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Abstract— The accurate identification of wireless devices is
critical for enabling automated network access monitoring and
authenticated data communication in large-scale networks; e.g.,
IoT networks. RF fingerprinting has emerged as a potential solu-
tion for device identification by leveraging the transmitter unique
manufacturing impairments of the RF components. Although
deep learning is proven efficient in classifying devices based
on the hardware impairments, trained models perform poorly
due to channel variations. That is, although training and testing
neural networks using data generated during the same period
achieve reliable classification, testing them on data generated at
different times degrades the accuracy substantially. To the best
of our knowledge, we are the first to propose to leverage MIMO
capabilities to mitigate the channel effect and provide a channel-
resilient device classification. For the proposed technique we
show that, for Rayleigh channels, blind partial channel estimation
enabled by MIMO increases the testing accuracy by up to 40%
when the models are trained and tested over the same channel,
and by up to 60% when the models are tested on a channel that
is different from that used for training.

I. INTRODUCTION

As the IoT paradigm is pervasively expanding into critical
sectors including healthcare, home automation, and power
grids, the flux of insecure devices connected to the Internet
is increasing the risk of attacks on IoT networks [1], [2].
Therefore, verifying the identity of the devices to prevent
illegitimate devices from accessing and exploiting the network
resources using an identification technique that is immune to
spoofing and light enough to be implemented on the resource-
constrained IoT devices is becoming crucial. RF data-driven
device fingerprinting has emerged as a promising technique
for identifying and classifying devices using physical-level
features that are much difficult, if not impossible, to spoof or
replicate. Transceiver hardware impairments that are inevitably
inherited during device manufacturing provides a fingerprint
for each device that, unlike high-layer features such as IP
or MAC addresses, is immune to spoofing. Those hardware
imperfections impair the transmitted waveforms in a way that
provides transmitters with fingerprints and signatures that can
uniquely separate them from one another [3], [4].

Deep learning–or precisely Deep Neural Network (DNN)–
based approaches have proven efficient in classifying devices
from captured RF signals due to the DNNs’ high dimensional
mapping and ability to process data without the need of
hand-crafted feature extraction. However, the often considered
assumption that the training and testing data exhibit identical
distribution causes DNN-based RF fingerprinting model accu-

racy to drastically degrade due to the time- and/or location-
varying wireless channel conditions that invalidate such an
assumption [5]–[7]. In addition, the channel overshadows
device fingerprints causing difficulties in training new models
in the presence of fading and impairments.

In this paper, we propose a novel, channel-resilient device
fingerprinting technique that tackles the wireless channel effect
on DNN-based RF fingerprinting by leveraging the MIMO
capabilities in mitigating flat fading in Rayleigh channels. We
show that Blind Channel Estimation performed by leveraging
the MIMO capabilities combined with STBC (Space Time
Block Coding) improves the training accuracy by 40% over
Rayleigh flat fading channel compared to conventional SISO
systems. We also show that when trained and tested under
different flat fading channels, the accuracy of the DNN model
is improved by up to 60% compared to SISO systems.

The rest of the paper is organized as follows. Section II
presents previous related works. Section III provides some
background on blind channel estimation and presents the
proposed technique. Section IV presents simulation results and
evaluation. Finally, Section V concludes the paper.

II. RELATED WORKS

Experimental results [5], [7] showed that channel condition
variations severely degrade the fingerprinting accuracy, drop-
ping it from 85% to 10% on WiFi data. In an effort to address
these challenges, Sankhe et al. [3] exploited the configuration
flexibility of SDRs to modify the transmitter chain so as to
increase device separability and fingerprinting robustness to
channel variations. Likewise, Restuccia et al. [8] showed that
a carefully-optimized digital finite input response filter at the
transmitter’s side can improve the accuracy from about 40%
to about 60%. However, these works modify the transmitted
signals by either adding artificial impairments that are channel
immune, or by filtering to alter the transmitted signals to
maximize the model accuracy. In addition, these techniques
require changes to be made at the transmitters’ side.

Unlike these works, Elmaghbub et al. [4], [6], [9] proposed
a new fingerprinting technique that improves fingerprinting
accuracy without requiring changes to be made at the devices.
The basic idea lies in leveraging spectrum emissions in the
band surrounding the signal’s original band that are caused by
various transceiver hardware impairments to increase device
distinguishability and robustness to channel variations.



