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Abstract—The nonlinearities of power amplifiers in massive
MIMO arrays introduce unwanted spectral regrowth, which
is typically avoided via digital predistortion at each amplifier.
However, as the number of base station antennas scales up, so does
the computational burden of per-antenna linearization. This work
introduces a neural-network virtual digital predistortion (vDPD)
scheme that operates before the linear precoder for OFDM-based
massive MU-MIMO systems. By applying predistortion before
the precoder, complexity scales primarily with the number of
users. We can achieve comparable linearization along the user
beams by training our neural network based on the memory
polynomial, predistortion-per-antenna approach. We verify our
algorithm through an exhaustive simulator that includes high-
order amplifier nonlinearities, memory effects, and variance across
the amplifier models.

I. INTRODUCTION

In the last ten years, massive multiple-input multiple-output
(MIMO) has gone from initial conception to commercial
deployment. While deployments are underway, there are still
practical challenges that have not been fully considered. Of note,
the linearization of large antenna arrays poses a significant
computational burden for base stations [1]. This topic has
received recent interest in the literature with discussions of
the effects [2, 3], possible technologies [1], and some possible
digital predistortion (DPD) solutions [4–6]. A detailed analysis
on the effect of nonlinearities is studied in [2]. However, it
is assumed that each antenna uses exactly the same power
amplifier (PA), which is not realistic due to process variations
during the manufacturing of the PAs. The work of [3] considers
a more general case with unique PA models for each antenna.
However, throughout the analysis, memory effects are not fully
considered, which are certainly present in practical scenarios [7].
This neglect of memory effects is potentially problematic for
the wide bandwidths considered in beyond-5G technologies.

Energy efficiency is a key design goal for MIMO arrays.
PAs typically consume the most power in transmitters, so their
efficiency is critical. In [1], Doherty PAs are considered a
good candidate for large antenna arrays due to their energy
efficiency. However, they are also known for being highly
nonlinear, meaning that DPD will be necessary [7]. However,
the common DPD approach of using an inverse model of a PA
scales poorly to large antenna arrays, as one inverse model is
required for each antenna, and few works offer solutions to
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reduce the computational burden for the linearization of massive
MIMO arrays. In [4], complexity is reduced for linearizing a
MIMO array by using a lower-complexity decorrelation-based
DPD method. However, the complexity of this method still
scales with the number of antennas. When performing DPD, it
is clear that high-complexity solutions result in additional power
consumption in the form of additional digital signal processing
(DSP) blocks on FPGA implementations or additional area on
ASIC implementations. This complexity threatens the energy
efficiency goals of massive MIMO.

One significant finding throughout the recent literature is that,
in beamformed massive MIMO, the majority of the adjacent
channel power (ACP) due to PA nonlinearities follows the main
beams [2, 3]. Based on this, multiple works have presented a
beam-oriented DPD [5, 6]. In these works, the main objective
is to linearize along the main beam by only considering the
nonlinearity experienced by the intended user. However, these
works do not consider the case of orthogonal frequency-division
multiplexing (OFDM) modulation found in 5G, which poses a
new challenge to these previous methods in that the modulation
and precoding are done in the frequency domain. In contrast,
the DPD methods are developed for the time domain. Moreover,
these works do not consider the case of multiple users (MU-
MIMO), where the linear combination of the data caused by
the linear precoding leads to intermodulation of user data and
new spurious out-of-band (OOB) beams.

In this work, we expand the beam-oriented DPD concept
and introduce a virtual DPD scheme (vDPD) that operates on
the primary beams where the distortion is strongest as well
as the secondary spurious beams that may appear in some
systems. In particular, we utilize a neural network (NN) to
perform a nearly identical DPD calculation to that done by
a typical memory polynomial (MP)-based DPD. This vDPD
scheme operates before the precoder so that complexity can
be reduced.

