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Abstract

Efficient contact tracing and isolation is an effective strategy to control epidemics. It was
used effectively during the Ebola epidemic and successfully implemented in several parts of the
world during the ongoing COVID-19 pandemic. An important consideration in contact tracing
is the budget on the number of individuals asked to quarantine—the budget is limited for so-
cioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework
to formulate the problem of using contact tracing to reduce the size of an outbreak while asking
a limited number of people to quarantine. We formulate each step of the MDP as a combi-
natorial problem, MinExposed, which we demonstrate is NP-Hard; as a result, we develop
an LP-based approximation algorithm. Though this algorithm directly solves MinExposed,
it is often impractical in the real world due to information constraints. To this end, we de-
velop a greedy approach based on insights from the analysis of the previous algorithm, which
we show is more interpretable. A key feature of the greedy algorithm is that it does not need
complete information of the underlying social contact network. This makes the heuristic imple-
mentable in practice and is an important consideration. Finally, we carry out experiments on
simulations of the MDP run on real-world networks, and show how the algorithms can help in
bending the epidemic curve while limiting the number of isolated individuals. Our experimental
results demonstrate that the greedy algorithm and its variants are especially effective, robust,
and practical in a variety of realistic scenarios, such as when the contact graph and specific
transmission probabilities are not known. All code can be found in our GitHub repository:
https://github.com/gzli929/ContactTracing.

1 Introduction

Contact tracing followed by isolation is one of the most effective ways to control epidemics caused
by infectious diseases. In this intervention strategy, contact tracers ask infected individuals to
report their recent contacts; they then trace these contacts, requesting them to isolate for a certain
period of time [Kretzschmar et al., 2020]. The role of contact tracing during the Ebola, measles,
and COVID-19 outbreaks is well-documented [Keeling et al., 2020; Kretzschmar et al., 2020; Liu
et al., 2015]. However, its effectiveness is dependent on the accuracy and quantity of information
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on the contacts, the speed at which tracing is conducted, and the compliance of individuals in self-
isolating. Recently, technologies such as the Google-Apple app [Ahmed et al., 2020] have provided
a solution to augment human contact tracers. When contact tracing apps are used, the strategy is
called digital contact tracing; otherwise, it is called manual contact tracing. Our algorithms and
heuristics will be applicable to both manual contact tracing and digital contact tracing.

A main limitation of contact tracing is the number of individuals who can be asked to isolate;
this number is constrained since isolation imposes a significant economic and social burden to
the population. For manual contact tracing, the budget is also dependent on the economic cost
of hiring contact tracers. From these constraints, we can see a clear trade-off between reducing
infection spread and minimizing socioeconomic costs. This brings forth a natural question that we
study: which individuals should we ask to isolate in order to make the most effective use of the
budget for contact tracing?

In addition to constraints on the number of individuals who are isolated, we also address the
practical challenges of contact tracing. Most notably, contact tracing graphs and their associated
transmission probabilities are noisy, sparse, and dynamic [Liu et al., 2020; Sayampanathan et al.,
2021]. Motivated by this, we seek robust algorithms that can deal with such uncertainties. Addi-
tionally, we need to consider the simplicity and utility of such algorithms to encourage widespread
use. These factors motivate us to develop simple but effective heuristics for our problem [Russell
and Norvig, 2002; Yadav et al., 2016].

Our contributions. We use a Markov Decision Process (MDP) framework to formulate the
problem of efficient contact tracing that reduces the size of the outbreak using a limited number of
contact tracers (see Section 3). The basic setup is as follows: let G = (V,E) be the social contact
network and let the disease spread on G by an SIR type diffusion process [Marathe and Vullikanti,
2013]. At each timestep t, we assume the policymaker knows the infected set. Constrained by the
number of contact tracers, the policymaker wants to choose a set of nodes that minimizes the total
number of infections at the end of the epidemic when asked to quarantine. We call this problem
MinTotalInf. Since the disease dynamics are constantly changing (due to fluctuating attitudes
and behavior), we will only consider finite time horizons of the MDP by solving the problem,
MinExposed, which focuses on the second neighborhood of the infected set.

• We prove that MinExposed is NP-Hard (see Section 4). Given the hardness result, we
develop an LP-based algorithm for MinExposed, proving rigorous approximation guaran-
tees. Using insights from the analysis of the LP-based algorithm, we introduce a greedy
approximation algorithm, which is interpretable and practical (see Section 5).

• While maintaining the theoretical properties of our algorithms, we show that we can incor-
porate fairness guarantees, ensuring no demographic group is disproportionately affected by
contact tracing or the disease. Furthermore, we experimentally verify that incorporating these
fairness constraints is possible while not degrading solution quality much (Sections 6 and 8.3).

• Our provable approximation algorithms require knowledge of the (local) contact graph, trans-
mission rates, and compliance rates, which is unrealistic in practice. We draw on the intuition
gained from our theoretical results to devise heuristics which requires minimal information of
the contact graph or disease model—and includes differential privacy for user privacy—and
thus can be made operational in the real world (see Section 7).

• We run simulations of an epidemic with realistic contact network and parameter values to
assess the performance of our algorithms and heuristics. The results suggest that the heuristics
perform well even under the limited information model (see Section 8).
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2 Related Work

Manual contact tracing is a widely used strategy that has been successful in controlling past out-
breaks; see Armbruster and Brandeau [2007a,b]; Eames [2007]; Kiss et al. [2005, 2008] for a dis-
cussion on contact tracing, its effectiveness, and mathematical models to study contact tracing in
networks. Recently, digital contact tracing has emerged as another powerful technology to control
outbreaks, especially evident in the COVID-19 pandemic [Ahmed et al., 2020; Salathé et al., 2020;
Lorch et al., 2020]. Though the importance of contact tracing is well studied, we are the first to
view it as an algorithmic problem and give provable guarantees to our methods. Moreover, we are
the first to address fairness concerns in quarantine decisions.

Our paper adds to a line of work developing theoretical models for intervention problems in
networked epidemic processes; however, prior works have only considered these problems in idealized
settings. For instance, [Eubank et al., 2006; Hayrapetyan et al., 2005; Sambaturu et al., 2020;
Minutoli et al., 2020] consider problems of optimizing interventions such as vaccination and social
distancing in a non-adaptive and complete information setting, where the intervention is only done
at the start of the epidemic. In contrast, our paper focuses on the more realistic contact tracing
problem, in which decisions need to be made at each timestep. Moreover, we only assume knowledge
of a local neighborhood of the currently infected nodes, which is more realistically available.