In this work, we propose a new framework that leverages
MIMO capabilities to mitigate the channel effect also without
the need for altering the transmitted signals, impacting the
BER, nor modifying the hardware. To the best of our knowl-
edge, we are the first to suggest leveraging MIMO capabilities
to mitigate channel effect on RF fingerprinting. Our proposed
technique relies on blind partial channel estimation, enabled by
MIMO and STBC, to overcome the impact of channel distor-
tions on the training and testing of the deep learning models,
thereby improving the robustness of device classification to
changes in channel conditions.

III. LEVERAGING MIMO FOR CHANNEL-AGNOSTIC
WIRELESS DEVICE IDENTIFICATION

A. Background on MIMO and Blind Channel Estimation

MIMO (Multiple-Input Multiple-Output) links improve
SNR (signal-to-noise ratio) of multipath fading channels
through spatial diversity by combining the output signals
received on the multiple uncorrelated elements of the antenna
arrays [10]. The SNR improvement achieved through diver-
sity is characterized by: (i) Array gain, which measures the
increase in average output SNR relative to the single antenna
average SNR. (ii) Diversity gain, which measures the increase
in the error rate slope as a function of the SNR [10].

STBC (Space Time Block Coding) is a coding technique
that achieves transmit diversity by spreading information sym-
bols in space using multiple transmitting antennas and in time
using pre-coding [10], [11]. Spreading in space and time is
achieved by an M × K (K ≤ M) code matrix C, where
K is the time diversity of the code and M is the number
of transmitting antennas. Each column i of C corresponds to
the signals transmitted by all the transmitting antennas at time
epoch i, 1 ≤ i ≤ K. For instance, the code matrix C of the
Alamouti scheme [12] (with two transmit antennas) is

C =

[
c1 −c∗2
c2 c∗1

]
where c1 and c2 are the symbols transmitted (each on one
of the two transmit antennas) at the the first time epoch, and
−c∗2 and c∗1 are the symbols transmitted at the second time
epoch. When the receiver is equipped with one antenna only,
Alamouti scheme does not achieve an array gain. However,
for i.i.d. Rayleigh channels, a diversity gain is achieved and
the symbol error rate is reduced. To achieve array gain, the
receiver must be equipped with more than one antenna.

When sending an STBC data matrix S using an M × L
MIMO system over a flat fading channel, the received signal
matrix after K time epoch is given by:

R = (IK ⊗H)CS+N (1)

where C =
[
CT

1 CT
2 . . . CT

K

]T
, Ck is a matrix calcu-

lated from the code matrix C for k = 1, . . . ,K, H is the
channel matrix, N is the noise matrix, and ⊗ denotes the
Kronecker product operation [13], [14].

STBCs enable the blind estimation of the channel by ob-
serving only the received signals [13], [14]. Eq. (1) shows that,

for a MIMO system transmitting an STBC signal over a flat
fading channel, each receiving antenna receives a signal that
is a mixture of the signals transmitted by all the transmitting
antennas, and each of the transmitted signals contributes to
the mixture with a weight dictated by the channel matrix. The
problem of estimating the transmitted signals given only the
received signals and the properties of the transmitted signals,
referred to as the blind source separation/blind channel esti-
mation problem, essentially boils down to finding the inverse
of the channel matrix, which can then be used to recover
the transmitted signals [13]–[15]. The recovered transmitted
signals are less affected by the channel and are expected
to achieve higher classification accuracy compared to the
unprocessed received signals when used for RF fingerprinting.

The blind estimation algorithm in [13], [14] aims at deter-
mining the subspace of the channel matrix. First, the algorithm
starts by finding NL, the left null space of R. Eq. (1) yields
the following blind equation [13], [14]

NH
L (IK ⊗H)C = 0 (2)

which represents a homogeneous linear equation in the un-
known H, and the uniqueness of the solution depends on
the matrix C of the STBC and the rank of the matrix H as
explained in [13], [14]. Second, the blind algorithm decouples
the channel matrix subspace from Eq. (2) to get:

≜∆︷ ︸︸ ︷
(

K∑
k=1

CT
k ⊗ (NH

LEk))h = 0 with Ek≜


0L(k−1)×L

IL

0L(K−k)×L

 (3)

Eq. (3) shows that channel subspace, h, lies in the null space of
∆. Yet, the actual channel cannot be identified from its rotated
versions due to the remaining complex ambiguity [14].

