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Abstract

A function recognition problem serves as a basis
for further binary analysis and many applications.
Although common challenges for function detec-
tion are well known, prior works have repeatedly
claimed a noticeable result with high precision and
recall. In this paper, we aim to fill the void of what
has been overlooked or misinterpreted by closely
looking into the previous datasets, metrics, and eval-
uations with varying case studies. Our major find-
ings are that i) a common corpus like GNU utilities
is insufficient to represent the effectiveness of func-
tion identification, ii) it is difficult to claim, at least
in the current form, that an ML-oriented approach
is scientifically superior to deterministic ones like
IDA or Ghidra, iii) the current metrics may not be
reasonable enough to measure function detection in
general, iv) not a single state-of-the-art tool domi-
nates all the others. In conclusion, a function detec-
tion problem has not yet been fully addressed, and
our community first has to seek a better metric for
fair comparison in order to make advances in the
field of function identification.

1 Introduction

Function identification (or recognition) serves as a basis for
reversing executable binaries and for many applications, in-
cluding control flow integrity (CFI), binary similarity analysis,
binary transformation (i.e., randomization, re-optimization),
type inference, and vulnerability detection. Likewise, a major-
ity of binary analysis tools (i.e., BAP [Brumley et al., 2011],
angr [Shoshitaishvili et al., 2016], radare [Radare2, 2009],
IDA Pro [Hex-Rays, 2005b], Ghidra [Directorate, 2019a],
rev.ng [Federico et al., 2017]) often begin with function detec-
tion for further analysis by default because a binary function
provides a logical unit to understand and analyze the high-
level semantics of a low-level binary. Obtaining a function
boundary upon the availability of symbol or debugging infor-
mation is trivial. However, it becomes drastically challenging
when the information is stripped off, which is more common
than not in practice.

A simple means of function recognition is to linearly disas-
semble all code (e.g., objdump), followed by applying func-

tion signature matching such as a function prologue and epi-
logue available. However, it suffers from robustness either
when a predefined pattern lacks such a signature (i.e., highly
optimized functions) or when code and data are intermixed.
Another means is a recursive traversal from an entry point of
a binary that follows a direct control flow transfer until no
new code region is discovered. However, indirectly reach-
able (or unreachable) functions may not always be statically
identified. Despite such challenges, many prior works have
repeatedly demonstrated remarkable results with high preci-
sion and recall (i.e., mostly 96% or above). Recent advances
harness a machine learning technique (i.e., RNN), which
claims to achieve even higher accuracy [Shin et al., 2015;
Guo et al., 2018].

In this paper, we (re-)evaluate and challenge recent advances
in function identification from a different angle, particularly
focusing on proposals that utilize machine learning techniques.
Note that our objective is neither to verify the correctness
of prior evaluations nor to rank the existing approaches by
comparison because there is no doubt about empirical results
that are accurate and reproducible. Instead, we attempt to fill
the void of what may have been overlooked or misinterpreted
by closely looking into the previous datasets, metrics, and
evaluations with the following four research perspectives in
mind: i) appropriateness of the previous datasets (e.g., GNU
utilities), ii) re-interpretation of the prior evaluations, iii) ef-
fectiveness of ML-oriented techniques, and iv) reasonableness
of the current metrics, for function identification.

The following summarizes the key contribution of our pa-
per. First, we investigate GNU utilites because all subsequent
works (but Nucleus) have employed them for their evalua-
tions after the initial release by ByteWeight [Bao et al., 2014].
With normalization, we have discovered quite a few redundant
functions (sorely 12.1% remains unique), which cannot pre-
vent overfitting. Although Nucleus first asserted the bias of
the dataset with a limited assessment, we have fully quanti-
fied the claim. Second, our finding shows that the accuracy
of LEMNA [Guo et al., 2018] (re-implementation of Shin’s
RNN [Shin et al., 2015]) comes from a different metric (i.e.,
a series of true negatives per each following byte).Third, the
evaluation with our own dataset shows that not a single tool
dominates all the others. Although an ML-oriented approach
has its own strength; e.g., automating the implementation of
function identification algorithms, the existing proposals still



lack scientific outcomes to confidently claim that they indeed
are superior to deterministic and popular approaches like IDA
or Ghidra. Fourth, we discover a handful of cases to determine
the correctness of function boundary that the current metrics
cannot reasonably cover, necessitating that a better metric be
explored for more a fair comparison. Overall, our thorough
evaluation with our own dataset, which will be publicly avail-
able upon publication, shows that a function identification
problem requires further study.