Concurrent to our work, Meister and Kleinberg [2021] introduce a model of manual contact
tracing and design provably optimal algorithms. They focus on developing algorithms to miti-
gate the disease’s health detriments after the outbreak stops while we focus on quarantining to
minimize the disease spread during the outbreak. Though they have a more realistic model of dis-
covering contacts, we claim our contact tracing model is more realistic since it operates in real time.
Furthermore, their model applies to manual contact tracing and remains primarily a theoretical
contribution while our model applies to both and additionally yields improved practical heuristics.
Finally, we note that Meister and Kleinberg [2021] mention the dynamic setting of contact tracing
as important future work; our paper takes a first step in addressing this complex problem.

3 Preliminaries

Recall that the epidemic spreads on G by an SIR-type process; let I(t) be the set of infected nodes
and let each node u ∈ I(t) transmit the disease to each of their neighbors v independently with
probability quv. Denote the current set of infected people I = I(t). We assume I is known to the
policymaker and will begin to self-isolate at the next timestep, remaining quarantined until recovery.
Although all previously infected nodes self-isolate, neighbors of I have been exposed to the disease
and may be infected in the next timestep. Let V1 = NG(I) − I be the first neighborhood of I.
Because V1 can continue to spread the disease to the rest of the graph, policymakers must contact
trace these individuals and ask them to isolate. Since this process is expensive and time-intensive
for both contact tracers and quarantined individuals, we denote B to be the budget on the number
of nodes which contact tracers can reach. Further complicating the costs of contact tracing, some
of the individuals contacted may be noncompliant, refusing to quarantine. For model generality, we
assume node u complies with probability cu. Given these parameters and constraints, the objective
of policymakers can be formulated as MinTotalInf, which seeks to minimize the total number of
infections in G at the end of the epidemic. MinTotalInf is a highly idealized problem to solve
since the contact graph, transmission rates, and compliance rates are all constantly changing due
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to various forms of social distancing. As a result, we focus on locally optimal solutions with the
objective of minimizing the expected number of infections in the second neighborhood of I. We
denote this neighborhood as V2 = NG(V1)− I − V1 and formalize the problem next.

The MinExposed Problem: Given contact graph G = (V,E), a subset I ⊆ V of infected
nodes, compliance probabilities cu for u ∈ V1, transmission probabilities quv for (u, v) ∈ E, and a
budget B, the objective is to find a subset Q ⊆ V1 satisfying |Q| ≤ B to quarantine which minimizes
the expected number of infections in V2. We let F (Q) denote the objective value of MinExposed
given that set Q is asked to quarantine. See Figure 1 for an example.

u1 u2

u3 u4 u5

u6 u7 u8 u9V2

V1

I

Isolated

Figure 1: Example of Min-
Exposed when transmission and
compliance rates are 1: set I =
{u1, u2}, V1 = {u3, u4, u5}, V2 =
{u6, u7, u8, u9}. Suppose B = 2;
then set Q = {u4, u5} is an opti-
mal isolated set. Node u6 is ex-
posed, and the objective value for
this solution is 1.

Infected

Not isolated

Isolated

Exposed

Saved

Recovered

t t+ 1 t+ 2

Figure 2: Our MDP model: In each timestep, the infected
nodes are shown in red. The set of nodes in V1 is colored by
blue and green, where green represents that the solution to
MinExposed suggests them to isolate. The nodes in orange
and yellow are in V2, where yellow nodes are not exposed
since the green nodes self isolate. Since this figure considers
the simple deterministic case, all nodes in the neighborhood
of (non-isolated) infected nodes get infected in the next time
step. Recovered nodes are depicted in grey.

In addition to minimizing infections, the policymaker also wants to ensure no demographic
group is affected disproportionately by our contact tracing algorithms. In particular, the number
of people quarantined in V1 and infected in V2 should be fair with respect to demographic groups.
To account for this, we abstract away the attributes of a node v ∈ V by a label `(v) ∈ L. We
assume

⋃
`∈LR` = V , where R` ⊆ V denote the set of nodes with label ` ∈ L. We also assume we

are given constraints B` for ` ∈ L on the number of people in V1∩R` to quarantine and constraints
a` for ` ∈ L on the expected number of infections in V2 ∩R`. (Note that this is for full generality.
One useful example to think about is where the budgets for each demographic group is proportional
to their size, i.e., B` is proportional to |V1 ∩R`| and a` is proportional to |V2 ∩R`|.) We will show
how to extend our algorithms to satisfy these constraints while maintaining their utility.

4 MinExposed is NP-Hard

Theorem 1. Even when all transmission and compliance probabilities are 1 and there are no
fairness constraints, MinExposed is NP-Hard.

Proof. Consider the Maximum Clique Problem: given a graph G = (V,E) find a subset S of V
such for u, v ∈ S we have (u, v) ∈ E. Maximum clique problem is a well-known NP-hard problem
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[Garey and Johnson, 1979]. It is also well-known that the Maximum clique problem can be reduced
in polynomial time to the problem of deciding whether G contains a clique of size k. We reduce
this problem to an instance of MinExposed where the transmission probability along all edges is
1 and compliance probabilities are all 1.

Define I to be a single node: I = {i}. For each node in G, we add a node in our MinExposed
instance and connect it to i (So V is N(I)− I in our MinExposed instance). Now for each edge
(u, v) ∈ E we add a node and connect it to u and v in N(I)− I. Now, consider the MinExposed
on this instance with budget k. Let V1 = N(I)− I and V2 = N(V1)− V1 − I. Let Q∗ ⊆ V1 be the
optimal solution to this instance of MinExposed. We claim that G has a clique of size k if and
only if F (Q∗) = |E| −

(
k
2

)
.

First, we show F (Q∗) = |E| −
(
k
2

)
whenever G has a clique of size k. Let U ⊆ V be a clique

of size k in G. Then U corresponds to some set S ∈ V1 (in our MinExposed instance) of size k.
We have F (S) = |E| −

(
k
2

)
: let u, v be distinct nodes in U . For (u, v) ∈ E, edge (u, v) is exposed in

solution S if either u /∈ S or v /∈ S. This implies F (S) = |E| −
(
k
2

)
. By optimality of Q∗, we have

F (Q∗) ≤ |E| −
(
k
2

)
. Clearly, we also have F (Q∗) ≥ |E| −

(
k
2

)
.

