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Abstract 
The wavelet scattering transform is an invariant signal representation suitable for many sig- 
nal processing and machine learning applications. We present the Kymatio software pack- 
age, an easy-to-use, high-performance Python implementation of the scattering transform 
in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All trans- 
forms may be executed on a GPU (in addition to CPU), offering a considerable speedup over 
CPU implementations. The package also has a small memory footprint.  The source code, 
documentation, and examples are available under a BSD license at https://www.kymat.io. 
Keywords: Scattering Transform; GPUs; Wavelets; Convolutional Neural Networks; 
Invariance;  Python 

 

1. Introduction 

Many classification and regression tasks have a degree of invariance to translations and dif- 
feomorphisms, such as those relating to images, audio recordings, and electronic densities. 
The scattering transform was introduced in Mallat (2012) to build a signal representation 
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that is invariant to such transformations while preserving as much signal information as 
possible. It is defined as a convolutional network whose filters are fixed to be wavelet 
and lowpass averaging filters coupled with modulus nonlinearities. It has many favor- 
able theoretical properties (Mallat, 2012; Bruna et al., 2015; Waldspurger, 2017) and en- 
joys considerable success as a powerful tool in modern signal processing (Adel et al., 2017; 
Bruna and Mallat, 2013; Andén and Mallat, 2014; Chudá̌cek et al., 2014; Sifre and Mallat, 
2013; Eickenberg et al., 2017). It is also effective in combination with modern representation 
learning approaches (Oyallon et al., 2018; Sainath et al., 2014; Zeghidour et al., 2016). 

This article presents Kymatio, a scattering transform implementation that is user- 
friendly, well-documented, fast, and compatible with existing automatic differentiation li- 
braries. It brings together scattering transforms in 1D, 2D, and 3D under a unified applica- 
tion programming interface (API). The scattering network is also traversed in a depth-first 
manner to reduce memory requirements, enabling efficient processing in limited-memory 
settings, such as GPUs. 

 
2. Implementing the Scattering Transform 
Definition We consider signals defined on a grid of size N1 ×· · ·×Nd for d = 1, 2, 3. Given 
two signals x[n] and y[n] on this grid, we denote their periodic convolution by x ⊛ y[n]. The 
second-order scattering transform is defined using two wavelet filter banks {ψ(1)[n]}λ ∈Λ 

λ1 1 1 

and {ψ(2)[n]}λ ∈Λ , where λ1 and λ2 are frequency indices in the sets Λ1 and Λ2. It also 
λ2 2 2 

includes a lowpass filter φJ [n], where the integer J > 0 specifies the averaging scale 2J  of 
the filter. Together with a non-linearity ρ(t), these filters define the scattering transform. 

The zeroth-order scattering coefficient S0x[n] is the local average given by S0x[n] = 
x ⊛ φJ [n]. Convolving x[n] with the first-order wavelet filter bank {ψ(1)[n]}λ ∈Λ  , applying 

λ1 1 1 

ρ(t), and convolving with φJ [n], we obtain the first-order scattering coefficients 

S1x[n, λ1] = ρ 
(
x ⊛ ψ(1)   ⊛ φJ [n] λ1 ∈ Λ1. (1) 

More structure is captured by decomposing ρ(x ⊛ ψ(1)[n]) using the second filter bank, but 
this is done only for a subset Λ2(λ1) of Λ2  since ρ(x ⊛ ψ(1)[n]) is a low-frequency signal. 
The result is then passed through ρ(t) and averaged, yielding the second-order coefficients 

S2x[n, λ1, λ2] = ρ 
(
ρ 

(
x ⊛ ψ(1)    ⊛ ψ(2)    ⊛ φJ [n] λ1 ∈ Λ1, λ2 ∈ Λ2(λ1). (2) 

λ1 λ2 
 

Implementation Signals obtained by filtering and applying ρ(t) are low-frequency, so in- 
termediate results are downsampled to reduce computational load as in Andén et al. (2014). 
In 1D and 2D, we use Morlet wavelets which are analytic (i.e., complex-valued with zero en- 
ergy in the negative frequencies) and the non-linearity is the complex modulus ρ(t) = |t| for 
t ∈ C (Andén and Mallat, 2014; Bruna and Mallat, 2013). The 3D transform is calculated 
using solid harmonic wavelets ψλ1 = ψj,ℓ,m, where j indexes the scale, and ℓ, m are the az- 
imuthal and magnetic quantum numbers. In this case the non-linearity ρ : C2ℓ+1 → R is de- 
fined, with a slight abuse of notation, as ρ(x ⊛ ψj,ℓ) = 

