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1 Introduction

Language learners need to map a continuous, multidimensional acoustic signal
to discrete abstract speech categories. The complexity of this mapping poses a
difficult learning problem, particularly for second language learners who struggle
to acquire the speech sounds of a non-native language, and almost never reach
native-like ability. A common example used to illustrate this phenomenon is the
distinction between /r/ and /1/ (Goto, 1971). While these sounds are distinct in
English and native English speakers easily distinguish the two sounds, native
Japanese speakers find this difficult, as the sounds are not contrastive in their
language. Even with much explicit training, Japanese speakers do not seem to be
able to reach native-like ability. (Logan et al., 1991; Lively et al., 1993)

A particularly effective strategy for learning speech categories as an adult,
however, is through implicit learning within a video game paradigm (Wade and Holt,
2005; Gabay et al., 2015; Lim and Holt, 2011). In these experiments, participants
control a spaceship at the center of a screen with aliens entering from various
locations. Participants must shoot or capture these aliens and increase their score
every time they do so. Auditory tokens are presented before each alien enters
and are sampled from a category that corresponds to the aliens’ location and
color, providing an early cue for identifying which direction the participant should
face. As the experiment progresses, aliens begin to move faster and it becomes
increasingly difficult to turn and shoot or capture without attending to the auditory
information. Improved performance for the recognition of categories between
the start and end of gameplay is observed for various types of stimuli — both
synthesized noise (Lim et al., 2019) and speech tokens (Lim and Holt, 2011). In
the latter experiment, adults show as much improvement in the discrimination of
non-native speech sounds after 2 hours of video game training, as they do during
10 hours of explicit training over a period of 2-4 weeks (Logan et al., 1991). A
potential reason that this paradigm is so effective could lie in its engagement of a
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reward-based learning algorithm. When undergoing learning in this environment,
neural activity is observed in the striatum (Lim et al., 2014, 2019) - a subcortical
area of the brain associated with reinforcement and reward mechanisms. This
region is considered to play an important role in reward through the activation
of dopaminergic circuits. While studies on the striatum have typically focused
on reward prediction, recent studies have suggested that the basal ganglia could
implement reinforcement learning specifically (Kawagoe et al., 1998; Joel et al.,
2002; Cohen and Frank, 2009; Dabney et al., 2020)

In reinforcement learning (Sutton and Barto, 1998), an agent takes actions
within an environment, receiving a reward upon reaching a favorable outcome. At
each timestep the agent receives information about the state of the environment
and predicts the value of each action available to it. The agent then takes an action,
observes the reward received, and updates its parameters according to the mismatch
between the predicted and observed reward value. This process is iterative, enabling
the agent to take actions that lead to reward in the future. Even if the agent does not
receive a reward immediately, it will still take actions that put it in a better position
to receive a reward at another timestep.

The construction of the video game paradigm has components which lend
itself clearly to the implementation of a reinforcement algorithm: a participant acts
within an environment and receives rewards. This paradigm has been used in many
experiments and results in robust learning across different variations of stimuli. At
the same time, reinforcement mechanisms have been proposed to play a role in
other speech learning paradigms (Nixon, 2020; Harmon et al., 2019). However,
these two ideas have not yet been explicitly unified.

In this paper, we formalize the video game training paradigm explicitly as a
reinforcement learning problem. We present two simulations. The first simulates
findings of Lim et al. (2019), providing proof in principle that a reinforcement
learning algorithm can successfully capture human results in a video game where
adults learn novel categories of noise tokens. Our second simulation extends this
to speech sounds and demonstrates that our algorithm mimics second language
learners’ improvement on discrimination of a non-native speech contrast. Together
these two simulations show that reinforcement learning provides an accurate model
of human learning in this paradigm and provide evidence supporting the hypothesis
that this mechanism could play a key role in effective speech category learning in
adults. In the long term, being able to identify the algorithms employed in this
paradigm could provide many avenues for pedagogical changes in second language
learning and let teachers harness the processes that allow for efficient learning and
improvement of non-native perceptual ability.

