The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

NASGEM: Neural Architecture Search via Graph Embedding Method

Hsin-Pai Cheng,' Tunhou Zhang,' Yixing Zhang,' Shiyu Li, ! Feng Liang,’ Feng Yan,* Meng Li,

2

Vikas Chandra,” Hai Li,' Yiran Chen'

! Duke University
2 Facebook, Inc
3 Tsinghua University
University of Nevada, Reno
{dave.cheng, tunhou.zhang, shiyu.li, hai.li, yiran.chen} @duke.edu, {meng.li, vchandra} @fb.com, liangf16 @tsinghua.org.cn,
fyan@unr.edu

Abstract

Neural Architecture Search (NAS) automates and prospers the
design of neural networks. Estimator-based NAS has been pro-
posed recently to model the relationship between architectures
and their performance to enable scalable and flexible search.
However, existing estimator-based methods encode the archi-
tecture into a latent space without considering graph similarity.
Ignoring graph similarity in node-based search space may in-
duce a large inconsistency between similar graphs and their
distance in the continuous encoding space, leading to inac-
curate encoding representation and/or reduced representation
capacity that can yield sub-optimal search results. To preserve
graph correlation information in encoding, we propose NAS-
GEM which stands for Neural Architecture Search via Graph
Embedding Method. NASGEM is driven by a novel graph
embedding method equipped with similarity measures to cap-
ture the graph topology information. By precisely estimating
the graph distance and using an auxiliary Weisfeiler-Lehman
kernel to guide the encoding, NASGEM can utilize additional
structural information to get more accurate graph represen-
tation to improve the search efficiency. GEMNet, a set of
networks discovered by NASGEM, consistently outperforms
networks crafted by existing search methods in classification
tasks, i.e., with 0.4%-3.6% higher accuracy while having 11%-
21% fewer Multiply-Accumulates. We further transfer GEM-
Net for COCO object detection. In both one-stage and two-
stage detectors, our GEMNet surpasses its manually-crafted
and automatically-searched counterparts.

1 Introduction

Neural architecture search (NAS) (Zoph et al. 2018) pros-
pers the neural architecture design process. With the rise of
NAS, automated crafted CNN models have achieved record-
breaking performance for a variety of vision applications
such as image classification and object detection.

The goal of NAS is to identify good architectures within
a designated search space under application and resource
constraints. Earlier NAS works mainly adopt reinforcement
learning (Zoph et al. 2018), evolutionary algorithm (Real
et al. 2019), bayesian optimization (Kandasamy et al. 2018),
and differentiable (Liu, Simonyan, and Yang 2019; Luo et al.
2018; Liang et al. 2019; Chen et al. 2019) methods for search-
ing. However, these methods usually suffer from poor search
scalability. Fast search methods (e.g., differentiable-based

7090

methods (Liu, Simonyan, and Yang 2019; Luo et al. 2018))
usually result in sub-optimal solutions while reward function
based search methods (e.g., RL (Tan et al. 2019)) obtain high
quality solutions at the cost of high computing hours. There
is no effective way to trade-off search cost and architecture
quality using these NAS methods.

To address the above issues, estimator-based meth-
ods (Baker et al. 2017; Li et al. 2020) are proposed to enable
scalable and flexible architecture search. Estimator-based
NAS formulates a representation of architecture by mapping
architectures into a latent space. Such representation enables
modeling the relationship between architecture and accu-
racy using an estimator, such as a supervised predictor. The
estimator-based approach is scalable as the trade-off between
search cost and quality can be controlled by budgeting the
number of samples for modeling the search space. Estimator
also allows adding additional search objectives with no addi-
tional search cost. To formulate an effective representation,
recent works use graph convolutional networks (GCN) and
other graph encoding schemes (Li, Gong, and Xiatian 2020;
Ning et al. 2020) to capture the graph topology, which is
important for node-based NAS.

However, existing estimator-based methods (Li, Gong, and
Xiatian 2020; Ning et al. 2020; Wen et al. 2019) overlook
the graph distance when mapping architectures to a latent
space. This results in an inaccurate and/or reduced represen-
tation capacity of the projected latent space. When the graph
distance in the latent space cannot appropriately reflect the
graph distance in the discrete space, the found cell may not
be optimal.

To address the above problem, we propose NASGEM
(Neural Architecture Search via Graph Embedding Method)
to incorporate graph kernel equipped with a similarity mea-
sure into the estimator-based search process. NASGEM del-
icately encodes graphs into a latent space and enables to
search cells with high representation capacity. The main con-
tributions of our work can be summarized as follows: 1)
NASGEM constructs a graphically meaningful latent space to
improve the search efficiency of estimator-based method. 2)
NASGEM employs an efficiency score predictor to model the
relationship between cell structures and their performances.
With the pretrained graph embedding, our predictor can accu-

rately estimate the model performance based on the represen-
tation of cell structures in a graph vector. 3) The exploration
of optimal cell structures is further improved by bootstrap op-
timization, which guarantees the feasibility of graph vectors
in the latent embedding space.