'\),
m |x ⊛ ψj,ℓ,m|2 (Eickenberg et al., 

2017). Following Oyallon et al. (2018), we compute the scattering transform in a depth-first 
manner, reducing the number of intermediate signals stored at a given time. 
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 Dimension GPU Diff. Core Devs. License Language 
ScatNet 1D, 2D   5 Apache 2.0 MATLAB 
ScatNetLight 2D   2 GPLv2 MATLAB 
PyScatWave 2D ..(  3 BSD-3 Python 
Scattering.m 1D   1 GPLv3 MATLAB 
PyScatHarm 3D ..(  1 BSD-3 Python 
Wavelet Toolbox 1D   N/A Proprietary MATLAB 
Kymatio 1D, 2D, 3D ..( ..( 15 BSD-3 Python 

 

Table 1:  Comparison to existing scattering transform packages. 
 
3. Project vision 
Code quality Adopting the philosophy of scikit-learn (Pedregosa et al., 2011), the goal of 
Kymatio is not to maximize the number of features, but to provide a stable and easy-to-use 
framework. To this end, we make heavy use of unit tests, minimize the number of dependen- 
cies, and strive for intuitive interfaces inspired by modern deep learning paradigms. Kymatio 
also provides an extensive user guide, including an API reference, a tutorial, installation 
instructions, and fifteen examples, several of which feature real-world applications. 

Community and Bug Tracking  Kymatio is free and open-source software, licensed un- 
der the New (3-clause) BSD license. The members of its core development team all have 
experience implementing scattering transforms as part of other packages. A key goal of Ky- 
matio is to combine these disparate efforts and foster a community effort in order to produce 
high-quality software and maintain a critical mass of contributors for its maintenance. The 
package was released publicly on GitHub November 17th, 2018. The main communication 
channels is the GitHub page for questions, bug reports, and feature requests. There is also 
a dedicated Slack channel for Kymatio development. 

Relation to previous software    Aside from the emphasis on code quality and usability, 
Kymatio provides several improvements over previous scattering implementations: 

• Python is the de facto standard for data science software, but most existing scattering 
packages are implemented in MATLAB. In contrast, Kymatio provides a completely 
Pythonic implementation, enabling integration with the scientific Python ecosystem. 

• GPU compatibility is critical to many data science workloads. Kymatio offers an 
easy-to-use GPU implementation for scattering transforms in 1D, 2D, and 3D. 

• PyTorch integration is achieved by designing scattering transforms to closley mimic 
PyTorch modules, allowing seamless integration into many deep learning workflows. 

• Differentiability of the scattering transform simplifies applications in reconstruction 
and generative modeling, among others. 

Table 1 provides a detailed comparison of existing implementations: ScatNet (Andén et al., 
2014), ScatNetLight (Oyallon and Mallat, 2015), PyScatWave (Oyallon et al., 2018), Scat- 
tering.m (Lostanlen and Mallat, 2015), PyScatHarm (Eickenberg et al., 2018), and the scat- 
tering transform implemented in the MATLAB Wavelet Toolbox. 
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4. User Interface and Documentation 

Interface The interface is designed to be flexible and consistent across inputs.  We first 
create a scattering object by specifying the averaging scale J and the input signal shape. 

 
 

S   =   Scattering1D(J,   shape=(length,)) 
S  =  Scattering2D(J,  shape=(height,  width)) 
S  =  Scattering3D(J,  shape=(height,  width,  depth)) 

 
 

 

The resulting object S acts like a nn.Module object in PyTorch.  The scattering transform 
S is applied through calls of the form 

 
 

x  =  torch.randn((28,  28)) 
output  =  S(x) 

 
 

 

Switching from GPU or CPU functionality also follows the API of nn.module. 
 

 

S.cuda()   #  Run on GPU 
S.cpu() # Run on CPU 

 
 

 
 

Documentation and Examples Several examples are  provided  with  the  code,  illus- 
trating the power of Kymatio. These include image reconstruction and generation from 
scattering (Angles and Mallat, 2018), hybrid scattering and CNN training on CIFAR and 
MNIST (Oyallon et al., 2018), regression of molecular properties on QM7/QM9 using solid 
harmonic scattering (Eickenberg et al., 2017), and classifying recordings of spoken digits. 

 
5. Conclusion 

Kymatio provides a well documented, user-friendly, and fast implementation for the scat- 
tering transform.  It can be used with the PyTorch deep learning framework and supports 
a variety of applications that have been previously inaccessible to non-experts including 
hybrid deep learning, generative modeling, and 3-D chemistry applications. Future work 
includes further optimization for speed, flexibility, and backend support. 
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