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Abstract

Deep learning has continued to show promising results for
malware classification. However, to identify key malicious
behaviors, malware analysts are still tasked with reverse
engineering unknown malware binaries using static analysis
tools, which can take hours. Although machine learning can
be used to help identify important parts of a binary, supervised
approaches are impractical due to the expense of acquiring
a sufficiently large labeled dataset.

To increase the productivity of static (or manual) reverse
engineering, we propose DEEPREFLECT: a tool for localizing
and identifying malware components within a malicious
binary. To localize malware components, we use an unsuper-
vised deep neural network in a novel way, and classify the
components through a semi-supervised cluster analysis, where
analysts incrementally provide labels during their daily work
flow. The tool is practical since it requires no data labeling to
train the localization model, and minimal/noninvasive labeling
to train the classifier incrementally.

In our evaluation with five malware analysts on over 26k
malware samples, we found that DEEPREFLECT reduces the
number of functions that an analyst needs to reverse engineer by
85% on average. Our approach also detects 80% of the malware
components compared to 43% when using a signature-based
tool (CAPA). Furthermore, DEEPREFLECT performs better
with our proposed autoencoder than SHAP (an Al explanation
tool). This is significant because SHAP, a state-of-the-art
method, requires a labeled dataset and autoencoders do not.

1 Introduction

Reverse engineering malware statically can be a manual
and tedious process. Companies can receive up to 5 million
portable executable (PE) samples per week [13]. While most
organizations triage these samples ahead of time to reduce the
amount of malware to analyze (i.e., checking VirusTotal [12]
for antivirus (AV) engine results, executing the sample in a
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controlled sandbox, extracting static and dynamic signatures,
etc.), at the end of the day there will still be malware samples
which require static reverse engineering. This is due to the
fact that there will always be new malware samples which no
antivirus company has analyzed before or no signature which
has been crafted to identify these new samples. Finally, there
is a possibility that the sample will refuse to execute within
the analyst’s dynamic sandbox [42].

Current solutions exist in the form of creating signatures [33,
45,72], classification [14,30,36,41], and clustering [ 18,25,52]
for malware samples. However, these solutions only predict the
class of the samples (e.g., benign vs. malicious, or a particular
malware family). They cannot localize or explain the behaviors
within the malware sample itself, which an analyst needs to
perform to develop a report and improve their company’s mal-
ware detection product. In fact, there has been burnout reported
in the field due to excessive amounts of workload [27,55].

To identify their needs, we consulted with four reverse
engineer malware analysts (one from an AV company and
three from the government sector). We found that malware
analysts would be more productive in their work if they had
a tool which could (1) identify where malicious functionalities
are in a malware and (2) label those functionalities. The
challenges in developing such a tool are that (1) one would
need to be able to distinguish between what is benign and what
is malicious and (2) understand the semantics of the identified
malicious behaviors. For the first challenge, distinguishing
between what is benign and what is malicious is difficult
because the behaviors of malware and benign software often
overlap at a high level. For the second challenge, automatically
labeling and verifying these behaviors is difficult because
there are no published datasets of individually labeled malware
functions (unlike malware detection and classification systems
which use open datasets like antivirus labels).

To solve these challenges we developed DEEPREFLECT,
a novel tool which uses (1) an unsupervised deep learning
model which can locate malicious functions in a binary and
(2) a semi-supervised clustering model which classifies the
identified functions using very few labels obtained from
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Figure 1: The general workflow of a malware analyst. DEEPREFLECT
assists the analyst when they must statically reverse engineer an
unknown malware sample.

analyst’s regular daily workflow.

To locate the malware components in a binary, we use an
autoencoder (AE). An AE is a neural network based machine
learning model whose task is to reconstruct its input as its
output. Since there is compression in the network’s inner
layers, the AE is forced to learn key concepts in the training
distribution. Our intuition is that if we train the AE on benign
binaries, it will have difficulty reconstructing malicious
binaries (i.e., the samples we did not train it on). Naturally,
the AE will not be able to reconstruct regions of the binary
which contain malicious behaviors (which are unseen or
rare in benign samples). Thus, the reconstruction errors can
be used to identify the malicious components in a malware.
Additionally, since AEs are trained in an unsupervised manner,
we do not need millions of labeled samples and companies
can utilize their own internal datasets of malware binaries.

To classify the located malware components, we (1)
perform clustering on all of the identified functions in the
malware samples and (2) label clusters using the analyst’s
annotations made during his or her regular daily workflow.
This approach is semi-supervised since only a few labels (e.g.,
three) are needed per cluster to assign the majority label to the
entire cluster. Over time, we can predict the class (e.g., C&C,
privilege escalation, etc.) of functions identified by the AE
by mapping them to the clustering model. This, in turn, saves
the analyst time as they are not forced to reverse engineer the
same code again and again.

We note that the unsupervised AE provides immediate
utility to malware analysts without training or using the
semi-supervised clustering model. This is because it (1) draws
the attention of the analyst to the most relevant functions by
ranking them (by their reconstruction error) and (2) filters
out functions which would have cost the analyst hours or
potentially days to interpret.

DEEPREFLECT was designed and revised with feedback
from our four malware analysts. Then five different malware
analysts were recruited to evaluate DEEPREFLECT’s effective-
ness and utility. Overall, we evaluate the tool’s performance
on (1) identification of malicious activities within a malware,
(2) clustering related malware components, (3) focusing the
analyst’s attention to what is important, (4) revealing insights
into shared behaviors between different malware families, and

(5) handling adversarial attacks involving obfuscation.

Our contributions are as follows:

* A novel tool which can help malware analysts by auto-
matically (1) locating and identifying malicious behaviors
within static malware samples and (2) deriving insights by
associating functionality relationships between different
malware families.

A novel and practical approach for using machine learning
on static analysis where

1. Training is performed in an unsupervised manner: an
expert does not need to label any samples for the system
to yield utility — highlighting the malware’s components,
and

2. Classification is accomplished in a semi-supervised
manner with minimal intervention: annotations from
the analyst’s regular workflow are used as labels and the
majority label in a cluster is used to classify associated
malware components.

* We propose an approach for localizing important parts of a
malware with an explanation framework (such our proposed
AE or SHAP [40]) by using localized features that can be
mapped back to the original binary or control flow graph.

2  Scope & Overview

In this section, we present a motivating scenario and explain
the threat model and goals of our system.

2.1 Motivation

As a motivating example, let us assume there exists a malware
analyst named Molly. An illustration of her daily workflow can
be found in Figure 1. This general workflow is realistic based
on descriptions in recent work [69] and of our own discussions
with real-world malware analysts. Given a malware sample,
Molly is tasked with understanding what the sample does so
that she can write a technical report as well as improve her
company’s current detection system to identify that sample
in the future.

She first queries VirusTotal [12] and other organizations
to determine if they have seen this particular sample before.
Unfortunately, no one has. Thus, she moves onto her next
step which is to execute it in a custom sandbox to get an
overview the sample’s dynamic behaviors. Unfortunately, the
sample does not display any malicious or notable behaviors
— it is also possible that it has detected the environment and
refuses to execute. She runs a few in-house tools to try to coax
the malware into performing its hidden behaviors, but to no
avail. Exhausting these options, she resorts to unpacking and
statically reverse engineering the sample to understand what
its potential behaviors are.

Upon opening the unpacked sample in a disassembler (such
as IDA Pro [7] or BinaryNinja [1]), Molly is overwhelmed
by the thousands of functions that exist within it. She tries



running various static signature detection tools to identify
some specific malicious components of the malware, but again
to no avail. She must look through each function one-by-one
(possibly filtering them by the API calls and strings which
exist within them) to try to understand their behaviors (often
times resorting to debugging to verify observed behaviors).

After noting its behaviors, she writes her report (composed
of basic information like indicators of compromise (IOCs),
static signatures, etc.) and passes it along to her superiors. The
next day, she repeats the same tasks. Due to this repetitive
manual labor, the job becomes tedious and time-consuming
for Molly.

DEEPREFLECT aims to alleviate her laborious task by
automatically narrowing her focus to the functions which are
most likely malicious (out of the thousands she is presented
with) and provide labels to those functions she has seen
similarly in the past.