2 Background and Related Work

2.1 Problem Definition of Function Identification

A function recognition problem aims to discover a set of func-
tions in case no symbol or debugging information is readily
available, which includes both i) function starts and ii) func-
tion boundaries (both starts and ends). Analyzing malware or
binaries that have stripped off such information is common.

2.2 Evaluation Metrics

Let a set of true positives (i.e., aligned with a ground truth),
false positives (i.e., identified as a function where it is not),
and false negatives (i.e., missed a function where it is) be TP,
FP, and FN, respectively. The following defines a precision
(P ), recall (R), F1 score, and accuracy (A).

P =
|TP |

|TP |+ |FP |
, R =

|TP |

|TP |+ |FN |
, F1 =

2 ∗ P ∗R

P +R
(1)

A =
|TP |+ |TN |

|TP |+ |TN |+ |FN |+ |FP |
(2)

Note that a high precision means the rate of incorrectly identi-
fied functions (FP) is low, whereas a high recall means the rate
of missing functions (FN) is low. The F1 represents a single
metric with the harmonic mean of P and R.

2.3 Related Work

Deterministic Approach. UNSTRIP [Jacobson et al., 2011]

generates semantic descriptors (i.e., system calls and concrete
argument values) that represent library functions as a finger-
print for further function identification. Nucleus [Andriesse et
al., 2017] presents a function detection algorithm in a compiler
agnostic fashion. With linearly disassembled code, Nucleus
detects basic blocks and builds an inter-procedural control
flow graph (ICFG) in the beginning. Once direct call invo-
cation over the ICFG reveals function entry blocks, Nucleus
discovers either unreachable or indirectly reachable functions
(isolated from the initial ICFG) via intra-procedural control
flow analysis. [Qiao and Sekar, 2017] develop another means
based on static analysis. Similar to Nucleus, it collects func-
tion candidates that cannot be directly reachable, followed by
checking whether they are associated with a function interface,
including stack discipline, control-flow properties, and data-
flow properties (i.e., parameter passing). Jima [Alves-Foss
and Sone, 2019] is a tool suite that incorporates a series of
analysis algorithms for function boundary detection, including
exception handling, jump pointer, tail call chain, and miss-
ing function detection (i.e., gaps between functions). IDA
Pro [Hex-Rays, 2005b] is a very popular disassembly tool
equipped with both decompilation and debugging features

for code analysis; however, its internal heuristics (i.e., pat-
tern database) for function detection remain proprietary and
thus unknown1. Ghidra [Directorate, 2019a] is an emerging
open-source disassembler that offers a suite of reversing tools
and decompiler. It provides a few built-in function analyzers
such as FunctionStartAnalyzer. The analyzers begin with
identifying every address referenced by a call instruction as
the beginning of a function, and then utilizes a static signature
database that records a known function start pattern according
to a compiler and architecture [Directorate, 2019b].

Machine Leaning Based Approach. One of the early
works [Rosenblum et al., 2008] based on machine learning
adopts a model with a conditional random field (CRF) for
identifying function entry points (FEPs). The model takes
both idiom features (i.e., instruction sequences) and structure
features (i.e., control flow) into account to classify FEPs in
binary code. Byteweight [Bao et al., 2014] builds a weighted
prefix tree to recognize function starts using a precomputed
signature at training time. The prefix tree holds a likelihood
of a function constructed from a training data set where each
node represents either a byte or an instruction, e.g, learning
the probability of an FEP from a sequence of instructions (i.e.,
path from the root to the given node). FID [Wang et al., 2017]

proposes the combination of symbolic execution and machine
learning, mostly focusing on identifying an FEP block. It has
the internal representations of each basic block semantics with
assignment formulas (i.e., stack registers) and memory access
behavior (i.e., memory read), converting them into numeric
feature vectors for a classifier. Meanwhile, [Shin et al., 2015]

utilizes a deep learning approach for the first time, which lever-
ages a bidirectional recurrent neural networks (RNN) model
with a single hidden layer to tackle both function starts and
boundary identification. Despite the absence of clear explana-
tions for the underlying mechanism of the model, the empirical
results demonstrate a very high precision and recall. Recently,
LEMNA [Guo et al., 2018] introduces the first explanation
model for a deep learning based security application (i.e., us-
ing an RNN model). It integrates fused lasso [Tibshirani et al.,
2005] for handling a feature dependency problem with a mix-
ture regression model [Khalili and Chen, 2007] that achieves
an accurate approximation for a local decision boundary.

