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ABSTRACT. In this short note we prove that a Kédhler manifold with lower Ricci
curvature bound and almost maximal volume is Gromov-Hausdorff close to the
projective space with the Fubini-Study metric. This is done by combining the
recent results on holomorphic rigidity of such Kéahler manifolds (see Gang Liu
[Asian J. Math. 18 (2014), 69-99]) with the structure theorem of Tian-Wang
(see Gang Tian and Bing Wang [J. Amer. Math. Soc 28 (2015), 1169-1209])
for almost Einstein manifolds. This can be regarded as the complex analog
of the result on Colding on the shape of Riemannian manifolds with almost
maximal volume.

1. INTRODUCTION

In this note we wish to study metric rigidity of Kéhler manifolds (M™,w) satis-
fying
(1.1) Ric(w) > w,

and with almost maximal volume. Recently Zhang [14] proved that any Kéahler
manifold satisfying (LI must have

Vol(M,w) ::/ w" < Vol(CP™, wepn).
M

Here wepr is the Fubini-Study metric on CP™ with Ric(wepr) = wepr. Moreover,
Zhang proved that the maximal volume is attained if and only if (M, w) is isometric
to (CP",wcpr). For Kahler-Einstein Fano manifolds such optimal bounds were
proved earlier by Berman-Berndtsson [I] in presence of a C* action with finitely
many fixed points, and unconditionally by Fujita [5]. On the other hand Colding
in [3] proved that an n-dimensional Riemannian manifold with Ricci curvature
greater or equal to (n — 1) and almost maximal volume is close to the round sphere
in Gromov-Hausdorff distance. The main purpose of this note is to establish the
following metric rigidity result as the complex analogue of Colding’s theorem.

Theorem 1.1. For all e > 0, there exists 6 = d(g,n) > 0 such that if (M",w) is a
Kahler manifold satisfying (1)) and

Vol(M, w) > (1 — §)Vol(CP", wepn),
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then
dGH ((M,CU), ((C]Pma WCIP")) <g,
where dap is the Gromov-Hausdorff distance.

The starting point for this paper is the almost holomorphic rigidity proved by Liu
in the appendix of [14]. Liu proved that if (M™,w) is a K&hler manifold satisfying
(L.1), M must be biholomorphic to CP" if the volume of (M™,w) is sufficiently close
to that of (CP",wcpr). This can be regarded as a complex version of Perelman’s
result in [§]. In particular, the K&hler manifold M in Theorem [L.Ilmust be CP" and
indeed Theorem [[.Ilis a metric extension of Liu and Zhang’s theorem. The proof
of Theorem [L.1]relies on the structure theorem of Tian and Wang [12] on Gromov-
Hausdorff limits of almost Einstein manifolds. We also offer an alternate proof
relying on the recent results of Liu and Szekelyhidi on structure of non-collapsed
Gromov-Hausdorff limits of Kéhler manifolds with a Ricci curvature lower bound.

After this note appeared online, we were informed by Bing Wang that he has also
independently proved our main Theorem [13, Corollary 7.10], once again by using
the results in [14]. The results of [14] rely on recent works on stability thresholds and
K-stability from algebraic geometry. It will be interesting to obtain an independent
differential geometric proof for the holomorphic rigidity of CP".

2. PROOF OF THE MAIN THEOREM

We will first prove the following general result.

Theorem 2.1. Let (M"™,wkg) be a Kdhler-Einstein manifold. Let §; — 0 and
w; € c1(M) such that
Ric(w;) > (1 — 6;)w;
Then
(M, w;) 2155 (M, wicp).

Before we begin the proof, let us recall the definition of almost K&hler-Einstein
manifolds from [12]. A sequence of closed K&hler manifolds (M, w;,p;) is said to
be almost Kdhler-FEinstein if the following conditions are satisfied.

[ RlC(wz) > —Ww;
e p;, € M; and
|Bwi(piu 1)| >k >0.

F;, = / |Ric(w;) — Awi|w! 20,
M;
e For some \; € [—1,1], the flow
&ui
ot

has a solution on M; x [0, 1]. Moreover,

7// 1S,, — nXi|w;(t)™ dt =2 0,

Theorem 2.2 (Theorem 2 in [12]). Let (M, w;, p;) be a sequence of pointed almost
Kdhler-Finstein manifolds of (complex) dimension n with A\; = 1. Let (Z,d) be a
subsequential Gromov-Hausdorff limit. Then there ezist a regular-singular decom-
position Z =R US such that

= —Ric(w;) + \iw;
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e R is a smooth convex, open Kdhler manifold with complex structure J
and Kdhler form ws satisfying

Ric(Weo) = Woo-
e dimS < 2n —4.

Proof of Theorem R.1l First we need the following observation from [12], whose
proof we reproduce for the convenience of the reader.

Lemma 2.3 (Theorem 6.2 in [12]). The sequence (M,w;,p) from the statement of
Theorem 2.1] forms a sequence of almost-Finstein manifolds with \; = 1.

Proof. The Ricci lower bound is from the hypothesis, and the volume lower bound
follows from Bishop-Gromov inequality, Myers theorem and the fact that the volume
of w; is constant. Moreover, it is well known through the work of Perelman that

the Ricci flow s
{ it — _Ric(wi(t)) + wi(t)

Wy (0) = W;

exists for all time. All we need to prove is that F; and E; converge to zero.
Note that since S,,, —n > —nd;, by the maximum principle for the scalar curva-
ture under Ricci flow, we have the bound

Swity —n = —nd;el
for all ¢ and for all ¢. On the other hand, since the Kéhler class remains fixed,
wi(t)” N
/M(Swi(t) — n)T = 0,

and hence

(2.1) /M |Swict) — n|wz?(1t')" < ndiel (el (M))™.