Conversely, suppose F (Q∗) = |E| −
(
k
2

)
. Let U be the set in V corresponding to Q∗. We claim

that for distinct u, v ∈ U , we have (u, v) ∈ E. Suppose for contradiction that there are u, v ∈ U
(hence in Q∗) such that (u, v) /∈ E. Then, there are less than

(
k
2

)
nodes in V2 that are covered by

Q∗. This implies that F (Q∗) > |E| −
(
k
2

)
, which is a contradiction.

5 Approximation Algorithms for MinExposed

In the previous section, we showed that even when all compliance and transmission probabilities
are 1, MinExposed is NP-Hard. As a result, we focus on developing approximation algorithms.
For ease of notation in the next sections, we let pu = 1 −

∏
v∈I:(u,v)∈E(1 − quv) be the probability

u ∈ V1 gets infected in the next timestep.
Let Dv denote the number of neighbors in V1 node v ∈ V2 has and let D = maxv∈V2 Dv. We

first present a mixed integer linear program (MILP) to formulate MinExposed and show that
applying DepRound gives a D-approximation (i.e., it provides a solution with objective value at
most D times optimal). Using insight from the analysis of DepRound, we present a simple greedy
algorithm, DegGreedy, which still guarantees a D-approximation. Furthermore, DegGreedy
offers better interpretability and is easier to implement under noisy/incomplete information.

Note that we don’t make an assumption of independence in our proofs, which is an advantage of
our methods. This means our results apply even when transmissions are correlated (e.g., when the
transmission events v → u and w → u are positively correlated, for neighbors v, w ∈ I of u ∈ V1):
we just need to update the formula above for pu to take correlations into account, in constraint (2)
and later. Such correlations are common due to meetings in groups/crowds, making our methods
especially desirable.
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5.1 DepRound

Let E′ = E∩(V1×V2) be the edges which can potentially transmit the disease in the next timestep.
We can write MinExposed as an MILP:

min
∑

v∈V2 zv s.t.

xu + yu = 1 for u ∈ V1∑
u∈V1 xu ≤ B (1)

zv ≥ pu · [1− cu · xu] · quv for (u, v) ∈ E′ (2)

xu, yu ∈ {0, 1} for u ∈ V1
zv ∈ [0, 1] for v ∈ V2

We have xu, yu for u ∈ V1 as indicators representing u being asked to quarantined and u
potentially spreading the disease, respectively. We allow at most B nodes to be quarantined, as
indicated by Constraint 1. Note that for v ∈ V2, we have the following for every u ∈ V1 with
(u, v) ∈ E: the probability that v gets infected is lower bounded by the probability u is infected,
u is not selected for quarantine or u does not comply, and u transmits the disease to v. Thus zv
for v ∈ V2 represents a lower bound on the probability on v getting infected, as conveyed through
Constraint 2.

Algorithm 1 DepRound

1: Relax the integer constraints of the MILP to obtain its LP relaxation
2: Solve the LP to get vectors x, y ∈ RV1
3: Apply dependent rounding as in Srinivasan [2001] to vector x to obtain Xu for u ∈ V1
4: Q← {u ∈ V1 : Xu = 1}

Based on this MILP, we give our algorithm for MinExposed. First, we relax the binary vector
constraints on xu, yu, to get a computationally-feasible linear program (LP). The output of the
LP will be vectors x, y ∈ RV1 and z ∈ RV2 with xu, yu, zv ∈ [0, 1], with objective-function value
at most as large as our optimal solution. However, xu may be a fractional value, which does not
directly imply a decision for our contact-tracing problem. Srinivasan [2001] presented a linear
time randomized algorithm which given a vector x ∈ [0, 1]n with

∑n
i=1 xi ≤ k outputs a vector

X ∈ {0, 1}n satisfying:

(P1) For i = 1, . . . , n, Pr[Xi = 1] = xi;

(P2)
∑n

i=1Xi ≤ k with probability one.

(P3) For all S ⊆ [n], we have:

Pr[
∧
i∈S(Xi = 0)] ≤

∏
i∈S Pr[Xi = 0];

Pr[
∧
i∈S(Xi = 1)] ≤

∏
i∈S Pr[Xi = 1].

We use this to obtain X ∈ {0, 1}V1 from vector x, giving our final solution of Q = {u ∈ V1 : Xu = 1}.
We call this algorithm DepRound and give its approximation guarantee next:

Theorem 2. Applying Algorithm 1 to the above MILP yields a D-approximation for MinExposed.
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Proof. Let vectors x, y, z be the optimal solution the linear program relaxation and let (Xu ∈
{0, 1} : u ∈ V1) be the output of dependent rounding. Recall that Q = {u ∈ V1 : Xu = 1}. By
(P2), we have |Q| ≤ B with probability one, as desired.

We next analyze what happens to nodes v ∈ V2. For ease of notation, define Cu to be the random
variable that node u ∈ V1 complies when asked to quarantine and Quv to be the random variable
that node u ∈ V1 transmits the disease to node v ∈ V2. We have E[Cu] = cu and E[Quv] = pu · quv.
The probability v gets infected is equal to the probability there exists a neighbor u ∈ V1 of v which
gets infected, does not get quarantined or gets quarantined and does not comply, and transmits to
v:

Pr[v gets infected] = Pr[∃u ∈ V1 : (u, v) ∈ E ∧ [(Cu = 0) ∨ (Xu = 0)] ∧ (Quv = 1)]

≤
∑

u:(u,v)∈E′ pu · [(1− cu) · xu + yu] · quv
≤
∑

u:(u,v)∈E′ zv ≤ Dv · zv.

The first inequality holds by the union bound, the second inequality holds by Constraint 4, and
the rest hold by definition. Using this, we analyze the MinExposed objective value.

F (Q) =
∑

v∈V2 Pr[v gets infected]

≤
∑

v∈V2 Dv · zv ≤ D ·
∑

v∈V2 zv ≤ D · F (Q∗).

Thus, our algorithm yields a D-approximation for MinExposed.