Our evaluation demonstrates that GEMNet outperforms
models obtained by other estimator-based and node-based
NAS methods on multiple vision tasks with 13%-62% param-
eter reduction and 11%- 21% Multiply-Accumulates (MAC)
reduction. Evaluation using NASBench-101 further verifies
the effectiveness of our method.

2 Related Work

Graph Embedding. Graph embedding (Goyal and Ferrara
2018; Grover and Leskovec 2016) projects graph structure
into a continuous latent space. Traditional vertex graph em-
bedding maps each node to a low-dimensional feature vector
while preserving the connection relationship between ver-
tices. Factorization-based methods (Roweis and Saul 2000),
random-walk based methods (Perozzi, Al-Rfou, and Skiena
2014), and deep-learning based methods (Wang, Cui, and
Zhu 2016) are popular approaches used in traditional ver-
tex graph embedding. However, it is challenging to apply
the existing graph embedding methods to deep neural net-
works (DNNs) for the following two reasons: (1) similarities
among cell structures of DNNs cannot be explicitly derived
from traditional graph embeddings; (2) sophisticated deep-
learning based methods like DNGR (Cao, Lu, and Xu 2016)
and GCN (Kipf and Welling 2016; Defferrard, Bresson, and
Vandergheynst 2016; Li, Gong, and Xiatian 2020) require
complex mechanisms when training on structural data. NAS-
GEM addresses these issues by computing the cosine simi-
larity of two embedded graph vectors. It also facilitates the
training process during the formulation of graph embedding
by employing an encoding structure.

Estimator-based NAS. Estimator-based NAS (Wen et al.
2019; Ning et al. 2020; Li et al. 2020) is mainly adopted
to model the entire search space by leveraging the infor-
mation of observed architectures. Estimator-based NAS is
able to explore architectures within unobserved search space,
which is otherwise neglected by other NAS methods. Existing
estimator-based NAS works use widely adopted embedding
methods such as graph convolution networks (GCN) and au-
toencoders (Wen et al. 2019; Li, Gong, and Xiatian 2020;
Luo et al. 2018) without spending delicate efforts to impro-
vise neural architecture representations. Specifically, these
works do not consider graph distance and similarity measures
while utilizing topological information in the search space.
While applied to a node-based search space, these methods
usually suffer from large isomorphic graph variance in em-
bedding space and lead to the exploration of sub-optimal
blocks. NASGEM uses a kernel-guided graph encoder to
jointly learn graph topology and graph similarity while ex-
ploring architectures in the node-based search space. As a
result, NASGEM enables a more precise prediction of the
neural architecture performance and exploration of higher-
quality building blocks.

7091

NASGEM with Kerrnel-guided embedding
NASGEM without Kerrnel-guided embedding (Autoencoder)
—— Linear fitting

—— Linear fitting
1.0

0.8 1

0.6 1

0.4 4

0.2 4

0.0 4

Graph Cosine Similarity (Se(g;, ;)

—0.24

T T T T T T
0.01 0.02 0.03 0.04 0.05 0.06

Performance Score Difference(|S; — 5j|)

Figure 1: Each dot represents the performance score distance
and the cosine similarity of vectored representation. With
graph embedding (blue circle dots), similar graph pairs tends
to have small performance score distance.

3 Neural Architecture Search via Graph
Embedding Method

Our key intuition is that similar graphs should yield simi-
lar neural representations. For instance, given two arbitrary
graphs, the graph distance between these graphs should match
their difference in the representation spaces. However, the
vanilla autoencoder (Poole, Sohl-Dickstein, and Ganguli
2014) is used by most estimator-based NAS methods (Luo
et al. 2018; Zhang et al. 2019) and overlook such topological
information. As shown in Fig. 1, the aforementioned autoen-
coder fails to exploit the negative correlation (orange triangle)
between performance score difference and pairwise graph
similarity. The incorrect correlation is due to the arbitrary rep-
resentation learned by the autoencoder, therefore we envision
a kernel-guided mechanism to formulate an embedding that
can preserve topological information in the learned neural
representation. This motivates us to develop NASGEM, a
node-based neural architecture search method composed of
a kernel-guided encoder to learn an effective embedding, an
estimator built upon the embedding to utilize topological in-
formation, and a bootstrap optimization approach to finalize
the design of high-performing neural architectures.

Fig. 2 depicts the 3-step workflow of NASGEM. In the
first step, we construct a kernel-guided encoder to derive
graph vectors from candidate graphs. The encoder is trained
to jointly minimize reconstruction loss and pairwise graph
similarity loss, see Figure 2(a). In the second step, we uti-
lize the pretrained graph encoder to model the relationship
between graph vectors and their corresponding performance.
An efficiency score predictor is introduced as an estimator
during the exploration process, see Figure 2(b). Finally, we
obtain the optimal cell structure by applying bootstrap opti-
mization in a large sample space. The cell structure with the
highest score determined by the efficiency score predictor is
adopted as the optimal building block, see Fig. 2(c).

