A Community Cache with Complete Information

Mania Abdi*, Amin Mosayyebzadeh®, Mohammad Hossein Hajkazemi*, Emine Ugur Kaynar®,
Ata Turk?, Larry Rudolpht, Orran Krieger®, Peter Desnoyers*

*State Street, 7LTwoSz;gfma, ®Boston University, *Northeastern University

Abstract

Kariz is a new architecture for caching data from datalakes
accessed, potentially concurrently, by multiple analytic
platforms. It integrates rich information from analytics
platforms with global knowledge about demand and resource
availability to enable sophisticated cache management and
prefetching strategies that, for example, combine historical
run time information with job dependency graphs (DAGs),
information about the cache state and sharing across compute
clusters. Our prototype supports multiple analytic frameworks
(Pig/Hadoop and Spark), and we show that the required
changes are modest. We have implemented three algorithms
in Kariz for optimizing the caching of individual queries
(one from the literature, and two novel to our platform) and
three policies for optimizing across queries from, potentially,
multiple different clusters. With an algorithm that fully exploits
the rich information available from Kariz, we demonstrate
major speedups (as much as 3x) for TPC-H and TPC-DS.

1 Introduction

Large-scale data-flow oriented analytic frameworks, such as
Spark [72], Hive [62], and Pig [56], are broadly used in many
public and private cloud environments. Today, cloud deploy-
ments commonly use centralized “data lakes” [3,9,10, 42,58]
such as Amazon S3 [4], Azure Data Lake Store [11], and
Ceph [67] that are used by all the frameworks running in the
cloud. Although such dis-aggregation of storage offers many
benefits, it also carries major performance costs [61].

Caching and prefetching, which move frequently-used
datasets close to the analytic frameworks, are standard
techniques for improving performance [20, 50]. Data-flow
oriented analytical frameworks share a number of features
that provide the opportunity to explore caching strategies that
differ from prior work on CPU, page-based, and variable-sized
(e.g. web) caching:

« they expose the input objects and inter-job dependency
with Directed Acyclic Graphs (data-flow DAGs), where
complex DAGs providing a detailed view into future I/O
behavior;

o units of data access and computation are large, tak-
ing many seconds to access or run, allowing complex
strategies not feasible in many other caching domains; and

o recurring jobs, where the same code runs on different data,
are common [19, 24, 48], allowing accurate prediction of
execution timing and characteristics [21, 40, 46, 66],

To illustrate these features, we consider confidential traces

shared with us by an industrial partner recording 4 months

A\ .
1005 6700?’%mx@@@u@%x“o}%"@@é’&xo?»»rx
b
§ 80% - Sharing within framework Bytes of data accessed (TB)
i [IsSharing across framework
g 60% No sharing
8
T 40% ~ B
bS] - -
D\o . l_lu‘ ’) U
ol 8 i
e e e
12AM 4 8 12PM 4 8 11PM
Time of day

Figure 1: The value at the top shows the total amount of data
accesses in each hour. Green is the proportion of the accesses
to data that was not accessed previously in the hour. Orange
is the accesses that go to data previously accessed in the same
hour by the same analytic framework. Red is accesses to data
that was last accessed by another framework in that hour. This
analysis suggests that caching can be effective both to capture
repeated access to the same data from a framework, and access
by different frameworks to the same data.

of usage from a mid-sized (>100 nodes) cluster in production
use which is running Hive/Hadoop, Spark, native MapReduce,
and streaming jobs. Although the majority of jobs were small
(1-4 node DAGs), 90% of input data was read by complex DAG-
basedjobs with 5 nodes or more, with some DAGs involving over
50 nodes. Individual DAG stages averaged 5 minutes with some
stages taking as 6 hours. Over 9o% of the jobs seen over the four
months were jobs that repeated many times, and more than 90%
of object reads were to objects repeatedly read. Clearly, there is
an enormous opportunity to optimize performance for repeat-
ing I/O intensive jobs that provide complete visibility in future
accesses and where minutes are available to compute strategies.
In fact, a number of groups have started exploiting these charac-
teristics to develop more sophisticated caching and prefetching
strategies within analytics clusters [17, 20,37, 44,57, 69,71].
Kariz is a platform designed to enable different strategies
for caching and prefetching at the storage level. It collects
DAG information from analytic platforms and the execution
time that stages of the DAG take to execute. It also maintains
global information about what data is cached and resource
availability (e.g. storage bandwidth). This information is
used by Kariz to accurately (§3.3) predict stage run-time.
We have implemented a number of strategies, including the
previously published strategy MRD [57] (Most Reference
Distance) that exploit DAGs to maximize cache hit rate, and
two new strategies, we call CP (Critical Path) and CMR (Cache
for Minimizing Runtime). CP exploits the stage run-time
prediction to cache data in order to reduce the critical path of

USENIX Association

19th USENIX Conference on File and Storage Technologies 325

stages in the DAGs. CMR relies on support in Kariz for partial
file caching, prefetch partial data from each stage of the DAG
to improve performance beyond a single critical path.

The focus in Kariz for optimizing the critical path is not
primarily to improve the latency. Analytic platforms like Spark
typically reserve resources until the entire DAG has completed.
By optimizing the critical path, the resources reserved for a
DAG can be freed earlier, improving throughput; potentially
huge savings for complicated DAGs where the critical path
takes much longer than most of the work.

A fundamental difference between Kariz and previous
work [57,69,71,72] is that Kariz implements a community cache,
where multiple clusters, potentially running different analytic
platforms, can concurrently share a single instance of Kariz.
A community cache is based on the idea that the near past of
a community of clusters data accesses may be a good predictor
of the near future data access pattern of new jobs from a cluster.

For example, within some financial services companies (e.g.
the employers of two of the authors) different groups often
create individual clusters with varied frameworks accessing
the same shared data-lake, with reasons for this fragmentation
including regulatory issues, security, organizational structure,
or preference. When new datasets arrive (e.g. recent market
data), many jobs are submitted independently by members of
different groups, resulting in heavy access across most or all
frameworks and clusters. Anecdotal reports (e.g. as described
by the authors of Quiver [48]) indicate similar behavior by data
scientists, who often use company-wide datasets for joins or
training ML models. Finally, we see similar behaviorin the confi-
dential traces, e.g. in Figure 1at 3AM the 692 jobs are distributed
across frameworks (11% Spark, 20% Oozie, 16% MapReduce,
47% Hive/MapReduce); 36% of Spark jobs share objects (42%
of total data) with Hive, while tables accessed by Oozie were a
subset of Hive accesses.

In contrast to previous works [57,69,71], that focused on opti-
mizing individual queries, Kariz also supports strategies for op-
timizing multiple concurrent queries coming from potentially
different analytic platforms to the community cache. We have
implemented two such strategies: 1) Shortest Job First (SJF) that
focuses cache resources to accelerate the fastest predicted query
to free resources as quickly as possible. 2) Cache for Minimizing
Runtime of multiple DAGs (CMR-M), that additionally takes
into account storage bandwidth and the sharing of data across
multiple queries in selecting data to be cached and prefetched.

We have adapted two analytic platforms to exploit Kariz
(PIG/Hadoop and SPARK) and found that while significant
effort was required to understand the platform, the end changes
were less than 100 LOC in each platform.

We experimentally evaluated our system on a 16-node bare-
metal cluster. We use the characteristics of the confidential trace
(including query submission rate, DAG structure, data accessed,
datareuse) to run a mix of synthetic workloads from TPCH and
TPC-DS. We demonstrate experimentally that the new algo-
rithms enabled by the rich information collected by Kariz (and

its support for partial caching) result in major performance
advantages with our synthetic workload on both Pig/Hadoop
(mean across all queries of 1.25x and maximum 2x) and Spark
(mean 1.8x and 3x). Through simulation, we show that there are
significant advantages to a community cache; e.g., an improve-
ment of up to 1.5x over separate per-analytics platform caches.
Key contributions of this work are: 1) demonstrating the
value of partial over than full file caching, 2) a high-accuracy
run-time prediction based on the amount of cached state and
available storage bandwidth, 3) demonstrate that it is possible,
andin factsimple, to extract the information needed for optimiz-
ing performance from multiple analytics platforms, 4) showing
that strategies can be developed and effective that target the di-
rect improvement of predicted run-time by optimizing critical
paths rather than implicit characteristics such as hit rate, and fi-
nally, 5) anew architecture that demonstrates that a community
cachinglayer foranalytics platformsis feasible and offers value.

2 Background and Related Work

We begin by describing the data analytics frameworks targeted
by Kariz in further detail, providing an example to motivate
our approach, and then briefly survey related work.
DAG-based frameworks: One way in which frameworks such
as Spark [72], Hive [62], Impala [47] and Pig [56] differ from
traditional large-scale applications is in their use of Directed
Acyclic Graphs (DAGs) of operations (vertices) and their
input/output dependencies (edges). Before a user query is
executed, a query planner parses it, generating an unoptimized
logical plan with resolved tables and columns. The optimizer
performs optimizations such as predicate pushdown, prunes
columns and partitions, and may even remove data from the
logical plan. The planner transforms the optimized logical plan
to a corresponding physical plan—e.g. the logical operation
TableScan is transformed to JsonScan or ParquetScan, and
byte ranges within input objects are assigned to each physical
operator before the physical execution plan is sent to the
execution engine. It is this physical execution plan which Kariz
uses for intelligent prefetching and caching.