The primary contributions of this work are as follows: 1) We
provide a mathematical derivation for the expected directions
of spurious beams for a typical array and precoding scheme.
2) We introduce an NN-based DPD scheme before the precoder,
vDPD. 3) We show with simulation results that our vDPD
method can achieve sufficient performance in all directions
from the array. 4) We provide a complexity comparison showing
a complexity reduction under steady-state operation.
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Figure 1. Block diagram for the vDPD system. User data is updated before the precoder with the goal of applying an equivalent operation to the standard
DPD at each antenna.

II. SYSTEM MODEL AND ALGORITHM

A. System Model

We consider a fully digital, multi-user (MU) massive MIMO
system with 𝑈 single antenna users and 𝑁 PAs and antenna RF
units at the base station (BS). Without loss of generality, we
restrict the presentation below to one OFDM symbol. A symbol
of data to the users is represented by the vector s𝑤 ∈ 𝒪𝑈 , where
𝑤 indexes the OFDM tones from 1 to 𝑊 and 𝒪 represents
the set of complex-valued constellation points. Pulse shaping
is applied via the inclusion of guard-band subcarriers that are
normally empty.

Linear precoding is applied separately to each OFDM tone,
generating 𝑊 vectors x𝑤 ∈ C𝑁 with x𝑤 = G𝑤s𝑤. Here,
G𝑤 ∈ C𝑁×𝑈 is the precoding matrix such as zero forcing
(ZF) or maximum ratio transmission (MRT). Each vector is
remapped to contain all the tones per antenna, [x1, . . . ,x𝑊 ] =
[a1, . . . ,a𝑁 ]𝑇 , where each a𝑛 is a 𝑊 -dimensional vector
containing all tones for antenna port 𝑛 ∈ {1, . . . , 𝑁}. At
this point, the data is converted from the frequency domain
to the time domain via the inverse discrete Fourier transform
(IDFT), which is typically calculated via an inverse fast Fourier
transform (IFFT). The data is reorganized to be serial instead
of parallel, and a cyclic prefix is added. In many systems,
windowing is also applied between symbol boundaries to
improve the spectral shaping. We express this time-domain
representation for each antenna as the vector u𝑛. This vector is
upconverted to an RF frequency where it is transmitted through
a PA with nonlinear function 𝑓𝑛(·). The time-domain data for
each antenna is given as û𝑛 = 𝑓𝑛(u𝑛), equivalently expressed
as a discrete-time signal, 𝑢̂[𝑖] = [u𝑛]𝑖. The frequency-domain
equivalent is given as x̂𝑛.

In OFDM systems, the channel is usually modeled in the
frequency-domain for each tone 𝑤 as, 𝑦𝑤 = h𝑤x̂𝑤+𝑛𝑤, where
𝑦𝑤 denotes the received data for OFDM tone 𝑤 and h𝑤 is the
1×𝑁 channel vector, and 𝑛𝑤 is a Gaussian random noise term.

The user received signal can be remapped to [𝑦1, . . . , 𝑦𝑊 ] = b
to represent a 𝑊 dimensional vector of all tones received at
the user. The time-domain user-received signal is given as v.

B. MIMO and Spurious Beams

The question of how the unintended ACP is radiated in
MIMO systems has seen recent attention in the literature
[2, 3, 6, 8]. However, the analysis is often only done to
some mathematical conclusions without providing any practical
answer as to which direction do the spurious beams point in.
Ultimately, the answer to this question will depend on the array
geometry considered and the precoding scheme. However, we
will answer this question for a half-wavelength spaced uniform
linear array (ULA) with MRT beamforming in a line-of-sight
(LoS) channel.

To build our analysis, we begin with a two-tone signal similar
to the work done in [3]. Consider two users with incident angles
at 𝜃1 and 𝜃2. Assuming a planar wave model, the channel vector
to the 𝑖-th user can be written as,

[hi]𝑛 =
[︀
𝑒−𝑗𝜋𝑛 cos 𝜃𝑖

]︀
, (1)

where 𝑛 = 0, ..., 𝑁 − 1 indexes the base station antenna [9].
The MRT precoder, p𝑖, is then formulated via the complex
conjugate of Eq. (1).

