

Kymatio: Scattering Transforms in Python

Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi,
Gaspar Rochette, Louis Thiry, John Zarka
École normale supérieure, CNRS, PSL Research University, Paris, France
Stéphane Mallat
École normale supérieure, CNRS, PSL Research University, Paris, France
Coll̀ege de France, Paris, France
Flatiron Institute, New York, NY, USA

Joakim Andén
Flatiron Institute
162 5th Avenue, New York, NY, 10010, USA

Eugene Belilovsky
Mila, Université de Montréal, Montréal, Canada

Joan Bruna, Vincent Lostanlen
New York University, New York, NY, USA

Matthew J. Hirn
Michigan State University, East Lansing, MI, USA

Edouard Oyallon
CentraleSupélec, Gif-sur-Yvette, France

Sixin Zhang
Peking University, Beijing, China

Carmine Cella, Michael Eickenberg
University of California, Berkeley, Berkeley, CA, USA

Abstract
The wavelet scattering transform is an invariant signal representation suitable for many sig-
nal processing and machine learning applications. We present the Kymatio software pack-
age, an easy-to-use, high-performance Python implementation of the scattering transform
in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All trans-
forms may be executed on a GPU (in addition to CPU), offering a considerable speedup over
CPU implementations. The package also has a small memory footprint. The source code,
documentation, and examples are available under a BSD license at https://www.kymat.io.
Keywords: Scattering Transform; GPUs; Wavelets; Convolutional Neural Networks;
Invariance; Python

1. Introduction

Many classification and regression tasks have a degree of invariance to translations and dif-
feomorphisms, such as those relating to images, audio recordings, and electronic densities.
The scattering transform was introduced in Mallat (2012) to build a signal representation

Qc 2019 Andreux et al..

ar
X

iv
:1

81
2.

11
21

4v
2

 [c
s.L

G
]

1
Ju

n
20

19

https://www.kymat.io/

Andreux et al.

2

λ1

λ1

λ1

that is invariant to such transformations while preserving as much signal information as
possible. It is defined as a convolutional network whose filters are fixed to be wavelet
and lowpass averaging filters coupled with modulus nonlinearities. It has many favor-
able theoretical properties (Mallat, 2012; Bruna et al., 2015; Waldspurger, 2017) and en-
joys considerable success as a powerful tool in modern signal processing (Adel et al., 2017;
Bruna and Mallat, 2013; Andén and Mallat, 2014; Chudá̌cek et al., 2014; Sifre and Mallat,
2013; Eickenberg et al., 2017). It is also effective in combination with modern representation
learning approaches (Oyallon et al., 2018; Sainath et al., 2014; Zeghidour et al., 2016).

This article presents Kymatio, a scattering transform implementation that is user-
friendly, well-documented, fast, and compatible with existing automatic differentiation li-
braries. It brings together scattering transforms in 1D, 2D, and 3D under a unified applica-
tion programming interface (API). The scattering network is also traversed in a depth-first
manner to reduce memory requirements, enabling efficient processing in limited-memory
settings, such as GPUs.

2. Implementing the Scattering Transform
Definition We consider signals defined on a grid of size N1 ×· · ·×Nd for d = 1, 2, 3. Given
two signals x[n] and y[n] on this grid, we denote their periodic convolution by x ⊛ y[n]. The
second-order scattering transform is defined using two wavelet filter banks {ψ(1)[n]}λ ∈Λ

λ1 1 1

and {ψ(2)[n]}λ ∈Λ , where λ1 and λ2 are frequency indices in the sets Λ1 and Λ2. It also
λ2 2 2

includes a lowpass filter φJ [n], where the integer J > 0 specifies the averaging scale 2J of
the filter. Together with a non-linearity ρ(t), these filters define the scattering transform.

The zeroth-order scattering coefficient S0x[n] is the local average given by S0x[n] =
x ⊛ φJ [n]. Convolving x[n] with the first-order wavelet filter bank {ψ(1)[n]}λ ∈Λ , applying

λ1 1 1

ρ(t), and convolving with φJ [n], we obtain the first-order scattering coefficients

S1x[n, λ1] = ρ
(
x ⊛ ψ(1) ⊛ φJ [n] λ1 ∈ Λ1. (1)

More structure is captured by decomposing ρ(x ⊛ ψ(1)[n]) using the second filter bank, but
this is done only for a subset Λ2(λ1) of Λ2 since ρ(x ⊛ ψ(1)[n]) is a low-frequency signal.
The result is then passed through ρ(t) and averaged, yielding the second-order coefficients