Definitions: As there are differences in terminology used by
each framework, in this paper we use the following terms: A
task, t, is the smallest unit of computation; tasks are scheduled
by the lower-level framework scheduler (e.g. Yarn [65]). A
stage, s, is a set of parallel tasks that execute the same code and
are submitted for execution simultaneously (e.g. mappers); a
higher-level scheduler (e.g. Spark’s DAG-scheduler) decides
when to submit a stage of tasks to the lower-level framework
scheduler. Data-flow oriented frameworks have different
terms for a set of stages linked by dependencies; we will follow
common usage and use the term DAG for them. For each
stage there is a set I; of input objects and their byte ranges for
that stage. Finally, some data-flow oriented frameworks (e.g.
Pig [56]) divide DAGs into stage-sets, sets of stages in the DAG
without inter-dependencies, which may run in parallel but
must complete before the next stage starts.

326 19th USENIX Conference on File and Storage Technologies

USENIX Association

Max, Min S, {9, 6} S

job runtime 0 {A: 6}

o @ ., (o) ' >> | . _ i
,2 {14, 10} , 10}] 9 14 13
S 5 s 1o
e Pom) “Ea) 2%
5

ey

1, S =

' (13,9} o 13 g

. o o, 7y st £

{input file: sizc} S5 B 241 g @ =]
{B:

) +
, (a) o (b)
Figure 2: (a) 6-stage DAG divided into 3 stage-sets. Each stage
is labeled with run-time (max=no input in cache, min=all input
in cache), input file name and size. (b) Execution schedule with
no prefetching or caching for gang-scheduling.

Disaggregated Storage: These frameworks typically default to
using HDFS [61], which stores data locally on compute nodes in
a cluster. Yet in modern practice, storage is often disaggregated
from the systems performing analysis [42,52,54,58]. Data is typ-
ically stored on remote object stores such as S3 [4], Azure Blob
Store [23], or on-premises equivalents such as Ceph [8], and
accessed directly via e.g. the S3A connector [5]. This enables, for
example, elastic analytics clusters [3] and serverless data analyt-
ics [59], but with a performance penalty, e.g. in 2018 the NetCo
researchers [42] measured object storage speeds of less than
50MB/s per VM (or 4MB/core) on widely-used cloud services.
Motivational example: Kariz is a caching and prefetching
system to accelerate computation in these frameworks; we
provide a simple example to give intuition about our approach
and how it contrasts with previous approaches. Figure 2 shows
a DAG made up of 6 stages divided into three stages-sets (sets
of stages in the DAG without inter-dependencies, which may
run in parallel but must complete before the next stage starts),
with the stages executing from the top to bottom. For each
stage, the DAG specifies the input files and size; we have labeled
each stage with its input file (A/B/...) and size, and run-time
with (a) no data is in the cache, and (b) all inputs are cached
or prefetched by Kariz. We assume Kariz can predict stage
run-time from prior execution times, and that it can perform
fine-grained partial caching with proportional speedup.

In stage-set 1 (top), we can see that there is no value in
prefetching input B for S, (uncached duration 9) until we
have addressed S, (duration 14), which determines the stage
completion time. If we cache all of the input to S,, however
(see Figure 2a), reducing its run-time to 6, some of that cache
space (and remote bandwidth) will be wasted, as S, will now
determine stage-set completion time. Kariz instead caches
“justenough” of each input to minimize stage-set run-time—e.g.
caching 15 units of B will bring S, duration down to 9, and
additional prefetching will be applied to both S, and §;.

2.1 Related work

We focus on recent work on informed (rather than history-
based) caching and prefetching for analytics frameworks, and
omit the vast literature on disk/file [32, 33,38, 39, 60], web [18],

and CPU/memory caching [29, 30,34, 64].

Caching and prefetching rely on the existence of patterns
and correlations in real workloads; Jockey [31] and Corral [41]
show that the data access patterns of analytics frameworks are
highly repetitive and predictable. In Ernest [66] we see that in
real world deployments job run-times are predictable as well,
based on factors such as input size and jobs DAG structure.

Unlike Kariz, MC? [70] and CD-LDS [27] are targeted to
caching/prefetching (of files and memory respectively) for gen-
eral applications, using OS and compiler hints rather than the
job DAG available in our more specific scenario. Unlike Kariz
which extracts the exact I/O access patterns from the analytic
applications, Quiver [48] builds a deep learning specific cache
layer and exploits the predictability of accesses in these appli-
cations for cache management. MRD [57] makes prefetch and
eviction decisions based on graph distance, with the goal of max-
imizing cache hit rate; accesses at the next stage in the graph are
prioritized over those farther in the future. LRC [71] does not
prefetch, but makes eviction decisions based on reference count,
i.e. the number of references to input in stages not yet executed.
Dagon [69] ties caching with the DAG scheduler, using the stage
scheduling priorities to evict/prefetch data. MemTune [68] man-
ages RAM-based caching in Spark, evicting/prefetching data
using only information from the currently runnable tasks.

Alluxio [2] (based on Tachyon [50]) and Apache Ignite [7]
are widely used for caching in analytics frameworks; the
caching component of Kariz is similar to these, although
with extensions for partial caching of objects. A number of
replacement and prefetching policies (as opposed to systems)
specific to analysis frameworks have been developed, as well:
PacMan [20] attempts to minimize run-time by considering
MapReduce job wave widths; while NetCo [42] and MRD
implement approximations to Belady’s MIN algorithm based
on predicted job execution order.

Kariz differs from these prior works in several ways: (1)
it makes use of partial caching, which gives significant gains
when the cache size is not large compared to input object
sizes, and (2) it explicitly tries to minimize predicted DAG
completion time, rather than e.g. cache hit rate.

3 Kariz design

Kariz is a cache management and prefetching system that
controls admission/eviction to/from a storage cache, and
calculates prefetching schedules for data-flow oriented
frameworks. We show the Kariz architecture (§3.1), its partial
caching (§3.2), runtime estimation (§3.3) and availability and
scalability strategies(§3.4).

3.1 Architecture

As shown in Figure 3, Kariz implements a community cache,
where multiple clusters, potentially running different analytic
platforms, can concurrently share a single cache. Kariz
interfaces with the frameworks to obtain data-flow DAGs,
execution states, and scheduling events, and collects historical

USENIX Association

19th USENIX Conference on File and Storage Technologies 327

Analytic
framework

Query planner

Hive
@ Kariz cache .
management / :

Cache Planning ‘

§
Ej\\l:lr:l i P'aﬂ

Execullon@ DAG scheduler Bandwidth

¥ 2 schedulmg ever Parhal cache M

Compute Cluster

Cluster Resource
management ||

7J> Hisfory |- Run time
Predmt\cn
C

N
Distributed Cache < Cache status
DatS‘I/Lake] Cache Decision

Figure 3: Kariz architecture. The Kariz components extract DAGS,
scheduler and run-time information from the analytic framework.
The run-time predictor uses historical run-time information to
predict stage execution time. The Kariz cache management algo-
rithms generate caching/prefetching plans for DAGs by exploiting
the predicted execution time, partial caching, and data sharing
across DAGs. The cache planning makes caching, prefetching, and
eviction decisions based on the generated plans to minimize the
DAGs runtime while taking account of data sharing for efficiency.

information (logs) to use in predicting the run-time of future
jobs. The cache controller maintains information about what
data is cached and estimates bandwidth available to the storage
cluster. The run-time prediction component estimates stage
completion time based on prior runtimes and current state.
The algorithms make up the core of the system, where the
task of a single-DAG planner is to come up with a plan for an
individual DAG that is then combined into an overall plan
by the multi-DAG planner, which issues cache, prefetch, and
eviction commands to the cache controller and cache.
Interaction with analytics framework: The framework
interface notifies Kariz of DAG submission, providing the
physical query execution plan detailing input objects, sizes,
formats, operation (e.g. map, filter, join), and parallel task count.
Kariz is also notified when a stage-set (Pig) or stage (Spark)
begins or finishes execution. In addition, Kariz needs job
(DAG) history information (i.e. logs) for prediction; typically
this is available through existing framework interfaces.
Storage bandwidth: Prefetching is constrained not only
by cache capacity but also by the effective bandwidth from
back-end storage, limited by the speed of the network or
the storage system itself. Kariz schedules operations to fit
within this bandwidth, which is currently configured based
on measurements but could be estimated dynamically as well.
Planners: In Kariz, scheduling of cache capacity and storage
bandwidth is performed in two stages. The single DAG planner
examines individual DAGs and stages to determine caching
candidates—sets of data from one or more objects which can
be prefetched or retained in the cache to speed DAG execution.
The multi-DAG planner, in turn, determines which of these
caching candidates to put into effect within constraints of
cache size and backend bandwidth, prioritizing completion
time within a DAG and throughput across DAGs, taking

S0 [Wordcnunt]s1[Wordcoum]' _ Rem(l)te- !
l’A na) B 32G)J5 3 All or nothing (]
: e Partial Cachel{°.2°°°°°°}
! Infinite cache [}
S —W dcount B 7 1 ; v
K gy LR 0 250 500 750 1000

Runtime (sec)

Figure 4: Physical experiment to illustrate partial caching: DAG
with 3 wordcount jobs with 32 GiB inputs and 63 GiB total cache
capacity.

account of data sharing for efficiency.