5.2 DegGreedy

In the analysis of DepRound, we took advantage of the union bound as an upper bound to the
MinExposed objective value in order to prove our approximation guarantee. Next, we present a
simple greedy algorithm, DegGreedy, which directly optimizes the upper bound and thus still
maintains a D-approximation. Recall that for a quarantine set Q, we have

F (Q) ≤
∑

v∈V2
∑

u:(u,v)∈E′ [(1− cu) · xu + yu] · pu · quv
=
∑

v∈V2
∑

u:(u,v)∈E′ [1− cu · xu] · pu · quv.

Ignoring the constant, we see that minimizing the upper bound on F (Q) is equivalent to maximizing∑
v∈V2

∑
u:(u,v)∈E′ xu · cu · pu · quv

=
∑

u∈V1
∑

v∈V2:(u,v)∈E xu · cu · pu · quv
=
∑

u∈V1 xu · cu · pu ·
∑

v∈V2:(u,v)∈E quv

subject to
∑

u∈V1 xu ≤ B. Since this is just a knapsack problem, it is clear that DegGreedy
attains the optimal value and thus minimizes the upper bound on F (Q).

Algorithm 2 DegGreedy

1: wu ← cu · pu ·
∑

v∈V2,(u,v)∈E quv for u ∈ V1
2: pick B nodes with the highest wu values in V1 to be in Q, breaking ties arbitrarily

7



Theorem 3. Algorithm 2 gives a D-approximation to MinExposed.

Proof. Let x∗u, y
∗
u, z
∗
v to be the optimal solution to the MILP in Section 5.1. Let Q be the set

outputted by DegGreedy, xu = I{u ∈ Q} is the indicator for membership in Q, and yu = 1−xu.
Then we have

F (Q) ≤
∑

v∈V2
∑

u:(u,v)∈E′ [1− cu · xu] · pu · quv
≤
∑

v∈V2
∑

u:(u,v)∈E′ [1− cu · x∗u] · pu · quv
≤
∑

v∈V2
∑

u:(u,v)∈E′ z
∗
v

≤
∑

v∈V2 Dv ż
∗
v ≤ D ·

∑
v∈V2 z

∗
v ≤ D ·OPT

where the first inequality holds by the union bound, the second holds because DegGreedy opti-
mizes the upper bound, the third holds by Constraint 2, and the remaining hold by definition.

6 Extension to Fairness Constraints

Recall that we want the following fairness guarantees: for V1, we want the number of quarantined
people with label ` to be at most B` and for V2, we want the number of expected infected people
with label ` to be at most a` (assuming there exists a feasible solution). We can extend both of
our algorithms to satisfy the first constraint and we can extend DepRound to satisfy the second
constraint approximately.

6.1 Fairness in V1

Recall that the R` are demographic groups and assume that
∑

`∈LB` = B. Then we can guarantee
that the number of quarantined nodes in R` is at most some given budget B`. We can easily enforce
this in our MILP formulations in Section 3.1 by adding the following constraint:∑

u∈R`
xu ≤ B` for ` ∈ L. (3)

For DepRound, this constraint guarantees fairness for the LP solutions, but the rounded
solutions may still violate the constraints. To fix this, we modify step 3 of DepRound to rounding
the vectors [xu : u ∈ V1 ∩ R`] representing each demographic group separately. We call this
algorithm Fair DepRound and note that by (P2), we have the fairness guarantee with probability
1. We can similarly we modify step 2 in DegGreedy to picking B` nodes with highest wu to be
in Q, for each ` ∈ L. We call this algorithm Fair DegGreedy, and we have the fairness guarantee
obviously.

Algorithm 3 Fair DepRound

1: Relax the integrality constraints of the MILP to obtain its LP relaxation
2: Solve the LP to get vectors x, y ∈ RV1
3: Apply dependent rounding as in Srinivasan [2001] to vector [xu : u ∈ V1 ∩ R`] for ` ∈ L to

obtain Xu for u ∈ V1
4: Q← {u ∈ V1 : Xu = 1}
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Algorithm 4 Fair DegGreedy

1: wu ← cu · pu ·
∑

v∈V2,(u,v)∈E quv for u ∈ V1
2: for ` ∈ L: pick B` nodes with the highest wu values in V1∩R` to be in Q (break ties arbitrary)

Theorem 4. Algorithms 3 and 4 give a D-approximation for MinExposed under fairness con-
straints on V1.

Proof. The proofs are exactly the same as those of Theorems 1 and 2.

The above guarantees only apply when demographic groups are disjoint, which is not always
the case. To model overlapping demographic groups, we can either allow individuals to be (a)
probabilistically assigned to demographic groups or (b) assigned to multiple demographic groups.
We note that our results for (a) can also be useful when demographic-group classification is the
output of some machine-learning model, and does not only apply to overlapping demographic
groups. We also note that both of these extensions also maintain their D-approximation guarantee
since those proofs only require the linear program optimality and (P1): E[Xu] = xu.

Probabilistic Demographic Groups: we want to extend our fairness guarantees above to
the case where the demographic characteristics are probabilistic. To formalize this, we assume that
each person u ∈ V1 is in demographic group ` ∈ L with probability `u ∈ [0, 1]. Then we want the
constraint ∑

u∈V1 `uXu ≤ B`, (4)

where Xu is the indicator variable for u being asked to quarantine. We claim that by adding this
same constraint into the linear program in Section 5.1 (replacing Xu by xu), DepRound achieves
approximate fairness for V1, as defined below.

Theorem 5. Let ε > 0 and `u for u ∈ V1, ` ∈ L be given. If for each ` ∈ L, we have B` ≥
(2+ε) ln(|L|/δ)

ε2
for some parameter δ ∈ (0, 1), then DepRound guarantees that the probability there

exists a fairness constraint broken by more than an 1 + ε multiplicative factor is at most δ.

Proof. We begin by noting that the outputs Xu are negatively correlated, as stated in (P3), so we
can invoke the results of Panconesi and Srinivasan [1997] to get Chernoff-Hoeffding-like bounds for
linear combinations of Xu. In particular, we will have the following for each ` ∈ L.

Pr[
∑

u∈V1 `uXu ≥ (1 + ε)B`] ≤ exp(−ε2B`/(2 + ε)). (5)

By the union bound, we have

Pr[∃` ∈ L :
∑

u∈V1 `uXu ≥ (1 + ε)B`] ≤ |L| · exp(−ε2B`/(2 + ε)). (6)

When B` is suitably large as in the theorem statement, this probability is at most δ.