Encoder |3 ... gi ... §j --—| Decoder

v

— —
Cosine similarity
Se(9:,95)
WL Kernel

MM Similarity loss

3

N

U
-

_hl

Reconstruction loss j—'

. ,4'9: Efficiency

bl b4 7 score predictor
o Embedded vectors b5
Search
Space b2

ConstruFted neural b3 Measured
architecture score

(c) Bootstrap Optimization ~ Search Space

(a) Kernel-guided Encoder Training (b) Estimator Building
. Lye Efficienc i
. — |76 3 Predicted
cl 2 15 3 score predictor .4 | best graph
Embedded vectors

Figure 2: Workflow of NASGEM. (a) Encoder Training: the encoder learns to map graphs into a continuous embedding space by
jointly minimizing the reconstruction loss and graph similarity loss. (b) Estimator Building: we (b1) randomly sample graphs
from the search space; then (b2) build these graphs into neural networks and (b3) measure their efficiency scores; (b4) we also
embed each sub-graph into a continuous vector with the trained kernel-guided encoder; finally, (b5) we train the efficiency
score predictor with the embedded vectors and the corresponding efficiency score. (c) Bootstrap Optimization: we (c/) sample a
large amount of graphs from the search space, (c¢2) embed then into vectors with the kernel-guided encoder and (c3) obtain the
predicted efficiency score; (c4) we select the graph with the highest predicted score as the candidate.

s
&

Figure 3: Our goal is to construct an embedding space such
that the distance of graphs in the embedding space reflects its
graph similarity. Graphs with more graph similarity (e.g., G3
and G4) have closer distance (S,) in the embedding space.

3.1 Kernel-guided Encoder Training

In step (a) of NASGEM workflow, we train kernel-guided en-
coder, E : R"*” — R to vectorize the adjacency matrix
of a graph to an inner product space that can represent the
topological graph structure, node information (DNN opera-
tion), neighboring connections (distribution of tensors), and
the pairwise graph similarity.

To measure the similarity of graphs in discrete topological
space, there are various approaches in graph theory, such as
WL kernel (Shervashidze et al. 2011). For continuous graph
embedding space, cosine similarity is widely used to measure
the similarity of graph vectors in [—1, 1]. The encoded vec-
tors aim at preserving graph similarity measured by cosine
similarity in the continuous space, see Fig. 3. Therefore, we
train the encoder with the objective of minimizing the differ-
ence between WL kernel value in the discrete graph space
and the cosine similarity value in the continuous space.
Weisfeiler-Lehman (WL) Kernel. To estimate graph simi-
larity, a common method is to learn a positive definite kernel,
k: X x X — R, where X represents the adjacency matrix

7092

set. Here we adopt Weisfeiler-Lehman (WL) kernel (Sher-
vashidze et al. 2011) as a graph similarity measure of two
arbitrary input graphs G;, G as follows:

Sy(Gi, G)) = kiy) (Ai, Ay), (1)

where A;, A; are the adjacency matrices for graph G;, G;.
h denotes the iteration times of computing WL kernel. For
graphs with IV nodes, the WL kernel can be computed with i
iterations in O(h x N'). Compared with other graph similarity
metrics, WL kernel is able to measure large and complex
graphs with relatively low computational complexity. The
procedure and code of measuring the similarity between two
input graphs is provided in the supplementary material.
Similarity measure of graph vectors. We adopt cosine sim-
ilarity to measure the similarity of the vectorized graph repre-
sentations (i.e., graph vectors). The cosine similarity measure
on the embedding space is defined as:

_ _Bi'8j
el llesI”

where g; and g; are vectorized representation of graph G;
and G;. The direction of the vector reflects the proximities of
the original graphs. Compared with the standard Euclidean
distance in R™, cosine similarity is scale-invariant. In ad-
dition, since the range of cosine distance is bounded, it is
comparable with the similarity value given by WL kernel.
Thus we can supervise the training of the embedding function
with the difference between the cosine similarity value and
the WL kernel value.

Encoder training objective. As graph similarities are al-
ways measured pairwise, the encoder is trained and evaluated
on a large number of graph pairs (G;, G;). To formulate a
mapping to represent topological graph structure in a continu-
ous space, the cosine similarity of the encoded graph vectors
shall represent the similarity of the corresponding original

Se(giagj) (2)

graph in the original discrete topological space. To satisfy the
above training objectives, we define the similarity loss with
respect to a pair of input graph: (G;, G;) as:

[Se(E(A;), E(A;)) — S4(Gy, Gj)}Q(é)

Besides similarity loss, we also consider reconstruction
loss, £,(G;, D(E(G;))), for each graph. Here D is a de-
coder that maps the encoded graph to the same dimension as
G Therefore, our final loss function of encoder training is
as follow:

E* = min Z{ﬁs(Gi, G;;E)

Ls(Gi, Gj;E) =

4)
+ £,(Gi, D(E(Gy))) + L:(G;, D(E(G;)))}-

Following common practice in autoencoders (Hinton and
Zemel 1994), we adopt fully-connected feedforward net-
works for both encoder and decoder. The encoder is trained
independently before the searching procedure. We randomly
generate a number of graph structure pairs with the same
numbers of nodes and apply WL kernel to provide ground
truth labels. Details and code implementation can be found
in supplementary material.