Cache control: The cache controller provides an abstract cache
interface to the Kariz planner. It is responsible for tracking
currently cached data, and managing the prefetching, retention,
and eviction processes; as a distributed cache scales [44] this
component will be replicated. Its interface to the cache has meth-
ods to prefetch data on a fine-grained basis, “pin” it in cache
or release it, and enumerate cache contents (e.g. on startup).

3.2 Partial caching

Hadoop and Spark are sensitive to stragglers [49], longer-
running tasks which delay completion of a computational stage.
Prior prefetching work [20, 42,57, 71] assumes partial caching
of stage inputs will lead to such stragglers, giving no benefit.
This will occur when done naively, as some tasks will find their
entire input in the cache, while others will fetch their full input
from remote storage. We instead assume fine-grained control
over prefetching and cache retention/eviction, allowing data to
be cached in strides much smaller than the input to a single task.
We see the utility of partial caching for real workloads with
limited caching in Figure 4. We define an artificial DAG with
three wordcount Mapreduce stages, dependent on the other
two; each with 32 GiB input. With all-or-nothing caching we
can only cache the input to S,, minimizing stage 2 runtime, but
cannot speed up stage 1. With partial caching we still cache the
entire input to S,, yielding the highest runtime reduction per
unit of caching, but can distribute the remaining cache across S,
and S;, reducing runtime closer to the fully-cached minimum.
Kariz architecture explicity supports column-oriented for-
mats like Parquet [51] and Arrow [6]. It relies on physical
query plans to identify object ranges, rather than entire objects;
prefetch decisions would then be made within these ranges.

3.3 Run-time prediction

Recent studies from in-production clusters at Microsoft (e.g.
Graphene [36], NetCo [42], and others [24, 28, 40, 43]) show
that examined jobs are recurring—similar computations are
repeatedly executed on different datasets. The same studies
show that tasks extensively share common operands, and
that most user-defined operations are not custom programs,
but widely-used shared libraries (Cloudview Figure-(3) and
Figure-4(a & d) [43]). Recent studies, such as Ernest [66],
CherryPick [19], and Selecta [45] have shown good accuracy

328 19th USENIX Conference on File and Storage Technologies

USENIX Association

when predicting run-time for such recurring workloads, as a
function of input file size, size of cluster and DAG structure [66].
In Kariz, we extend the runtime prediction model proposed

by Ernest to incorporate caching and bandwidth differences be-
tween cache and remote storage. Similarly to Ernest, we assume

that computation time scales linearly with the input size [66]

and the communication patterns among stages of a DAG could

be represented as sequential, aggregate, and shuffle operations.
Unlike Ernest that assumes that builds a runtime prediction
model for the entire DAG, Kariz predicts the performance of
stages according to the operands executed on that stage and the
communication pattern with the previous stage.

We predict stage time T given total input size S, with f-S
in cache, bandwidth r; and r, to storage bandwidth and cache
bandwidth, T tasks (e.g. mappers)' and N executors, fitting the
following equation:

- T
T=0,+0, G f)s+ezﬁ+esﬁ+94log(N)+05N (1)
re

s

where terms represent fixed startup time (6,), data fetch
from backend storage and cache (0,, 0,); following Ernest we
also incorporate terms for sequential (6,), aggregate (6,), and
shuffle 6,) cross-stage communication. We use Lasso regres-
sion [63] with non-negative coefficients and cross-validation
to be resilient to overfitting when training on limited data.

At each scheduling event, Kariz identifies the available
backend storage® and cache, iterates over the future stages to
find longest and "slack" paths. Kariz does this by predicting the
runtime of each stage in two cases—data in cache and data need-
ing to be fetched from the remote and uses Bellman-Ford [22]
with negative weights to identify the order of the longest paths.
We discuss the accuracy of this model further in Section 6.3.

3.4 Availability and Scaling

Kariz takes a simple approach to availability, based on the
principle that prefetching and sophisticated cache control
are optional—DAG-based frameworks and associated caches
(e.g. Alluxio) are widely used today with no prefetching or
cross-DAG scheduling. If Kariz crashes, the cluster continues
to operate, and the caches fall back to LRU after the current
commands have completed; on restart Kariz can fetch all
needed states (DAG queue, cache contents, execution history)
from other components and resume.

Most computation in Kariz occurs in the cache controller,
which is responsible for block-level caching and prefetching
commands; this scales by adding additional controllers, each
responsible for some set of caches. The central planning
algorithm is not currently scalable, and the cluster size which
can be controlled by a single Kariz instance is limited by its

!This is predicted by the analytic framework during query planning
? Currently, Kariz splits bandwidth equally between all running DAGs in
a cluster.

4 s et 1 S4
9.
.
L (I | L1
0 14 0 12 0 6

(a) Stage runtime vs. data in cache

MRD KarizZCMR MRD
S1 Si]| g1
b 6 $2
,, g3
KariZ/CMR

2 3] [S4
S5
9

1
$2/[ACB (DIE
9 time: 25 3, @

time; 29 Cache content

(b) Dag schedule and Cache status

Figure s5: (a) Job runtime vs. data in cache at job start for DAG
stage 2 (S,, S5, S4). Green represents caching needed to reduce
S; runtime to that of S,; blue is caching to reduce S;, S, to
their minimum runtime. Caching for S, will never reduce stage
runtime, (b) With cache size 50, Kariz/CMR finishes before
MRD (25 vs 29) despite a lower hit rate (83% vs 86%)

speed. In §6.8, we show that current unoptimized performance
should scale to a cluster of thousands of nodes.

4 Planners

We implement three planners in Kariz for scheduling caching
and prefetching: MRD [s57], Critical Path (CP) [17], and our
new algorithm, Caching for Minimizing Runtime (CMR).

MRD (Most Reference Distance) is based on topological
distance, i.e. the number of DAG stages between two accesses
to a file, evicting data with the longest distance until future
reference, and prefetching data with the shortest distance. CP,
described in an earlier workshop paper, prioritizes prefetching
and caching for jobs on the DAG critical path. We refer readers
to the respective publications for a more detailed description.

CMR considers the analytic framework DAG scheduling
schema and makes full use of the runtime estimation, partial
caching, and bandwidth measurement features provided by
Kariz. To minimize DAG runtime, it jointly schedules cache
space and backend storage bandwidth. When multiple DAGs
are active it divides cache space and prefetching opportunities
across DAGs using a heuristic that attempts to maximize the
throughput—i.e. prioritizing shared data which will speed up
multiple DAGs.

4.1 CMR Overview

To explain the intuition behind CMR, we again use the 6-stage
DAG from Algorithm 2, scheduled with gang scheduling, exam-
ining stage-set 2 (stages 2, 3, and 4) in more detail. In Figure 5a,
we assume a graph of runtime vs. amount of input in the cache
for these stages. For the sake of simplicity of the discussion, it

USENIX Association

19th USENIX Conference on File and Storage Technologies 329

shows a piece-wise linear function for stage time as a function of
prefetched/retained data. In reality, we use runtime prediction
(Section 3.3) to predict the required cache size to achieve certain
improvement. In Figure sa, we see S; runtime decreases from
14 to 10 as its 12 units of data are cached; S, from 13 to 10 with
6 units of caching, and S, from g to 2 with 14 units of caching.

In making prefetch/retention decisions CMR examines
candidate caching sets—sets of input objects and their ranges
which speed up one or more stages in a stage-set. The first
candidate here, shown as a green horizontal bar, represents
the fraction of input to S; needed to reduce its runtime to
that of S,. The next candidate, shown in blue, corresponds to
the remaining input to S; and S,, reducing their runtime to a
minimum. Note that the input to S, is not part of any candidate
set, as S, will always complete before S, and S, and never affect
stage-set completion time.

The core of CMR consists of enumerating these candidate sets
and pick them in decreasing order of runtime improvementand
prefetching or retaining all sets which fit within cache size and
bandwidth constraints. We see CMR compared to MRD in Fig-
ure 5b, with a cache size of 50. Although MRD achieves a higher
hitrate (86%) than CMR (83%), CMR’s achieves alower runtime
(25 vs 29) by ignoring stageslike S, with “slack” in their schedule
and focusing on only ones determining stage-set runtimes.

In our simplified example, there is no need to compare
caching candidates against each other—once we decide not to
cache input to S,, there is enough cache space for all remaining
input. With fewer resources, however, we must choose between
e.g. retaining data for one future stage vs. prefetching for a
different one.

We do this based on marginal utility, i.e. the ratio of com-
pletion time saved by caching a candidate set to its size. This
is similar to the fractional knapsack problem, i.e. achieving
maximum reduction of run-time given a fixed cache capacity,
hence the use of cost:benefit in comparisons. This allows com-
paring candidates across DAG stages, for example, to determine
whether cache space and storage system bandwidth in stage-set
1 would be better spent prefetching for stages in stage-set 2 or
stage-set 3.

4.2 CMR

The CMR planner runs upon receiving the stage-set scheduling
events from the analytic framework, identifying the prefetching
and cache pinning/unpinning operations to be executed
during that stage for execution in following stages; prefetching
is scheduled so that it will complete by the beginning of the
stage in which the data will be used. As with prior work, we
assume the existence of a “stage 0” before the DAG begins
execution; in practice, this would correspond to the last stage
of the previously-executed DAG. We describe CMR operation
in the case of a single DAG in two parts: enumeration of
caching candidates, in Algorithm 1, and candidate selection
and execution, in Algorithm 2.