Integrating in ¢, we obtain the required decay on E;. Next, since Ric(w;) — (1 —
0;)w; > 0, we have

F; ::/ IRic(w;) — w;|wy
M
< / |Ric(w;) — (1 — 8;)w;|w;* 4+ ndjer (M)™
M
< 10n3/25ic1(M)" izoo, 0,
where we used (2.1) at t = 0 to estimate the first integral. O
After passing to a subsequence,

d
(Ma Wi,p) ﬂ> (Za dapoo)

where Z has the regular-singular decomposition as in Theorem [2.2] From the proof
of Theorem [2.2]in [12] it follows that any tangent cone is a metric cone C(Y') over
a link Y with singular set Sy of real co-dimension at least four. Moreover, on the
regular part of C(Y'), the cone metric go(yy = dr? +r?gy is Ricci flat and its Kéahler
form is given by

=1 _
wc(y) = 7887"2,
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where 7 is the distance from the vertex (cf. Proposition 5.2 and Lemma 5.2 in [12]).
The arguments in [4] now apply and we have the following.

Lemma 2.4.

(1) For sufficiently large k € N, there is a sequence of embeddings T; : M —
CcpY by sections of HO(M, —K]’Q) which are orthonormal with respect to
the metric induced by w; such that the flat limit W = lim;_,o T;(M) is a
normal Q-Fano variety.

(2) The limiting Kdhler metric wo extends globally to a weak Kdhler-Finstein
metric on W.

By a weak Kéahler-Einstein metric we mean that w., = \/—_185<poo where e~ "¥o°
is a continuous hermitian metric on Ky, and ¢ satisfies the following Monge-
Ampere equation

(V=100ps)" = e~ %=,
Continuing with our proof of the Theorem R.I] since W admits a weak Kéhler-
Einstein metric, the Futaki invariant vanishes identically and Aut(W) is reductive.
Then, by the Luna slice theorem, there is a test configuration of (M, —K7},) with
(W, Ocpn (1)) as the central fiber. Since M is K-stable (by virtue of admitting a
Kéhler-Einstein metric), this forces W to be biholomorphic to M and ws to be
a smooth Kahler-Einstein metric. But then by the uniqueness of Kéhler-Einstein

. .. . d
metrics, weo 18 isSometric to wk g, and hence (M, w;) ZoH, (M,wkE). O

We would like to remark that Theorem R.I] can also be proved by using the
result in [6] and we sketch the proof below. By the assumption of Theorem [2.1]
(M, w;) converges to a metric space (Z,d) after passing to a subsequence since the
diameter is uniformly bounded above by volume comparison. The main result of [6]
states that Z is an n-dimensional normal projective variety. For sufficiently large
k > 0, the L2-orthonormal basis {a(()l), ey 05\2} of HO(M, (—Kyr)¥) with respect to
w; and its induced hermitian metric on —Kx converge to an orthonormal basis of
H°(Z,(—Kz)¥) thanks to the partial C°-estimate from [6]. The basis {U((f), . 05\2}
induces a sequence of Fubini-Study metrics

0; = k= V=10010g (Jo"|* + .. + |01
and w; = 0; + /—100yp; with ¢; uniformly bounded in L°>°(M). Furthermore, if
A L\ —1/k

we let ; = (\a(()z)|2 + ...+ |U](\Z,),c |2) be the induced volume form on M, then ¢;
satisfies the following complex Monge-Ampere equation

(0: + V=100p;)" = e~ I-00@i=0fiq,,
where 6; + /—190f; > 0 and fM e %7iQ); is uniformly bounded for all i. After
letting ¢ — oo, the limiting equation is given by

(Ooo + V—100ps0 )" = e ¢ tt=q

for some global plurisubharmonic function Fi,, on Z. The reader can refer to [9] for
more details (cf. Section 3). This immediately implies that F., is a constant and
Woo = Boo + V/—100¢ is a Kihler-Einstein metric with bounded local potentials.
This replaces the proof of Lemma [2.4] and Theorem [1.1] is proved by the same
argument as above using K-stability to show that Z must be biholomorphic to M
and we, is the unique Kéhler-Einstein metric on Z up to an automorphism of Z.
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Now we are ready to prove Theorem [L.1]

Proof of Theorem [L1l We argue by contradiction. By choosing ¢ small enough, by
the appendix of [14], we may assume that M is biholomorphic to CP". In particular,
[w] is a multiple of ¢;(M). Suppose there exists an € > 0, a sequence ¢; — 0 and a
sequence of metrics w; on CP™ such that

Ric(w;) > wy,

Vol(CP™, w;) > (1 — 6;) Vol(CP", wepr),

but
(2:2) denr ((CP",wi), (TP, ween) ) > .
Consider the rescaled metrics @; = %‘Wwi. Then, Vol(CP",&;) =

Vol(CP", wepn ), and so @; € ¢1(CP™). Moreover, we also have

5 1
w; S w; <

=6

By Theorem 2.1}, (CP",&;) don, (CP", wepn). Since % is almost one, we

can make sure that for ¢ >> 1,
Vol(wepn ) /™ eVol(wepn ) /2"
This contradicts the inequality in (2.2). O

dan ((CP", ), (CP",
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