3 Challenges of Function Identification

A binary function that resides in a code section differs from a
human-written function that conveys semantics. Every binary
function originates from a function i) defined by a user (i.e.,
source code), ii) generated by a compiler (i.e., stack canary
check), or iii) inserted by a linker (i.e., CRT function).

The common challenges for function detection are well-
known, mainly due to compiler optimizations and code regions
intermixed by code and data. First, code optimization often
blurs a clear signature of a function prologue and epilogue, ren-
dering its boundary detection less straightforward because 1 a
function can be inlined to be part of another for performance;

1Note that IDA ships with a known function identification algo-
rithm, dubbed FLIRT [Hex-Rays, 2005a] that maintains a signature
database of each function for a standard library, however, it cannot
be applied to general function identification.
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Table 1: Summary of our test suite. The numbers in () represent the
number of binaries with a different set of a compiler and optimization.

TestSuite Count Binary Set

SPEC2017 16 (120)

500.perlbench_r, 502.gcc_r, 505.mcf_r, 520.omnetpp_r,
523.xalancbmk_r, 525.x264_r, 531.deepsjeng_r,
541.leela_r, 557.xz_r, 508.namd_r, 510.parest_r,
511.povray_r, 519.lbm_r, 526.blender_r,
538.imagick_r, and 544.nab_r

Utilities 4 (32)
nginx 1.16.1, vsftpd 3.0.3, and
openssl 1.1.1f (libssl.so, libcrypto.so)

Table 2: Summary of cutting-edge function detection tools. (*)
represents the retrained model of ByteWeight.

Tool Train set Test set

Byteweight GNU utils SPEC2017, Our utils
Byteweight* SPEC2017 SPEC2017 (10-fold), Our utils
Shin:RNN SPEC2017 Our utils
IDA Pro 7.2 N/A SPEC2017, Our utils
Ghidra 9.1.2 N/A SPEC2017, Our utils
Nucleus N/A SPEC2017, Our utils

2 a call invocation happens at the end of a procedure (i.e.,
tail call), replacing it with a single jump (instead of pop and
ret) without returning to an original caller; 3 a single routine
may be split into multiple locations (non-contiguous function);
4 different function symbols can point to the same address
(i.e., identical implementation); and 5 compiler-generated
code or compiler-specific heuristics may render function iden-
tification opaque. Second, a compiler can mix a jump table as
data within a function for indirect transfer that complicates a
linear disassembly task (commonly seen in ARM or Windows
binaries). Other reasons include multi-entry functions (i.e.,
calls to the middle of a function), non-returning functions (i.e.,
ending with a call), and code from manually written assembly.

4 Rethinking Function Detection Problem

In this section, we describe the function identification problem
mainly focusing on four research questions. We aim neither to
simply rank the existing tools by comparison nor to verify the
correctness of prior evaluations. Instead, we attempt to fill the
gaps that may have been overlooked or misinterpreted.

Test Suite. We have collected 16 different binaries from the
SPEC2017 benchmark [Standard Performance Evaluation Cor-
poration, 2017] and four binaries from three utilities of our
choice, and then generated 152 different x64 ELF binaries
in total with two compilers (gcc 5.4 and clang 6.0.1) and
four different optimization levels (O0-O3), excluding a clang
version of blender_r and parest_r because of compilation
errors (Table 1). Note that the binaries ending with _s in
SPEC2017 are ruled out due to almost identical function list.

Function Identification Tool. As shown in Table 2, we uti-
lize three deterministic tools (IDA, Ghidra, Nucleus) and two
ML-embedded tools (ByteWeight, LEMNA implementation
of Shin et al’s RNN) for recognizing function starts.

4.1 Research Questions

We revisit prior approaches to answer the following research
questions that focus on 1 appropriateness of dataset, 2 re-
interpretation of prior evaluations, 3 effectiveness of ML
techniques, and 4 rethinking of metrics, for function identifi-
cation. We also conduct extra experiments if required.

• RQ1. Is the previous dataset (i.e., GNU utilities) appropriate
for the effectiveness of a function detection technique?

• RQ2. Has a function detection problem been (almost) re-
solved as reported with a very high F1 or accuracy?