Algorithm 1 Caching candidate set enumeration

Input:
2: T, Ts,... no-cache job completion times, longest first
0, Oz e per-job time improvement per unit cached
4: I,L,... job inputs
6: Output:
€15 €5 .. caching candidates
8: c; specifies data to be cached from I,...I;, and has value

(i.e. timesaved) = T; — T;4,
10:
procedure CANDIDATES(stage i)
12 Tmin=Ti—o:-|L]
t=(T,-T,), clz{Ilza—’l}
14: t=(T,-T;), cz:{Ilzail,IZ:a—’z}
etc. while T'> Ty,
16: end procedure

The candidate enumeration algorithm in Algorithm 1 exam-
ines stages from longest to shortest within a stage-set, enumerat-
ing candidates in decreasing order of benefit (completion time
saved) to cost (size). The first candidate will be from the input to
the longest stage, of sufficient size to reduce its runtime to that
of the next-longest—i.e. the green segment from Figure 5a. The
second candidate in Figure 5a corresponds to the blue segments,
reducing the runtime of S; and S,. Candidate enumeration
stops when no more candidates can be enumerated, e.g. in this
case where S; and S, runtimes are reduced to their minimum.

Candidate selection is performed by Algorithm 2; we
describe this first for the case of a single active DAG, before
discussing its operation across multiple DAGs.

After enumerating caching candidates for all future stage-
sets in decreasing benefit:cost order, we compute the “slack”
back-end storage bandwidth available in each stage-set based
on the current estimated stage-set completion time and mea-
sured storage access rate. Candidates which are “too early” are
eliminated; these are ones that may be safely deferred to a later
stage-set and still complete by the time of the stage-set in which
they are needed.

We then consider the remaining candidates—if a candidate
“fits” into the remaining cache space and bandwidth, we
schedule the prefetching operation (if needed) and “pin”
the candidate in cache until the end of the stage in which
it is needed. In the next step, CMR updates available cache
space and slack bandwidth (prefetch bandwidth), as well
as adjusting stage completion time estimations to account
for the speedup. If we run out of prefetch bandwidth before
cache space (omitted for clarity in Algorithm 2), we continue
examining in-cache candidates until we run out of cache space.

This strategy not only calculates a set of data to prefetch
but implicitly calculates evictions as well. Data currently in
the cache which is valuable for reducing the runtime of a later
DAG stage will be part of one of the selected candidate sets,
and will be pinned through the end of its scheduled use; the
remaining cache contents are unpinned and may be evicted

330 19th USENIX Conference on File and Storage Technologies

USENIX Association

Algorithm 2 Cache candidate selection: schedule
prefetching/pinning for later stages

Initial Conditions:
2 to=0,ti=ti_y+max(Ti) > Estimated stage completion times
fetchi=sum(|I; +]) D> committed bandwidth by stage
4:
Input:

6: candidate lists for each active DAG

8: Output:
prefetch, pin, and unpin operations
10:
procedure PLAN(/ists)
12 while slacky,, and cache available do

Thise

lists < sort for list in lists >

> (%
befrags(listy\ "'b
1 :Njags shared b.

14: link l;andl, if [, share blocks with I, for each [, and [, in lists
slacky,, (j) < r-(tj—tj,) > bandwidth slack in stage j
16: c=best(head(list) for list in lists) D> best candidate
skip c if stage(c)>now and c fits in slacky,, (future)
18: s<stage(c)
fetchs < fetchs—|c| D> |¢| no longer demand-fetched
20: if ¢ not in cache then
fetchpow < fetchpow+|c|
22: prefetch(c)
end if
24: adjust t;,... for ¢ speedup
pin ¢ until end of s
26: cache used += ||
end while

28: end procedure

(e.g. in LRU order) if necessary to make room for new data.
Event Scheduling: in most analytic frameworks that imple-
ment the event-based scheduling schema, e.g. Spark, the root
stages of the DAG (those with no-dependency) are responsible
for fetching DAG input data. In this case, CMR, for each root
stage, predicts the longest path to the leaf stages of the DAG
(those with that produce output). Then, it sorts these paths ac-
cording to the predicted run-time and recursively identifies the
cache candidates for them.

4.3 Multi-DAG Scheduling

Next, we describe the algorithm that prefetches for multiple
DAGs simultaneously, Cache for Minimizing Runtime of Mul-
tiple DAGs (CMR-M). It attempts to maximize throughput by
minimizing the time to completion of sequences of DAGs.

CMR-M assumes the use of static partitioning (default setup)
in Spark and Pig, where resources are allocated to a DAG for
the entire period of execution [14].

We enumerate caching candidates using Algorithm 1, then
we choose to execute candidates in Algorithm 2, as before;
selecting the “best” cache candidates from competing per-DAG
lists via a heuristic score for data sharing, sharing-aware weight.
The sharing-aware weight is calculated per cache candidate and
gives preference to candidates that are shared by other running

DAGs, as the throughput increase from prefetching will be
higher than that indicated by the single-DAG value.

The sharing-aware weight is similar to the resident set size
(RSS) calculation [35] from ‘ps’: data shared by multiple DAGs s
split equally among them before calculating cost. We calculate
the sharing-aware weight on a block-per-block basis, counting
the number of DAGs n;, sharing any block b (Equation 2). We
then calculate a "unique file size", U, counting each block in
C shared between n; DAGs as having size n%, (line12—14in
Algorithm 1). We then re-compute the marginal utility using
this weight and use this utility to compare candidates across
DAGs. Finally, we find the “partners” to the selected candidate,
i.e. those sharing blocks with it, and select those for prefetch-
ing/caching as well.

RS (1) @)
befrags(C) My

5 Implementation

The Kariz implementation combines a Kariz service with
a our previously developed [44] caching layer embedded
within the Ceph Rados Gateway (RGW [8]). We modified this
caching layer for Kariz by integrating fine-grained prefetching
and pinning (~100 C++ LOC). We have also modified both
Pig/Hadoop [56] (~100 Java LOC) and Spark [72] (30 Scala
LOC) to work with Kariz. We discuss each of these components
in turn.

5.1 Kariz Service

Our Kariz prototype is about 5000 lines of Python?, including
the runtime predictor, the MRD, CP and CMR DAG planners,
and the CMR-M multi-DAG planner. We use the sklearn
package for runtime prediction, and graph-tool for graph
traversal. The Kariz service also includes a cache coordinator
that translates high-level operations from the planner into
individual block operations on the cache.

Interfaces between the analytic frameworks and Kariz are
listed in Table 1. The newDAG, stageStart, and completeDAG
notifications from the framework trigger DAG planning
activities, and carry information (e.g. annotated DAGs) needed
for planning. The prefetch, pin, and unpin requests to the cache
controller, in turn, translates high-level requests from the
planner (specifying object and stride) into requests to the
cache to fetch, pin/unpin, or evict individual blocks.

5.2 Cachinglayer

We build Kariz by extending the multi-tenant cooperative
caching architecture recently added to RGW [44] This RGW
cache layer expands to multiple clusters and allows different
frameworks such as Hadoop MapReduce [26] and Apache
Spark [72] to cache and share their inputs. Our extension to
support Kariz involved around 100 C++ LOC. This involved

3http://github.com/maniaabdi/Kariz

USENIX Association

19th USENIX Conference on File and Storage Technologies 331

Table 1: Interface from Analytics framework (e.g. Pig or Spark)
to Kariz and between Kariz and the Cache

API Description

newDAG (ID, DAG) new DAG started

2 | stageStart (ID, Jobs in st age scheduled

Q stage) for execution

t | completeDAG(ID) DAG completed.
prefetch (blocks) | Asynchronously fetch

© blocks into cache

fé pin(blocks) Lock blocks in cache.

O | unpin(blocks) Release blocks to be

T replaced as space is needed

adding the operations to prefetch pin and unpin lists of
4MB chunks of datasets, as depicted in Table 1. The small
changes required is evidence that we will be able to integrate
Kariz with other caching services. Kariz could integrate with
other distributed caching systems such as Alluxio [2, 50]
and coordinates their caches. In the case of Alluxio minor
modifications are needed to support partial prefetching.

5.3 Analytical frameworks modifications

To exploit Kariz, an analytic framework must provide some

interface that Kariz can use to extract run time interface and no-
tify Kariz of new DAGs, the start of stages,and DAG completion

using the interface in Table 1. We have found it relatively easy to

develop adaptors for two frameworks, Pig [56] and Spark [72];
suggesting that framework developers will find it easy to add

the required functionality to take advantage of Kariz.

Pig modifications: Modifications to Pigare 100 Java LoCin the

following functions: (1) compile() in MapReduceLauncher.java

to extract the DAG, annotate it, and invoke newDAG. (2)

launchPig() in MapReduceLauncher.java to extract the stage

and invoke stageStart. (3) dumpStats() in MRPigStatsUtil.java

to invoke completeDAG; Kariz then request detailed statistics

from Hadoop history server.

Spark modifications: Modifications to Spark are 50 Scala
LoC in the following functions: (1) the constructor in SQLEx-
ecutionRDD.scala, and toRdd() in QueryExecution.scala to

annotate the RDD DAG, (2) runjob() in SparkContext.scala to

extract DAG and invoke newDAG, where the ID is based on a
UUID and spark application ID, (3) submitStage() in DagSched-
uler.scala to extract the stage and invoke stageStart (4) When
the SparkContext shuts down, it invokes completeDAG; Kariz
then request detailed statistics from Spark history server.