2 Simulation 1: Video Game With Noise Categories

Our first simulation models the results of Lim et al. (2019) and demonstrates that a
reinforcement algorithm is able to correctly discriminate between auditory noise
categories with simple boundaries. We simulate human experiments by training a



neural network to map between states and actions within a video game environment.
We then evaluate the model by observing how much reward the agent receives for
various categories of stimuli. We compare these results across various token types
with the behavioral results observed.

2.1 Computational Model

We define the reinforcement framework formally as a Markov Decision Process
where the environment is given by a set of states S = {s1, s2, S3, ...}, one of
which is presented to the agent at each time step ¢. The agent then has a set of
actions A = {aq, as, as, ...} that it can take. At each timestep, the agent receives
information about the state, chooses an action, and receives a reward r; before the
environment transitions to the next state. The transition between states can depend
on both the actions of the agent and external factors of the environment. The goal
of the agent is to find a policy mapping between states and actions (s, a) that will
maximize the total reward for this and future steps, by updating its parameters
depending on the reward it receives.

In this paper, we use model-free reinforcement learning, where the policy of
the agent is determined by the Q-function, defined as follows.

Q(st,a¢) = re + v * maxQ(s¢ 41, arq1) (D

This function outputs the maximum possible reward for a specific action, by
summing the reward at the current timestep r; plus the maximum possible reward
from the next timestep max @Q(s¢+1, a;+1) multiplied by a discount parameter
~. This function is iterative since the maximum value at the next timestep will
apply the same function, allowing the model to account for future reward. This
mapping is not directly observable for the agent, and so it must estimate the value
of each action at each state by approximating this function. While there are various
methods for performing this approximation, we use a specific implementation of
deep Q learning (Mnih et al., 2015) to build a deep neural network that represents
the Q-function (DQN). This network takes state information as input and outputs a
distribution of values over all actions the agent can take.

The agent’s decisions in this model follow an e-greedy algorithm to allow for a
tradeoff between exploring the environment to discover patterns and choosing the
most optimal action to receive a reward. Throughout the simulation, the agent will
choose a random action with probability € and choose the most optimal outcome
with probability 1 — ¢, where the optimal outcome is the action with the highest
value, as determined by the network. The parameter decays during training to
ensure that the agent has enough time to explore the full spectrum of state-action
pairings at the start of the simulation, before starting to behave more optimally.

In the experimental paradigm (Lim and Holt, 2011; Lim et al., 2019), the player
receives both auditory and visual cues as they can see the location/color of the alien
and hear the corresponding sound. Over time, the game speed increases and in
order to have a chance at shooting the alien, the participant must rely increasingly
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Figure 1: Frequency profiles (left) and onset category structure (right) for simulation 1
noise categories in the experimental (top) and control (bottom) condition. Profiles
from Lim et al. (2019).

on the auditory cues as these are presented before the alien enters the screen. In
our simulations, we present the agent with one repetition of an auditory token on
each timestep, as well as the current direction the spaceship is facing. We do not
present visual information identifying where the alien is situated, meaning that
the agent does not have grounding for the correspondence between alien locations
and the auditory category. This would be like a human playing a version of the
game where they can see the direction that the spaceship is facing, but cannot
see the location of any aliens. In theory, this should make the task more difficult
as the agent cannot bootstrap the learning of auditory categories from any visual
information present. This ensures that any success from our model is due to the
exploration of the reinforcement algorithm and the reward received, rather than
simple correlation between visual and auditory signals.

We discretize the continuous nature of the game, where the participant can
take actions at any time, into timesteps where at each step the participant receives
information about their location and environment and selects one action out of
those available to them. Actions consist of turning left or right, shooting an alien,
or capturing an alien. The reward is derived from the increase in score by correctly
performing these actions.

2.2 Stimuli

We use stimuli constructed following the parameters from Lim et al. (2019), with
offset and onset categories created across an experimental and control condition
(Figure 1). Offset categories are consistent across the two conditions and can be
identified by just one dimension - the trajectory of change after 150ms. Onset cate-
gories are constructed differently between the two conditions. In the experimental
condition, one must attend to both the trajectory of change during the first 150ms of



the stimulus and the starting frequency in order to identify the correct token. In the
control condition, onset tokens are randomized and have no identifiable category
boundary.