Consider the case of transmitting a tone to each user
at baseband frequencies 𝜔1 and 𝜔2. After precoding, the
composite signal at each PA input would be,

𝑥𝑛(𝑡) = 𝑒𝑗(𝜔1𝑡+𝜑1,𝑛) + 𝑒𝑗(𝜔2𝑡+𝜑2,𝑛), (2)

where the phase of each tone is given as

𝜑𝑖,𝑛 = 𝜋𝑛 cos 𝜃𝑖. (3)

While in Section IV we consider high-order MP PA models
with memory for simulation, in our analysis we consider



the following memoryless third-order model for mathematical
tractability,

𝑓𝑛(𝑥) = 𝑥+ 𝛼𝑛𝑥|𝑥|2, (4)

where 𝛼𝑛 is the complex coefficient specific to the model of
PA 𝑛. After Eq. (2) is substituted into Eq. (4), we get the
output of each PA as

𝑦𝑛(𝑡) = (1 + 3𝛼𝑛) 𝑒
𝑗(𝜔1𝑡+𝜑1,𝑛) (5)

+ (1 + 3𝛼𝑛) 𝑒
𝑗(𝜔2𝑡+𝜑2,𝑛) (6)

+ 𝛼𝑛𝑒
𝑗((2𝜔1−𝜔2)𝑡+(2𝜑1,𝑛−𝜑2,𝑛)) (7)

+ 𝛼𝑛𝑒
𝑗((2𝜔2−𝜔1)𝑡+(2𝜑2,𝑛−𝜑1,𝑛)). (8)

The goal is then to find the physical directions with respect to
the array, 𝜃, that correspond with the spurious beams caused by
the terms from (7) and (8). Without loss of generality, we focus
on the term from (7) and look for the angle that maximizes
the array response,

𝜃 = argmax
𝜃

𝑁−1∑︁
𝑛=0

𝛼𝑛𝑒
𝑗(2𝜔1−𝜔2)𝑡+(2𝜑1,𝑛−𝜑2,𝑛−𝜋𝑛 cos 𝜃). (9)

In cases where all PAs have identical phases on 𝛼𝑛, the
coefficient can be eliminated as the phase shift would be
common across all elements in the array. Otherwise, as they
become more randomly distributed, the less coherently the
intermodulations combine [3]. To solve the above, we note that
the beamforming does not depend on 𝑡 and set it to zero. We
note that the sum will be maximized when, if possible, all the
exponential terms are cophased. We choose to force the phase
of each exponential term to be zero and solve for the 𝜃 that
allows for that. With the above assumptions and replacing the
𝜑 terms back with their exact values from Eq. (3), we arrive
at the direction of interest for the term from (7) as,

𝜃 = cos−1 (2 cos 𝜃1 − cos 𝜃2) . (10)

While the two-tone analysis is simple, the conclusions scale-
up similarly to OFDM [3]. When scaling up to more than two
users, the spurious beams will scale up with every pair and
triple of users. The main idea is to find the number of terms
similar to (7) and (8) as more users are added. From analysis
similar to deriving (7) and (8), it can be shown that there will
be a third-order intermodulation (IM3) term for each pair and
triple of user signals. In the case of the previous two-tone,
a three-user system will have terms with phases of the form
as 𝜑1,𝑛 + 𝜑2,𝑛 − 𝜑3,𝑛. This tripple can be arranged in three
unique ways, and, similarly, each pair of terms can be arranged
in two ways. Combining these ideas, the upper bound on the
total number of spurious beams created by the IM3 between
user streams is given as, 𝑛spurious beams = 2

(︀
𝑈
2

)︀
+ 3

(︀
𝑈
3

)︀
. This is

considered an upper bound since for certain user angles, for
example, when users are regularly spaced at some angle, these
spurious beams may be in the same direction and appear as a
single beam. There will be more terms and spurious beams for
higher-order nonlinearities, but the third-order intermodulations
are typically the highest magnitude and, hence, are the primary
concern.
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Figure 2. vDPD Structure. The neural network models the function that is
needed to predistort each user stream.

III. VIRTUAL DPD NN ALGORITHM

The system architecture of our proposed vDPD scheme for
MU-massive MIMO is illustrated in Fig. 1. Our method’s main
idea is to train a NN to emulate the response of the widely
adopted MP-based solution in the lower dimensional space
before the precoder.