6 Evaluation

We use a combination of experimental evaluation on our
prototype and simulation to evaluate Kariz. After describing
the experimental infrastructure and simulator (§6.1), we
experimentally demonstrate the value of partial caching
(§6.2), examine the accuracy of our run-time prediction (§6.3),
and then show results for the different DAG planners with both
PIG and Spark (§6.4). The remainder of the evaluation uses

Table 2: Hardware configuration

Compute Server Cache Server
CPU 1x Intel Es-2650 2x Intel E5-2699v3
RAM 128 GB 128 GB
Disk 1x 500 GB HDDs 2x Intel P3600 1.6 TB
5400 RPM NVMe SSDs (RAIDo)
Network 10Gb/s 40Gb/s

Table 3: Software configuration

Hadoop Pig Spark
Version 2.8.4 0.17.0 2.4.5

simulation to evaluate the single DAG planners for a larger
set of queries (§6.5), explore the multi-DAG planners for both
queries from separate PIG and Spark clusters, and when Kariz is
simultaneously used by both PIG and Spark clusters (§6.6) and
finally perform sensitivity (§6.7) and scalability (§6.8) analysis.

6.1 Setup

Infrastructure: The physical experiments with Pig/Hadoop
and Spark are run on a 16 node cluster with the hardware and
software configuration in Table 2 and Table 3. We provisioned
the compute nodes via diskless provisioning [53] and use the
local disks of the compute nodes to deploy local HDFS. We use
the NVMe SSDs of the cache servers to build the cache layer.
Simulator: We implement a simulated execution framework
and cache, allowing additional experiments not possible on the
physical cluster*. Execution time for each job to be simulated
was determined by the run-time prediction model trained
for each operation in Pig/Hadoop and Spark with different
cache sizes. A random term was added to the runtime, with
standard deviation taken from measured run-time. Additional
simulator logic mimics the Kariz extensions to the framework
scheduler, allowing the same Kariz code to be used in physical
experiments and simulations.

6.2 Partial Caching

We evaluate a key premise of Kariz: that straggler-resistant
partial caching can reduce runtimes. In Figure 6a, we see
experimental results for Wordcount and TeraSort on a
16-node Hadoop cluster with 128 mappers and 32 GiB input
files. In Figure 6b, we see the Wordcount benchmark on
a 16-node Spark cluster with 64 GiB input files, and vary
bandwidth to remote storage.

With both Hadoop and Spark we see a linear relationship
between run time and cached data. While these are trivial ap-
plications, given that the platform partitions the data across the
mappers, we believe this is good evidence that partial caching
can be effective. In contrast, random choice of 4 MiB blocks was
found to produce little or no speedup when less than 60% of the
input was cached, and (as expected) caching a strict prefix of the
file produced no improvement until the entire file was in cache.

4As well as timely reproduction after algorithm changes.

332 19th USENIX Conference on File and Storage Technologies

USENIX Association

400 _-‘.: l]] 1] 1] 1 1 [l [l 1 1 1

Ay, H

© 300 - -

o bl

] Ty

£ 200 TeraSort regression b -

s —— Wordcount regression T~

j

2 100 A Terasort -

Wordcount

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Cached Data (GB, out of 32GB total)
(a) Hadoop: WordCount and TeraSort, cached data vs. runtime, 128
mappers, 1Gbit backend bandwidth.

300 g -
> e Storage bandwidth
4 = W 1Gbps
RZA 2004 o ® 5Gbps .
(o) = » 20 Gbps
£ " H
g 100 il i = =
w o — 2 2 s - e ,
0 I e T R T R T
0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Cached Data (GB, out of 32GB total)

(b) Spark: cached data vs. runtime for WordCount and different
backend bandwidth on 32 GiB input, 128 partitions.

Figure 6: Partial caching

We also see that the slope varies with storage bandwidth and
application, motivating our design to build per-operation run-
time prediction model that incorporates storage bandwidth.

6.3 Runtime prediction

Training model: to train the runtime prediction models, we
ran Lasso regression with & =0.001 on each category. On our
test cluster, we run all 44 queries from Pig-TPCH [13] and
Spark-TPCH [16], 13 times each, with different configuration:
(1) input datasets randomly selected from 8GB to 80GB, (2)
number of cached blocks randomly selected from 0% to 100%,
(3) the bandwidth to backend storage restricted randomly
from 1Gbps to 40GBps, and (4) the number of executors per
query was configured randomly from the 2, 4, 8, 16. In total,
we captured statistics for 286 queries for Pig/Hadoop and 286
queries for Spark. We use the 80%/20% split to train and test
each model. Table 4 shows the average run time of the test set,
the root mean square error (RMSE) of the runtime prediction
model per operation and average absolute error.

Prediction accuracy: The caching and prefetching planners de-
pend on the Kariz runtime predictor being accurate enough to
predict the correct paths (longest, the 2"?-longest, etc.) to cache
for. We ran the 22 queries from the Spark TPCH benchmark,
with random input sizes, on a 16-node cluster with no caching.
We predict the run-time using the trained models: for 20 queries
out of 22 the order for 1%, the 2™%, and 3”’1 longest path were
identified correctly. For query Qu1, it mis-predicts the 1°” longest
path, and for query Q21, the order of the 2 and 3" longest
paths were reversed. In these two cases, the errors were in paths
differing by less than 3s; in almost all cases either both or neither
would be cached, and the misprediction impact would be minor.

In Figure 7, we see the ratio of the actual to predicted longest
path. The maximum error was 27% and on average 7%. We anno-
tate each bar with the bandwidth, the input size, and the actual
runtime of the longest path for that query. For Q6, where we
had the maximum relative error, the actual runtime was short.

6.4 Experimental evaluation

We compare CMR with two DAG-informed policies: (1)
MRD [57], which caches and prefetches in breadth-first order
to increase hit ratio, and (2) our CP [17] which caches and
prefetches for jobs on the DAG critical path.

Workloads: We use the characteristics of the confidential
trace (including query submission rate, DAG structure, data
accessed, data reuse) to construct a mix of synthetic workload
using standard analytic benchmarks (TPC-H and TPC-DS) be-
cause of the lack of public workloads. The synthetic benchmark
represents an hour of data processing. We scale down the size of
our cluster and the DAG submission rate by a factor of 10; in the
confidential traces, the job submission rate follows the Poisson
distribution with distribution parameter(1) of 0.2 (on average

Table 4: Accuracy of runtime prediction per operation

(a) Pig operations

. runtime Absolute
Operation) RMSE (s))
Co-group 330 63.27 61.14
Map only 5.8 0.33 0.26
Groupby 14.6 1.8 1.6
Combiner 23 8.3 2.8
Hash join 99.3 37 25
Replicated join 251 38.5 55
Order by 10.6 0.39 0.49
Sampler 10.74 0.58 0.54

(b) Spark operations
Operation runtime RMSE (s) Absolute
(s) (s)

Hash aggregate (HA) 13 0.66 0.52
Scan 12 3.3 2

Scan, Filter 20.2 6.28 3.27
Scan, Filter & HA 30.6 5.2 3.97
Filter & HA 2 0.66 0.63

Sort merge join 3.51 1.5 0.94
Sort merge join & HA 3.53 0.75 0.53

=
o

Actual runtime

longest path
actual/predicted

0.0
5SRO0 DO X9 0N DOV
FIPIPPS PP PEPFEE TSI I
Queries

Figure 7: Ratio of actual to predicted longest path on different
Spark queries. See text for Q11.

USENIX Association

19th USENIX Conference on File and Storage Technologies 333

NoCache MRD EEECP ETICMR

sl e LUEE R

Q1 Q4 Q2 Q3 QIS Q10 Q11 Q14 Q15 Q7 Q19 Q20 Q21 Q22
TPCH Query

a
a
S}

Completion tim
) w
o (=3
(=] (=]

Figure 8: Pig-MapReduce performance for selected TPC-H
queries - small DAGs (1,4), long sequential (2,3,5), tree-like
(10,11,14), aggregate (15), large/complex (719-22). 64 GiB data
set, 40 GiB cache, cold start.

NoCache MRD [EECP [CAICMR

[=2]
o
o

gl 1LY

Ql Q4 Q2 Q3 Q5 QL0 Ql1 Ql4 Q15 Q7 Q19 Q20 Q21 Q22
TPCH Ouerv

IS
=3
S3

Completion time(sec)
no
(=3
o

Figure 9: TPC-H query performance using Spark contrasting
CMR, CB, MRD and no caching.

702 queries were submitted per hour). Thus, we use Poisson
distribution with A of 0.02 to generate query submission events
(resultin 67 queries). Then, at each event, a queryis drawn from
apool of 22 TPC-H [13], and 19 TPC-DS [12] queries translated
into Pig Latin [56]. To select queries from the pool, we cate-
gorize queries according to their DAG structure for a sampled
hour. We map each query in the pool to a category with the
maximum DAG similarity (maximum common subgraph [55]).
To be consistent, for Spark, we use the same set of queries from
Spark TPCH [16] and Spark TPC-DS benchmarks [15].