2.2 Proposed Solution

We propose DEEPREFLECT, a tool which (1) locates malicious
functions within a malware binary and (2) describes the behav-
iors of those functions. While an analyst may first attempt to
identify behaviors statically by searching for specific strings
and API calls [69], these can be easily obfuscated or hidden
from the analyst. DEEPREFLECT makes no such assumption
and seeks to identify these same behaviors through a combi-
nation of control-flow graph (CFG) features and API calls.

DEEPREFLECT works by learning what benign binary
functionalities look like normally. Thus, any abnormalities
would suggest that these functionalities do not appear in benign
binaries and could be used to facilitate malicious behaviors.
This allows our tool to narrow down the analyst’s search
space before they open or scan the binary. DEEPREFLECT
reduced the number of functions the analyst had to examine
(in each malware sample) by 85% on average as shown
in Figure 5, illustrating the amount of work required for them
to accomplish their task. Additionally, we show that our
methodology outperforms signature-based techniques which
aim to accomplish the same goal §4.3.

2.3 Threat Model

We assume the malware analyst is performing static analysis.
The limitations of static analysis have been discussed in prior
work [44]. We do not address dynamic analysis in this paper,
though conceptually our tool can be extended to work with
dynamic analysis data. We assume the malware given to our
system is unpacked, as is similar to prior work [37,39, 59, 60].

The problem of unpacking has been studied in prior work
and solutions have been proposed to address it [21,58]. Our
results are directly dependent on malware being unpacked
and thus we rely on prior work [11] to first unpack the binaries
for us. We emphasize that our tool is just one step in the
analyst’s pipeline, and unpacking is the first step as illustrated

in Figure 1 and Figure 2.

We assume we can reliably disassemble the malware in
order to extract basic blocks and functions. The challenges
of accurately disassembling binaries have been discussed in
prior work [15,38].

For our experimentation, we trust that our machine
learning models and datasets are reliable (i.e., are not actively
attempting to attack or thwart our system). A discussion
of the limitations of this assumption (and its solutions) in
deployment settings can be found in §5.1.

2.4 Research Goals

As discussed in §1 and §2.1, the analyst needs to locate and
describe behaviors of internal functions within malware
samples. Therefore, DEEPREFLECT has four primary goals:
(G1I) Accurately identify malicious activities within malware
samples, (G2) Focus the attention of the analyst when
statically analyzing malware samples, (G3) Handle new
(unseen) malware families, and (G4) Give insights into
malware family relationships and trends.

3 Design

In this section, we detail the pipeline of DEEPREFLECT as
well as the features and models it uses.

3.1 Overview

The goal of DEEPREFLECT is to identify malicious functions
within a malware binary. In practice, it identifies functions
which are likely to be malicious by locating abnormal basic
blocks (regions of interest — Rol). The analyst must then
determine if these functions exhibit malicious or benign behav-
iors. There are two primary steps in our pipeline, illustrated
in Figure 2: (1) Rol detection and (2) Rol annotation. Rol
detection is performed using an autoencoder, while annotation
is performed by clustering all of the Rols per function and
labeling those clusters.

Terminology. First, we define what we mean by "malicious
behaviors." We generate our ground-truth based on identi-
fying core components of our malware’s source code (e.g.,
denial-of-service function, spam function, keylogger function,
command-and-control (C&C) function, exploiting remote
services, etc.). These are easily described by the MITRE
ATT&CK framework [9], which aims to standardize these
terminologies and descriptions of behaviors. However, when
statically reverse engineering our evaluation malware binaries
(i.e., in-the-wild malware binaries), we sometimes cannot
for-certain attribute the observed low-level functions to these
higher-level descriptions. For example, malware may modify
registry keys for a number of different reasons (many of which
can be described by MITRE), but sometimes determining
which registry key is modified for what reason is difficult and
thus can only be labeled loosely as "Defense Evasion: Modify
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Figure 2: Overview of DEEPREFLECT. Our system takes unpacked malware samples as an input, extracts CFG features from each input (basic
block (BB)), applies them to a pretrained autoencoder model to highlight Rol (regions of interest). Finally, it clusters and labels these regions.

Registry" in MITRE. Even modern tools like CAPA [3]
identify these types of vague labels as well. Thus in our
evaluation, we denote "malicious behaviors" as functions
which can be described by the MITRE framework.

Rol Detection. The goal of detection is to automatically iden-
tify malicious regions within a malware binary. For example,
we would like to detect the location of the C&C logic rather
than detect the specific components of that logic (e.g, the net-
work API calls connect (), send(),and recv()). The advan-
tage of Rol detection is that an analyst can be quickly pointed
to specific regions of code responsible for launching and op-
erating its malicious actions. Prior work only focuses on creat-
ing ad hoc signatures that simply identify a binary as malware
or some capability based on API calls alone. This is particu-
larly helpful for analysts scaling their work (i.e., not relying
on manual reverse engineering and domain expertise alone).
Rol Annotation. The goal of annotation is to automatically
label the behavior of the functions containing the Rols. In
other words, this portion of our pipeline identifies what
this malicious functionality is doing. Making this labeling
nonintrusive to an analyst’s workflow and scalable is crucial.
The initial work performed by an analyst for labeling clusters
is a long-tail distribution. That is, there is relatively significant
work upfront but less work as they continue to label each
cluster. The advantage of this process is simple: it gives the
analyst a way to automatically generate reports and insights
about an unseen sample. For example, if a variant of a malware
sample contains similar logic as prior malware samples (but
looks different enough to an analyst to be unfamiliar), our tool
gives them a way to realize this more quickly.

3.2 Rol Detection

An autoencoder is a neural network M which consists of
an encoder En(x), which compresses the input x into an
encoding e, and a decoder De(e), which reconstructs x from
a given e. When trained with the objective De(En(x)) = x,
the network learns to summarize the distribution of x € X
where X C R™. In works such as [43], it has been shown that
autoencoders can detect malicious (abnormal) behaviors when
trained on a benign distribution. This is because M would fail
to reconstruct the features in x because m would recall the

malicious concepts/patterns.

Given a sample’s reconstruction M(x) = £, a malicious
sample is typically identified by computing the mean-squared-
error (MSE) and checking if the resulting scalar is above a
given threshold ¢. The MSE is calculated as

MSE (x,£) = %Z(x“) —)e<">) ’ (1)

where x(?) is the i-th feature in x.

Our assumption is that malware binaries will contain
similar, but unique functionalities compared to benign binaries.
Given this intuition, we train M on a diverse benign dataset
which represents a variety of behaviors and functionalities.
In contrast to previous works, which identify an entire sample
as being malicious, we identify the malicious regions in each
sample. Concretely, we compute the localized MSE defined as

. A\ 2
LMSE (x.%) = (x(') —x(')) )

and then apply a threshold ¢ to the resulting vector to identify
the patterns which M did not recognize or understand. Each
block which received a squared error over ¢ is called a region
of interest (Rol). We denote the mapped set of Rols identified
in sample x as the set

R.— {xm (xm _ f<i>)2 > q,} (3)

The highlights represented by R, are similar to SHAP [40] ex-
planations of supervised classifiers (e.g., image classification).
However, our approach is designed to explain unsupervised
neural network anomaly detectors (i.e., trained on unlabeled
datasets), whereas SHAP is used on supervised classification
models (trained on labeled datasets).

3.2.1 Features

When given a binary sample, we extract features to summarize
the samples as x. There are many static features which have
been used in prior work for malware detection (e.g., code
section entropy, imported API calls, etc.) [29,35,53,61, 63].
However, for M to localize malicious behaviors within a binary,



our features must be mapped 1-to-1 back into the original
sample. Therefore, we represent each binary as an m-by-c
matrix which captures the first m basic blocks using ¢ features
to summarize each of their activities. Basic blocks are, in
general, a series of instructions which end in a control transfer
instruction. Of course, basic blocks may be represented
differently depending on the disassembler, so this strict

definition may not apply to all static malware analysis systems.