3.2 Estimator Building

Performance estimation of graph vectors. Like most of
the previous works (Liu, Simonyan, and Yang 2019; Pham
et al. 2018), we map DAGs to cell structures, which are used
as building blocks of DNNs. Each node in the DAG stands
for a valid DNN operation (such as depth-wise separable
convolution 3x3), and each edge represents the flow of ten-
sors from one node to another. When mapping cell structures
to DNN architectures, nodes with no input connections (i.e.,
zero in-degree) are dropped while nodes with in-degree larger
than one is inserted a concatenate operation. The output of
building blocks can be constructed from the leaf nodes with
zero out-degree. The concatenation of these leaf nodes along
the last dimension gives the output feature maps.

To evaluate the performance of DNN architectures formed
by the corresponding cell structures of graph vectors, we
use efficiency score instead of accuracy as our search metric
so that both performance and efficiency are taken into con-
siderations. The efficiency score for candidate graph G is
formulated as:

S(G) = ACC[N(G)] — Alog(MAC[N(G)]), (5)

where N(G) is the DNN constructed with the cell repre-
sented by G. ACC' is the validation accuracy on proxy
dataset. M AC' is the number of Multiply-Add operations
of N(G) measured in Millions. A is a penalty coefficient. We
use MAC as the penalty term since it can be precisely mea-
sured across search iterations. Most compact models (Howard
et al. 2017; Sandler et al. 2018; Tan et al. 2019) have hundred
millions of MACs while large models (Szegedy et al. 2015)
can have billions of MACs. This penalty function can urge
the search iteration towards improving the performance of
small models or deflating the complexity of large models, and
thus strike a balance between complexity and performance.

7093

Train Efficiency Score Predictor. The efficiency score pre-
dictor P : R — R maps the d-dimensional graph vector to
a real-value that indicates the performance of architectures
built upon this graph vector. The predictor is a fully connected
neural network with activation function ReLU. We maintain
aset {(g,v)}, where g is a graph vector and y is its efficiency
score measured on proxy dataset. In each iteration, we add
current selected graph vector/score pair into the set and train
the predictor P with this enlarged set. The predictor becomes
more accurate by using the efficiency score of new samples
for fine-tuning. More importantly, the predictor in NASGEM
is built on top a smoother latent space, which is constructed
through the graph embedding of unrestricted DAGs. Such
accurate prediction allows to explore a wider search space
with extremely small search cost (0.4 GPU days). Predictor
training algorithm and code implementation can be found in
Supplementary Material.

Fig. 1 shows the feasibility of the proposed predictor. We
can see the cosine similarity of the output vectors of graph en-
coder is inversely proportional to their performance distance.
This indicates that after training, kernel-guided encoder can
learn to encode similarity information between two graphs
into the intersection angle of their vectorized representations.
In other words, graph embedding can improve the accuracy of
predictor by enhancing robustness under isomorphic graphs.

We also show that for isomorphic or similar graphs, our
predictor gives close performance score. For a fully connect
neural network, its Lipschitz constant always exists (Jordan
and Dimakis 2020; Virmaux and Scaman 2018). Thus, we
assume the Lipschitz constant of predictor P after training is
K, which means Vz1, zo € RY,

[P(21) — P(a2)| < Kllz1 — 22| (6)
where || - || represents L? norm. Let the input of predictor be

arandom vector X ~ u € R%. X’ and X are independently
drawn from probability measure p. We have

Epxp [\P(} (7

=E,x, [P*(X) +P2(X’) 2P(X)P(X")] (®

= 2E[P*(X)] - 2(E[P(X)])” ©)

— 2| (P(X) — E[P(X)])?]. (10)
Based on (6),

By |[P(X) = PX)*] < KBy [I1X = X'IF] 1)
- 2K2E[(X EX]) (X - E[X])]. (12)
Based on (7)-(10) and (11)-(12),

E[(P(X) - EP(X))’| < KE[|X - EIX]|?]. (3)
Equation (13) shows the variance of the output (performance
score) of predictor is upper bounded by its Lipschitz constant
and the variance of input vectors. After training, the predictor
is determined with a fixed Lipschitz constant K. Encoder
with WL kernel embedding decreases the variance of input
for isomorphic or similar graphs. Therefore, it enhances the
robustness of predictor under isomorphic or similar graphs.

3.3 Bootstrap Optimization

After the predictor is trained using a large number of neural
architectures and their corresponding efficiency scores, our
goal of finding the optimal cell structure in the topological
graph space is equivalent to finding the graph vector that has
the highest score according to the efficiency score predictor,
formulated as:

g* = argmaxP(g),

g

(14)

where ¢ = E*(A) is the embedded graph vector after pass-
ing adjacency matrix A into the pretrained graph encoder,
and P(g) : RY — R is the efficiency score predictor that
estimates the efficiency score of a given cell A.

