15, 20}. We find that nv = 15 and s = 15 performs best. For
the remaining parameters, we use the values suggested in [53]. Running this search took 8 hours
parallelized across all 128 CPU cores of the Nvidia DGX A100.

7. Slaq-LSD [53] approximates NetLSD, which measures the spectral distance between graphs
based on the heat kernel [57]. We perform a search over 2 key parameters: number of random
vectors nv ∈ {10, 15, 20} and number of Lanczos steps s ∈ {10, 15, 20}. We find that nv = 20
and s = 20 performs best. For the remaining parameters, we use the values suggested in [53].
Running this search took 8 hours parallelized across all 128 CPU cores of the Nvidia DGX A100.

Limitations. We tested a number of alternative graph representation techniques and decided to
exclude them—methods based on kernal [58, 59, 60, 60], spectral [61, 57, 62, 63, 64] and document
embedding [65, 66]—as they were computationally prohibitive for the scale of MALNET, making it
infeasible to run the techniques over the full dataset or perform parameter selection. We also note
that methods that work well on other datasets may not work well on MALNET due to its larger scale
and different structural properties (see Table 2); vice-versa, methods that work on MALNET may not
transfer well to other datasets. We hope MALNET will inspire the release of additional large-scale
datasets in the call graph domain and other novel application areas, which will help enable researchers
to develop and evaluate methods that generalize across domains.

4.2 Enabling New Discoveries

Current graph representation research uses datasets that are significantly smaller in scale, and much
less diverse compared to MALNET. In light of this, we want to study what new discoveries can be
made, that were previously not possible due to dataset limitations. For example, what is the impact
of class imbalance and diversity in the classification process? We synthesized our findings into the
following 2 major discoveries (D1-D2).

D1. Less Diversity, Better Performance. Comparing methods in Table 3 across malware type
(low diversity, with 47 classes) and family (high diversity, with 696 classes), the classification
task becomes increasingly difficult as diversity and data imbalance increase. This trend is
visible across all 7 graph representation methods. For the best performing method, Feather, the
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Figure 4: Class-wise comparison of model predictions where a darker cell represents a higher F1
score. We observe that certain classes are more challenging to classify than others.

macro-F1 score drops from 0.41 (type) to 0.34 (family). This matches our intuition from the
“tiny” experiments in Table 3, which shows strong method performance when evaluating on a
small subset of MALNET, containing 5 well-balanced types.

D2. Simple Baselines Surprisingly Effective. Both NoG and LDP use basic graph statistics. Given
the simplicity of these methods, they perform remarkably well, often outperforming or matching
the performance of more complex methods. For example, in Table 3 we can see that LDP ties
for the best performing family classification method, achieving a macro-F1 score of 0.34, while
beating significantly more complex methods e.g., GIN, GCN, Slaq-LSD. A similar trend is
found in type level classification results where LDP outperforms SLAQ-LSD and performs on
par with GIN and GCN, despite being simpler and significantly faster than all 3 methods. Using
small graph databases, earlier work [1] suggested the potential merits of considering simpler
approaches. For the first time, using the largest graph database to date, our result confirms that
many current techniques in the literature do not well capture non-attributed graph topology.

4.3 Enabling New Research Directions

The unprecedented scale and diversity of MALNET opens up new exciting research opportunities for
the graph representation community. Below, we present four promising directions (R1-R4).

R1. Class Hardness Exploration. Because of MALNET’s large diversity, it is now possible for
researchers to explore why certain classes are more challenging to classify than others. For
example, Figure 4 shows Malware++Trj significantly outperforming both Troj and Adsware,
which contain many more examples. This result is surprising, and provides strong impetus for
additional research into class hardness, such as: (a) investigating whether existing methods are
flexible enough to represent the diverse graph structures; and (b) inviting researchers to study the
similarities across class types (e.g. merge Spr and Spyware). To support further development in
this challenging area, we release the raw VirusTotal reports containing up to 70 labels per graph.