Our c features were inspired from those found in prior works,

namely attributed control flow graph (ACFG) features [23,75].

ACFG features were chosen to perform binary similarity in
these works because they assume these features (made up
of structural and numerical CFG features) will be consistent
across multiple platforms and compilers. While an argument
can be made that our goals are similar (i.e., identifying
similarities and differences across binaries), we tailored these
features specifically for studying malware. In particular, we
chose our features for the autoencoder to use in order to
capture higher-level behaviors. Our features consist of counts
of instruction types within each basic block (a more detailed
form of those extracted for ACFG features), structural features
of the CFG, and categories of API calls (which have been used
to summarize malware program behaviors [18]).

In DEEPREFLECT, we set m to be the first 20k basic blocks.

We chose this because 95% of our dataset samples have 20k
basic blocks or less. We set ¢ to be the 18 features which
summarize each basic block as follows:

Structural Characteristics. The structural features we use
are the number of offspring and betweenness score of
each basic block. These characteristics can represent a
control-flow structure commonly used for operations like
network communication (e.g., connect, send, recv) and file

encryption (e.g., findfile, open, read, encrypt, write, close).

An example of this functionality from an actual malware
sample can be found in Figure 6.

Arithmetic Instructions. The arithmetic instruction features
we use are the number of "basic math", "logic operation”,
and "bit shifting" instructions contained within each
basic block. The features can be used to represent how
mathematical operations are carried out for higher level
behaviors. They illustrate how numbers are interacted with
for the function (e.g., encryption functions likely include
lots of xor instructions, obfuscation functions likely include
a combination of logic and bit-shifting operations, etc.).
We retrieved these instructions from the Intel architectures
software developer’s manual [26]. Additionally, we provide
an example from a malware sample showcasing these types
of features in Figure 9.

Transfer Instructions. The transfer instruction features
we use are the number of "stack operation”, "register
operation", and "port operation" instructions within each
basic block. The features can be used to represent how
transfer operations are carried out for higher level behaviors.
They illustrate how arguments provided to the function (and

returned values from function calls) interact with the rest of
the data within that function. It can be indicative of complex
logic and data manipulation (e.g., deobfuscation/decryption
will likely involve more move-related instructions and
C&C logic will involve more stack-related instructions
as it calls more internal/external functions). We similarly
retrieved these instructions from the Intel architectures
software developer’s manual [26].

API Call Categories. The API call features we use are the
number of "filesystem", "registry”, "network"”, "DLL",
"object", "process", "service", "synchronization", "system
information", and "time" related API calls within each basic
block. These categories are inspired from prior work for mal-
ware clustering [18]. The features can be used to represent
high level library operations needed to perform malicious
activities such as network communications and filesystem,
registry, and process operations. Since these directly repre-
sent high-level behaviors, they are crucial to understanding
the overall behaviors of a function. Examples of malware
functions which utilize these different call types to perform
different behaviors can be found in Figure 6 and Figure 8.

We argue that these features are better suited for malware
than classical ACFG features because (1) they include API
calls which have been used in prior work for malware detection,
(2) the instruction categories are finer-grained, allowing for
more context into each basic block (as previously described),
and (3) they do not rely on strings which are too easily prone
to evasion attacks [77]. Of course, given a motivated adversary,
any machine learning model can be attacked and tricked into
producing an incorrect and unintended outputs. Whilst our
features and model are not an exception to this, we argue that
they suffice to produce a reliable model (i.e., it behaves as
expected) and make it difficult enough such that an adversary
would have to work extensively to produce a misleading input
(as demonstrated in §4.7). For a discussion of potential attacks
against our system, please refer to §5.

3.2.2 Model

To train M, we create a training set X from a variety of benign
binaries, where x € X is an m-by-c feature vector representing
one of the binaries. For the autoencoder model architecture,
we use a U-Net [57]. U-Nets have been shown to perform
well on generative image tasks such as biomedical image
segmentation and the creation of fake imagery. The advantage
of using a U-Net is that it has skip connections between the
En and De which M can use to skip the compression of certain
features to retain a higher fidelity in £.

We train M on X with the goal of minimizing the recon-
struction loss. The loss is the common L2 loss between the
input and output, and is defines as

L(x8) =Y (x—%) @)

Once trained, M is given the static features x of an unseen



malware sample. We then highlight the potentially malicious
code regions using Equation 2, which is further discussed
later in §4, such that any MSE over that value is considered
a Rol. After highlighting the Rols (basic blocks), we cluster
the functions they belong to.

3.3 Rol Annotation

Given a new sample x, we want to identify the behavior
(category) of each of its functions' and report it to Molly.
Since it is not practical to label all functions, we annotate
only a few functions and propagate the results using cluster
analysis. We will now explain how this process is setup prior
to receiving Molly’s sample.

3.3.1 Clustering Features

Let x be a feature extracted binary taken from a collection of
unpacked malwares. Let F be the set of functions in x found
using BinaryNinja. For each f; € F we denote the Rols in f;
as g;, where g; CR,.

We create a training set D for clustering as follows: Given
the malware x;, For each ¢; # &, we summarize the behavior of
fias ﬁ):q,- and add it to D. This is repeated for all malwares
in our collection.

Experimentally, we found that this representation of f;’s
Rols best capture the functions’ behaviors in terms of cluster
quality (i.e., using Silhouette Coefficient & Davies Bouldin
Score).

3.3.2 Clustering Model

To cluster the functions in D, we first reduce the dimensionality
from 18 to 5 so that we can scale to 500k functions. The reduc-
tion is performed using principle component analysis (PCA).

Next, we cluster the reduced vectors using HDBSCAN [6]
and denote the clustering of D as C. HDBSCAN is a variant of
the density based clustering algorithm DBSCAN. The reason
we chose HDBSCAN is because (1) it can identify non-convex
clusters (unlike k-means) and (2) it automatically selects the
optimal hyper-parameters for cluster density (unlike classic
DBSCAN).

3.4 Deployment

Next, we describe how DEEPREFLECT is deployed and used
by a malware analyst.

Initialization. To initialize DEEPREFLECT, Molly begins by
unpacking benign and malware binaries. She then passes them
to DEEPREFLECT which (1) extracts our static features, (2)
trains an autoencoder model M on the benign samples, (3)
extracts Rols R, from each malware sample, (4) summarizes
each function’s behavior by averaging their Rols (g;) as D, and
(5) reduces the summaries with PCA and clusters them as C.

I'The functions in a binary are heuristically and statically found using a
tool such as BinaryNinja on the CFG.

At this point, Molly has now identified groups of behaviors

(functions) which are malicious (anomalous) according to
M. She can now annotate a small subset of the functions
or proceed with her regular work routine while adding
annotations to D (as mentioned earlier).
Execution. When Molly receives a new sample x, the
behaviors are automatically visualized, localized, and labeled
for her by DEEPREFLECT as follows: (1) x is unpacked using
unipacker [11], (2) x is passed through M and the Rols R,
are obtained, (3) functions are identified using BinaryNinja
and each function is summarized as g by averaging its Rols,
(4) the remaining function summaries are reduced using the
PCA model, (5) each function is associated with the cluster
that is most similar to it,” and (6) assign the majority cluster
annotations to the functions and map the result back to Molly’s
user interface. This workflow is illustrated in Figure 2.

Molly then investigates the highlighted functions, and while
doing so she (1) obtains a better perspective on what the mal-
ware is doing, (2) annotates any function labeled "unknown"
with the corresponding MITRE category (dynamically updat-
ing D), and (3) is able to observe shared relationships between
other malware samples and families by their shared clusters.

4 Evaluation

In this section, we present our evaluation of DEEPREFLECT.
First, we outline our objectives for each evaluation experiment
and list which research goals (§2.4) are achieved by the exper-
iment. We evaluate DEEPREFLECT’s (1) reliability by running
it on three real-world malware samples we compiled and
compared it to a machine learning classifier, a signature-based
solution, and a function similarity tool, (2) cohesiveness
by tasking malware analysts to randomly sample and label
functions identified in in-the-wild samples and compare how
DEEPREFLECT clustered these functions together, (3) focus
by computing the number of functions an analyst has to reverse
engineer given an entire malware binary, (4) insight by observ-
ing different malware families sharing the same functionality
and how DEEPREFLECT handles new incoming malware
families, and (5) robustness by obfuscating and modifying a
malware’s source code to attempt to evade DEEPREFLECT.