NASGEM explores a continuous immense search space
consisting of hyper-complex families of cell structures. For
efficient exploration, we introduce an exploration method
based on two empirical beliefs: (1) Optimal cell structures
within the search space is not unique as various architectures
of the similar isomorphism can yield equally competitive
results. (2) Finding the optimal graph vector in the continuous
search space and then decoding may not discover a valid
architecture, as the mapping from graph vectors to discrete
topological cell structures may not be injective.

For simplicity, we use Bootstrap Optimization to address
the above issues by sampling the cell structures with replace-
ment among a large sample space S and picking up the best
one as our post-searching approximation. With the pretrained
graph encoder E, we randomly sample cell structure A € S
from the sample space and approximate the best candidate
cell structure A* by predicting the efficiency score using the
efficiency score predictor P:

A* = argmax P(E(A)).
AeS

15)

4 Experimental Evaluation

We apply NASGEM to search efficient mobile neural architec-
tures on image classification and object detection tasks. We
initiate architecture search with a complete DAG of N = 30
so that a rich source of cells can be constructed. Each node
can choose from either 1x 1 convolution or 3x3 depthwise
separable convolution as its candidate operation. Following
the common practice in NAS, each convolution operation
adopts a Convolution-BatchNorm-ReLU triplet (Xie et al.
2019a; Liu, Simonyan, and Yang 2019). We use 1/10 of the
CIFAR-10 dataset as a proxy to evaluate performance, and
use the obtained performance to train the predictor.

4.1 Learning Dynamics of NASGEM

We illustrate the learning dynamics of NASGEM by plotting
the efficiency score surface with respect to latent vectors in
the graph embedding space. The efficiency score surface is
obtained by sampling 50,000 adjacency matrices, mapping
them to the continuous embedding space, and passing them
through the efficiency score predictor.

Fig. 4 illustrates the efficiency score surface of efficiency
score predictors with and without using graph embedding as
a latent vector. This can be interpreted as the embedding of
the optimal cell structure in the continuous embedding space.

7094

Under the kernel-guided embedding, the efficiency score
surface is smoother, which achieves global optimum more
easily and more efficiently. In contrast, without graph kernel
guided embedding, the efficiency score surface cannot be
constructed smoothly, which makes the optimization process
more difficult and less efficient.

4.2 Classification on ImageNet

Table 1 summarizes the key performance metrics on the Im-
ageNet dataset. For a fair comparison, we compare with
the most relevant NAS works that also use either encod-
ing scheme or node-based search space (without predefined
chain-liked backbone). Note that we report the total search
cost for all phases: encoder training, estimator building, and
bootstrap optimization. GEMNet, the optimal architectures
crafted by our explored building block, are consistently more
accurate with fewer parameters and MACs. Specifically,
GEMNet-A and GEMNet-B surpass all the node-based works
(DARTS, P-DARTS, PC-DARTS, SNAS, GDAS, MiLeNAS).
GEMNet with kernel-guided graph embedding also outper-
forms the most recent NAS methods with alternative embed-
ding methods such as LSTM, GCN, and GATES.

4.3 Object Detection on COCO

To further evaluate the transferability of GEMNet, we con-
duct object detection experiments on the challenging MS
COCO dataset (Lin et al. 2014). We use the whole COCO
trainvall35 as training set and validate on COCO minival.
For both two-stage Faster RCNN detector with Feature Pyra-
mid Networks (FPN) (Ren et al. 2015; Lin et al. 2017a) and
one-stage RetinaNet (Lin et al. 2017b) detector, the input
images are resized to a short side of 800 pixels and a long
side not exceeding 1333 pixels. As shown in Table 2, com-
pared with the manually crafted MobileNetV2 (Sandler et al.
2018) and automatically searched MnasNet (Tan et al. 2019),
GEMNet detection model achieves up to 0.7% higher AP
with fewer parameters and lower MACs.

4.4 Evaluation on NASBench-101

To facilitate the reproducibility of NAS and evaluate search
strategy, NASBench-101 (Ying et al. 2019) provides abundant
results for various neural architectures (about 423K) in a large
number of search spaces. To justify the effectiveness of NAS-
GEM, we further perform evaluation on NASBench-101. We
randomly sample a fixed number of candidate architectures
(200~2000) from NASBench-101 within a fixed operation
list given by NASBench-101. Then we train the efficiency
score predictor with/without our proposed graph embedding
on these sampled architecture respectively. Finally, we select
the best architecture through bootstrap optimization by using
the trained efficiency score predictor to evaluate a total of
50K architectures and pick the best one.

We measure the performance of NASGEM on NASBench-
101 by Global Prediction Bias, B = Ag — Ap. Here Ap is
the global accuracy, which is the best accuracy in the whole
search space given in NASBench-101. A p is the predicted ac-
curacy, which is the accuracy achieved by NASGEM. When
predicted accuracy is very close to global accuracy, global

e 9 o o
NI O -
Predicted Efficiency Score

o
<)

(a) With graph kernel guided embedding.

()

1.0 £
S IPto.7

1]

0.8 >
2| ros6

GJ

06 5
E[los

w

0.4 5
2 0.4

02 3

[
g 0.3

0.0 *
0.2
0.1

(b) Without graph kernel guided embedding.