S2x[n, λ1, λ2] = ρ
(
ρ

(
x ⊛ ψ(1) ⊛ ψ(2) ⊛ φJ [n] λ1 ∈ Λ1, λ2 ∈ Λ2(λ1). (2)

λ1 λ2

Implementation Signals obtained by filtering and applying ρ(t) are low-frequency, so in-
termediate results are downsampled to reduce computational load as in Andén et al. (2014).
In 1D and 2D, we use Morlet wavelets which are analytic (i.e., complex-valued with zero en-
ergy in the negative frequencies) and the non-linearity is the complex modulus ρ(t) = |t| for
t ∈ C (Andén and Mallat, 2014; Bruna and Mallat, 2013). The 3D transform is calculated
using solid harmonic wavelets ψλ1 = ψj,ℓ,m, where j indexes the scale, and ℓ, m are the az-
imuthal and magnetic quantum numbers. In this case the non-linearity ρ : C2ℓ+1 → R is de-
fined, with a slight abuse of notation, as ρ(x ⊛ ψj,ℓ) =

'\),
m |x ⊛ ψj,ℓ,m|2 (Eickenberg et al.,

2017). Following Oyallon et al. (2018), we compute the scattering transform in a depth-first
manner, reducing the number of intermediate signals stored at a given time.

Kymatio

3

 Dimension GPU Diff. Core Devs. License Language
ScatNet 1D, 2D 5 Apache 2.0 MATLAB
ScatNetLight 2D 2 GPLv2 MATLAB
PyScatWave 2D ..(3 BSD-3 Python
Scattering.m 1D 1 GPLv3 MATLAB
PyScatHarm 3D ..(1 BSD-3 Python
Wavelet Toolbox 1D N/A Proprietary MATLAB
Kymatio 1D, 2D, 3D ..(..(15 BSD-3 Python

Table 1: Comparison to existing scattering transform packages.

3. Project vision
Code quality Adopting the philosophy of scikit-learn (Pedregosa et al., 2011), the goal of
Kymatio is not to maximize the number of features, but to provide a stable and easy-to-use
framework. To this end, we make heavy use of unit tests, minimize the number of dependen-
cies, and strive for intuitive interfaces inspired by modern deep learning paradigms. Kymatio
also provides an extensive user guide, including an API reference, a tutorial, installation
instructions, and fifteen examples, several of which feature real-world applications.

Community and Bug Tracking Kymatio is free and open-source software, licensed un-
der the New (3-clause) BSD license. The members of its core development team all have
experience implementing scattering transforms as part of other packages. A key goal of Ky-
matio is to combine these disparate efforts and foster a community effort in order to produce
high-quality software and maintain a critical mass of contributors for its maintenance. The
package was released publicly on GitHub November 17th, 2018. The main communication
channels is the GitHub page for questions, bug reports, and feature requests. There is also
a dedicated Slack channel for Kymatio development.

Relation to previous software Aside from the emphasis on code quality and usability,
Kymatio provides several improvements over previous scattering implementations:

• Python is the de facto standard for data science software, but most existing scattering
packages are implemented in MATLAB. In contrast, Kymatio provides a completely
Pythonic implementation, enabling integration with the scientific Python ecosystem.

• GPU compatibility is critical to many data science workloads. Kymatio offers an
easy-to-use GPU implementation for scattering transforms in 1D, 2D, and 3D.

• PyTorch integration is achieved by designing scattering transforms to closley mimic
PyTorch modules, allowing seamless integration into many deep learning workflows.

• Differentiability of the scattering transform simplifies applications in reconstruction
and generative modeling, among others.

Table 1 provides a detailed comparison of existing implementations: ScatNet (Andén et al.,
2014), ScatNetLight (Oyallon and Mallat, 2015), PyScatWave (Oyallon et al., 2018), Scat-
tering.m (Lostanlen and Mallat, 2015), PyScatHarm (Eickenberg et al., 2018), and the scat-
tering transform implemented in the MATLAB Wavelet Toolbox.

Andreux et al.

4

4. User Interface and Documentation

Interface The interface is designed to be flexible and consistent across inputs. We first
create a scattering object by specifying the averaging scale J and the input signal shape.