The construction of stimuli in this way yields three types of category boundaries,
which we refer to as SIMPLE, COMPLEX, and INCOHERENT. Offset categories in
both conditions have a SIMPLE boundary, as these can be distinguished along only
one dimension. Onset categories have a COMPLEX boundary in the experimental
condition due to the two-dimensional nature of the category boundary, whereas
onset categories in the control condition are INCOHERENT as there is no category
boundary available.

We simulate the synthesized sounds in this experiment by using a Gaussian
distribution centered around each frequency peak at each timestep. This means
that the simulation does not differentiate the offset and onset stimuli by wave type,
requiring it to discover specific patterns in the acoustic signal. Each Gaussian
distribution has a peak of 10 and a variance of 150Hz. For each of the 4 categories,
11 tokens are synthesized with 4 presented during training and the remaining 7
withheld for testing.

2.3 Game Environment

The environment for the video game in our simulations is constructed with 8
different directions in which the agent can face (N, NE, E, SE, S, SW, W, NW),
where a left or right action turns the agent by 45°. Aliens can enter from 4 directions
(N, E, S, and W), and each of these is associated with a different category. Each
timestep consists of the presentation of one auditory token and one action by the
agent. If the agent is facing the opposite direction to the location of a newly
presented alien, it will need a minimum of 5 actions to turn toward and successfully
shoot it. To allow enough time for this to happen, each stimulus is presented 8 times.
If the agent does not shoot correctly within this time, then the alien disappears
without the agent receiving any reward and the next stimulus is presented. During
training, there are 4 tokens within each category presented during training and the
agent has 3 actions available to it: TURN LEFT, TURN RIGHT or SHOOT. The
agent receives one point of reward for every alien it shoots (unlike the original
study, our simulations do not have a ‘capture’ mechanic). Location information
is presented to the model as a one-hot vector of length 8 — ie., the value for
the corresponding direction where the agent is facing is equal to 1 with all other
values set to 0. This is not visual information and simply instills knowledge of the
direction that the agent is facing into the model. The model does not receive any
information about the location of the alien. The network combines the auditory
representation with the location information and outputs a value assigned to each
action using a deep Q network, trained with the algorithm outlined above and a
network representation illustrated in Figure 2. The network is trained over a total
of 2000 episodes, each consisting of 128 tokens and tested on an additional 500
episodes of 176 tokens with weights frozen. We defined performance by looking at
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Figure 2: Network diagram for simulation 1.

the proportion of total possible reward the agent receives for each category type
during this test phase.

2.4 Results

Results during the testing period align very closely with the post-test categoriza-
tion responses from the original experiment (Figure 3). As expected, the model
performs successfully in the paradigm and exhibits better performance for tokens
presented during training than novel tokens. Neural networks are good at mem-
orizing specific tokens during training, so novel tokens provide a better test of
generalization. Generally, higher performance is observed for offset tokens than
onset tokens, replicating human behavior. This is because the boundary between
categories has lower dimensionality in the offset condition than in the onset con-
dition. Onset tokens, however, have a more complex boundary, being defined
by both the frequency trajectory and the steady-state frequency. To simplify the
presentation of tokens for the incoherent boundary condition in this simulation,
4 specific tokens are presented, rather than a range of randomized tokens as in
the original experiment, resulting in our model having a higher success rate for
these tokens than the original experiments. As there is no boundary to generalize,
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Figure 3: Simulation 1 results (top) and experimental results from Lim et al. (2019)
(bottom) with 95% confidence intervals.

however, we see that performance for novel tokens is low - mirroring the human
results.

The model also shows worse generalization for simple stimuli in the control
condition than the experimental condition for novel tokens, despite the fact that
these tokens are the same. These results are also seen in the original study and
suggest that the noise provided by the incoherent tokens is enough to decrease



generalization across the board, and not just for the onset tokens themselves. The
above results are all consistent across various parameter settings of the network.