A. Conventional Per-Antenna DPD

Extending the conventional DPD work to apply to multi-
antenna systems can be done by applying a DPD block per
antenna. In Eq. (11) a MP predistorter for PA 𝑛, 𝑔𝑛(.), is
shown with nonlinearity order 𝑃 and 𝑀 memory taps:

𝑢̂(𝑛)[𝑖] =

𝑃∑︁
𝑝=1

𝑀∑︁
𝑚=0

𝛽(𝑛)
𝑝,𝑚𝑢(𝑛)[𝑖−𝑚]

⃒⃒⃒
𝑢(𝑛)[𝑖−𝑚]

⃒⃒⃒𝑝−1

. (11)

An indirect learning architecture (ILA) [10] is often used to
set up a least-squares problem to solve for the predistorter
coefficients. An optimal set of coefficients for antenna port
𝑛, 𝛽(𝑛), is found so that the cascade of the predistorter block
and the power amplifier is linear [11]. While this method is
commonplace and performs well, it scales poorly in many-
antenna scenarios in that it has to be done for every PA. It
operates on each time-domain, digital-baseband signal with no
knowledge of the full system or the modulation scheme.

B. Novel vDPD Neural Net

To correct the nonlinearity experienced by the user, we aim
to learn a single NN-based virtual DPD. The vDPD structure
is shown in Fig. 2. Each user stream is converted to the time
domain, where it will go through an 𝑀 -tap delay line. A real
value decomposition occurs on the complex samples so that
the real and imaginary parts of each go into their own input
neurons. The vDPD scheme includes 𝐻 hidden layers, each
with 𝐾 neurons. The hidden layer neurons utilize a nonlinear
activation function such as the ReLU. At the final layer, there
is a neuron for the real and imaginary components of each of
the 𝑈 streams. The time-domain outputs are converted back to
the frequency domain as ŝ before being sent to the precoder.
A linear bypass can also be utilized to pass the input data
directly to the output neurons so that the NN only learns the
nonlinearities [12].



1) NN Training: To train any NN, the construction of
training data can be critical. We utilize the MP-based DPD
function of each PA in Section III-A, which is widely adopted
for linearization. The MP output for each symbol, ũ is
converted back to the frequency domain for each subcarrier
to create x̃. To create the 𝑈 × 1 vector of NN output training
data for each subcarrier, we multiply by the psuedo-inverse
of each precoder, s̃w = G†

𝑤𝑥̃𝑤. The NN can then be trained
using standard optimizers such as gradient descent and a mean-
squared error loss.

While the training complexity is high, it is run relatively
infrequently. The MP-DPDs that are used to create the training
data do not need to be relearned often since they are based
on the PAs, whose models remain relatively consistent for a
given temperature. The NN will need to be retrained for a
new precoder, but this can be done in few epochs by using
the previous weights as starting values and simply learning an
update.

2) NN Application: Given data for a user, we can perform
NN inference to obtain the predistorted version of the user
data, ŝ for each subcarrier. The modulation steps outlined in
Section II-A and shown in Fig. 1 are then performed as usual.

In this work, we assume perfect channel state information
(CSI). Practically, it would not be possible to directly measure
CSI on the guard-band subcarriers as the users do not transmit
pilots on these subcarriers. However, it may be possible to
extrapolate these subcarriers by extending known CSI or
applying interpolation-based techniques common for OFDM
denoising [13].

IV. DPD SIMULATION RESULTS

In this section, we explore massive MIMO simulations
under the presence of unique MPs with 𝑃 = 7 and 𝑀 = 4.
PA coefficients for each antenna are drawn from a normal
distribution with a 10% variance around a PA model collected
from the WARPv3 SDR platform. The combination of using
a measurement-based PA model with memory effects and
variance between all PAs in the array contributes to making
this simulation realistic. 𝐷 = 1200 OFDM data subcarriers
out of 𝑊 = 4096 total subcarriers are beamformed by a zero-
forcing precoder to a user at 70° and a second user 85°, 400
meters from the uniform linear array operating at 3.5 GHz.
We assume that the base station has full CSI and that there is
a line-of-sight channel. The QuaDRiGa channel model [14]
software environment is used to create the simulation topology.