• RQ3. Are recent advances with an ML-centered approach
(i.e., deep learning) superior to a deterministic one?

• RQ4. Is the current metric (i.e., precision, recall and F1)
fair enough to measure function identification in general?

4.2 Appropriateness of Dataset

Table 3 shows a comparison of prior approaches for func-
tion identification at a glance. After the first release
of ByteWeight’s GNU utilities [ByteWeight, 2014] (16
binutils, 104 coreutils, 9 findutils), all subsequent
works but Nucleus employ the same dataset for their evalua-
tions. Nucleus has first claimed that they are too biased to be
generalized with a limited assessment of the assertion.

We have quantified the bias of the dataset, 129 GNU utilities,
adopted by ByteWeight. For simplicity, we sorely focus on
x64 binaries compiled with gcc. Table 4 shows 10 different
groups utilized in ByteWeight for 10-fold cross validation.

1 ; // binutils - ar
2 ; void yyset_lineno(int line_number) {
3 ; yylineno = line_number;
4 ; }
5 0x432273: push rbp
6 0x432274: mov rbp,rsp
7 0x432277: mov DWORD PTR [rbp-0x4],edi
8 0x43227a: mov eax,DWORD PTR [rbp-0x4]
9 0x43227d: mov DWORD PTR [rip+0x378a81],eax

10 0x432283: pop rbp
11 0x432284: ret
12 ; // binutils - as
13 ; static void set_allow_index_reg (int flag) {
14 ; allow_index_reg = flag;
15 ; }
16 0x4049c8: push rbp
17 0x4049c9: mov rbp,rsp
18 0x4049cc: mov DWORD PTR [rbp-0x4],edi
19 0x4049cf: mov eax,DWORD PTR [rbp-0x4]
20 0x4049d2: mov DWORD PTR [rip+0x30fbd8],eax
21 0x4049d8: pop rbp
22 0x4049d9: ret

Listing 1: Example of an identical function pair after normalization.

ByteWeight performs normalization of a function as a pre-
processing step before generating a weighted tree; that is, it
converts both an immediate number and target of a call/jump
instruction into a generalized value to improve a recall. After
normalization2, we found that only 17.6K (12.1%) out of the
whole 146K functions remained unique normalized functions
(NFs). For example, 19.8K NFs (91.4%) have been discovered
in a train set (20.7K functions) when selecting Group 9 as a
test set in Table 4. This indicates cross validation cannot avoid
an overfitting because of too many redundant data. The redun-
dancy mainly arises from a static library in common during
compilation: the coreutils consists of 106 small binaries
that employ libcoreutils.a, including 776 common func-
tions from 257 object files. Another interesting finding is that
there are a considerable number of NFs even between differ-
ent functions from different binaries. For instance, Listing 1

2We normalize an immediate with a single value whereas
ByteWeight has a few different ones (i.e., zero, positive, negative),
however, it does not significantly change the final outcome.
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on the argument (i.e., line 7, 10, and 13 otherwise). Although
this example is slightly different from a typical function inlin-
ing case in that a function symbol resides in a symbol table,
deterministic binary analysis tools regard each branch function
as part of process_post_login_req.

1 static void
2 process_post_login_req(struct vsf_session* p_sess) {
3 char cmd;
4 /* Blocks */
5 cmd = priv_sock_get_cmd(p_sess->parent_fd);
6 if (tunable_chown_uploads && cmd == PRIV_SOCK_CHOWN)
7 cmd_process_chown(p_sess);
8 ...
9 else if (cmd == PRIV_SOCK_PASV_CLEANUP)

10 cmd_process_pasv_cleanup(p_sess);
11 ...
12 else
13 die("bad request in process_post_login_req");
14 }
15

16 ; process_post_login_req(vsf_session *p_sess)
17 0xAC10 push rbx
18 0xAC11 mov rbx, p_sess
19 0xAC14 mov edi, [p_sess+180h] ; fd
20 0xAC1A call priv_sock_get_cmd
21 ...
22 0xAC3F lea rcx, jpt_AC4D
23 0xAC46 movsxd rax, ds:(jpt_AC4D - 16C38h)[rcx+rax*4]
24 0xAC4A add rax, rcx
25 0xAC4D jmp rax ; jump table
26 0xAC52 pop p_sess
27 0xAC53 jmp cmd_process_get_data_sock
28 0xAC55 lea rdi, aBadRequestInPr
29 0xAC5C pop p_sess
30 0xAC5D jmp die
31 ...
32 0xAC80 pop p_sess
33 0xAC81 jmp cmd_process_pasv_cleanup
34 ...
35 ; cmd_process_pasv_cleanup(vsf_session *p_sess)
36 0xAD30 push rbx
37 0xAD31 mov rbx, p_sess
38 0xAD34 call vsf_privop_pasv_cleanup
39 0xAD39 mov edi, [p_sess+180h]
40 0xAD3F mov esi, 1
41 0xAD44 pop p_sess
42 0xAD45 jmp priv_sock_send_result