S = Scattering1D(J, shape=(length,))
S = Scattering2D(J, shape=(height, width))
S = Scattering3D(J, shape=(height, width, depth))

The resulting object S acts like a nn.Module object in PyTorch. The scattering transform
S is applied through calls of the form

x = torch.randn((28, 28))
output = S(x)

Switching from GPU or CPU functionality also follows the API of nn.module.

S.cuda() # Run on GPU
S.cpu() # Run on CPU

Documentation and Examples Several examples are provided with the code, illus-
trating the power of Kymatio. These include image reconstruction and generation from
scattering (Angles and Mallat, 2018), hybrid scattering and CNN training on CIFAR and
MNIST (Oyallon et al., 2018), regression of molecular properties on QM7/QM9 using solid
harmonic scattering (Eickenberg et al., 2017), and classifying recordings of spoken digits.

5. Conclusion

Kymatio provides a well documented, user-friendly, and fast implementation for the scat-
tering transform. It can be used with the PyTorch deep learning framework and supports
a variety of applications that have been previously inaccessible to non-experts including
hybrid deep learning, generative modeling, and 3-D chemistry applications. Future work
includes further optimization for speed, flexibility, and backend support.

Acknowledgments

We thank Laurent Sifre, Sergey Zagoruyko and Gabriel Huang for their helpful comments.
The project was supported by ERC InvariantClass 320959. EB is partially supported by a
Google Focused Research Award. MJH is partially supported by Alfred P. Sloan Fellowship
#FG-2016-6607, DARPA Young Faculty Award #D16AP00117, and NSF grant #1620216.

References
T. Adel, T. Cohen, M. Caan, M. Welling, et al. 3D scattering transforms for disease

classification in neuroimaging. NeuroImage: Clinical, 14:506–517, 2017.

Kymatio

5

J. Andén et al. Scatnet. Computer Software, 2014. URL
http://www.di.ens.fr/data/software/scatnet.

J. Andén and S. Mallat. Deep scattering spectrum. IEEE Trans. Signal Process., 62(16):
4114–4128, Aug 2014. doi: 10.1109/TSP.2014.2326991.

T. Angles and S. Mallat. Generative networks as inverse problems with scattering trans-
forms. In Proc. ICLR, 2018.

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Trans. Pattern
Anal. Mach. Intell., 35(8):1872–1886, 2013.

J. Bruna, S. Mallat, E. Bacry, and J.-F. Muzy. Intermittent process analysis with scattering
moments. Ann. Statist., 43(1):323–351, 02 2015. doi: 10.1214/14-AOS1276.

V. Chudá̌cek et al. Scattering transform for intrapartum fetal heart rate variability fractal
analysis: A case-control study. IEEE Trans. Biomed. Eng., 61(4):1100–1108, 2014.

M. Eickenberg et al. Solid harmonic wavelet scattering: Predicting quantum molecular
energy from invariant descriptors of 3D electronic densities. In Proc. NIPS. 2017.

M. Eickenberg et al. Solid harmonic wavelet scattering for predictions of molecule properties.
The Journal of Chemical Physics, 148(24):241732, 2018.

V. Lostanlen and S. Mallat. Wavelet scattering on the pitch spiral. In Proc. DAFx, 2015.

S. Mallat. Group invariant scattering. Comm. Pure Appl. Math., 65(10):1331–1398, 2012.

E. Oyallon and S. Mallat. Deep roto-translation scattering for object classification. In Proc.
CVPR, June 2015.

E. Oyallon et al. Scattering networks for hybrid representation learning. IEEE Trans.
Pattern Anal. Mach. Intell., 2018.

F. Pedregosa et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12
(Oct):2825–2830, 2011.

T. N. Sainath et al. Deep scattering spectra with deep neural networks for LVCSR tasks.
In Proc. Interspeech, 2014.

L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proc. CVPR, 2013.

I. Waldspurger. Exponential decay of scattering coefficients. In Proc. SampTA, 2017.

N. Zeghidour et al. A deep scattering spectrum–deep siamese network pipeline for unsu-
pervised acoustic modeling. In Proc. ICASSP, pages 4965–4969. IEEE, 2016.

http://www.di.ens.fr/data/software/scatnet

This figure "algorithm.png" is available in "png" format from:

http://arxiv.org/ps/1812.11214v2

http://arxiv.org/ps/1812.11214v2
http://arxiv.org/ps/1812.11214v2

	Abstract
	1. Introduction
	2. Implementing the Scattering Transform
	3. Project vision
	4. User Interface and Documentation
	5. Conclusion
	Acknowledgments
	References