Overlapping Demographic Groups: another case we want to consider is when demographic
groups aren’t necessarily disjoint. Here, Fair DepRound is no longer well defined because the
vectors which we want to apply dependent rounding to now overlap. To get around this, the idea
is to split the demographic groups into 2|L| new groups corresponding to the subsets of L. These
groups are now disjoint, so we can solve the linear program as before and apply dependent rounding
separately (and thus independently) to each group. We call this new algorithm Fair DepRound′

due to lack of creativity.
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Theorem 6. Fair DepRound′ gives the following fairness guarantees, even when demographic
groups aren’t necessarily disjoint:

1. the budget constraints are satisfied in expectation: E[
∑

u∈R`
Xu] ≤ B` for each ` ∈ L.

2. Let C` denote the number of sets A ⊆ 2L such that the set of people with label A is nonempty
and let C∗ = max`C`. Then for all t > 0, the probability that any demographic group’s budget
is violated by more than an additive t is at most δ, provided that C∗ ≤ 2t2

ln(|L|/δ) .

Proof. The first part follows directly by (P1) and the linearity of expectation. For the second part,
let XA be the subset of nodes in V1 which have labels A ⊆ 2L. Since

∑
u∈XA

xu is not necessarily
integral, (P2) doesn’t apply. We use the following generalization proved in Srinivasan [2001]:

(P2′) given a vector x ∈ Rd with S =
∑d

i=1 xi not necessarily integral, dependent rounding outputs

a vector X ∈ {0, 1}d such that
∑d

i=1Xi ∈ {bSc, dSe}.

In other words, the number of isolations chosen by dependent rounding differs from the budget
allocated by the optimal linear program solution by at most 1 in each group A ⊆ 2L. Since
rounding is applied independently to the groups, the additive constraint violation can be bounded
by Hoeffding’s Theorem:

Pr[
∑

u∈R`
Xu −B` ≥ t] ≤ exp[−2t2/C`] ≤ exp[−2t2/C∗]. (7)

By the union bound

Pr[∃` :
∑

u∈R`
Xu −B` ≥ t] ≤ exp[−2t2/C`] ≤ |L| exp[−2t2/C∗]. (8)

Thus, if t is sufficiently large as in the theorem statement, this probability is at most δ. In general,
we have that C∗ ≤ min{|V1|, 2|L|−1} but this number can be much smaller in practice.

6.2 Fairness in V2

Suppose R` are the (not necessarily disjoint) demographic groups. We want the expected number
of infections in each R` to be at most some given a`. Adding the following constraint for each
` ∈ [L] to the MILP formulation is sufficient to guarantee that the fairness constraint is satisfied
approximately: ∑

v∈R`∩V2
∑

u∈V1:(u,v)∈E (1− cu · xu) · pu · quv ≤ a`.

Theorem 7. Let a` for ` ∈ L and ε > 0 be given. Define wu` = pu
∑

v∈R`∩V2:(u,v)∈E quv and

w∗ = maxu∈V1,`wu`. If for each `, we have a` ≥ (2+ε)w∗ ln(|L|/δ)
ε2

for some parameter δ ∈ (0, 1), then
Fair DepRound guarantees that the probability that there exists a fairness constraint broken by
more than a 1 + ε multiplicative factor is at most δ.

Proof. The proof is similar to that of Theorem 5. Let {Xu} be the binary vector coming from
rounding {xu}, and let Yu = 1−Xu. Let I` denote the expected number of infections in R`, given
the quarantine set output by the algorithm. First note that

I` ≤
∑

v∈R`

∑
u∈V1:(u,v)∈E (1− cu ·Xu) · pu · quv

=
∑

u∈V1 wu` · (1− cu ·Xu)
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for each ` ∈ L, by the union bound. The random variables Xu are negatively associated [Dubhashi
et al., 2007], so the random variables 1 − cu · Xu are also negatively associated. Hence, by tail
bounds [Schmidt et al., 1995], we have

Pr[
∑

u∈V1 wu` · (1− cu ·Xu) ≥ (1 + ε) · a`] ≤ exp(−ε2a`/(2 + ε)w∗)

for ` ∈ L. As a result, we can also claim that

Pr[I` ≥ (1 + ε)a`] ≤ exp(−ε2a`/(2 + ε)w∗)

for ` ∈ L. Now, by the union bound, we have

Pr[∃` ∈ L : I` ≥ (1 + ε)a`] ≤ |L| · exp(−ε2a`/(2 + ε)w∗).

Simple algebra shows that this is at most δ if a` is suitably large as in the theorem statement.

7 Practical Implementation

Our MDP formulation of efficient contact tracing and isolation assumes knowledge of the contact
graph, transmission rates, and compliance rates. In the real world, however, these values may not
be known. While the average transmission rate can be estimated, the compliance rates are difficult
to predict and the knowledge of the contact graph is limited (and dependent on the type of contact
tracing). In this section, we develop heuristics based on DegGreedy which can be implemented
for digital and manual contact tracing.

7.1 Digital Contact Tracing

Many digital contact tracing apps are implemented based on a proximity approach, where devices
randomly generate encrypted keys and exchange those keys with devices in their proximity [Abueg
et al., 2020]. These exchanges are stored locally in each individual’s device. When a person tests
positive, they can choose to alert all their contacts through the keys from the list. Though there
is no direct cost in alerting contacts, quarantining too many people incurs an economic deficit to
society so we still need to limit the number of isolations. Hence, we can apply our framework to
digital contact tracing.

When apps are implemented using the proximity approach, we can extract necessary quantities
to apply DegGreedy. We assume there is a uniform transmission rate p between contacts and a
uniform compliance rate which can be set to 1 without loss of generality. Under these assumptions,
DegGreedy reduces to picking nodes u with highest weight wu, where

wu = |N(u) ∩ V2| ·
[
1− (1− p)|N(u)∩I|].

To increase interpretability, when p is small as is the case in COVID-19, we can use a first-order
approximation to the Binomial expansion to estimate:

wu ≈ p · |N(u) ∩ V2| · |N(u) ∩ I|.

Finally, we add noise from a discrete Gaussian with ε = 1 to guarantee edge differential privacy for
the contact graph [Hay et al., 2009; Bun and Steinke, 2016; Canonne et al., 2020] and pick the B
nodes with the highest noisy weight. With this scheme, contact tracing apps can easily implement
this variant of DegGreedy, which we denote as Private DegGreedy.
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7.2 Manual Contact Tracing

Now we turn our attention to manual contact tracing, which proceeds as follows: when a person
tests positive for the disease, they are added to a queue of infected people. Contact tracers then
arbitrarily pick and interview people from this queue to extract information about their neighbors.
Finally, they contact these neighbors and ask them to quarantine. As a result, policymakers choose
nodes in V1 to contact without information about V2. Though this restricts the applicability of our
results, our algorithms still motivate useful heuristics for contact tracing in the above process.