4.1 Dataset

Constructing a good benign dataset is crucial to our model’s
performance. If we do not provide enough diverse behaviors
of benign binaries, then everything within the malware binary
will appear as unfamiliar. For example, if we do not train the
autoencoder on binaries which perform network activities,
then any network behaviors will be highlighted.

To collect our benign dataset, we crawled CNET [4] in 2018
for Portable Executable (PE) and Microsoft Installer (MSI)

2This can be done by measuring centroid distance, using an incremental
DBSCAN, or by reclustering D (which is what we do in this paper).



Category Size Category Size
Drivers 6,123 Business Software 1,692
Games 1,567 Utilities 1,453
Education 1,244 Developer Tools 1,208
Audio 1,023 Security 1,000
Communications 994 Design 844
Digital Photo 826 Video 787
Customization 778 Productivity 730
Desktop Enhancements 699 Internet 695
Networking 612 Browsers 440
Home 390 Entertainment 257
Itunes 43 Travel 17

Table 1: Benign Dataset: 22 categories from CNET.

Label virut vobfus hematite  sality crytex
Size 3,438 3,272 2,349 1,313 914

Label wapomi hworld pykspa allaple startsurf
Size 880 720 675 470 446

Table 2: Malware Dataset: Top 10 most populous families.

files from 22 different categories as defined by CNET to en-
sure a diversity of types of benign files. We collected a total of
60,261 binaries. After labeling our dataset, we ran our samples
through Unipacker [11], a tool to extract unpacked executables.
Though not complete as compared to prior work [21, 58], the
tool produces a valid executable if it was successful (i.e., the
malware sample was packed using one of several techniques
Unipacker is designed to unpack). Since Unipacker covers
most of the popular packers used by malware [67], it is reason-
able to use this tool on our dataset. By default, if Unipacker can-
not unpack a file successfully, it will not produce an output. Uni-
packer was able to unpack 34,929 samples. However, even after
unpacking we found a few samples which still seemed partially
packed or not complete (e.g., missing import symbols). We fur-
ther filtered PE files which did not have a valid start address and
whose import table size was zero (i.e., were likely not unpacked
properly). We also deduplicated the unpacked binaries. Unique-
ness was determined by taking the SHA-256 hash value of the
contents of each file. To improve the quality of our dataset,
we only accepted benign samples which were classified as
malicious by less than three antivirus companies (according to
VirusTotal). In total, after filtering, we obtained 23,307 unique
samples. The sizes of each category can be found in Table 1.
To acquire our malicious dataset, we gathered 64,245 mal-
ware PE files from VirusTotal [12] during 2018. We then ran
these samples through AVClass [62] to retrieve malware family
labels. Similar to the benign samples, we unpacked, dedu-
plicated, and filtered samples. Unipacker was able to unpack
47,878 samples. In total, we were left with 36,396 unique PE
files from 4,407 families (3,301 of which were singleton fam-
ilies —1i.e., only one sample belonged to that family). The sizes
of the top-10 most populous families can be found in Table 2.
After collecting our datasets, we extracted our features from
each sample using BinaryNinja, an industry-standard binary
disassembler, and ordered each feature vector according to

its basic block’s address location in a sample’s binary.

4.2 Model Setup

After extracting our datasets, we trained the autoencoder on
80% of our benign dataset and tested it on the remaining 20%.
We used a kernel size of 24 with a stride of 1 and normalized
the feature vectors; we found these parameters to improve
results empirically. We trained the model for a maximum of
10 epochs and we obtained a training MSE of 2.5090e-07 and
testing MSE of 2.1575e-07 —recall that a lower the MSE value
means a better reconstruction of the benign samples. It took
roughly 40 hours to train the model on an NVIDIA GeForce
RTX 2080 Ti GPU. 3

4.3 Evaluation 1 - Reliability

To evaluate DEEPREFLECT’s reliability, we explore and
contrast the models’ performance in localizing the malware
components within binaries.

4.3.1 Baseline Models

To evaluate the localization capability of DEEPREFLECT’s
autoencoder, we compare it to a general method and domain
specific method for localizing concepts in samples: (1) SHAP,
a classification model explanation tool [40], (2) CAPA [3],
a signature-based tool by FireEye for identifying malicious
behaviors within binaries,* and (3) FunctionSimSearch [5],
a function similarity tool.

Given a trained classifier and the sample x, SHAP provides
each feature x() in x a contribution score for the classifier’s
prediction. For SHAP’s model, we trained a modified deep
neural network VGG19 [64] to predict a sample’s malware
family and whether the sample is benign. For this model,
we could not use our features because the model would not
converge. Instead, we used the classic ACFG features without
the string or integer features. We call these features attributed
basic block (ABB) features. We trained this model for classifi-
cation (on both malicious and benign samples) and achieved a
training accuracy of 90.03% and a testing accuracy of 83.91%.
In addition to SHAP, we trained another autoencoder on ABB
features to compare to our new features as explained in §3.2.1.

4.3.2 Ground-Truth Dataset

For our ground-truth, we statically identified the locations of
the malicious components (functions) in the source code of
three different malwares. We located these functions in the
binary’s CFG by matching markers (e.g., strings and API calls)
and labeling the corresponding basic blocks as malicious.
All other blocks we labeled as benign. We note that we were
unable to locate 14% to 30% of the malicious functions

3For reproducibility, our source-code and dataset can be found at
https://github.com/evandowning/deepreflect.

4“We used the community and expert rule sets vI1.2.0 from
https://github.com/fireeye/capa-rules



(depending on the sample), so they were marked as benign.
These functions were not found because (1) the functions
could not be recognized due to obscured and partial identifiers
(calls and strings) in the binary, and (2) they were lost due to a
limitation of function identification from a static disassembler
such as dynamically resolved functions and anti-static analysis
techniques [16]. Note, the omitted functions are reflected in
the results as false positives (FPs) (Figure 3) so technically
our false positive rate (FPR) is better in reality.

The three malware samples which make up our ground-truth
are rbot, pegasus, and carbanak. We chose rbot because
while it is an older internet relay chat (IRC) botnet from 2004,
it still exists in common malware feeds —i.e., it still appears
in the wild. We also chose it because it compiles into a single
PE file (directly comparable to our PE malware samples from
our dataset). We chose pegasus because it is a newer banking
trojan from 2016 and is composed of multiple payloads (PE
files and DLL files). This allows us to evaluate our tool on files
which could be captured in memory or elsewhere (i.e., not just
assuming that all malware will neatly pack all of its behaviors
into a single file). Finally, we chose carbanak because it is
arecently leaked banking malware from 2014, making it still
relatively modern. The diversity in behaviors, code layout and
implementation, and malware family types and ages is why
we chose these three samples.

4.3.3 Results

The results of this experiment can be found in Figure 3. To
obtain values for each function, we summed its corresponding
basic block SHAP (setting negative values to 0) or MSE values.
DEEPREFLECT vs SHAP. The goal of SHAP is to identify
regions within the model’s inputs which affect the model’s
classification decision. While a malware classifier alone
provides the analyst with the input’s malware family, SHAP
will identify where the most important regions of the input are
for making that decision. Thus, conceptually it could be used
to identify differences between different malware families and
benign software (as previously discussed). However, this may
not be completely effective. The analyst would have to contin-
uously retrain the model whenever a new class of malware was
discovered, and SHAP is inherently slow due to its recursive
algorithm (making multiple passes back and forth through the
neural network). DEEPREFLECT overcomes these issues by
utilizing unsupervised learning and only requiring one pass
through the neural network to retrieve the model’s output.