We consider the radiated power as a function of angle and
subcarrier index in Fig. 3. For this plot, vertical cross-sections
are equivalent to a power spectral density (PSD), and horizontal
cross-sections are equivalent to a beamforming plot. Fig. 4
shows the beampatterns for the out-of-band adjacent channel.
We train a MP-per-antenna DPD with 𝑃 = 7,𝑀 = 4 to
create the vDPD training data. Its performance is shown in
Fig. 3c. The 𝐾 = 15,𝑀 = 4, 𝐻 = 1 vDPD is then trained.
In Fig. 3a where no DPD is applied, it is shown that the
ACP is dominant in the user’s direction while there are minor
nonlinearities appearing in other spatial directions. This finding

(a) Without DPD

(b) After vDPD

(c) After MP

Figure 3. Radiated power as a function of angle and subcarrier for users
placed at 70° and 85° from a ULA with 𝑁 = 64 antennas. The subcarrier
index corresponds to each 15 kHz bin used in the modulation. The center 1200
subcarriers correspond to in-band data. The lower subcarriers correspond to
the first lower frequency OOB channel while the upper subcarriers correspond
to the 1st upper frequency adjacent channel.

is consistent with other works in the literature [2, 3]. Fig. 3b
shows the radiated power after our vDPD. Here, the OOB
emissions in the direction of the user have been reduced. There
are still minor nonlinearities appearing in other directions, but
the vDPD scheme also reduces these spurious OOB beams.

In Fig. 4 we examine the OOB beam pattern by plotting
the array response for the upper adjacent channel from Fig. 3.
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With PAs in the system, we start with the case of no DPD
shown in red. The vDPD method reduces the power in the user
directions by as much as 10 dB with 4 dB reduction in other
directions. The in-beam directions have performance matching
the MP training data, while the spurious directions have a
minor ACP reduction.

a) Algorithm Complexity: Using commonplace ap-
proaches such as the MP DPD will require linearizing each PA
individually as outlined in Section III-A. When considering
the large number of antennas considered in 5G and beyond,
the complexity can quickly become prohibitive. The main
advantage of our proposed approach is that, while the MP-per-
PA approach scales with the number of antennas, the vDPD
uses a small NN. In Fig. 5 we plot the complexity of the
MP-per-antenna DPD and the vDPD versus the number of
transmit antennas 𝑁 . Here, we fix the memory to 𝑀 = 4, for
all systems, and we consider the case where there are 1200
data subcarriers. The signal is upsampled to 4096 samples
per OFDM symbol for both DPDs to be over 3x upsampling.
The MP-per-antenna DPD, shown in blue, increases linearly

as each new antenna requires a new MP. The vDPD, shown
in green, requires only one NN for all cases. We consider a
fixed number of hidden layers, 𝐻 = 1, and number of neurons,
𝐾 = 15, per hidden layer. The input and output layers scale
with the number of users. While the NN size is fixed in this
figure, complexity increases with the number of antennas due
to multiplications associated with the additional precoding of
guard-band subcarriers. At 𝑁 = 32, the required number of
multiplications for our vDPD is clearly below the case of
applying a DPD per PA. In the 𝑁 = 64 case with 𝑈 = 2,
corresponding to the simulation results from Fig. 4, the 𝐾 = 15
NN vDPD is able to provide a 50.6% reduction in complexity.

V. CONCLUSIONS

In this work, we introduced a novel vDPD scheme targeted
at massive MU-MIMO systems using OFDM modulation. By
predistorting before the precoding, we effectively linearize the
beam to each user. Since most OOB energy follows the main
beam, linearizing the beam provides sufficient reduction in
ACP for the whole system. Compared to performing DPD on
all antennas, vDPD provides similar performance at a fraction
of the complexity, which can translate to more energy-efficient
massive MIMO implementations.
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