Like before, we will assume the policymakers only know the average transmission and compliance
rates. Recall from our digital contact tracing analysis that DegGreedy in the case where all
transmission and compliance rates are assumed to be uniform already favors picking nodes with
higher degree. In particular, when transmission rates are 1, DegGreedy is exactly equivalent to
picking nodes in V1 with highest degree in V2. We emphasize that although one may claim this is
a very intuitive result, our work is the first to motivate this theoretically.

The importance of selecting high degree nodes motivates a heuristic, which we call SegDegree
(due to how we simulate it in experiments). The idea is to garner additional information during
interviews with the infected nodes: when asking for their neighbors, we can also ask them to classify
each neighbor into sets of high (H) or low (L) degree. Then we randomly/arbitrarily pick nodes
from the set of high degree nodes H to contact trace. In our experiments, we simulate SegDegree
by ranking the nodes in V1 by their degree. We define H to be nodes with degree in the top 25%;
the remaining nodes are in L. In order to represent inaccurate judgement of high/low degrees, we
sample 3B/4 nodes from H and B/4 nodes from L to be our final quarantine set Q

We note that this should be viewed as practical contributions motivated by the simplicity of
current manual contact tracing implementations: picking arbitrary nodes from the set of exposed
individuals. This restricts the potential effectiveness of manual contact tracing, which we our
results and recommendation here can improve. In the practical implementation, we acknowledge
the importance of mitigating any personal biases given the subjective nature of this classification
process. Such methods may include providing defined classification thresholds and clear category
specifications, and is left to the practitioner.

8 Experiments

Disease model. Our setup for the epidemic simulation is modeled loosely based on COVID-19.
We assume a simple SIR model, with infectious duration of two time steps. At each timestep, we
have a susceptible set (S), infected set (I = I1∪̇I2), and a recovered set (R). Nodes in I1 got
infected this timestep and nodes in I2 have already been infected for one timestep. While both I1
and I2 transmit the disease, all quarantine decisions will be made based on I2 only. This represents
how policymakers have incomplete information about the infection status of individuals: I1 is not
yet known to be carrying the disease because there is a 4-5 day incubation period and a wait time
for COVID-19 testing. By the next timestep, I1 has undergone testing and becomes I2, now known
to the policymaker. We note that even though this model is slightly different from the one in our
theoretical analysis, our algorithms and problem formulation are still applicable since only I2 is
known to the policymaker.

Model parameters. For each simulation of the MDP, intervention begins at an early timestep
with constant budget and continues over the course of the epidemic. Transmission probabilities are
set based on the length of contact time and compliance probabilities are set based on the age group
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of the person in accordance with the relative order presented in [Lou et al., 2020] and [Carlucci et al.,
2020] (see Appendix for details). For digital contact tracing, we set the compliance probabilities to
be half that of manual contact tracing. Each quarantine recommendation will instruct the individual
to isolate for 2 timesteps. Under this setup, the performances of the intervention algorithms are
compared using two different metrics: total number of infections to assess the impacts of an epidemic
and the number of known infections at each timestep to maintain a manageable number of cases
with respect of hospital resources and infrastructure.

Social contact networks. We use synthetic social contact networks for two counties in
Virginia (summarized in Table 2) constructed by a first principles approach by Barrett et al. [2009]
and Eubank et al. [2004]. We enforce fairness constraints and simulate varying compliance rates
using the demographic data on age groups given in our social networks (see Table 1). Because
casual contacts (e.g., during commuting) are not represented in these networks, we augment each
network by increasing the degree of each node by about 15% [Keeling et al., 2020] and show the
robustness of our results by experimenting on these networks as well.

Table 1: Age group demographic information

Age Name Range Compliance Montgomery Albemarle
Group (years) Rate Population (%) Population (%)

p pre-school 0-4 0.75 5 3

s school-aged 5-17 0.80 15 11

a adults 18-49 0.60 43 49

o older-adults 50-64 0.85 21 23

g golden-aged 65+ 0.80 16 15

Budget. For manual contact tracing, we set the budget based on the state of Virginia, which
has a population of roughly 8 million people and currently employs around 2000 contact tracers
[VDH, 2020]. We then estimate the number of contact tracers for our graphs to be proportional
to the population. Since each interview with an individual that has contracted COVID-19 takes
30 to 60 minutes [VDH, 2020], a contact tracer can make 4 to 8 isolation suggestions per day (or
around 28 to 56 per timestep). We use this information to estimate the budget for the number of
isolations. For digital contact tracing, we let the budget range from 0% to 5% of the population in
order to understand the tradeoff between economic costs and disease intervention.

Table 2: Description of datasets (* indicates the network is augmented)

Network name |V | |E| Max degree
estimated # of
contact tracers

Budget

Montgomery 75457 648667 105 18-19 500-1000

Montgomery* 75457 768383 120 18-19 500-1000

Albemarle 131219 1423151 176 32-33 900-1800

Albemarle* 131219 1687724 205 32-33 900-1800
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8.1 Comparison of Methods

We first compare our practical heuristics and theoretical algorithms against corresponding baselines
by running simulations of the MDP with the budget set according to Table 2. To demonstrate the
quality of our full information algorithms, we compare it with EC, a baseline which selects the
nodes in V1 with the highest eigenvector centrality for quarantine. We chose EC as a baseline since
its a centrality measure which uses information from the full network, and we want to see how our
local methods compare. Furthermore, EC is related to a heuristic studied for minimizing a graph’s
spectral radius [Tong et al., 2012], which controls the size of the disease spread [Wang et al., 2003].

Figure 3: Algorithms for contact tracing under full information (estimated budget is shaded)

Despite requiring more information, EC performs significantly worse than DepRound and
DegGreedy, as seen in Figure 3. Additionally, the sensitivity with respect to budget is about half
that of DepRound and DegGreedy. Ultimately, the better performance and stronger sensitivity
of our algorithms with respect to budget show that DegGreedy and DepRound may be useful
in some places, such as China, where the second neighborhood’s information is available.