B. The Proposed MIMO-Enabled Device Fingerprinting

For Rayleigh flat fading channels, the channel conditions
(i.e., the channel matrix H) impact the transmitted waveforms
causing an accuracy degradation of trained classification mod-
els. The received signal by each of the receiving antennas is
a mixture of the signals transmitted by all the transmitting
antennas. Estimating the transmitted signals given the received
signals and the properties of the transmitted signals could be
achieved via blind source separation/blind channel estimation
methods, which remove the channel effects on the transmitted
signals without the need for training pilots. In this work, we
propose to use blind partial channel estimation enabled by
MIMO [14] to estimate the subspace of the channel matrix
from the received signal matrix given the STBC used for
transmission. If the estimated channel subspace is used to
reconstruct the originally transmitted signal, the reconstructed
transmitted signal is expected to be less affected by the channel
impairments, and the effect of the channel is less when the
number of remained ambiguities is minimized. To guarantee
the minimum ambiguity in the estimated channel matrix, i.e.
a single complex ambiguity in the estimated channel, we



use a 3 × 3 MIMO system that transmits a QPSK signal
using Tarokh STBC of rate 1/2 (code length = 8) [14]. A
single complex ambiguity is interpreted as an unknown scaling
factor, and such a factor is expected to have a minor effect
on the classification accuracy. We exploit Convolution Neural
Network (CNN) high dimensional feature mapping capabilities
and high performance in classifying RF devices to achieve ac-
curate classification from the reconstructed transmitted signals
despite the remaining ambiguities.

At the transmitter side, each 80 symbols are modulated
using QPSK, then the modulated symbols are encoded into
blocks using Tarokh STBC of rate 1/2 (code/block length = 8)
such that each transmitted block encodes 4 QPSK modulated
symbols. For 20 transmitted blocks, we construct the STBC
symbol matrix S with size of 24 × 20, where the columns
represent the transmitted blocks from the 3 transmitting an-
tennas. The signals transmitted by each of the transmitting
antennas are obtained by reshaping S into a 3 × 160 matrix
S. Each row in S represent the signal transmitted by each
of the 3 transmitting antennas. The transmitted signals are
then impaired by MIMO Rayleigh fading. The channel is
fixed for 20 transmitted blocks. At the receiver side, we first
apply the blind algorithm [14] to determine the channel matrix
subspace as explained in Section III-A. To construct the matrix
∆, we first collect 20 received blocks from the 3 receiving
antennas in a matrix R with the size of 3 × 160, then we
construct the matrix R for the received STBC blocks. R is
a 24 × 20 matrix, where the columns represent the received
blocks from the 3 receiving antennas. To calculate the left null
space NL of the received signal matrix R, we use Singular
Value Decomposition (SVD), R = UΣVH , where U and V
are complex unitary square matrices with the size of 24, and
20 respectively. Since each transmitted block has the length of
8, rank(R) is also 8. Thereby, the left null space of R, NL, is
spanned by the columns of U starting from column number 9.
Matrix Ck is determined by the STBC used from transmission.
The channel subspace h, which is the right null space of ∆, is
then calculated using SVD of matrix ∆, ∆ = U′Σ′V′H , and
the right null space of ∆, i.e. the estimated channel subspace,
is the column of V′ corresponding to the smallest singular
value (the last column of V′).

Second, we reconstruct the transmitted signals, Ŝ, using the
inversion of the estimated channel subspace as Ŝ = H†R,
where {.}† denotes the pseudoinverse. The reconstructed
transmitted signals Ŝ are then sampled with a window size
of 160 for each of simulated devices to create the training,
validation, and testing datasets. The reconstructed transmitted
signals Ŝ are less affected by the fading channel, and hence
are expected to achieve higher accuracy compared to the raw
IQ data when used to train and test the CNN models. The
reconstructed signals are also expected to be more immune
to the channel condition variations when used for classifying
devices using previously trained CNN models on a varying
channel conditions.

IV. PERFORMANCE EVALUATION AND ANALYSIS

We use MATLAB R2020b to build our wireless communi-
cation model and generate the IQ datasets. The IQ data were
collected form 10 simulated RF devices uniquely impaired
with the impairments set shown in Table I. The impairments
are set slightly different to mimic the slight differences among
devices. For each device, we collected 5000 frames, with each
frame having the size of 160. Then we split the real and
the imaginary parts of the signal and reshaped the frames as
2× 160 vectors to be fed to the input layer of the CNN. The
dataset was divided into 80% for training, 10% for validation
and 10% for testing.