This simulation suggests that it is possible to gather implicit knowledge about
auditory categories through a reinforcement signal, giving rise to human-like
behavior. While the model is never shown directly which tokens are members of
each category, it generalizes to novel stimuli within the same category. Having
shown that a reinforcement algorithm is able to use perceptual information within
this task, the next step is to show that the same algorithm can overcome native
language knowledge and improve specifically in discrimination of non-native
speech categories.

3 Simulation 2: Video Game With Speech Categories

Our second simulation models a learning experiment where Japanese and English
speakers participate in the video game with English speech tokens presented as
categories (Lim and Holt, 2011). Participants hear tokens of [ra], [la], [da], and
[ga] before each alien enters and Japanese speakers show improvement on [r]/[1]
discrimination after 5 days of training without reaching native-level performance,
as measured by performance on an identification task presented before and after the
training period. By modeling this experiment with reinforcement learning, we aim
to show that our reinforcement algorithm is able to overcome native knowledge to
improve on discrimination between the auditory categories presented - mirroring
the human results. This simulation consists of two parts: native language training
where we model the knowledge of a native Japanese speaker, and video game
training, where we expose this native model to the video game environment.

3.1 Methods

We model native language knowledge by training a supervised phoneme classifier
on Japanese speech. This is a simple yet efficient way to instill native language
knowledge into the model. The network takes acoustic parameters as input and
outputs a distribution over phonemes, indicating the identity of the phone at the
center of the input window. Training data consists of auditory tokens sampled from
labeled corpora as described below. The model is presented with a window of
speech and a corresponding vector indicating the phone at the center of the window
and is trained using stochastic gradient descent over the network’s parameters. We
do not mean this supervised training to be an accurate model of first language
acquisition, but rather, a way to quickly create networks that have knowledge of a
“native” language. We similarly train an English model to use as a native language
control.

The native network (shaded in Figure 4) consists of 3 convolutional and batch
normalization layers followed by 1 linear layer. Data for native language training
is derived from the Wall Street Journal Corpus for English (Paul and Baker, 1992)



and the GlobalPhone Japanese Corpus (Schultz et al., 2013) for Japanese. The
model is presented with 19.5 hours of speech and training occurs for 25 epochs.
We subsequently expose our native language model to training in the video
game paradigm, where phonetic information is combined with the location vector
into a linear layer as in simulation 1 (unshaded in Figure 4) and the model once
again outputs its expected value of each action. The training signal is allowed
to backpropagate through all layers of the network and can change the initial
parameters relating to the phone classification native language training. The
environment and presentation of stimuli in the video game occurs as described in

experiment 1, over 750 episodes.
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Figure 4: Network diagram for simulation 2

We sample four sounds in each category ([r], [1], [d], and [g]) from the Wall
Street Journal Corpus for use in video game training. These stimuli are those that
the English native language training successfully categorizes and are kept constant
throughout the experiment. Once again, there are 4 tokens for each category, where
each category reflects a different location of the alien. Acoustic input during native
language training and video game training is given as Mel Frequency Cepstral
Coefficients (MFCCs) (Mermelstein, 1976), which are designed to describe the
overall shape of the acoustic at any one point in time. We take 13 coefficients



and first- and second-order derivatives, giving 39 total dimensions. A 200ms
speech window is segmented into frames that are 25ms wide at 10ms intervals
and zero-padded, yielding a total of 21 frames. Real speech data sampled from
corpora inherently are noisier than controlled lab-prepared stimuli. Using this more
naturalistic data for both training and testing demonstrates that the model can deal
with variability and is not sensitive only to stimuli created specifically for this
experiment.

We simulate the [r]/[1] pre- and post-test discrimination tasks from the origi-
nal experiment using a machine ABX test, which is a parameter-free method of
measuring the distance between model representations (Schatz et al., 2013; Schatz,
2016). We take a vector of activations for a presented token at the ‘phone’ layer of
the model. Two tokens are taken from one category - A and X - and a third token
from a different category - B. We take the Euclidean distance between vectors A
and X, and B and X and determine which distance is shorter. If X is determined
to be close to A, then the trial is a success, if X is closer to B, then the trial has
failed. The ABX success rate is defined as the probability of success for two tokens
from these categories selected at random from the corpus. An ABX success of
1 indicates perfect discrimination, with 0.5 being chance performance. We run
the ABX task over 12,000 samples of [r] and [1] drawn from a portion of the WSJ
corpus withheld for testing.