Figure 4: Comparison of digital contact tracing algorithms

Next, we compare Private DegGreedy with two intuitive baselines studied in Armbruster and
Brandeau [2007b]: the MostNamed policy and ListLength policy. The MostNamed policy selects
nodes in V1 with the most infected neighbors and the ListLength policy is similar, but weighs each
neighbor by the inverse of their degree. From Figure 4, we see that our heuristic improves upon the
baseline without incurring more privacy loss. Interestingly, the margin of improvement is larger
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for the Montgomery networks which have higher edge density. This is a result of adding discrete
Gaussian noise: the noise added to wu is o(wu), so the effect of the noise decreases as absolute
degrees increase. We note that performing better in high density networks is a desirable quality
here: diseases spread especially fast in such settings, making contact tracing even more crucial.

Figure 5: Comparison of manual contact tracing algorithms (estimated budget is shaded)

Finally, we compare SegDegree with the baseline adopted by many states in the United States:
selecting nodes in V1 at random [NAS, 2021; VDH, 2020]. Figure 5 shows that introducing a simple
additional step in manual contact tracing decreases total infections by 50% more than Random
when compared to no intervention. Furthermore, SegDegree has a larger sensitivity with respect
to budget which makes investing in new contact tracers more effective.

8.2 Visualizing the Epicurve

In addition to decreasing the total infections, our methods reduce the peak of the curve and shift
it to occur at later timesteps (see Figure 6). This is important in practice since a later peak
enables time for developing of vaccines, which can potentially stop the infection before the peak.
As mentioned before, having a lower peak is important as well since hospital capacity is limited; if
the peak number of infections is too high, many people are unable to receive adequate treatment.

Figure 6: Montgomery Epicurve Visualizations (See Appendix B.1 for epicurves on other networks)
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8.3 The Price of Fairness

Due to the economic and social costs of self-isolation, it is important that policymakers ensure
demographics are not disproportionately impacted. In these experiments, we focus on age groups
and consider four policies: (A) no fairness constraint (B) the budget is proportional to the popu-
lation of each age group (C) more budget is allocated to the older population (D) less budget is
allocated to the working age population (see Appendix for formal definitions). As seen in Table 3,
Policy A (with no fairness constraints) leads to the lowest total infections, but the differences are
not statistically significant. Thus, upholding (reasonable) fairness constraints does not significantly
reduce the efficacy of our algorithms.

Table 3: Comparison of Fair DepRound and Fair DegGreedy under different policies

Algorithm County Policy Original Augmented

DepRound Montgomery A 45.31 ± 0.44 57.77 ± 0.23
B 45.45 ± 0.40 57.82 ± 0.22
C 45.58 ± 0.36 57.84 ± 0.21
D 45.47 ± 0.34 57.85 ± 0.23

Albermarle A 51.42 ± 0.17 64.65 ± 0.15
B 51.50 ± 0.21 64.74 ± 0.15
C 51.59 ± 0.17 64.83 ± 0.14
D 51.51 ± 0.13 64.77 ± 0.15

DegGreedy Montgomery A 44.72 ± 0.41 57.45 ± 0.22
B 44.81 ± 0.41 57.54 ± 0.23
C 44.94 ± 0.43 57.54 ± 0.20
D 44.85 ± 0.41 57.50 ± 0.19

Albemarle A 51.69 ± 0.21 64.61 ± 0.17
B 51.66 ± 0.20 64.66 ± 0.19
C 51.72 ± 0.18 64.70 ± 0.17
D 51.71 ± 0.18 64.65 ± 0.18

9 Conclusions

Here, we formulate the problem of efficient contact tracing as a MDP and each timestep of the
MDP as a combinatorial problem, MinExposed. Since MinExposed is NP-Hard, we give an
approximation algorithm for it by formulating it as a linear program and performing dependent
rounding. Motivated by the analysis of DepRound, we devise a greedy algorithm which is more
interpretable and extendable to cases where there is a realistic amount of information available.
We modify DegGreedy to be implementable with limited knowledge in both digital and manual
contact tracing. Though motivated by our theoretical guarantees, our devised practical heuristics
(i) do not need network information, (ii) do not need disease model information, and (iii) only
require the approximate degrees of nodes in V1 (and V2 for digital contact tracing). Our heuristics,
which are simple and robust, can easily be deployed in practice. We then show that despite the
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minimal knowledge required, they perform strongly in our experiments. Despite our heuristic, a
limitation of our theoretical model is the assumption of contact graph knowledge. A natural next
step is to combine our model with that of Meister and Kleinberg [2021] to include graph discovery
as part of the contact tracing model.
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Appendix A: Experimental Details

A.1: Computational Setup

We run our simulations on Amazon EC2 c5a.24xlarge instances with 96 vCPUs and and 185GB
of RAM. To solve LP and MILP problems, we used Google OR-Tools [Perron and Furnon] with
a Gurobi (version 9.1) [Gurobi Optimization, 2021] backend. To simulate the disease spread on
our networks, we used Epidemics on Networks [Miller and Ting, 2020]. The full list of software
dependencies can be found in our code (https://github.com/gzli929/ContactTracing).

A.2: Experimental Parameters

We run most of our experiments on 4 networks: Montgomery, Albemarle, Montgomery*, and
Albemarle*. The default budget is set as the center of the predicted range. All Montgomery
graphs, unless otherwise stated, are run with 750 budget for manual contact tracing and 2700 for
digital contact tracing. All Albemarle graphs are run with 1350 budget for manual contact tracing
and 4700 for digital contact tracing. The demographic labels and contact duration times for the
Montgomery graph are sampled from the distribution of the Albemarle graph.

Contact duration times are transformed into transmission rates by defining an exponential
cumulative distribution function such that the average duration is equal to the average transmission.
We set the average transmission parameter as 0.05 and held it constant across all our experiments.
The compliance rates for each individual follow the age group averages but have added noise from
the uniform distribution of [-0.05, 0.05]. Since individuals are less likely to comply to quarantine
recommendations from digital apps, we scale the compliance rates for each network to average
around 50% for our digital contact tracing algorithms. We also add discrete Gaussian noise with
ε = 1 to ensure differential privacy for our digital contact tracing baselines. Unless otherwise stated,
we conducted our sensitivity experiments with these default values and plotted the 95% confidence
interval for the average of 10 trials.