For the sampled hour, 30% of the objects were accessed at
least twice. This is similar to the ZipF distribution with a =1.125.
Accordingly, we assign each query a dataset selected from this
distribution, giving a trace of 496 accesses over 357 unique
input objects, with 78 accesses to the most used input object,
consistent with our evaluated traces. Then, we associate the
input sizes to the datasets by randomly choosing from 4 GB,
to 256 GB. Finally, we use the standard TPC-H [13] and TPC-
DS [12] input generators to create CSV datasets.

The cache size is set to 40GB and the dataset size is 64GB.
The RGW cache network to datalake is throttled to 10Gbps. For
each query, we assume 5 seconds queue time, the minimum
observed queue time in the evaluated traces, before submitting
the first stage for execution to the execution engine. We take
advantage of the queue time to start prefetching for the DAG
and we clear the cache before each run. The reported numbers
are the average of three runs.

Performance evaluation: Figure 8 and Figure g shows runtime
of selected TPC-H queries in, respectively, Pig-Latin and Spark

comparing CMR, CP, MRD, and no caching.

Our evaluations show that relative to the no caching case,
CMR can improve query performance by up to 2 times for
Pig-MapReduce and up to 3.2x on Spark, with mean speedups
of 1.3x and 1.8x respectively. Running on the Pig-MapReduce
framework and comparing to MRD and CP, CMR can improve
the runtime by up to 2x and 1.8x and in average by 1.3x and
1.3x respectively. Our experiments using LRU shows similar
behavior to no-prefetching (gray bar).

With the Spark framework, CMR can improve the runtime
compared to MRD and CP by up to 3.1x and 3x and in average
by 1.8x and 1.7x respectively. Spark shows more sensitivity
to the backend storage bandwidth than MapReduce, Since
MapReduce imposes extra overheads such as JVM start
up([45, 46]). This results in sharper speed up slope for CMR
on the Spark framework than the Pig-MapReduce framework
and better cache space utilization compared to MRD and CP.

Q1 and Q4 represent small-sequential queries; with reads
only at the begining of the job in the graph. Due to the
partial caching strategy implemented by CMR, it has better
performance compared to MRD, CP on both Pig/MapReduce
and Spark frameworks. The table shows the average speedup:

Qiand Q4 MRD CP nocaching
Pig/MapReduce 15x 15X 1.6X
Spark 18X 14X 2.2X

For Q2, Q3, Qs, Q1o0, Q11, Q14, and Qis, the structure of
DAGs generated by Pig and Spark is different, which leads
to different caching decisions. On Pig-MapReduce, Q2, Q3,
and Qs are long sequential queries with small reads in the first
stages and large reads in the following one. Here, the CMR
ranking mechanism makes it possible to prioritize prefetching
plans that have more effect on the sequential DAGs. Q10, Qu1,
and Q14 arelong sequential graphs and Q15 is alarge aggregated
graph. For these, the combinations of stage oriented decisions
and partial caching leads to performance improvement.

Qy and Q19 to Q22 have large complicated DAGs on both
Pig-MapReduce and Spark. The excellent relative performance
of CMR over the other options for these queries (see table
below) is encouraging, as our analysis of real-world traces in
§1showed over 9o% of data read by complex queries like these.

Q7 and Q19-Q22

Pig/MapReduce Spark

MRD 1.4X 1.8x
Average CP 1.5X 1.5X
no caching 1.6x 2.8x
MRD 1.8x 2.9X

Maximum CP 2X 2X
no caching 2X 3.2X

6.5 Simulated evaluation - Single DAGs

We evaluate CMR across the synthetic workload (67 TPC-H
and TPC-DS queries) using our simulated cache and Pig frame-
work. In Figure 10 we see CMR, CP, and MRD performance

334 19th USENIX Conference on File and Storage Technologies

USENIX Association

] T MRD [EmCP T7ICMR -
3} - 1
g 25 i i -
9 rde =1 1 H
3 . p] J' =t 1
g 20 ! | ! Eo =
= !] i [] 1
o 1 | 1

g 15 : - ! i -
g - R | R -4
= 1 T 1 T T~
x 1.0 - - - -

small large sequential tree-like aggregate complex

DAG type

Figure 10: Runtime by DAG class for 67 queries; 128 GiB cache,
10 Gb/s backend bandwidth.

relative to no cache, with a simulated cache size of 128 GiB,
grouped by query type.

Median (center line) and 75th-percentile (top of the box)
performance are seen to be higher than MRD or CP in all
cases. CMR performance is much higher (1.6x vs 1.2x for MRD
and CP) for aggregation queries, although the top quartile
of queries achieved relatively similar speedups for CMR and
MRD. For complex queries CMR outperformed MRD by
large amounts, with a 75th-percentile speedup higher than the
maximum MRD speedup.

6.6 CMR Performance on Multiple DAGs

Kariz is a community cache that considers data sharing between
DAGs running on one or several analytic frameworks. We sim-
ulate Kariz to measure the performance under two scenarios:
Multiple DAGs in a single analytic cluster: We compare
the performance of three multi-DAG strategies: CMR-M,
shortest-job-first (SJF) (prefetches/caches for DAGs with the
shortest remaining runtime), and Isolated (static isolated cache
partitioning for each DAG) [25]. In all three cases, CMR is
used to manage within-DAG caching/prefetching decisions.

We simulate 1 TB of cache, 25 Gbit/s network bandwidth,
and 100Gbit/s cache bandwidth. We generate a workload that
consists of 200 randomly-chosen Spark TPC-H [16] queries
with a dataset size of 164GB in a cluster that can handle 10
simultaneous queries. For the Isolated strategy, we allocate
128 GiB of cache space to each query. To produce different
sharing patterns, we generate 6 traces of 200 datasets generated
by changing the ZipF distribution parameter (a: 1.001-2.4)-
e.g. a = 1.001 giving a trace with 192 unique dataset accesses.
Finally, we map each dataset in every trace to one query.

In Figure 11, we see the end-to-end runtime of all 200 TPC-H
Spark queries with 6 traces, when we increase the reuse/sharing
of datasets within the trace. As seen, CMR-M outperforms
bothisolated cache and shortest job first by up to1.51x (a=1.23)
and 1.14x (a = 1.38), respectively. As depicted, the SJF policy
can degrade performance compared to isolated cache. The
reason is SJF favors DAGs with smaller predicted runtime. This
results in DAGs with longer runtime deprived of the cache and
therefore to read most of their data from the backend. For the
Spark cluster, the runtime for the base case (all data remote)
is 13000 seconds; for a = 0.001, i.e. almost no data sharing, the

Isolated [Shortest job first (SJF) ! CMR-M

6K -
3 g N
> 1 - P
24K i i i | | -
o 1 1 =1
g |] i | | |
E2K | | i 1 | i -
% |] i | | |

1] 1 1 1 1
0K 1 T L T . e p—)
1.001 1.063 1.128 1.23 1.38 2.4

Skew parameter: a

Figure 11: Performance of different caching strategies when
different level of data sharing exist within the cluster. (simulated)

Pig, isolated cache
Pig, shared cache

3 Spark, isolated cache
[Spark, shared cache

O 6K -
B - - _
b i M
QEJ 4K 4 = = m
= 2K -
=
&

1.001 1.063 1.128 123 1.38 2.4

Skew parameter: a

Figure 12: Performance of different frameworks with shared
cache vs isolated cache per framework. Each cache has 1 TB cache,
25 Gb/s storage-bandwidth, and 100 Gb/s cache bandwidth.
(simulated)

performance gain over that comes from data prefetching.
Two analytic clusters: We compare the performance of Kariz
with multiple analytic clusters (Pig/MapReduce and Spark)
sharing a cache vs the case where the cache is statically parti-
tioned, using CMR-M with the CMR single-DAG planner. We
use the same 200 Spark TPC-H queries, combined with 100 Pig
TPC-H queries randomly selected from the same distribution,
generating 6 traces with 300 datasets each as described above.

As shown in Figure 12, by increasing the data sharing across
analytic clusters, both clusters have seen runtime improvement
vs the statically-partitioned case. Pig cluster runtime improves
by up to 1.5% (a=1.38), with a mean of 1.3x. The Spark cluster
benefits from both prefetching and caching, improving on
average by 1.27x and up to 1.52x (a = 1.128). The dashed
horizontal line in the Figure 12 shows the extreme case when
one dataset is shared by all the queries in both clusters.

6.7 Sensitivity Analysis

We analyze sensitivity to cache size and prediction errors.
Cache size: Figure 13 shows the average speed up of all DAGs
from the mixed workloads (§6.1) as we vary the cache size
from 16GB to 400GB (the size of the dataset) with the network
bandwidth to the backend set to 10Gbps. CMR achieves
substantially higher performance compared to MRD and CP
until the entire data set fits in the cache. For example, when
the cache size is 64GB, CMR outperforms MRD and CP by up
to 51% and on average 10% and 8% respectively.

