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Abstract

The difficulty in specifying rewards for many real-

world problems has led to an increased focus on

learning rewards from human feedback, such as

demonstrations. However, there are often many

different reward functions that explain the human

feedback, leaving agents with uncertainty over

what the true reward function is. While most

policy optimization approaches handle this uncer-

tainty by optimizing for expected performance,

many applications demand risk-averse behavior.

We derive a novel policy gradient-style robust op-

timization approach, PG-BROIL, that optimizes a

soft-robust objective that balances expected per-

formance and risk. To the best of our knowl-

edge, PG-BROIL is the first policy optimization

algorithm robust to a distribution of reward hy-

potheses which can scale to continuous MDPs.

Results suggest that PG-BROIL can produce a

family of behaviors ranging from risk-neutral to

risk-averse and outperforms state-of-the-art im-

itation learning algorithms when learning from

ambiguous demonstrations by hedging against un-

certainty, rather than seeking to uniquely identify

the demonstrator’s reward function.

1. Introduction

We consider the following question: How should an in-

telligent agent act if it has epistemic uncertainty over its

objective function? In the fields of reinforcement learning

(RL) and optimal control, researchers and practitioners typ-

ically assume a known reward or cost function, which is

then optimized to obtain a policy. However, even in set-

tings where the reward function is specified, it is usually

only a best approximation of the objective function that a

human thinks will lead to desirable behavior. Furthermore,

1EECS Department, University of California, Berkeley 2CS
Department, University of New Hampshire. Correspondence to:
Daniel Brown <dsbrown@berkeley.edu>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

human-designed reward functions are also often augmented

with human feedback. This may also result in reward un-

certainty since human feedback, be it in the form of policy

shaping (Griffith et al., 2013), reward shaping (Knox &

Stone, 2012), or a hand-designed reward function (Hadfield-

Menell et al., 2017; Ratner et al., 2018), can fail to perfectly

disambiguate the human’s intent true (Amodei et al., 2016).

Reward function ambiguity is also a key problem in imi-

tation learning (Hussein et al., 2017; Osa et al., 2018), in

which an agent seeks to learn a policy from demonstrations

without access to the reward function that motivated the

demonstrations. While many imitation learning approaches

either sidestep learning a reward function and directly seek

to imitate demonstrations (Pomerleau, 1991; Torabi et al.,

2018) or take a maximum likelihood (Choi & Kim, 2011;

Brown et al., 2019) or maximum entropy approach to learn-

ing a reward function (Ziebart et al., 2008; Fu et al., 2017),

we believe that an imitation learning agent should explic-

itly reason about uncertainty over the true reward func-

tion to avoid misalignment with the demonstrator’s objec-

tives (Hadfield-Menell et al., 2017; Brown et al., 2020a).

Bayesian inverse reinforcement learning (IRL) methods (Ra-

machandran & Amir, 2007) seek a posterior distribution

over likely reward functions given demonstrations, but often

perform policy optimization using the expected reward func-

tion or MAP reward function (Ramachandran & Amir, 2007;

Choi & Kim, 2011; Ratner et al., 2018; Brown et al., 2020a).

However, in many real world settings such as robotics, fi-

nance, and healthcare, we desire a policy which is robust to

uncertainty over the true reward function.

Prior work on risk-averse and robust policy optimization in

reinforcement learning has mainly focused on robustness

to uncertainty over the true dynamics of the environment,

but assumes a known reward function (Garcıa & Fernández,

2015; Tamar et al., 2015; Tang et al., 2020; Derman et al.,

2018; Lobo et al., 2020; Thananjeyan et al., 2021). Some

work addresses robust policy optimization under reward

function uncertainty by taking a maxmin approach and op-

timizing a policy that is robust under the worst-case re-

ward function (Syed et al., 2008; Regan & Boutilier, 2009;

Hadfield-Menell et al., 2017; Huang et al., 2018). How-

ever, these approaches are limited to tabular domains, and

maxmin approaches have been shown to sometimes lead to
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incorrect and overly pessimistic policy evaluations (Brown

& Niekum, 2018). As an alternative to maxmin approaches,

recent work (Brown et al., 2020b) proposed a linear pro-

gramming approach, BROIL: Bayesian Robust Optimiza-

tion for Imitation Learning, that balances risk-aversion (in

terms of Conditional Value at Risk (Rockafellar et al., 2000))

and expected performance. This approach supports a family

of solutions depending on the risk-sensitivity of the applica-

tion domain. However, as their approach is built on linear

programming, it cannot be applied in MDPs with continuous

state and action spaces and unknown dynamics.

In this work, we introduce a novel policy optimization ap-

proach that enables varying degrees of risk-sensitivity by

reasoning about reward uncertainity while scaling to con-

tinuous MDPs with unknown dynamics. As in Brown et al.