Figure 4: Efficiency score surface of efficiency score predictor based on DNN performance on CIFAR-10 dataset and computation
cost in terms of MACs. We use PCA to project the graph vectors into a 2-dimensional space named x and y and plot the efficiency
score of graph vector using a heatmap for (a) with graph kernel guided embedding and (b) the case of without embedding.

Architecture Encoder Test Err.(%) #Params | MACs | Search Cost
top-1 top-5 ™M) ™M) (GPU days)
RandWire-WS (Xie et al. 2019a) / 25.3+025 7.8x015 5.6+0.1 583+6.2 /
DARTS (Liu, Simonyan, and Yang 2019) / 26.7 8.7 4.7 574 4.0
P-DARTS (Chen et al. 2019) / 24.7 7.5 5.1 577 0.3
PC-DARTS (Xu et al. 2019) / 25.1 7.8 53 586 0.1
SNAS (Xie et al. 2019b) / 27.3 9.2 4.3 522 1.5
GDAS (Dong and Yang 2019) / 26.0 8.5 53 581 0.21
MiLeNAS (He et al. 2020) / 25.4 7.9 4.9 570 0.3
BayesNAS (Zhou et al. 2019) / 26.5 8.9 3.9 / 0.2
NAONet (Luo et al. 2018) LSTM 25.7 8.2 11.35 584 200
NGE (Li, Gong, and Xiatian 2020) GCN 25.3 7.9 5.0 563 0.1
GATES (Ning et al. 2020) GATES 24.1 / 5.6 / /
GEMNet-A (Ours) Kernel-guided MLP 23.7 7.9 4.3 463 0.4
GEMNet-B (Ours) Kernel-guided MLP 23.3 7.8 4.5 563 04

Table 1: ImageNet results with different computation budget. For fair comparison, the input image resolution is fixed at 224 x224.
Note that the pareto frontier of MACs and parameter count (#Params) is not linear. Further reducing computation cost under a
small computation regime is very challenging as redundancy is already low.

prediction bias (B) is moving toward zero. Therefore, the
smaller B reflects the more accurate prediction.

As shown in Fig. 5, with the guidance of graph kernel
embedding, there is around 0.2% gain on predicting global
accuracy on the NASBench-101 dataset. Such topological
information can facilitate the training of efficiency score
predictor given insufficient data.

NASGEM also produces more stable results as structural
knowledge represented by graph embedding generalizes bet-
ter than binary adjacency matrices. Thus, the performance
of NASGEM is less sensitive to the number of evaluated
samples in the search space.

4.5 Ablation Studies

Impact of embedding dimension and number of nodes.
Here we conduct an analysis on two factors of the graph
encoder: number of nodes n and embedding dimension d. We
choose n in [10, 30, 50, 100, 150, 200, 250], d in [10, 20, 30,

7095

—— with graph kernel embedding
—— without graph kernel embedding

107t

1072 4

Global Prediction Bias (%)

._.
15)
&

260 S(I)O 10‘00
Number of Sample Architectures
Figure 5: Efficiency score predictor’s performance on
NASBench-101 with and without graph kernel embedding.

40, 50], the encoder and decoder are trained for 10k iterations
using 50k generated graph pairs. As shown in Figure 6, the
similarity loss falls fast until convergence. Meanwhile, larger

Backbone [Detector | Params(M) | MACs(G) [AP, [AP,, [AP, | AP;) [AP7; | AP
MobileNetV2x 1.4 14.2 170.5 18.7 | 36.6 | 445 | 52.9 35.7 | 335
MnasNetx 1.3 RetinaNet 14.8 169.2 19.7 | 382 | 47.6 | 55.2 369 | 35.0
GEMNet-A (Ours) 13.5 166.9 21.2 | 389 | 473 | 55.6 375 | 354
GEMNet-B (Ours) 14.2 169.2 21.1 | 393 | 479 | 558 38.2 | 35.7
MobileNetV2x 1.4 22.1 133.4 194 | 36.5 | 43.6 | 55.6 35.5 | 33.6
MnasNetx 1.3 Faster RCNN 22.6 132.1 214 | 386 | 459 | 579 375 | 354
GEMNet-A (Ours) 21.4 133.1 21.7 | 38.7 | 45.1 | 57.6 37.8 | 35.3
GEMNet-B (Ours) 22.0 133.6 219 | 39.0 | 459 | 58.2 38.1 | 35.7

Table 2: Results on MS COCO dataset. Parameters and MACs are measured on the whole detector with input size 800 x 1333.

n and smaller d will introduce higher loss. It reveals that our
encoder can be applied to search different sizes of graphs by
adjusting embedding dimensions.

graph nodes (n)

—e— 10 —¥— 30 —4— 50 —=— 100 —+— 150 —— 200 250
10°
0.005 §
m * a L]
2>0.004 . 2101 \\ d=50
£) " @
£0.003 ‘. o
£ 210- \
= 5 ‘% 1072
= 0.002{ &%y K 3
c 1S
i]
0.001 1073

2500 5000 7500 10000
Training Step

10 20 30 40 50 0
Embedding dimension (d)

Figure 6: Kernel-guided encoder training under different num-
ber of nodes and embedding dimension.

