Bulletin of the American Physical Society

52nd Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics

Volume 66, Number 6

Monday-Friday, May 31-June 4 2021; Virtual; Time Zone: Central Daylight Time, USA

Session U02: Imaging Ultrafast Molecule Dynamics

2:00 PM-4:00 PM, Thursday, June 3, 2021

Chair: Thomas Weinacht, Stony Brook University

Abstract: U02.00008 : Single-shot visualization of the optical Kerr effect, ionization, and rotational Raman effect during laser matter interactions via frequency-domain holography*

3:24 PM-3:36 PM Live

← Abstract →

Presenter:

Dennis Dempsey (Binghamton University)

Authors:

Dennis Dempsey (Binghamton University)

GARIMA C NAGAR (Binghamton University)

Jack Agnes (Binghamton University)

Russell Berger (Binghamton University)

Bonggu Shim (Binghamton University)

Collaborations:

Dennis Dempsey, Garima C. Nagar, Jack Agnes, Russell Berger, and Bonggu Shim

We visualize the ultrafast dynamics caused by intense femtosecond laser pulses in both thin flexible glass as well as gaseous atoms and molecules using single-shot Frequency Domain Holography (FDH) [1-3]. FDH is a robust, single-shot, time-resolved visualization technique that employs chirped pulses. Femtosecond laser micromachining of glass materials relies critically on the Kerr effect and ionization, thus direct observation of their dynamics can help produce optical devices such as waveguides. For gases, single-shot visualization of laser-matter interactions will allow for a better understanding of nonlinear optical phenomena such as filamentation [4] and Raman-induced extreme spectral broadening [5]. Using FDH, we have previously observed the ionization dynamics of thin, flexible glass and measured its nonlinear index [3], and are currently investigating the ultrafast dynamics of gases under intense laser fields. [1] S. P. Le Blanc et al., Opt. Lett. 56, 764-766 (2000). [2] K. Y. Kim et al., APL, 88 4124-4126 (2002). [3] S. Huang et. al., OFC 1-3 (2014). [4] A. Couairon et al., Phys. Rep. 441, 47 (2007). [5] D. Dempsey et al. Opt. Lett. 45, 1252-1255 (2020).

**Funded by National Science Foundation (NSF) (PHY-1707237), Air Force Office of Scientific Research (AFOSR)(FA9550-18-1-0223), and the Integrated Electronics Engineering Center (IEEC) at Binghamton University.

This site uses cookies. To find out more, read our Privacy Policy.

I Agree