Listing 2: Example of a function and its disassembly after
optimization. The function cmd_process_pasv_cleanup has been
discovered by an RNN alone over deterministic approaches.

4.5 Rethinking of Current Metrics

This section expands our concern (both unsuitable dataset
and evaluation that may lead the misinterpretation of a result)
that the current metrics (i.e., precision, recall, and F1 shown
in Equation 1) may not be fair as a scientific means to measure
the effectiveness of function identification. We provide a
handful of case studies to rethink the suitability of the current
metrics for function detection.

Case Study: Non-continuous Functions

Listing 3 shows the code snippet (line 1-8) and its disas-
sembly from imagick_r-amd64-gcc-O3. A compiler op-
timization takes an exception handler apart (line 24-32), hold-
ing two separate binary functions as a ground truth (i.e.,
AcquireImageInfo and AcquireImageInfo.part.24).
Although it takes up a small portion of entire functions (2,997
functions or 0.38% in our dataset), such margins may lead an

4The symbol name ending with ª.part.{num}º has been gener-
ated by gcc. It is a compiler-specific behavior because clang (i.e.,
imagick_r-amd64-clang-O3) holds a single function symbol.

unfair precision and recall because it is difficult to say either
side (i.e., counting a non-continuous function as one or two)
is inaccurate from a reversing perspective for binary analysis.

1 MagickExport ImageInfo *AcquireImageInfo(void) {
2 ImageInfo *image_info;
3 image_info=(ImageInfo *) AcquireMagickMemory(sizeof(*

image_info));
4 if (image_info == (ImageInfo *) NULL)
5 ThrowFatalException(ResourceLimitFatalError ,"

MemoryAllocationFailed");
6 GetImageInfo(image_info);
7 return(image_info);
8 }
9

10 ; ImageInfo *__cdecl AcquireImageInfo()
11 0x4C6BC0 push rbx
12 0x4C6BC1 mov edi, 4198h ; size
13 0x4C6BC6 call AcquireMagickMemory
14 0x4C6BCB test image_info , image_info
15 0x4C6BCE jz loc_4C6BE0
16 0x4C6BD0 mov rbx, image_info
17 0x4C6BD3 mov rdi, image_info ; image_info
18 0x4C6BD6 call GetImageInfo
19 0x4C6BDB mov rax, image_info
20 0x4C6BDE pop image_info
21 0x4C6BDF retn
22 0x4C6BE0 call AcquireImageInfo.part.2
23 ...
24 ; ImageInfo *__cdecl AcquireImageInfo.part.2()
25 0x402554 push rbx
26 0x402555 sub rsp, 40h
27 0x402559 mov rdi, rsp ; exception
28 ...
29 0x4025C4 call DestroyExceptionInfo
30 0x4025C9 call MagickCoreTerminus
31 0x4025CE mov edi, 1 ; status
32 0x4025D3 call __exit

Listing 3: Example of a non-continous function and its disassembly
after optimization.

In a similar vein, going back to Listing 2, the decision that
those branch functions have been reasonable in terms of func-
tion boundary correctness is questionable. Interestingly, the
register rbx at lines 36 and 37 holds a p_sess value instead of
a base pointer to invoke the corresponding call. It means miss-
ing the boundary of the seemingly inlined (albeit separated)
function does not hamper conducting further reversing in case
that such a missing function (cmd_process_pasv_cleanup)
is both semantically and tightly coupled with its caller.

Ground Truth from Debugging Information
It is very common to extract a ground truth of a function
boundary from debugging information in a non-stripped bi-
nary because debugging sections contain function positions
and sizes in a DWARF structure. Likewise, an ._eh_frame
section (even in a stripped binary) follows a DWARF format
by default, storing call frame information (CFI) for an excep-
tion handling routine. The CFI contains two entry forms: i) a
common information entry (CIE) that corresponds to a single
object and ii) a frame description entry (FDE) that contains a
reference to a function and its length.