A. CNN Architecture

We used the CNN architecture in [3] as a benchmark
to evaluate the proposed MIMO-enabled approach, study its
resiliency, and compare it to the SISO/conventional approach.
The CNN architecture consists of two convolution layers and
two fully connected layers. The 2× 160 input is fed into the
first convolution layer that consists of 50 1 × 7 filters. This
layer produces 50 features maps from the entire input. The
second convolution layer consists of 50 2×7 filters, where each
filter is convoluted with the 50-D volumes obtained from the
first layer. The second convolution layer learns variations over
both I and Q dimensions. Each convolution layer is followed
by a ReLU activation function to add non-linearity, and a 2-
stride max pooling layer to prevent overfitting. The first fully
connected layer consists of 256 nodes whose output are fed
into the second fully connected layer of 80 nodes. Each fully
connected layer has a ReLU activation. The last layer is a soft
max classifier to generate the classification probabilities. At
the classifier output, the cross-entropy loss is calculated and
the back-propagation algorithm is used to find the network
parameters that minimize the prediction error. The CNN uses
Adam optimizer.

B. Performance Metrics

We consider the following metrics in this evaluation.
• Training Accuracy/Testing Accuracy, the percentage of

the correctly classified samples to the total number of
samples in the training/testing datatsets.

• Relative Different channel Testing Gap (RDTG), the
percentage of reduction occurred in the testing accuracy
when the testing and testing channels are different. Pre-
cisely, RDTG is defined as

RDTG = same channel testing acc.−different channel testing acc.
same channel testing acc. %

When the classification technique is perfectly channel-
agnostic, then RDTG is zero, and the deviation from zero
quantifies the effect of the channel variation on accuracy.

In the evaluation of the proposed fading channel-agnostic
technique, we also vary the following parameters:

• Training APG/Testing APG, the average path gain
(APG) of the Rayleigh flat fading channel used for
training/testing. APG is varied from -20 dB to 20 dB.



TABLE I
HARDWARE IMPAIRMENTS USED TO SIMULATE 10 DIFFERENT DEVICES

Device Phase Noise Frequency Offset IQ Gain Imbalance IQ Phase Imbalance AMAM AMPM Real DC Offset Imaginary DC Offset
DV1 -60 20 0.08 0.1 [2.1587,1.1517] [4.0033,9.104] 0.1 0.15
DV2 -60.15 20.01 0.1 0.09 [2.1687,1.1617] [4.1033,9.124] 0.11 0.14
DV3 -59.9 20.2 0.09 0.09 [2.1789,1.1317] [4.0933,9.151] 0.1 0.11
DV4 -60.1 20 0.108 0.109 [2.1987,1.1217] [4.1033,9.194] 0.1 0.1
DV5 -60 20.09 0.1 0 [2.1587,1.1717] [4.093,9.094] 0.089 0.1008
DV6 -59.95 20.1 0.12 0.15 [2.1487,1.1117] [4.1033,9.156] 0.1 0.098
DV7 -59.93 20.11 0.11 0.11 [2.1897,1.1237] [4.1133,9.135] 0.111 0.1011
DV8 -60.13 20.099 0.101 0.14 [2.1387,1.1627] [4.1533,9.096] 0.12 0.099
DV9 -59.89 19.9 0.099 0.08 [2.1548,1.1917] [4.09833,9.10056] 0.09 0.0999
DV10 -59.91 19.98 0.111 0.105 [2.1777,1.09874] [4.0987,9.123] 0.101 0.10015

Fig. 1. Same Rayleigh channel is used for training and testing.

C. Simulation Results

In order to ensure that the flat fading channels are blindly
identifiable from the received signal only, without feedback
from the receiving end to the transmitting devices, as explained
in Section III, we simulate and collect data from 10 devices
each using a 3 × 3 MIMO system to send QPSK symbols
encoded via Tarokh STBC O3 [11]. The transmitted signal
blocks are impaired with a flat fading Rayleigh MIMO chan-
nel. At the receiving end, blind partial channel estimation is
performed and the reconstructed signals are used for training
and testing the CNN model. For fair comparison, we assume
that there is no feedback from the receiving end to the
transmitting devices in the conventional/SISO approach.