R2. Imbalanced Classification Research. The natural world often follows a long-tailed data
distribution where only a few classes account for most of the examples [16]. As evidenced in
discovery D1, the long-tail often causes classifiers to perform well on the majority class, but
poorly on rare ones. Unfortunately, imbalanced classification research in the graph domain
has yet to receive much attention, largely because no datasets existed to support the research.
By releasing MALNET, the largest naturally imbalanced database to date, we hope foster new
interest in this important area.

R3. Reconsidering Merits of Simpler Graph Classification Approaches. Our discovery in D2
indicates that simpler methods can match or outperform more recent and sophisticated techniques,
suggesting that current techniques aiming to capture graph topology are not yet well-reflected for
non-attributed graphs, echoing results from [1]. More broadly, our discovery demonstrates—for
the first time—such phenomenon at the unprecedented scale and diversity offered by MALNET.
We believe our results will inspire researchers to reconsider the merits of simpler approaches
and classic techniques, and to build on them to reap their benefits.
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R4. Enabling Explainable Research. In Figure 4, we observe that certain representation tech-
niques better capture particular graph types. For example, Feather, GIN and GCN significantly
outperforms other methods on Clicker++Trojan. This is an interesting result, as it could provide
insight into when one technique is preferred over another (e.g., local neighborhood structure,
global graph structure, graph motifs). We believe that the wide range of graph topology and
substructures contained in MALNET’s nearly 700 classes will enable new explainability research.

5 Conclusion

The study of graph representation learning is a critical tool in the characterization and understanding
of complex interconnected systems. Currently, no large-scale database exists to accurately assess
the strengths and weaknesses of these techniques. To address this, we contribute a new large-scale
database—MALNET—containing 1, 262, 024 graphs, averaging over 15k nodes and 35k edges per
graph, across a hierarchy of 47 types and 696 families. We hope MALNET will become a central
resource for a broad range of graph research. The database is available at www.mal-net.org.
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Appendix