In the fairness experiments, the policies are defined formally as follows. We are given an infected
set I and total budget B. Let n(l) be the number of people in V1 with labels l, for labels p, s, a,
o, g. Let n =

∑
l∈L n(l).

• (A) no age consideration: there is only one label with budget B.

• (B) the isolation budget is distributed proportional to the population of each age group, i.e.

Bl = B · n(l)n for each l ∈ L.

• (C) more budget is allocated to the older population (age group g), i.e. Bl = B · n(l)
n+n(g) for

l 6= g and Bg = 2B · n(g)
n+n(g) .

• (D) less budget is allocated to the working age population (age groups a and o), i.e. Bl =

B · n(l)
n+n(g)+n(p)+n(s) for l ∈ {a, o} and Bl = 2B · n(l)

n+n(g)+n(p)+n(s) for l ∈ {p, s, g}.
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Appendix B: Additional Experiments

B.1: Epicurve Visualizations

Figure 7: Epicurve Visualizations for Mont-
gomery

Figure 8: Epicurve Visualizations for Albe-
marle

Figure 9: Epicurve Visualizations for Mont-
gomery (augmented)

Figure 10: Epicurve Visualizations for Albe-
marle (augmented)

Here, we reproduce the epicurve plots shown in Section 7.2 for the remaining three counties. As
seen in the above figures, each of our algorithms reduce and shift the peak of the epicurve in all of
the social networks. In particular, Private DegGreedy consistently performs much better than the
baselines on all four social networks. However, this improvement is less obvious when experimenting
on Albemarle county. A similar phenomenon was also seen and explained in the main paper: when
the degrees are far apart, then there is a larger difference between our algorithms (based on degree)
and the baselines. Consider the extreme case where all degrees are equal; then any algorithm based
on degree is arbitrary. We believe this is the reason algorithms such as SegDegree and Private
DegGreedy perform well on Montgomery (where the edge density is very high) and less well on
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Albemarle (where the edge density is much lower). Additionally, note that compliance rates are
relatively low, adding more noise to the equation.

B.2: Peak Infections Comparison

Figure 11: Budget Sensitivity for Peak Infec-
tions (Full Information Algorithms)

Figure 12: Budget Sensitivity for Peak Infec-
tions (Manual Contact Tracing Algorithms)

Figure 13: Budget Sensitivity for Peak Infections (Digital Contact Tracing Algorithms)

As seen in the sensitivity plots for each of the three contact tracing scenarios, our algorithms de-
crease the maximum number of people infected during any timestep, which we call the peak. While
our algorithms perform similarly under the full information setting, DegGreedy exhibits stronger
sensitivity to budget across all networks. Additionally, the stronger performance of DegGreedy
on Montgomery (particularly with augmentation) suggests it may be especially effective on denser
networks. In the setting of manual contact tracing, SegDegree consistently outperforms the
Random baseline and the discrepancy increases as budget increases. In digital contact tracing, our
algorithm Private DegGreedy outperforms MostNamed and ListLength on the Montgomery net-
works but has a similar performance with MostNamed Albemarle. Even so, Private DegGreedy
generally results in a lower peak when the network is augmented, suggesting that it may be more
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advantageous on denser networks. Across all the networks, Private DegGreedy exhibits stronger
budget sensitivity than ListLength when lowering the peak number of infections.

B.3: Empirical Approximation Ratio

Here, we evaluate the empirical approximation factor of our algorithms and heuristics. We use the
MILP optimal objective value to lower bound the true optimal when calculating the ratios.

Albemarle Montgomery
Bucket 0 1 2 3 0 1 2 3

I (×103) 0.36 2.89 7.46 3.84 1.60 4.03 1.77 0.99
|V1| (×103) 2.06 13.72 35.01 32.79 6.30 20.13 17.21 13.97
|V2|(×103) 8.97 20.40 25.82 57.52 8.19 17.24 28.88 37.93
|(V1 × V2) ∩ E| (×103) 11.82 45.68 90.73 298.70 12.76 44.52 91.63 123.52
D 7.37 17.20 32.27 72.79 12.85 27.69 37.96 41.06

Table 4: Summary of samples for which we calculate the empirical approximation ratio: Mont-
gomery (490 instances) and Albemarle (461 instances). Samples come from simulating the MDP.

MinExposed Algorithms bucket 0 bucket 1 bucket 2 bucket 3

DegGreedy Approx. Factor max 1.229 1.670 1.771 1.724
mean 1.102 1.380 1.435 1.470

Time Elapsed max 1.887 6.654 4.172 1.768
mean 0.865 4.270 1.525 0.666

DepRound Approx. Factor max 1.362 1.796 1.915 1.871
mean 1.169 1.479 1.631 1.663

Time Elapsed max 5.337 18.495 14.893 27.754
mean 1.383 7.093 7.161 8.858

SegDegree Approx. Factor max 1.777 1.918 2.039 1.994
mean 1.484 1.656 1.762 1.793

Time Elapsed max 0.036 0.112 0.743 0.093
mean 0.014 0.046 0.051 0.032

Random Approx. Factor max 2.055 2.033 2.084 2.052
mean 1.631 1.779 1.896 1.879

Time Elapsed max 0.002 0.003 0.003 0.002
mean 0.001 0.001 0.001 0.001

Table 5: Summary of performance of different algorithms for MinExposed on instances of Mont-
gomery with budget of 750.
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MinExposed Algorithms bucket 0 bucket 1 bucket 2 bucket 3

DegGreedy Approx. Factor max 1.086 2.173 2.061 2.550
mean 1.068 1.271 1.513 2.033

Time Elapsed max 0.106 11.560 19.914 18.356
mean 0.101 3.861 9.996 6.607

DepRound Approx. Factor max 1.129 2.173 3.091 2.803
mean 1.091 1.321 1.638 2.182

Time Elapsed max 6.610 153.246 296.449 1328.052
mean 2.231 23.178 72.142 344.155

SegDegree Approx. Factor max 1.401 2.173 2.942 2.878
mean 1.280 1.434 1.743 2.273

Time Elapsed max 0.008 0.093 0.184 0.167
mean 0.005 0.030 0.084 0.077

Random Approx. Factor max 1.491 2.173 3.176 2.937
mean 1.301 1.467 1.771 2.318

Time Elapsed max 0.001 0.003 0.005 0.004
mean 0.001 0.001 0.003 0.002

Table 6: Summary of performance of different algorithms for MinExposed on instances of Albe-
marle with budget of 1350.
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