Impact of runtime mis-prediction: To see the effect of run-
time misprediction we introduce a multiplicative error factor
Rerror- We simulate 27 queries with a total of 310 jobs from the

USENIX Association

19th USENIX Conference on File and Storage Technologies 335

3.2 609

Qfé 60% MRD —— -
2o - CP ’

g9 =¥ CMR RV

2 5 40% Ry -
&8 S

o2 _'__.._..---:/

£% 20% ey " .
a3 | e g

g2 O:J t’ = Dataset size = 400GB

E’% 16GB 32GB 64GB 128GB 256GB 400GB
<A Cache size

Figure 13: Mean runtime across all queries vs. cache size, nor-
malized to uncached runtime; 10 Gb/s bandwidth. (simulated)

EnEsee

H
°
ES

w
X
'

accurate runtime
;)
x
i

-0.5-0.4-0.3-0.2-0.1-0.050.0 0.05 0.1 0.2 0.3 0.4 0.5
Error in runtime estimation (Resror)

Avg. DAG performance
variation relative to

Figure 14: Sensitivity to misprediction error: introduced error
vs. performance degradation - 30% of predications adjusted by
factor of (1+Rerror). (simulated)

mixed workloads in single-DAG mode, with 60% of jobs recur-
ring, and randomly pick 130 jobs (~42%) to adjust by Resror-

In Figure 14 we see normalized change in runtime, relative
to no mis-estimation, for values of R,rror between 0.5 and 1.5.
CMR performance drops when the runtime is mispredicted,
especially in the negative direction, but when only a fraction
of jobs are mispredicted the effect is small.

6.8 Scalability

To analyze CMR scalability, we run (in simulation) a pool of 67
queries(DAGs) from TPC-H and TPC-DS benchmarks. Using
timing from the Alibaba traces [1] (80% of DAG stages complete
in less than one minute) we assign a random execution time
between 1s to 60s to each stage. We submit DAGs at a rate of 9o
per minute and measure the execution time for CMR planning.
Figure 15 shows CMR planner runtime vs a number of
currently executing DAGs. Execution time (in unoptimized
Python) is seen to be under six seconds in all cases, with up to
160 concurrent DAGs. Based on Alibaba statistics this would
allow scaling a single controller to a cluster of 1500 to 2000
servers, with minimal delay in issuing prefetch commands.

7 Conclusion

Kariz is a cache management system for analytic frameworks
that makes possible cache algorithms informed by DAGs,
historical run time information, current cache state,and storage
bandwidth. We have implemented multiple algorithms using
Kariz, including a new CMR algorithm that achieves dramatic
performance improvements by exploiting all this information.

o6 -
2 -
—5 ~ -
o .
-

£4 o - G -
=
=3 5 10 15 20 25 ~ 30, . _
g R
3 - == =Linear regression

- .
=1) S - = =) nd-order regressiom
= 0 'Mirab laytencv -

20 40 60 80 100 120 140 160
Number of runnina DAGs

Figure 15: CMR-M scaling - planner runtime vs running DAGs.
(simulated)

We demonstrate that new analytics frameworks (100 LOC
for PIG/Hadoop, and 30 LOC for SPARK) and cache systems
(100 LOC for the cache we used) can easily be integrated. Our
work is the first to: 1) support multiple concurrent DAGs,
2) employ more than one of bandwidth, runtime prediction,
and DAGs, 3) explore a cooperative caching model, and
4) employ straggler resistant partial caching.

Acknowledgment

We thank our shepherd, Nitin Agrawal, and our anonymous
FAST reviewers for their valuable feedback and suggestions. We
thank Shankar Pasupathy, Art Harkin, Peter Macko, and Xing
Lin of NetApp, Matt Benjamin and Ali Maredia of Red Hat for
their support and contribution. We would like to acknowledge
the support of our commercial partners in Mass Open Cloud
and Open Infra Labs, which include Red Hat, Two Sigma, Intel,
IBM, Brocade, Cisco, and Lenovo. Partial support for this
work was provided by the National Science Foundation award
CNS-1910327, CNS-1414119, and a NetApp faculty fellowship.

References

[1] Alibaba trace data.
clusterdata, 2019.

http://github.com/alibaba/

[2] Alluxio. http://www.alluxio.org,2019.
[3] Amazon EMR. http://aws.amazon.com/emr/,2019.
[4] Amazon S3. http://aws.amazon.com/s3/,2018.

[5] Anatomy of the S3A filesystem client. http://redhat.
com/en/blog/anatomy-s3a-filesystem-client,
2018.

[6] Apache Arrow. http://arrow.apache.org/,2019.
[7] ApacheIgnite. http://ignite.apache.org/,2019.

[8] Ceph Object Gateway. http://docs.ceph.com/docs/
master/radosgw/, 2019.

[9] Dave Wells. The Future of the Data Warehouse. http:
//eckerson.com, 2017.

336 19th USENIX Conference on File and Storage Technologies

USENIX Association

[10]

[11]

[12]

(13]

[14]

[15]

[18]

[19]

—_

[20

[21]

(22]

Microsoft Azure HDInsight. http://azure.
microsoft.com/services/hdinsight/, 2019.

Microsoft Datalake. http://azure.microsoft.com/
en-us/solutions/data-lake, 2019.

Pig TPC-DS queries.
ssavvides/tpcds-pig, 2019.

http://github.com/

Pig TPC-H queries. http://github.com/ssavvides/
tpch-pig, 2019.

Scheduling Spark cluster. http: //spark.apache.org/
docs/latest/job-scheduling, 2019.

Spark TPC-DS queries. http://github.com/
databricks/spark-sql-perf,2019.

Spark TPC-H queries.
ssavvides/tpch-spark, 2019.

http://github.com/

Mania Abdi, Amin Mosayyebzadeh, Mohammad H.
Hajkazemi, Ata Turk, Orran Krieger, and Peter Desnoyers.
Caching in the Multiverse. In 11th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 19),
Renton, WA, July 2019. USENIX Association.

Waleed Alj, Siti Mariyam Shamsuddin, and Abdul Samad
Ismail. A Survey of Web Caching and Prefetching.
International Journal of Advances in Soft Computing and
its Applications, 3, 03 2011.

Omid Alipourfard, Honggiang Harry Liu, Jianshu
Chen, Shivaram Venkataraman, Minlan Yu, and Ming
Zhang. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 469—482, Boston, MA,
March 2017. USENIX Association.

Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
Warfield, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. PACMan: Coordinated Memory
Caching for Parallel Jobs. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 267-280, San Jose, CA,
2012. USENIX.

Danilo Ardagna, Enrico Barbierato, Athanasia Evan-
gelinou, Eugenio Gianniti, Marco Gribaudo, Talio B. M.
Pinto, Anna Guimarées, Ana Paula Couto da Silva,
and Jussara M. Almeida. Performance Prediction of
Cloud-Based Big Data Applications. In Proceedings of the
2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 18, page 192-199, New York, NY, USA,
2018. Association for Computing Machinery.

Richard Bellman. On a routing problem. Quarterly of
Applied Mathematics, 16(1):87-90, 1958.

[23] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan,

[25

[26

[28

[29

(30

—

—

—

]

]

]

—_—

Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat
Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas,
Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards,
Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit
Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul
Hagq, Deepali Bhardwaj, Sowmya Dayanand, Anitha
Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha
Manivannan, and Leonidas Rigas. Windows Azure
Storage: a highly available cloud storage service with
strong consistency. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
SOSP 11, pages 143-157, Cascais, Portugal, October 2011.
Association for Computing Machinery.

Andrew Chung, Subru Krishnan, Konstantinos Karana-
sos, Carlo Curino, and Gregory R. Ganger. Unearthing
inter-job dependencies for better cluster scheduling. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 1205-1223. USENIX
Association, November 2020.

Jon Crowcroft and Philippe Oechslin. Differentiated End-
to-end Internet Services Using a Weighted Proportional
Fair Sharing TCP. SIGCOMM Comput. Commun. Rev.,

28(3):53-69, July 1998.

Jeffrey Dean and Sanjay Ghemawat. = MapReduce:
Simplified Data Processing on Large Clusters. Commun.
ACM, 51(1):107-113, January 2008.

Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. Tech-
niques for bandwidth-efficient prefetching of linked
data structures in hybrid prefetching systems. In 2009
IEEE 15th International Symposium on High Performance
Computer Architecture, pages 7-17, Feb 2009.

Iman Elghandour and Ashraf Aboulnaga. ReStore:
Reusing Results of MapReduce Jobs. Proc. VLDB Endow.,
5(6):586-597, February 2012.

Hajar Falahati, Mania Abdi, Amirali Baniasadi, and
Shahin Hessabi. ISP: Using idle SMs in hardware-based
prefetching. In The 17th CSI International Symposium
on Computer Architecture Digital Systems (CADS 2013),
pages 3-8, Oct 2013.

Hajar Falahati, Shahin Hessabi, Mania Abdi, and Amirali
Baniasadi. Power-efficient prefetching on GPGPUs. The
Journal of Supercomputing, 71(8):2808-2829, Aug 2015.

Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. Jockey: Guaranteed job
latency in data parallel clusters. In Proceedings of the 7th
ACM European Conference on Computer Systems, EuroSys
12, page 99-112, New York, NY, USA, 2012. Association
for Computing Machinery.

USENIX Association

19th USENIX Conference on File and Storage Technologies 337

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

Seyedeh G. Ghaemi, Iman Ahmadpour, Mehdi Ardebili,
and Hamed Farbeh. SMARTag: Error Correction in
Cache Tag Array by Exploiting Address Locality. In 2018
Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1658-1663, 2018.

Seyedeh G. Ghaemi, Iman Ahmadpour, Mehdi Ardebili,
and Hamed Farbeh. Sleepy-LRU: extending the lifetime
of non-volatile caches by reducing activity of age bits. The
Journal of Supercomputing, 75(7):3945-3974, 2019.

Seyedeh G. Ghaemi, Amir M. H. Monazzah, Hamed Far-
beh,and Seyed G. Miremadi. LATED: Lifetime-Aware Tag
for Enduring Design. In 2015 11th European Dependable
Computing Conference (EDCC), pages 97-107, 2015.