1 ; __int64 __fastcall atol_317(const char *__nptr)
2 0x9C0A20 xor esi, esi
3 0x9C0A22 mov edx, 0Ah
4 0x9C0A27 jmp _strtol

Listing 4: Example of an identified function by Ghidra using FDE
information where a symbol table does not hold.

A state-of-the-art disassembler such as Ghidra harnesses such
FDEs to identify a function, sometimes resulting in discov-
ering more functions that may not reside in a symbol table
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alone5. To exemplify, Listing 4 demonstrates a short function
from cpugcc_r-amd64-clang-O1 that has been detected by
Ghidra with FDE information where a ground truth (i.e., func-
tion symbol) does not hold. We have found that there are
13,380 such functions in the above binary, which significantly
increases the number of false positives for Ghidra and Nucleus.
Under the current scheme of precision and recall, the F1 value
of both Ghidra and Nucleus (96.0 and 90.4 in Table 6) may be
distorted because the function in Listing 4 should be viewed
as an actual binary function. Considering the functions that
can be found in FDEs, the recalculated F1 of Ghidra and Nu-
cleus would be 98.0 and 93.0, respectively, whereas that of
IDA Pro drops (91.3 from 93.4), which impacts on the final
ranking. It is worthwhile to mention that referring FDE may
point to an incorrect function location (i.e., an FDE pointing
to a location in the middle of a single instruction).

5 Evaluation

Table 6 summarizes our empirical results with our own dataset
as selected in Table 1. Even though we question the reason-
ableness of the current metrics in Section 4.5, we have used the
same metrics for direct comparison with prior evaluations. We
have applied the publicly available model from ByteWeight to
our utility dataset. The F1 value is around 61.7 (our evaluation
merely includes the binaries compiled with gcc because the
existing model has not learned any signature from clang).
It indicates that GNU utilities do not offer diverse cases due
to a considerable number of redundant NFs as discussed in
Section 4.2. We have retrained ByteWeight (taking a week
or so) using SPEC2017 and retested it with our dataset (both
compiled with gcc alone). Note that three binaries of our test
set have been crashed while processing, and thus are excluded.
All metrics have considerably increased (78.0 on average);
however, the F1 values of the newly trained model across opti-
mized binaries (O1-3) still remain below 70. Besides, we have
adopted LEMNA’s re-implementation and its hyperparameters
for Shin et al.’s RNN model because the original work is cur-
rently unavailable. With the test set of our chosen utilities (32
binaries or 80.5K functions) and the training set of SPEC2017,
the RNN model achieves an F1 of 90.1. Finally, we have run
the whole set (152 binaries or 796.1K functions in total) for
deterministic tools including Ghidra, IDA Pro and Nucleus,
and obtained F1 values of 96.0, 93.4, and 90.4, respectively.

6 Discussion

Taking a close look at the experimental results with our efforts
to answer the research questions we have raised, the following
recaps our insights. First, in general, state-of-the-art function
detection tools work very well when no optimization has been
applied. Second, not a single tool dominates all the others. The
performance of a deterministic tool may vary depending on a
signature database. Third, it is difficult to claim that an ML-
centric approach is yet superior to deterministic approaches
although the approach obviously has its own strength. Fourth,

5The GNU binutils such as objdump or nm reads function
symbols from a symbol table (.symtab and .dynsym) by default
rather than parsing entire debugging sections.

Table 6: Experimental results of function starts using a precision (P),
recall (R), and F1 value from various tools. GT represents a ground
truth discovered in a symbol table. ByteWeight* shows our empirical
results after retraining with SPEC2017.

Tool GT TP FP FN P R F1

ByteWeight 514,082 309,781 180,777 204,301 63.15 60.26 61.67

gcc 514,082 309,781 180,777 204,301 63.15 60.26 61.67
O0 193,094 188,884 19,043 4,210 90.84 97.82 94.20
O1 108,964 56,655 55,463 52,309 50.53 51.99 51.25
O2 107,673 31,833 50,604 75,840 38.61 29.56 33.49
O3 104,351 32,409 55,667 71,942 36.80 31.06 33.68