3.2 Results

Pre- and post-training ABX success rates are shown in Figure 5. The Japanese
model improves in [r]/[1] discrimination ability after video game training. This
improvement is small but significant (¢ = 2.77, p = 0.01), and the performance
does not reach that of the native English model. This is consistent with results from
Japanese native speakers who participate in the experiment who show increased
[r]/[1] discrimination performance but do not reach native-level performance.

These results show that in principle, a reinforcement signal is enough to alter
speech representations and enable an agent to improve their discrimination of ‘non-
native’ speech sounds, strengthening the case the the video game paradigm results
could come from the use of reinforcement learning. It is once again important to
note that in this experiment, at no point is the model given precise information
about the identity of these tokens. It discovers any structure in the information
through the reward signal alone.

4 Discussion

Simulations in this paper show that a reinforcement learning signal is sufficient
for a model to exhibit human behavior in two auditory category learning exper-
iments. By developing a deep Q network that processes acoustic and location
information, we model experimental paradigms with outcomes that closely match
human behavior. These results provide additional evidence towards the theory that
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reinforcement learning plays a critical role in adults’ speech category acquisition.
Taken alongside neural evidence showing the activation of reward centers of the
brain during participation, we suggest that reward mechanisms could be key to
updating perceptual representations.

Second language learners struggle to learn non-native speech sounds and appear
to perform poorly in natural environments, with just passive exposure. By framing
the video game paradigm as reinforcement learning we explicitly conceptualize a
learning signal as a reward, perhaps explaining why this paradigm can be effective
without explicit feedback. One possible account of this process neurally is that a
reward signal from the striatum passes to areas which deal with auditory processing



directly. Neuroimaging of the video game not only shows activation of the basal
ganglia during category learning, but participants who exhibit learning show strong
functional connectivity between the striatum and Superior Temporal Sulcus—the
primary centers of speech processing (Liebenthal et al., 2005). This pattern of
top-down feedback to perceptual regions is also observed in other speech category
literature. Myers and Swan (2012) indicate that top-down category information
from frontal regions of the brain can direct information to temporal regions to
reshape the perceptual space.

It is possible that reinforcement learning could play a role in non-native speech
sound learning more generally - an area which warrants further investigation.
Our work is consistent with other behavioral work pointing to the utilization of
reinforcement in speech category learning (Nixon, 2020). Harmon et al. (2019)
demonstrate that reinforcement learning models human behavior in a different
paradigm where the down weighting of a phonetic cue will only occur if there is
a more informative cue present. Additionally, the neural signatures observed in
initial video game experiments are observed in other category learning paradigms
(Golestani and Zatorre, 2004), which show activation of the caudate nucleus in
the striatum during explicit category learning. Future work could also expand this
algorithm to native language learning in infants, who appear to acquire speech
sound categories in a passive environment.

Our framework opens avenues to investigating the flexibility of representations
of speech and future work can manipulate which layers of the network can be
influenced by the reinforcement learning signal, and how those weight updates
occur. This will allow one to test whether there are particular parts of the processing
system that are less flexibly updated, or not updated at all, during second language
learning.

Finally, the simulations in this paper have implications for L2 teaching ped-
agogy. Learning the sounds of a second language has always been challenging,
particularly when those sounds do not match up with one’s native language phonol-
ogy. Our work reinforces the idea that implicit learning can provide an effective
strategy for learning non-native speech sounds. Understanding why this paradigm
is so effective will allow us to consider other tasks and activities that could lead to
successful learning. Many people use mobile game-like applications to learn for-
eign languages, which often include a level system where learners receive rewards
such as cosmetic upgrades, items, or points for a leaderboard system. These could
provide effective incentives for efficient learning as in a reinforcement framework.
With the current prevalence of these applications, reinforcement learning, where
improvement is motivated through rewards, is a particularly relevant topic and
further simulations on the impact of rewards could greatly benefit this kind of
learning.
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