Impact of proportion of training data. In Table 3 and 4,
we show the effectiveness of the proposed embedding scheme
by evaluating the impact of different embedding methods
with Kendall’s tau (Sen 1968) and Pearson correlation coeffi-
cient (Benesty et al. 2009).

We build NASGEM-Bench containing 1000 neural archi-
tectures to evaluate the effectiveness of our graph embedding
method. To minimize the variance from the choice of node
operation, each cell in NASGEM-Bench has at most 6 nodes
and each node has only one kind of operation, 3x3 convo-
Iution. We randomly sample 1000 graphs to build a 3 stage
DNN. We train each network on CIFAR-10 with 30 epochs
and record the final accuracy.

We use 60% data (600 graphs) from NASGEM-Bench as
the training samples and the rest 40% (400 graphs) as the
test set. Under the 60% of training data, we randomly slice
different proportions of training data for comparison. We
try three methods to train our predictor based on different
proportions of training data. In the first method, we directly
flatten the upper triangle of the adjacency matrices, and use
the flatten vector and the corresponding performance scores
to train the predictor. In the second method, we first use a two-
layer MLP to build an autoencoder, then use MLP encoder
to embed the adjacency matrices into vectors. We use those
vectors and their performance scores to train a predictor. In
the third method, we use our kernel-guided encoder to embed
the adjacency matrices into vectors, then train the predic-
tor with the scores and embedding vectors. Compared with

purely using an adjacency matrix and MLP-based autoren-
coder, NASGEM’s embedding method consistently achieves
better prediction under different proportion of training data.

Table 3: The Kendall’s Tau of the predicted result with differ-
ent embedding methods.

Embedding Proportion of Training Data (%)
Method 10 20 30 50 70 100

adj. matrix 042 045 044 044 046 046
MLP 045 047 044 045 046 047
NASGEM 048 053 053 055 0.54 0.55

Table 4: The Pearson correlation coefficient of the predicted
result with different embedding methods.

Embedding Proportion of Training Data (%)

Method 10 20 30 50 70 100
adj. matrix 047 0.64 0.62 0.66 0.67 0.66
MLP 0.57 0.58 0.66 0.63 062 0.71
NASGEM 0.76 0.82 0.84 0.85 0.85 0.85

5 Conclusion

NASGEM is the first of its kind estimator-based NAS method
that tackles down the limitations of graph topology explo-
ration in existing search methods via: (i) construct a topo-
logically meaningful representation by WL kernel guided
graph embedding; (ii) employ an efficiency score predictor
to precisely model the relationship between neural architec-
tures and performance; (iii) use bootstrap optimization to
explore the optimal architecture. All these components work
coherently to enable NASGEM to search a more efficient
neural architecture from an unrestricted wide search space
within a short time. Compared with neural architectures pro-
duced by existing embedding methods, GEMNet crafted by
NASGEM consistently achieves higher accuracy on image
classification and object detection while having less param-
eters and MACs. NASGEM is highly adaptable to different
search spaces. By combining our proposed graph embedding
with NASBench-101, it achieves a more precise and stable
prediction compared to the version without graph embedding.

7096

6 Acknowledgements

This work is supported in part by the following grants: Na-
tional Science Foundation NSF-1937435, CCF-1756013 and
IIS-1838024 (using resources provided by Amazon Web Ser-
vices as part of the NSF BIGDATA program), Qualcomm
Gift. We thank the anonymous reviewers for their insightful
comments and suggestions that significantly improved the

paper.

References

Baker, B.; Gupta, O.; Raskar, R.; and Naik, N. 2017. Acceler-
ating neural architecture search using performance prediction.
arXiv preprint arXiv:1705.10823 .

Benesty, J.; Chen, J.; Huang, Y.; and Cohen, 1. 2009. Pear-
son correlation coefficient. In Noise reduction in speech
processing, 1-4. Springer.

Cao, S.; Lu, W.; and Xu, Q. 2016. Deep neural networks for
learning graph representations. In Thirtieth AAAI Conference
on Artificial Intelligence.

Chen, X.; Xie, L.; Wu, J.; and Tian, Q. 2019. Progressive
differentiable architecture search: Bridging the depth gap
between search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, 1294—1303.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. In Lee, D. D.; Sugiyama,
M.; Luxburg, U. V.; Guyon, I.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems
29, 3844-3852. Curran Associates, Inc. URL http:
/lpapers.nips.cc/paper/6081-convolutional-neural-networks-
on-graphs-with-fast-localized-spectral-filtering.pdf.

Dong, X.; and Yang, Y. 2019. Searching for a robust neural
architecture in four gpu hours. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

1761-1770.

Goyal, P.; and Ferrara, E. 2018. Graph embedding techniques,
applications, and performance: A survey. Knowledge-Based
Systems 151: 78-94.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855-864. ACM.