DEEPREFLECT vs CAPA. Next, we compared
DEEPREFLECT to CAPA [3], a tool which statically
identifies capabilities within executables. It accomplished
this by using hand-written signatures which describe various
behaviors. For example, "connect to HTTP server", "create
process", "write file", etc. Since CAPA is signature-based it
is possible for it to miss malicious behaviors due to lack of
generality, while DEEPREFLECT is trained using unsupervised
learning and does not have this limitation. For DEEPREFLECT,

we selected the detection threshold ¢ as follows: First, we
plotted the ROC curves of all ground-truth samples (Figure 3).
Then we identified separate thresholds for each sample which
achieved a true positive rate (TPR) of 80%. We chose this TPR
because it was large enough to detect a majority of malicious
functions while keeping the FPs relatively low (for reviewing
individual samples).

An example of where CAPA failed to identify behaviors
was when the API call symbol was obfuscated by the malware
(e.g., dynamically resolving the API call’s name during
runtime). Thus, it missed the function KeyLoggerThread ()
which calls various dynamically resolved API calls to log
the victim’s keystrokes. But since there are no interesting
API calls here, CAPA misses it. DEEPREFLECT was able to
successfully identify it because it does not solely rely on API
calls and signatures to discover malicious behaviors.

An example of where DEEPREFLECT was unable to
identify a behavior that CAPA (supposedly) did was an
internal function which transports sent files to the C&C server.
DEEPREFLECT should have conceptually picked up on this,
it failed to do so. However, the API calls are all obfuscated,
so CAPA should have failed here. Upon further investigation,
CAPA believes there is a call here to retrieve a file’s size,
though in the source code such a call does not exist. Examining
a neighboring function, we find it calls GetFileSize().
Therefore, we believe this is an example of an inconsistency
between disassembler function addresses between CAPA’s
default disassembler and BinaryNinja (as both likely use
different methods for function boundary detection). In this
case, DEEPREFLECT discovered all of the malicious functions
that CAPA did. While our tool did not succeed at catching the
aforementioned malicious function (due to the thresholds we
set), it is still more generic and scalable than signature-based
tools, like CAPA, which rely on API calls and strings.
DEEPREFLECT vs FunctionSimSearch. FunctionSim-
Search is a function similarity tool developed by Google
Project Zero [5]. We trained a database on benign functions
from our dataset with default parameters. After training their
tool on our benign dataset, we queried it with the functions in
our ground-truth dataset. We specified for the tool to output the
top-1000 most common functions and their similarity scores.
We chose 1,000 because of the speed at which it takes for a
query to return from the tool (1 hour) and the sheer volume
of functions inserted into the database (1,065,331 functions).
To use this as an anomaly detector, we would expect that
unfamiliar functions (i.e., malicious functions) would result in
significantly smaller similarity scores than familiar functions.
As seen in Figure 3, it performed poorly. It should be noted
that a possible explanation for the poor performance is due
to disagreements between function boundaries (as is common
with different disassembly tools), but that this should not be
drastically different (as seen with CAPA’s disassembly tool
which performed better).

Sample from the Wild. For verifying DEEPREFLECT’s
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Figure 3: The ROC plot (performance at every threshold) for DEEPREFLECT, AE using ABB features, SHAP using ABB features, CAPA,
and FunctionSimSearch on the three ground truth malware samples. The horizontal black bar represents a TPR of 80%.

ability to identify malicious functionality for in-the-wild
samples, we randomly selected one binary from the virut
family. We chose this sample binary to reverse engineer
because it was simple (i.e., it was relatively small and were
able to reverse engineer every internal function) and virut
has been a well-studied botnet from 2006 - 2013 and beyond.
First, a malware analyst reverse engineered this sample using
CAPA and BinaryNinja, manually examining all 39 internal
functions and labeling them as either malicious (according to
the MITRE framework) or benign. Next, the analyst executed
DEEPREFLECT on this sample and it identified 15 RoI’s. Com-
paring this to our analyst’s manual analysis, we initially thought
that DEEPREFLECT missed one function (logic for comparing
an argument that will either lead to terminating the malware’s
processor or not). Due to differences between CAPA’s default
disassembler’s disassembly and BinaryNinja’s disassembly,
the function addresses (boundaries) were not identical. In
this case, CAPA identified process termination at this internal
function, where BinaryNinja contained no such logic at that
function location. Because of this discrepancy, DEEPREFLECT
essentially caught all malicious functionalities. Additionally
we had an analyst use DEEPREFLECT on a malware which
he has analyzed in the past. This is discussed more in §A.1.
Summary. We have shown that our autoencoder localization
approach in DEEPREFLECT achieves goals G1 and G3 by
identifying malicious behaviors in binaries without training
on sample malwares or labeled data. Additionally, we have
demonstrated its improvement over a popular explanation
framework (SHAP) and signature-based method (CAPA).
Most importantly, DEEPREFLECT is more practical than
SHAP (which is slower and requires labeled dataset) and
CAPA (a signature-based solution), because the model does
not require the expensive process of having experts label
malwares or their components. Lastly, we have shown that our
features perform better than the ABB features.

4.4 Evaluation 2 — Cohesiveness

To evaluate DEEPREFLECT’s ability to classify the malware
components identified by the AE, we explore the semi-
supervised clustering model’s quality with the help of five
experienced malware analysts.

4.4.1 Experiment Setup

First, we used the autoencoder M and identified 593,181
malicious components (functions) in 25,206 malware samples.
This is less than the original ~36k samples because some of the
samples either (1) never finished extracting features, (2) had
no Rols detected above the selected threshold, or (3) the Rol
did not exist in the binary — the result of which perplexes us but
could be explained as either data corruption, some issue with
automatic upgrading BinaryNinja between extracting features
and running clustering, or because the basic block exists in
a function we do not consider (i.e., an external function)).

For clustering a large number of malware sample functions,
we wanted to keep the FPR at a low level of 5%. In industry and
real-world environments, lower FPR is often times more val-
ued than TPR. Using this threshold (which yielded a combined
TPR/FPR of 40%/5% on our ground-truth samples), we used
DEEPREFLECT to extract and cluster the identified functions
as C (§3.3). After running PCA on the function feature vectors,
HDBSCAN produced 22,469 clusters using the default hyper-
parameters. The largest cluster contained 6,321 functions and
the smallest contained 5. There were 59,340 noise points.

In Figure 10, we present the distribution on the clusters’
sizes. The figure shows that there is a long-tail distribution
(common in density-based clustering) where the top-10 most
populous clusters make up 5% of the functions.

The Reverse Engineers. To evaluate the clustering quality we
recruited five malware analysts with 2-7 years of experience
in reverse engineering.

The five analysts randomly sampled functions and labeled
them using the MITRE ATT&CK [9] categorization. If the
functions were deemed benign, the analysts labeled them as
such. Overall, the analysts randomly sampled 177 functions
(for the 176 different types of MITRE ATT&CK labels) each
from the 25 largest malware family Rols (chosen because
of their size and diversity of behaviors). Time was a limiting
factor to how many functions were selected. While 177
functions is small compared to the 600k extracted, it took
between 15-30 minutes (and sometimes longer) to reverse
engineer each function. We then selected one analyst to group
these functions by hand. Finally, we compared the manual
groupings to DEEPREFLECT’s clusters performed various
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Figure 4: Cluster Diversity. Left: the distribution of families per
cluster. Right: the distribution of addresses per cluster to show
that there is no bias in function location.

measurements. In Table 3, we present the various MITRE
ATT&CK labels the analysts came across in their work.

4.4.2 Results - Cluster Quality

After manually labeling functions, the analysts ended up with
78 malicious clusters. There were 5 cases where the handmade
clusters appeared in different clusters in C. For brevity, we
will only discuss three here. In the first case, the two functions
which resided within the handmade cluster were deemed
similar by the analyst. They were both small functions which
called SetEvent (), though were not identical in content.
One function had one more instruction that set the subroutine
argument’s value + 0x40 offset to 0. This was not enough
of a difference to the analyst, so they clustered them as the
same. However, to HDBSCAN the feature vector contents
would have changed and thus (depending on parameters) may
separate these two functions. This is a case where HDBSCAN
was too sensitive. In the second case, three functions were
deemed as similar to the analyst, but were separated into two
clusters in C. The differing function contained a precondition
IsProcessorFeaturePresent (), however both called
TerminateProcess() on GetCurrentProcess() — thus
they were close enough in behavior as to label them "Discov-
ery: Virtualization/Sandbox Evasion". These are indicative of
sandbox evasion because these techniques look for differences
between processes in a sandbox and process on a real host [54].
Normally, one of the only reasons malware will attempt to exit
is if they receive a command to do so from the C&C server
or if they are in an undesirable environment (either not fit
for the malware to infect or is determined to be an analysis
environment). In the third case, a handmade cluster contained
two functions which were separated in C. Similar to the other
cases, these functions were close enough, but not exact, in
content. They both performed GetTickCount() as well as
calling various other internal functions in the same fashion.
There were 8§ cases where the handmade clusters were merged
into the same clusters in C.