1) Training and Testing Over the Same Rayleigh Channel:
In this section, we analyze the results obtained when training
and testing are performed over the same Rayleigh fading
channel for both MIMO and SISO approaches. Figure 1
shows the obtained testing accuracy while varying the APG.
This figure clearly shows that the proposed MIMO-enabled
approach increases the testing accuracy significantly compared
to the conventional/SISO approach. For instance, we observe
that at training and testing APG of -20 dB, the MIMO-enabled
approach increases the testing accuracy from 44% to up to
85% compared to the SISO approach, thereby doubling the

obtained accuracy. In addition, we observe that the accuracy
improvement that MIMO-enabled approach offers over the
conventional approach is consistent across the entire APG
value range, i.e., our proposed MIMO-enabled classification
approach doubles the accuracy regardless of the APG value.

2) Training and Testing Over Different Rayleigh Channels:
This scenario mimics real world settings where the classifi-
cation models are trained under certain channel conditions,
but then used later for real-time device classification under
different channel conditions.

a) Testing Accuracy Performance: Figure 2 shows the
testing accuracy over Rayleigh channels where the models are
trained and tested over channels with different APG values,
ranging from 20 to -20 dB. This figure shows the effect of
the wireless channel on the device classification accuracy. For
instance, we observe that for the conventional/SISO method
(Figure 2e), the models achieve an accuracy of about 44%
when trained and tested over a (same) channel with training
and testing APG of -20 dB. However, these same models only
achieve about 18% when trained over a channel with APG
= -20 dB but tested over a channel with APG = 20 dB. Our
observation indicating the seriousness of the channel impact
on device classification accuracy is well aligned with previous
work findings as discussed in Sections I and II. The figure also
shows that the proposed MIMO-enabled approach significantly
improves the testing accuracy over the conventional/SISO
approach when the training channels exhibit severe fading. In
addition, we observe that the MIMO-based approach testing
accuracy is more stable when the CNN is trained at severe
fading channels. Looking at Figure 2a, which depicts the
testing accuracy achieved under varied APG values of the
testing channel at a fixed training APG of 20 dB, we observe
that for testing APG greater than 0 dB, MIMO achieves
improved performance over SISO. However, when the testing
APG is less than 0 dB, the testing accuracy is unreliable, and
both SISO and MIMO approaches are equivalent. For instance,
when the testing APG is 10 dB, the MIMO-based approach
achieves a testing accuracy of about 52%, but only about 23%
is achieved under the conventional/SISO approach. However,
when the testing APG is -10 dB, both MIMO and SISO
approaches provide severely degraded and unreliable testing
accuracy.

Now in Figure 2b, which depicts the testing accuracy under
varied APG values of the testing channel at a fixed training
APG of 10 dB, we observe that the MIMO-based approach
achieves significant higher testing accuracy compared to the



(a) Training APG = 20dB (b) Training APG = 10dB (c) Training APG = 0dB (d) Training APG = -10dB (e) Training APG = -20dB

Fig. 2. Impact of APG on accuracy.

Fig. 3. Impact of Training APG on the MIMO improvement over SISO under
flat fading Rayleigh channels

SISO approach when the testing APG is greater than 0 dB.
For instance, when the training APG is 10 dB and the testing
APG is 20 dB (channel with less severe fading), MIMO system
achieves a testing accuracy of about 85%, whereas only about
40% is achieved under SISO. Moreover, when the testing APG
= 0 dB (channel with more severe fading), the testing accuracy
improves from 25% to about 58% when considering the
MIMO-based approach versus the SISO approach. Figure 2c
and Figure 2d show the same trends observed in Figure 2b.
Figure 2e captures the testing accuracy when varying the
testing APG values at a fixed training APG of -20 dB. From
this figure we first observe that when testing on different
channels with testing APG values varying from -10 dB to
20 dB, the MIMO-based classification approach achieves an
improved and stable testing accuracy when compared to the
SISO approach. For instance, when the training APG is -20 dB
and the testing APG is 20 dB, the MIMO approach achieves
up to 60% increase in the testing accuracy over the SISO
approach. Second, when the training APG is -20 dB (severe
fading channel), the testing accuracy of the MIMO approach
at different channels with testing APG varying from -10 dB to
20 dB does not go below 78% compared to the SISO approach
where the testing accuracy degrades to 18%.