ByteWeight* 463,323 332,576 56,655 130,747 85.44 71.78 78.02

gcc 463,323 332,576 56,655 130,747 85.44 71.78 78.02
O0 142,603 141,774 156 829 99.89 99.42 99.65
O1 108,964 68,599 19,607 40,365 77.77 62.96 69.58
O2 107,539 63,630 18,671 43,909 77.31 59.17 67.04
O3 104,217 58,573 18,221 45,644 76.27 56.20 64.72

Shin:RNN 80,532 69,334 4,034 11,198 94.50 86.09 90.10

clang 41,267 35,153 1,164 6,114 96.79 85.18 90.62
O0 11,647 11,476 52 171 99.55 98.53 99.04
O1 11,637 9,263 346 2,374 96.40 79.60 87.20
O2 8,998 7,194 357 1,804 95.27 79.95 86.94
O3 8,985 7,220 409 1,765 94.64 80.36 86.91

gcc 39,265 34,181 2,870 5,084 92.25 87.05 89.58
O0 11,657 11,477 90 180 99.22 98.46 98.84
O1 9,349 8,351 499 998 94.36 89.33 91.77
O2 9,305 7,304 1,137 2,001 86.53 78.50 82.32
O3 8,954 7,049 1,144 1,905 86.04 78.72 82.22

Ghidra 796,069 785,333 54,131 10,736 93.55 98.65 96.03

clang 281,987 276,296 47,134 5,691 85.43 97.98 91.27
O0 92,718 92,330 2,468 388 97.40 99.58 98.48
O1 92,226 90,282 15,006 1,944 85.75 97.89 91.42
O2 48,614 46,933 14,744 1,681 76.09 96.54 85.11
O3 48,429 46,751 14,916 1,678 75.81 96.54 84.93

gcc 514,082 509,037 6,997 5,045 98.64 99.02 98.83
O0 193,094 192,523 2,318 571 98.81 99.70 99.26
O1 108,964 107,683 1,663 1,281 98.48 98.82 98.65
O2 107,673 106,055 1,492 1,618 98.61 98.50 98.55
O3 104,351 102,776 1,524 1,575 98.54 98.49 98.51

IDAPro 796,069 699,606 3,194 96,463 99.55 87.88 93.35

clang 281,987 263,385 3,102 18,602 98.84 93.40 96.04
O0 92,718 92,600 3 118 100.00 99.87 99.93
O1 92,226 84,920 1,044 7,306 98.79 92.08 95.31
O2 48,614 43,037 1,025 5,577 97.67 88.53 92.88
O3 48,429 42,828 1,030 5,601 97.65 88.43 92.81

gcc 514,082 436,221 92 77,861 99.98 84.85 91.80
O0 193,094 191,757 3 1,337 100.00 99.31 99.65
O1 108,964 89,288 10 19,676 99.99 81.94 90.07
O2 107,673 79,085 47 28,588 99.94 73.45 84.67
O3 104,351 76,091 32 28,260 99.96 72.92 84.32

Nucleus 796,069 750,012 112,936 46,057 86.91 94.21 90.42

clang 281,987 264,819 72,945 17,168 78.40 93.91 85.46
O0 92,718 91,872 8,810 846 91.25 99.09 95.01
O1 92,226 82,431 21,687 9,795 79.17 89.38 83.97
O2 48,614 45,346 21,191 3,268 68.15 93.28 78.76
O3 48,429 45,170 21,257 3,259 68.00 93.27 78.66

gcc 514,082 485,193 39,991 28,889 92.39 94.38 93.37
O0 193,094 188,789 8,610 4,305 95.64 97.77 96.69
O1 108,964 104,985 7,330 3,979 93.47 96.35 94.89
O2 107,673 95,897 11,481 11,776 89.31 89.06 89.19
O3 104,351 95,522 12,570 8,829 88.37 91.54 89.93

the current metrics (i.e., precision, recall, and F1 value) for
function detection may not be reasonable due to idiosyncrasies
from various compiler optimization techniques. This necessi-
tates a better metric, which we leave for our future research.
Fifth, overall, it is difficult to conclude that a function detec-
tion problem has been fully resolved. We believe that both
deterministic and ML-oriented approaches complement each
other. For example, deep learning could play a pivotal role in
learning locally missing functions.

7 Conclusion

In this paper, we rethink the function identification problem us-
ing both deterministic and ML-centric approaches. To this end,
we have attempted to re-interpret prior datasets, evaluations,
and even common metrics using varying case studies.

Open Problem. Based on our major findings, we call for
seeking better metrics and dataset for fair comparison in the
field of function recognition.
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