Though these errors appeared, 89.7% of the analyst’s
handmade clustered functions matched what our tool created.
Thus, we consider the clustering results trustworthy. In the
future, HDBSCAN’s parameters could be tuned to correct
these discrepancies.

Error Margins. We now evaluate what percentage of the clus-
ters were benign versus malicious. When labeling randomly
sampled functions, we look at hand-clusters with consistent
labels. Sometimes our analysts disagreed with each other on
what MITRE label to assign to a function. For consistency, we
only consider those on which the analysts agreed. We found
that of the 119 functions, 60.5% were malicious and 39.4%
were benign, with a margin-of-error of 9.29%. Examining the
percentages for all functions (regardless of their cluster) we
find similar percentage results. Note that in §4.3.3 the false
positive rate was much lower for our ground truth samples.
This is because they only selected from the largest malware
family Rols (i.e., not uniformly random for the entire 600k
population). This was done to ensure the analysts reviewed the
most commonly extracted functions, which gave the analysts
a better chance of discovering commonly shared malicious
functions like C&C behaviors, anti-analysis behaviors, etc.
Summary. The malware analysts found that the clusters of
DEEPREFLECT are consistent (regardless of malware family
or the function’s location within the binary). Although the
amount of selected samples should capture the population,
the results may differ on a larger sample size. We also
found that the clustering matches 89.7% of an analyst’s
manually-clustered functions, contributing to goal G1.

4.5 Evaluation 3 -Focus

From prior work [69] and discussions with other analysts,
we found that malware analysts’ static reverse-engineering
workflow begins with forming hypotheses about where various
functionalities are within a malware binary. This is normally
accomplished by observing where suspicious strings (e.g.,
URLs, domains) or API calls (e.g., connect or send) exist.
However, as demonstrated in §4.3, these indicators cannot be
relied upon alone. The benefit of DEEPREFLECT is its ability to
focus the attention of the malware analyst, rather than sending
them blindly to search through functions within each binary.
We evaluate this by (1) calculating the percent of highlighted
functions out of all the malware’s functions, for each malware
binary, (2) analyzing the false positives and a potential ranking
scheme for DEEPREFLECT to prioritize which highlighted
functions the analyst should look at first, and (3) discussing
false negatives and how they might be mitigated in the future.
Workload Reduction. For each malware sample, we extracted
each function which contained at least one Rol found by the
autoencoder and compare that to the total number of internal
functions within the binary. As seen in Figure 5, a large major-
ity of the highlighted functions reduced the amount of functions
for the analyst to view by at least 90%. The minimum reduction
was 0% (i.e., all functions were highlighted), maximum reduc-
tion was over 99.9999%, and the average reduction was 85%.

These percentages by themselves could be misleading if
number of functions in a malware sample is small to begin
with. In terms of raw numbers, the min/max/average number
of highlighted functions per malware sample was 1/527/23.53
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Figure 5: Function Counts. Percentage of functions (per malware
sample) the analyst has to review.

respectively. The min/max/average number of fotal functions
per malware sample was 1/26,671/663.81 respectively. This
demonstrates that, on average, the analyst only has to review
24 functions, compared to 664 functions. However, we need
to delve further, as these functions could be small in size and
thus likely trivial to reverse engineer.

To answer this, we counted up the number of basic
blocks for each function within each malware sample. Basic
blocks can be an indicator of the complexity of a function.
The min/max/average number of basic blocks within each
highlighted function was 1/134,734/96.02 respectively. The
min/max/average number of basic blocks within each function
was 1/22,947/16.51 respectively. This shows that most of the
highlighted functions were much more complex compared
to the average function, and that if those functions were
automatically labeled for an analyst, it would significantly
reduce their workload.

False Positives & Prioritization

False positives exist in all security solutions. Reducing them
is a never-ending task for those who work in real-world envi-
ronments. When running DEEPREFLECT on our ground-truth
samples using our cluster threshold, rbot contained 39 true
positives (TPs) and 23 FPs, pegasus contained 22 TPs and 80
FPs, and carbanak contained 8 TPs and 69 FPs. While the TPs
are relatively small (40% TPR), the FPs are much smaller com-
paratively (5% vs 25% FPR). To further reduce FPs, a solution
is to sort the functions identified by DEEPREFLECT according
to their MSE (similar to how we determined the threshold
for clustering). Intuitively, the higher the MSE, the more ma-
licious the function it should be. When examining the top-100
highest ranked components, DEEPREFLECT/SHAP had a
precision of 0.629/0.487 on rbot, 0.229/0.138 on pegasus,
and 0.111/0.01 on carbanak. As expected, the precision
decreases when adding more top components since model’s
confidence is less on those with lower MSE (both pegasus
and carbanak have larger code bases as they are more modern
malware). These results are also consistent with our analyst’s
hands-on evaluation on Mikey in §A.1 where the false
positives were placed into the bottom third in terms of MSE.

Sorting functions by MSE value is not always reliable. In
this case, other basic mitigation strategies can be utilized. For
example, the analyst can use simple heuristics (like those used
in CAPA) on the functions extracted by DEEPREFLECT to

get an understanding of what behavior category it may be.
They can also prioritize functions by their uniqueness to the
other functions in their dataset, finding which functions are
potentially new emerging malicious behaviors the analyst has
not seen before. For example, sort functions by their associated
cluster’s size (smaller clusters denoting more unique and less
common functionalities).

False Negatives. False negatives are also common in all
security solutions. Unknown threats will always exist which
evade these systems. Using the same cluster threshold,
DeepReflect had 53 FNs (325 TNs) for rbot, 27 FNs (407
TNs) for pegasus, and 48 FNs (2,111 TNs) for carbanak.
Next, we discuss three FN cases from our ground-truth sample
rbot. The first was a function CaptureVideo (), which took
incremental screenshots of the victim’s computer. This func-
tion had many calls to external APIs which were obfuscated
(as is commonly done in malware). While we demonstrated
that our tool is able to capture malicious functions containing
obfuscated API calls, it is not always reliable at doing so,
and any tool which does not have access to higher-level
function calls will suffer because of it. The second is a function
getcdkeys () which gathers the video game installation keys
from the victim’s host and sends it to the attacker’s C&C
server. Again, calls were made to obfuscated registry key
API calls, which provides crucial contextual information. It
might also be the case that some of the benign software games
perform this exact same functionality to check if the user has
installed a valid copy of the video game. This illustrates the
need for carefully procuring a training dataset (as discussed
later in §5). Finally, a third FN is a function DDOSAttack ()
which calls functions ResolveAddress (), SpoofIP(), and
SendDDoS () which launches the attack. This function may
have been missed because it acts more like a caller function
to launch malicious behaviors. However, this caller function
gives important contextual information about how the attack
is launched. To mitigate this, a simple "guilt by association"
heuristic could be used in the future where functions calling
suspicious behaviors are identified as suspicious. Additionally,
the threshold could be tuned depending on the analyst’s goals
of whether to increase TPs or reduce FPs.

Finally, we detail concrete examples of malicious function-
alities identified by DEEPREFLECT (and labeled via MITRE)
in Appendix A. There, we illustrate behaviors such as C&C
communication for file dropping (Figure 6), file and data
deobfuscation/decoding (Figure 7), and searching for various
files to copy the contents of (Figure 8).