Mel Gorman. Understanding the Linux virtual memory
manager. Prentice Hall Upper Saddle River, 2004.

Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. GRAPHENE: Packing
and dependency-aware scheduling for data-parallel
clusters. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 81-97,
Savannah, GA, November 2016. USENIX Association.

Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A. Thekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic Management of Data and Computation
in Datacenters, booktitle = Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation. OSDI’10, pages 75-88, Berkeley, CA,
USA, 2010. USENIX Association.

Mohammad H. Hajkazemi, Mania Abdi, and Peter
Desnoyers. Minimizing Read Seeks for SMR Disk.
In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 146-155, 2018.

Mohammad H. Hajkazemi, Mania Abdi, and Peter
Desnoyers. uCache: a mutable cache for SMR trans-
lation layer. In 2020 28th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 1-8, 2020.

Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas
Karagiannis, and Ant Rowstron. Bridging the Tenant-
provider Gap in Cloud Services. In Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC ’12,
pages 10:1-10:14, New York, NY, USA, 2012. ACM.

Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can. SIGCOMM Comput. Commun. Rev.,

45(4):407-420, August 2015.

[42]

[43]

(44]

[45]

[47]

[48]

[49]

Virajith Jalaparti, Chris Douglas, Mainak Ghosh, Ashvin
Agrawal, Avrilia Floratou, Srikanth Kandula, Ishai Men-
ache, Joseph Sefli Naor, and Sriram Rao. Netco: Cache
and I/O Management for Analytics over Disaggregated
Stores. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC 18, pages 186-198, New York, NY, USA,
2018. ACM.

Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming
Di, Malay Bag, Marc Friedman, Yifung Lin, Konstantinos
Karanasos, and Sriram Rao. Computation Reuse in An-
alytics Job Service at Microsoft. In Proceedings of the 2018
International Conference on Management of Data, SIG-
MOD 18, pages 191-203, New York, NY, USA, 2018. ACM.

Emine Ugur Kaynar, Mania Abdi, Mohammad H.
Hajkazemi, Ata Turk, Raja R. Sambasivan, David Cohen,
Larry Rudolph, Peter Desnoyers, and Orran Krieger.
D3N: A multi-layer cache for the rest of us. In 2019 IEEE
International Conference on Big Data (Big Data), pages
327-338, 2019.

Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
Selecta: Heterogeneous Cloud Storage Configuration
for Data Analytics. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 759—773, Boston,
MA, July 2018. USENIX Association.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic Ephemeral Storage for Serverless Analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427-444, Carlsbad,
CA, October 2018. USENIX Association.

Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras
Bobrovytsky, Casey Ching, Alan Choi, Justin Erickson,
Martin Grund, Daniel Hecht, Matthew Jacobs, Ishaan
Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong
Li, Ippokratis Pandis, Henry Robinson, David Rorke,
Silvius Rus, John Russell, Dimitris Tsirogiannis, Skye
Wanderman-Milne, and Michael Yoder. Impala: A
Modern, Open-Source SQL Engine for Hadoop. In CIDR
2015, Seventh Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7 2015,
Online Proceedings. www.cidrdb.org, 2015.

Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 283-296, Santa Clara, CA, February
2020. USENIX Association.

Umesh Kumar and Jitendar Kumar. A Comprehensive
Review of Straggler Handling Algorithms for MapReduce
Framework. International Journal of Grid and Distributed
Computing, 7(4):139-148, August 2014.

338

19th USENIX Conference on File and Storage Technologies

USENIX Association

[50]

[51]

(52]

[53]

[54]

(55]

[56]

[57]

(58]

Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, Memory Speed Storage
for Cluster Computing Frameworks. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC 14,
pages 6:1-6:15, New York, NY, USA, 2014. ACM.

Sergey Melnik, Andrey Gubareyv, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, and Theo Vas-
silakis. Dremel: interactive analysis of web-scale datasets.
Proceedings of the VLDB Endowment, 3(1-2):330-339, 2010.

Apoorve Mohan, Shripad Nadgowda, Bhautik Pipaliya,
Sona Varma, Sahil Suneja, CanturkIsci, Gene Cooperman,
Peter Desnoyers, Orran Krieger, and Ata Turk. Towards
Non-Intrusive Software Introspection and Beyond. In
2020 IEEE International Conference on Cloud Engineering
(IC2E), pages 173-184, 2020.

Apoorve Mohan, Ata Turk,RaviS. Gudimetla, Sahil Tikale,
Jason Hennesey, Emine Ugur Kaynar, Gene Cooperman,
Peter Desnoyers, and Orran Krieger. Ma2: Malleable
Metal as a Service. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 61-71, 2018.

Amin Mosayyebzadeh, Apoorve Mohan, Sahil Tikale,
Mania Abdi, Nabil Schear, Trammell Hudson, Charles
Munson, Larry Rudolph, Gene Cooperman, Peter
Desnoyers, and Orran Krieger. Supporting Security
Sensitive Tenants in a Bare-Metal Cloud. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
587-602, Renton, WA, July 2019. USENIX Association.

Siegfried Nijssen and Joost N. Kok. The Gaston Tool for
Frequent Subgraph Mining. Electronic Notes in Theoret-
ical Computer Science, 127(1):77 — 87, 2005. Proceedings
of the International Workshop on Graph-Based Tools
(GraBaTs 2004).

Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins. Pig Latin: A Not-
so-foreign Language for Data Processing. In Proceedings
of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1099-1110,
New York, NY, USA, 2008. ACM.

Tiago B. G. Perez, Xiaobo Zhou, and Dazhao Cheng.
Reference-distance Eviction and Prefetching for Cache
Management in Spark. In Proceedings of the 47th
International Conference on Parallel Processing, ICPP
2018, pages 88:1-88:10, New York, NY, USA, 2018. ACM.

Raghu Ramakrishnan, Baskar Sridharan, John R.
Douceur, Pavan Kasturi, Balaji Krishnamachari-Sampath,
Karthick Krishnamoorthy, Peng Li, Mitica Manu,
Spiro Michaylov, Rogério Ramos, Neil Sharman, Zee
Xu, Youssef Barakat, Chris Douglas, Richard Draves,
Shrikant S. Naidu, Shankar Shastry, Atul Sikaria, Simon

[59]

[60]

[61]

[62]

[63]

(64]

[66]

Sun, and Ramarathnam Venkatesan. Azure Data Lake
Store: A Hyperscale Distributed File Service for Big Data
Analytics. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages
51-63, New York, NY, USA, 2017. ACM.

Josep Sampé, Gil Vernik, Marc Sanchez-Artigas, and Pe-
dro Garcia-Lopez. Serverless Data Analytics in the IBM
Cloud. In Proceedings of the 19th International Middleware
Conference Industry, Middleware "18, pages 1-8, New York,
NY, USA, 2018. Association for Computing Machinery.

Elizabeth Shriver, Christopher Small, and Keith A Smith.
Why does file system prefetching work? 1999.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 2010 IEEE 26th Symposium on Mass Stor-
age Systems and Technologies (MSST), MSST ’10, pages 1-
10, Washington, DC, USA, 2010. IEEE Computer Society.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In 2010
IEEE 26th International Conference on Data Engineering
(ICDE 2010), pages 996-1005, March 2010.

Robert Tibshirani. Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society: Series
B (Methodological), 58(1):267-288,1996.

Steven P. Vanderwiel and David J. Lilja. Data Prefetch
Mechanisms. ACM Comput. Surv., 32(2):174-199, June
2000.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas,
Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al.
Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud
Computing, page 5. ACM, 2013.

Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient Performance Prediction for Large-Scale Advanced
Analytics. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages 363-378,
Santa Clara, CA, March 2016. USENIX Association.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable, High-
performance Distributed File System. In Proceedings
of the 7th Symposium on Operating Systems Design and
Implementation, OSDI 06, pages 307-320, Berkeley, CA,
USA, 2006. USENIX Association.

USENIX Association

19th USENIX Conference on File and Storage Technologies 339

[68] LunaXu, Min Li, Li Zhang, Ali R. Butt, Yandong Wang, [71] Yinghao Yu, Wei Wang, Jun Zhang,and Khaled Ben Letaief.

and Zane Zhenhua Hu. MEMTUNE: Dynamic Memory LRC: Dependency-aware cache management for data ana-
Management for In-Memory Data Analytic Platforms. lytics clusters. In IEEE INFOCOM 2017 - IEEE Conference
In 2016 IEEE International Parallel and Distributed on Computer Communications, pages 1-9, May 2017.

Processing Symposium (IPDPS), pages 383-392, May 2016.

[69] Yinggen Xu, Liu Liu, and Zhijun Ding. DAG-Aware Joint
Task Scheduling and Cache Management in Spark Clus-
ters. In 2020 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 378-387, May 2020. [72] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,

Scott Shenker, and Ion Stoica. Spark: Cluster computing

[70] Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. with working sets. In Proceedings of the 2Nd USENIX

Management of Multilevel, Multiclient Cache Hierarchies Conference on Hot Topics in Cloud Computing, Hot-

with Application Hints. ACM Trans. Comput. Syst., Cloud’10, pages 10-10, Berkeley, CA, USA, 2010. USENIX
29(2):5:1-5:51, May 2011. Association.

340 19th USENIX Conference on File and Storage Technologies USENIX Association