Nodes Edges Avg. Degree

Type # graphs # fams. min mean max std min mean max std min mean max std

Adware 884K 250 7 14K 211K 16K 4 31K 605K 38K 0.50 2.21 6.24 0.36
Trojan 179K 441 5 15K 228K 18K 4 34K 530K 42K 0.58 2.05 6.74 0.52
Benign 79K 1 5 35K 552K 30K 3 79K 2M 74K 0.58 2.13 5.30 0.31
Riskware 32K 107 5 12K 173K 16K 4 30K 334K 39K 0.58 2.16 5.42 0.56
Addisplay 17K 38 37 13K 98K 15K 37 28K 246K 34K 0.92 1.97 4.38 0.37
Spr 14K 46 12 28K 169K 21K 7 67K 369K 52K 0.58 2.27 4.70 0.44
Spyware 7K 19 12 5K 55K 6K 7 11K 121K 14K 0.58 1.95 4.27 0.46
Exploit 6K 13 19 24K 102K 14K 14 45K 250K 30K 0.74 1.88 3.34 0.33
Downloader 5K 7 37 20K 107K 28K 37 46K 321K 63K 0.96 1.68 3.53 0.66
Smssend++Trojan 4K 25 16 34K 147K 19K 13 82K 387K 48K 0.81 2.39 3.78 0.23
Troj 3K 36 14 6K 64K 8K 11 15K 115K 18K 0.79 1.98 5.60 0.52
Smssend 3K 12 15 20K 111K 14K 12 49K 337K 38K 0.80 2.34 4.61 0.47
Clicker++Trojan 3K 3 220 6K 29K 3K 471 14K 72K 7K 1.52 2.33 2.92 0.18
Adsware 3K 16 368 11K 53K 13K 564 26K 143K 28K 1.02 2.19 4.27 0.26
Malware 3K 19 6 8K 119K 13K 5 16K 286K 29K 0.83 1.90 3.97 0.67
Adware++Adware 3K 2 192 9K 55K 6K 289 20K 138K 16K 1.49 2.16 3.17 0.27
Rog 2K 22 26 15K 102K 19K 31 35K 232K 46K 0.91 2.05 4.79 0.49
Spy 2K 7 48 22K 107K 15K 44 49K 271K 40K 0.92 2.17 3.07 0.25
Monitor 1K 5 329 4K 41K 5K 580 7K 102K 12K 1.53 1.83 3.09 0.21
Ransom++Trojan 1K 7 556 51K 139K 22K 965 115K 319K 48K 1.59 2.26 2.59 0.21
Banker++Trojan 1K 6 29 33K 103K 16K 36 72K 237K 38K 1.22 2.15 2.99 0.24
Trj 940 18 29 13K 171K 16K 36 30K 402K 39K 1.15 2.20 4.44 0.49
Gray 922 10 51 16K 66K 13K 56 39K 153K 31K 0.88 2.09 4.33 0.58
Adware++Grayware++Virus 835 4 22 6K 84K 13K 20 14K 193K 29K 0.86 2.79 3.17 0.34
Fakeinst++Trojan 718 10 51 15K 94K 17K 58 37K 229K 44K 0.99 2.12 2.84 0.48
Malware++Trj 609 1 52K 52K 56K 596 118K 119K 128K 1K 2.28 2.28 2.29 0
Backdoor 602 10 25 13K 146K 22K 21 33K 427K 57K 0.84 2.19 3.55 0.37
Dropper++Trojan 592 8 47 5K 67K 7K 50 11K 175K 18K 1.06 1.98 3.92 0.70
Trojandownloader 568 7 1K 38K 102K 19K 2K 86K 258K 45K 1.34 2.19 2.54 0.21
Hacktool 542 7 668 17K 41K 9K 2K 37K 92K 20K 1.63 2.21 3.64 0.25
Fakeapp 425 5 24 4K 50K 7K 21 8K 107K 16K 0.88 1.67 2.79 0.37
Clickfraud++Riskware 369 5 2K 18K 20K 2K 4K 38K 43K 5K 1.95 2.13 2.25 0.04
Adload 333 4 2K 19K 53K 18K 4K 48K 149K 48K 1.46 2.29 3.13 0.40
Addisplay++Adware 294 1 3K 20K 50K 9K 6K 41K 108K 20K 1.65 2.03 2.45 0.21
Adware++Virus 274 9 38 15K 59K 15K 38 33K 138K 35K 1 2.22 3.17 0.54
Clicker 265 5 47 3K 75K 7K 43 6K 190K 17K 0.91 1.62 3.32 0.51
Fakeapp++Trojan 256 1 44 21K 72K 15K 39 41K 162K 34K 0.88 1.74 2.30 0.27
Riskware++Smssend 247 7 12 2K 60K 6K 7 5K 154K 14K 0.58 1.68 3 0.45
Rootnik++Trojan 223 5 210 16K 84K 21K 395 39K 197K 50K 1.15 2.59 3.21 0.47
Worm 220 7 64 14K 94K 15K 78 31K 204K 34K 0.99 1.99 3.42 0.40
Fakeangry 211 2 516 6K 98K 11K 946 15K 279K 29K 1.70 2.35 3.29 0.27
Virus 191 3 681 15K 80K 19K 1K 35K 177K 46K 1.32 2.12 3.18 0.33
Trojandropper 178 4 220 20K 78K 18K 236 39K 185K 39K 1.03 1.83 4.36 0.32
Adwareare 152 3 893 26K 57K 14K 2K 60K 144K 32K 1.88 2.25 2.60 0.20
Risktool++Riskware++Virus 152 3 37 16K 65K 16K 37 36K 158K 37K 1 1.92 3.17 0.48
Spy++Trojan 119 5 54 31K 118K 25K 66 75K 293K 61K 1.22 2.31 3.26 0.37
Click 113 1 2K 4K 12K 2K 4K 8K 26K 4K 1.80 2.04 2.74 0.21

Table 4: Descriptive statistics for each graph type in MALNET.
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