Summary. We have demonstrated that DEEPREFLECT has the
ability to focus the analyst’s attention on a variety of malicious
activities within a malware sample. For most samples, it
reduces their search space by 90% and 85% on average. This
is helpful for when analysts need a high-level understanding
of where malicious behaviors may exist so they can analyze
them more in-depth (e.g., debugging). This satisfies goal G2.



4.6 Evaluation 4 — Insight

To evaluate if DEEPREFLECT provides meaningful insights
into the relationships of malware families and their behaviors,
we explored the cluster diversity. The left side of Figure 4
plots the number of distinct families per cluster in C. It can
be seen that there are many shared malware techniques and
variants between the families.

Diversity. Naturally, most of the clusters only have one
malware family (explained by the long-tail distribution of
our clusters shown in Figure 10). However, 10s to 1000s
of clusters include a variety of families — some which even
contain over 200 different families. For example, tiggre and
zpevdo families share a "Execution: command and Scripting
Interpreter” behavior where they call GetCommandLineA()
and parse the characters involved (as described by MITRE).
Singleton Samples. These are malware families with only one
sample. Since we use an autoencoder, we can capture novel
behaviors from singleton samples. To check if DEEPREFLECT
can identify malicious functions in a singleton sample,
we observed if any singleton samples in our dataset got
clustered with other malware families. Indeed, we found that
DEEPREFLECT identified 1,763 clusters which contained at
least one singleton sample.

Novel Malware Families. Next, we examine what happens
when novel families are introduced to DEEPREFLECT. We
made a clustering model C; on all of our malwares except for
four families. Then, we added the families to the set and clus-
tered the set as C,. When we compared C to Cy, we found that
(1) new clusters were created by introducing the new families
and (2) that portions of those families’ functions were added
to old clusters (i.e., the analyst would receive classification
information on novel families). For more details, see §A.3.
Summary. We found that DEEPREFLECT provides insight
into the relationship of malware behaviors (G4). In deploy-
ment, this meta information can be associated to the identified
components providing the analysts with immediate insights.

4.7 Evaluation 5 — Robustness

Obfuscation. Given the rise of adversarial machine learning,
we must be aware that the adversary may attempt to obfuscate
their code to mitigate the productivity of DEEPREFLECT.
Therefore, we evaluated DEEPREFLECT against an obfusca-
tion attack scenario. We did not evaluate against packing or
cryptors because those are out of scope for our tool. Instead,
we utilize Obfuscator-LLVM [31] (denoted as ollvm). Using
ollvm we obfuscated our rbot sample’s source code using
five techniques: (A) control-flow flattening, (B) instruction
substitution, (C) bogus control-flow, (D) combining techniques
(A) & (B), and (E) combining techniques (B) & (C).
Examining the functions extracted and clustered,
DEEPREFLECT was mostly unaffected by the obfuscations.
This makes sense because the autoencoder highlights function-
alities it does not recognize and our features contain API calls

(which were not modified by ollvm). For details, see §A.4.
Mimicry-like Attack. Next, we performed a simple mimicry
attack where we inserted benign code which directly
manipulated our features into malicious functions in our
ground-truth samples. The benign code chosen was taken from
an open-source repository of basic code for performing integer,
string, and file I/O operations [10]. It was chosen because it
has been used as a benchmark to test resilience against obfus-
cations [10]. In particular, we observed how much the MSE
values changed for each function when using DEEPREFLECT
compared to the AE we trained on ABB features. We targeted
12 functions (4 from each ground-truth sample) from a variety
of behaviors (e.g., anti-AV, keylogger, dropper, DDoS, etc.).
Using thresholds at TPR 80% from Figure 3 for each sample,
we found that DEEPREFLECT outputted significantly larger
MSE values (by several orders of magnitude) compared to the
threshold for these modified functions (including the original
functions) compared to the other AE. This suggests that
DEEPREFLECT is more confident in labeling these functions
as malicious. While none of these attacks were able to evade
either model consistently, we observed that DEEPREFLECT’S
MSE values do not change drastically enough to cause concern.
In addition, we observed that sometimes inserting the function
with file I/O operations caused DEEPREFLECT to think a func-
tion was more anomalous than it originally considered (more
so than compared to the AE trained on ABB features — this
is reflected by the fact that both average MSE values increased
after the attempted mimicry attacks). It also demonstrates the
difficulty the attacker is tasked with: not just any benign code
can be inserted into the malicious functions to evade it.

To increase the likelihood of bypassing DEEPREFLECT,
we tested two more benign functions: (1) adding a network
connect/send example hosted by Microsoft’s website to the
dropper malicious function, (2) adding the same example to
the DDoS behavior, and (3) adding a process I/O creation
example to a remote code execution where the malware
starts a ‘cmd.exe’ process. The same results were observed,
where our features outperformed ABB features in addition
to DEEPREFLECT considering them more unfamiliar.
Summary. Although DEEPREFLECT was not significantly
affected by ollvm’s obfuscation methods or our basic mimicry
experiment, we are certain that DEEPREFLECT can be evaded.
However, these experiments demonstrate that it is not easily
fooled by these basic attacks.

5 Discussion

To summarize, we demonstrated that DEEPREFLECT can re-
liably identify malicious activities within malware samples (as
shown in §4.3 and §4.6), which satisfies G1 from our research
goals §2.4. Through other experiments we demonstrated that
the system can focus the attention of the analyst and handle
new malware families (shown in §4.4 and §4.5) which satisfies
goals G2 and G3. It also demonstrates that DEEPREFLECT is



able to identify insights into shared functionalities of malware
behaviors, satisfying G4 (the remaining goal). We also show
that our tool is better than other baseline approaches such as
explainable machine learning or signature-based solutions.

5.1 Limitations

Every system has weaknesses and ours is no exception.

Adversarial Attacks. A motivated adversary could poison
the training dataset [46,51] to cause the autoencoder to create
a vulnerable model that would effectively hide the malware’s
functions. They could also blend in to look like a benign
binary [24,70]. Many papers have explored attacking machine
learning models at the architectural level [47, 48, 73]. They
could also poison the dataset used to cluster [19]. While these
attacks do exist, common countermeasures [49, 65,71, 74] can
be applied to subvert them in the future.

An adversary could also attack our features by manipulating
them to thwart our system. However, this could prove to be
difficult, as our features are based on characteristics not easily
changed. They would have to know how to precisely modify
the structure of the CFG, types of instructions, and types of API
calls used all without breaking the malware’s dynamic function-
ality. This is not trivially done, either pre- or post-compile time.

Training Data Quality. Finally, our autoencoder model
heavily depends on the content and quality of the benign
dataset. If some functionality is left out of the training set, then
the results will become biased. For example, if we were not
to include any programs which performed network behaviors,
then every network behavior seen would be something
considered as malicious. Therefore, one must be careful to
select a wide variety of benign software to compliment the
malicious behaviors. On the other hand, if we train on too
many malicious-like functionalities, our system may miss
them in malware. For example, if Remote Desktop Protocol
(RDP) behavior was an application in our benign dataset, our
system may not label any RDP functionality as malicious. A
proper balance needs to be struck to tailor our system to detect
malicious functionalities the analyst is interested in exploring.

Human Error. DEEPREFLECT depends heavily on human
analyst experience and agreement. There were issues with
labeling the pegasus ground-truth in the beginning — we
were not perfect in our initial source-code labeling. After
debugging, we realized that there was a function which
removed the history of internet connections via a remote
desktop protocol (RDP) which was actually not a FP. Another
supposed FP spawned a thread to interact with the remote
victim’s service control manager (SCM) which is certainly
a malicious behavior. Thus we needed to update our labels,
as there were other examples of this. While this may initially
seem like a limitation, we see this as a potential teaching
application. That is, experienced analysts can use our tool to
provide labeled examples of functions and code from malware
samples to facilitate training new or less-experienced analysts.

6 Related Works

Deep Learning and Malware. Recently, deep learning has
been adopted by the malware analysis community. A majority
of the goals are to classify or detect malware samples using
deep learning neural networks [50, 66, 68]. Malconv [53]
extracted raw byte values from executables and trained them
on a convolutional neural network (CNN). Neurlux [30]
extracted features from dynamic sandbox reports. Even
Microsoft hosted a Kaggle competition [8, 56] where the goal
was to take binaries (without their PE header attached) and
classify them accurately according to 9 malware families.