He, C.; Ye, H.; Shen, L.; and Zhang, T. 2020. Milenas: Effi-
cient neural architecture search via mixed-level reformulation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Hinton, G. E.; and Zemel, R. S. 1994. Autoencoders, mini-
mum description length and Helmholtz free energy. In Ad-
vances in neural information processing systems, 3—10.

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. In arXiv preprint arXiv:1704.04861.

7097

Jordan, M.; and Dimakis, A. G. 2020. Exactly Computing the
Local Lipschitz Constant of ReLU Networks. arXiv preprint
arXiv:2003.01219 .

Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.;
and Xing, E. P. 2018. Neural architecture search with
bayesian optimisation and optimal transport. In Advances in
Neural Information Processing Systems, 2016-2025.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classifi-
cation with graph convolutional networks. In Proceedings of
the International Conference on Learning Representations.

Li, W.; Gong, S.; and Xiatian, Z. 2020. Neural Graph Embed-
ding for Neural Architecture Search. In The AAAI Conference
on Artificial Intellegence.

Li, Z.; Xi, T.; Deng, J.; Zhang, G.; Wen, S.; and He, R.
2020. GP-NAS: Gaussian Process Based Neural Architecture
Search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Liang, H.; Zhang, S.; Sun, J.; He, X.; Huang, W.; Zhuang, K.;
and Li, Z. 2019. Darts+: Improved differentiable architecture
search with early stopping. arXiv preprint arXiv:1909.06035

Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; and
Belongie, S. 2017a. Feature pyramid networks for object
detection. In CVPR.

Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollar, P.
2017b. Focal loss for dense object detection. In ICCV.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P;
Ramanan, D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, T740-755. Springer.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differen-
tiable architecture search. In Proceedings of the International
Conference on Learning Representations.

Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018.
Neural architecture optimization. In Advances in Neural
Information Processing Systems, 7827-7838.

Ning, X.; Zheng, Y.; Zhao, T.; Wang, Y.; and Yang, H.
2020. A Generic Graph-based Neural Architecture En-
coding Scheme for Predictor-based NAS. arXiv preprint
arXiv:2004.01899 .

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. DeepWalk:
Online Learning of Social Representations. In Proceed-
ings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, 701-
710. New York, NY, USA: ACM. ISBN 978-1-4503-2956-9.
doi:10.1145/2623330.2623732. URL http://doi.acm.org/10.
1145/2623330.2623732.

Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient Neural Architecture Search via Parameter Sharing.
In International Conference on Machine Learning, 4092—
4101.

Poole, B.; Sohl-Dickstein, J.; and Ganguli, S. 2014. Analyz-
ing noise in autoencoders and deep networks. arXiv preprint
arXiv:1406.1831 .

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 4780-4789.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-
CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In NeurIPS.

Roweis, S. T.; and Saul, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding. science 290(5500):
2323-2326.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen,
L.-C. 2018. Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4510-4520.

Sen, P. K. 1968. Estimates of the regression coefficient
based on Kendall’s tau. Journal of the American statistical
association 63(324): 1379-1389.

Shervashidze, N.; Schweitzer, P.; Leeuwen, E. J. v.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search 12(Sep): 2539-2561.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 1-9.

Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2820-2828.

Virmaux, A.; and Scaman, K. 2018. Lipschitz regularity of
deep neural networks: analysis and efficient estimation. In
Advances in Neural Information Processing Systems, 3835—
3844.

Wang, D.; Cui, P,; and Zhu, W. 2016. Structural deep net-
work embedding. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1225-1234. ACM.

Wen, W.; Liu, H.; Li, H.; Chen, Y.; Bender, G.; and Kinder-
mans, P.-J. 2019. Neural predictor for neural architecture
search. arXiv preprint arXiv:1912.00848 .

Xie, S.; Kirillov, A.; Girshick, R.; and He, K. 2019a. Explor-
ing Randomly Wired Neural Networks for Image Recogni-
tion. In The IEEE International Conference on Computer
Vision (ICCV).

Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2019b. SNAS:
stochastic neural architecture search. In International Confer-
ence on Learning Representations. URL https://openreview.
net/forum?id=rylqooRqK?7.

Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.-J.; Tian, Q.; and
Xiong, H. 2019. PC-DARTS: Partial Channel Connections

for Memory-Efficient Architecture Search. In International
Conference on Learning Representations.

7098

Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy, K.;
and Hutter, F. 2019. NAS-Bench-101: Towards Reproducible
Neural Architecture Search. In Chaudhuri, K.; and Salakhut-
dinov, R., eds., Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, 7105-7114. Long Beach, Cali-
fornia, USA: PMLR. URL http://proceedings.mlr.press/v97/
ying19a.html.

Zhang, M.; Jiang, S.; Cui, Z.; Garnett, R.; and Chen, Y. 2019.
D-vae: A variational autoencoder for directed acyclic graphs.
In Advances in Neural Information Processing Systems, 1588—
1600.

Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. BayesNAS:
A Bayesian Approach for Neural Architecture Search. In
ICML.

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018.
Learning transferable architectures for scalable image recog-
nition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8697-8710.