Figure 3 illustrates the improvement/gain in testing accu-

racy that the MIMO-based approach achieves over the SISO
approach when the CNN is trained and tested under various
different APG values, ranging from 20 dB to -20 dB. From
this figure we first observe that when the CNN is trained
on severe fading channel with training APG of -20 dB,
the MIMO-based approach shows significant improvement
over the conventional/SISO approach, and when the CNN
is trained on less severe fading channels, i.e. training APG
values higher than -20 dB, the improvement over the SISO
approach decreases. For instance, an improvement of up to
60% in the MIMO approach performance is achieved when
the training APG is -20 dB and the testing APG values varies
from -10 dB to 20 dB. However, when the training APG
is -10 dB, the MIMO improvement decreases to 50%. This
could be justified by the severely degraded testing accuracy
for the SISO system over severe fading channels. Second, we
observe that when the CNN is trained at less severe fading
channels with training APG values varying from 0 dB to 20 dB
and tested at severe fading channels with testing APG values
less than -10 dB, the MIMO system improvement over SISO
vanishes. Third, we observe that when the CNN is trained on
severe fading channels then tested on less severe fading chan-
nels, the MIMO-based approach shows significantly improved
performance over the SISO approach. Note that when the
training APG is -10 dB and the testing APG is 10 dB, MIMO
achieves about 43% improvement over SISO, compared to
only 9% improvement when the testing APG is -20 dB.

b) RDTG Performance: We now assess the robustness of
the proposed MIMO-enabled fingerprinting approach against
Rayleigh channel condition variations through the study of
the RDTG performance metric introduced in Section IV-B.
Figure 4 shows RDTG values when training and testing of
the learning models are done over Rayleigh channels with
varying APG values. First, observe that compared to the
SISO approach, the MIMO-based approach provides a much
higher resiliency to channel variations, i.e. yields smaller
RDTG values, when the training channel exhibits moderate
(training APG = 0 dB; Figure 4c) to severe (training APG
= -20 dB; Figure 4e) fading conditions. One explanation
for this observation is that despite the MIMO-enabled blind
estimation, the remaining ambiguity in the estimated channel
affect the learning models in the training phase, where the
models still learn features that are extracted from both channel
and device impairments. Therefore, training at less severe flat



(a) Training APG = 20dB (b) Training APG = 10dB (c) Training APG = 0dB (d) Training APG = -10dB (e) Training APG = -20dB

Fig. 4. Impact of APG on RDTG.

fading channels while testing at more severe fading channels
yields significant reduction in the accuracy. However, the
MIMO-based approach still outperforms the SISO approach in
spite of this unsolved ambiguity. Observe that the closer the
testing APG values are to the training ones, the smaller the
RDTG values achieved under MIMO are. This observation is
commensurate with the previous observations made in Figure 2
about the MIMO-based approach testing accuracy degradation
when tested on more severe fading channels.

Now when considering moderate training APGs like 0 dB
as in Figure 4c, we observe that the MIMO-based approach
is less immune to the channel variation when tested on a
channel that is significantly more severe than that used for
training. For instance, when testing APG = -20 dB, the RDTG
value achieved under the MIMO-based approach is 83%.
However, the higher the testing APG, the lesser the RDTG
value; i.e., the more resilient the MIMO-enabled approach is
to channel condition variations. Figure 4e, depicting RDTG
values when the training APG = -20 dB, shows that when the
fading conditions of the training channel become worse, the
SISO approach continues to degrade significantly, but not so
for the proposed MIMO approach. Moreover, as the testing
APG continues to increase, while the MIMO-based approach
maintains stable RDTG values (about 8%), SISO performance
continues to degrade significantly, reaching RDTG values of
up to 58%.

V. CONCLUSION

In this work we propose a deep learning-based MIMO-
enabled RF/device classification approach, and showed that the
MIMO capabilities can indeed mitigate the wireless channel
effect and improve the RF fingerprinting accuracy for Rayleigh
flat fading channel. We showed that the proposed MIMO-
based approach improves the classification accuracy by up
to 60% compared to the conventional/SISO approach, and
that the improvement the MIMO approach achieves over the
conventional approach is more significant and stable when the
model is tested on less severe fading channels compared to
the channel used for training.
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