Binary similarity has also been studied using both static and
dynamic features [2,17,22,75]. While binary similarity is a sim-
ilar problem to ours, it differs in an important way: their goal is
to compare each binary with every other binary, whereas we en-
code what a particular type of binary looks like (benign binary)
into a CNN and utilize reconstruction errors to tell us what por-
tions it does not recognize. Our goal is not to formally identify
similarities between binaries — though we do extend our anal-
ysis to identified shared concepts between malware families.

Autoencoders and Security. This paper is not the first to
study autoencoders on cybersecurity datasets. [34] used a deep
autoencoder to generalize what malware samples look like and
provided the results to a generative adversarial network (GAN)
in an attempt to thwart static techniques to obfuscate malware
(e.g., re-ordering function layout). Other papers [20,28,32,76]
use autoencoders to generate inputs to train other malware
classifiers as a way to improve generalization. Our work differs
significantly, as we train an autoencoder on benign binaries in
an attempt to generalize what looks normal and use the recon-
struction MSE to identify malicious functionalities in malware
binaries. In [43] the authors used an ensemble of autoencoders
as an NIDS by detecting abnormal feature vectors (snapshots
of network traffic statistics). However, [43] uses Equation 1
to identify the abnormality of the observation as a whole,
whereas DEEPREFLECT uses an autoencoder to localize one
or more abnormalities within an observation using Equation 2.

To the best of our knowledge, there aren’t any related
works which statically identify and localize malicious
functionalities in malware using machine learning, let alone
with an unsupervised approach using autoencoders.

7 Conclusion

In this paper, we introduced DEEPREFLECT: a tool for
localizing and identifying malicious components in malware
binaries. The tool is practical since it requires no labeled
datasets perform localization and a small number of labels for
classification — collected incrementally from analysts during
their regular workflow. We hope that this tool and published
code will help analysts around the world by identifying where
and what malicious functionalities exist in malware samples.
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Appendix A

A.1 Evaluation1

Hands-on Evaluation. We asked a malware analyst with
reverse engineering experience to use DEEPREFLECT on a
malware which he has analyzed in the past (Mikey). Of the
15 functions which our tool identified in Mikey, the analyst
found that there were 13 TPs, and 2 FPs. He noted that
DEEPREFLECT identified an interesting component, which
he had missed and that the two FPs were placed at the bottom
third of the component’s priority rankings.

Eéll InternetOpenUrlA

call CreateFileA

call InternetReadFile

;:.ﬁll memset
call WriteFile
mov esp, ebp
pop ebp
retn 0x20

push ebp

mov ebp, esp

sub esp, 0x428

é‘éll InternetOpenA
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Figure 6: Command and Control: Ingress Tool Transfer. The
malware accesses a URL via InternetOpenUrlA(), creates a file
via CreateFileA () and writes data received from the connection
to the file via InternetReadFile() and WriteFile().

leave
retn

call SefFileAttributes

call CreateFileA
call WriteFile

mov esi, Sleep

push ebp
mov epb, esp
push ecx
push ecx

call sub_410adc
call sub_4216d0
call sub_41a46e
call sub_41a46e
call sub_41a46e

call esi

Figure 7: Defense Evasion: Deobfuscate/Decode Files or In-
formation. This function makes many calls to internal functions
(bolded) which contain complex bitwise operations on data (similar
to that of Figure 9). These complex operations exhibit deobfuscation
behavior. After calling these functions, it writes the decoded data
to a file via CreateFileA() and WriteFile().
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Figure 8: Discovery: File and Directory Discovery. This function
searches for various files with specific extensions (i.e., doc, jpg, etc.).
It then copies those files to a separate location. This behavior could
be a setup for additional malicious behaviors like data exfiltration
or ransom.

A.2 Evaluation2

Most benign functionalities we discovered were memory
allocation, loading a library, loading data from the process
file’s resources section, terminating a process (without
context), etc. What an analyst labels as malicious can be
subjective and relies on their experience and ability to match
it with descriptions like those in MITRE ATT&CK.



Discovery 59 Defense Evasion 17

Privilege Escalation 4

Execution 11 C d and Control 7

System Information Discovery

16 Deobfuscation/Decode Files or Information 11 Create or Modify System Process 2 Scheduled Task/Job

7 Application Layer Protocol 4

File and Directory Discovery 12 Modify Registry

4 Access Token Manipulation

1 Command and Scripting Interpreter 2 Ingress Tool Transfer 3

Application Window Discovery 9 Hide Artifacts

1 Process Injection

1 System Services

Query Registry 7 Virtualization/Sandbox Evasion 1

Virtualization/Sandbox Evasion 5

Process Discovery

System Time Discovery

Domain Trust Discovery

Software Discovery

== = eof &

System Network Connection Discovery

Persistence 2 Impact 2

Exfiltration 1

Collection 2

External Remote Services 1 Data Manipulation

1 Automated Exfiltration

1 Screen Capture 1

Unknown 1 Network Denial of Service 1
Table 3: The counts of MITRE ATT&CK categories and subcategories found by the analysts in §4.4.
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Figure 9: Defense Evasion: Deobfuscate/Decode Files or Infor-
mation. This function performs various bitwise operations on data.
Complex logic like this could be construed as performing some
deobfuscation or decoding in an effort to hide data the malware
interprets or gathers.
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Figure 10: Cluster size distribution on our malware dataset
using DEEPREFLECT. The x-axis is each cluster ID.

A.3 Evaluation 4

Novel Malware Families. We chose four well-known
malware families: zbot, gandcrypt, cosmicduke, and
wannacry. For zbot, before there were 22,433 clusters and af-
ter there were 22,470 clusters. Samples existed in 359 clusters,
4 of which were only zbot and the other 355 were mixed. On
average, the number of zbot samples in the uniform clusters
was 5.75 and the number in the mixed clusters was 1.49. That s,
there were 4 new concepts not originally in the old clusterings.
320 new clusters (which contained zbot) were identical to old
clusters. That is, 320 clusters (if labeled) would have provided
320x 1.49 =476.8 function labels automatically, leaving the an-
alyst to review the newer clusters (behaviors). There were cases
of 18 new clusters which only contained samples which were
old noise points. There were 187 new clusters which contained
old noise points. Finally, 17 new clusters which contained zobt
samples were split into two clusters (i.e., were not identical to
old clusters). Similar observations were made with the other

Obfuscation. First, we ran all five (plus the original source
code compiled with ol/lvm with no obfuscations enabled)
through DEEPREFLECT to observe the functions it identified
using the threshold chosen for clustering. Our original, unob-
fuscated sample had 158 functions highlighted, Ahad 118, B
had 156, Chad 138, D had 118, and E had 137. Instead of man-
ually examining 825 functions, we chose a random 10% from
each sample to label (we chose 10% because it would ensure
that we would have enough statistical significance to rely on
our results — we identified 42% benign and 57% malicious with
a margin-of-error of 11%). Our unobfuscated sample had 12
benign functions and 4 malicious functions highlighted. Our
ground-truth labeling was stricter than our labeling for our eval-
uation set, and 7 out of the 12 benign functions could have been
labeled by MITRE. A had 5 benign and 7 malicious functions.
However, 2 out of the 5 benign functions could be described by
MITRE. B had 10 benign and 6 malicious functions. However, 3
out of the 10 benign functions could be described by MITRE. C
had 4 benign and 10 malicious functions, however 2 out of the 4
benign functions could be described by MITRE. D had 2 benign
and 10 malicious functions. None of the benign functions could
be described by MITRE. Finally, E had 3 benign and 11 mali-
cious functions. However, 1 of the 3 benign functions could be
described by MITRE. Lastly, we clustered the highlighted func-
tions to observe the effect they have on the other functions. We
hypothesized two outcomes: (1) the obfuscated functions look
so obscure that they get labeled as noise points, or (2) the obfus-
cated functions look uniformly obscure, so they get clustered
under one large cluster. However, we saw neither of these cases.
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