(2020b), we present an approach which reasons simultane-

ously about risk-aversion (in terms of Conditional Value at

Risk (Rockafellar et al., 2000)) and expected performance

and balances the two. However, to enable such reasoning in

continuous spaces, we make a key observation: the Condi-

tional Value at Risk objective supports efficient computation

of an approximate subgradient, which can then be used in a

policy gradient method. This makes it possible to use any

policy gradient algorithm, such as TRPO (Schulman et al.,

2017a) or PPO (Schulman et al., 2017b) to learn policies

which are robust to reward uncertainity, resulting in an effi-

cient and scalable algorithm. To the best of our knowledge,

our proposed algorithm, Policy Gradient Bayesian Robust

Optimization for Imitation Learning (PG-BROIL), is the

first policy optimization algorithm robust to a distribution

of reward hypotheses that can scale to complex MDPs with

continuous state and action spaces.

To evaluate PG-BROIL, we consider settings where there

is uncertainty over the true reward function. We first exam-

ine the setting where we have an a priori distribution over

reward functions and find that PG-BROIL is able to opti-

mize policies that effectively trade-off between expected and

worst-case performance. Then, we leverage recent advances

in efficient Bayesian reward inference (Brown et al., 2020a)

to infer a posterior over reward functions from preferences

over demonstrated trajectories. While other approaches

which do not reason about reward uncertainty overfit to a

single reward function hypothesis, PG-BROIL optimizes

a policy that hedges against multiple reward function hy-

potheses. When there is high reward function ambiguity

due to limited demonstrations, we find that PG-BROIL re-

sults in significant performance improvements over other

state-of-the-art imitation learning methods.

2. Related Work

Reinforcement Learning: There has been significant

recent interest in safe and robust reinforcement learn-

ing (Garcıa & Fernández, 2015); however, most approaches

are only robust with respect to noise in transition dynamics

and only consider optimizing a policy with respect to a sin-

gle reward function. Existing approaches reason about risk

measures with respect to a single task rewards (Heger, 1994;

Shen et al., 2014; Tamar et al., 2014; Tang et al., 2019),

establish convergence to safe regions of the MDP (Thanan-

jeyan et al., 2020b;a), or optimize a policy to avoid con-

straint violations (Achiam et al., 2017; Fisac et al., 2018;

Thananjeyan et al., 2021).

In this paper, we develop a reinforcement learning algorithm

which reasons about risk with respect to a belief distribution

over the task reward function. We focus on being robust to

tail risk by optimizing for conditional value at risk (Rock-

afellar et al., 2000). However, unlike prior work (Heger,

1994; Shen et al., 2014; Tamar et al., 2014; 2015; Tang et al.,

2019; Zhang et al., 2021), which focuses on risk with re-

spect to a known reward function and stochastic transitions,

we consider policy optimization when there is epistemic

uncertainty over the reward function itself. We formulate

a soft-robustness approach that blends optimizing for ex-

pected performance and optimizing for the conditional value

at risk. Recent work also considers soft-robust objectives

when there is uncertainty over the correct transition model

of the MDP (Lobo et al., 2020; Russel et al., 2020), rather

than uncertainty over the true reward function.

Imitation Learning: Imitation learning approaches vary

widely in reasoning about reward uncertainty. Behavioral

cloning approaches simply learn to imitate the actions of

the demonstrator, resulting in quadratic regret (Ross & Bag-

nell, 2010). DAgger (Ross et al., 2011) achieves sublinear

regret by repeatedly soliciting human action labels in an

online fashion. While there has been work on safe variants

of DAgger (Zhang & Cho, 2016; Hoque et al., 2021), these

methods only enable robust policy learning by asymptot-

ically converging to the policy of the demonstrator, and

always assume access to an expert human supervisor.

Inverse reinforcement learning (IRL) methods are another

way of performing imitation learning (Arora & Doshi, 2018),

where the learning agent seeks to achieve better sample ef-

ficiency and generalization by learning a reward function

which is then optimized to obtain a policy. However, most in-

verse reinforcement learning methods only result in a point-

estimate of the demonstrator’s reward function (Abbeel &

Ng, 2004; Ziebart et al., 2008; Fu et al., 2017; Brown et al.,

2019). Risk-sensitive IRL methods (Lacotte et al., 2018; Ma-

jumdar et al., 2017; Santara et al., 2018) assume risk-averse

experts and focus on optimizing policies that match the

risk-aversion of the demonstrator; however, these methods

focus on the aleatoric risk induced by transition probabilities

and there is no clear way to adapt risk-averse IRL to the

Bayesian robust setting, where the objective is to be robust
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less than (1− α) which is problematic for domains where

there are rare but potentially catastrophic outcomes, and (3)

VaR is not a coherent risk measure (Artzner et al., 1999).

3.3.2. CONDITIONAL VALUE AT RISK

CVaR is a coherent risk measure (Delbaen, 2002), also

known as average value at risk, expected tail risk, or ex-

pected shortfall. For continuous distributions

CVaRα[X] = Ef(X) [X | X ≤ VaRα[X]] . (2)

In addition to being coherent, CVaR can be maximized via

convex optimization, does not ignore the tail of the distri-

bution, and is a lower bound on VaR. Because of these

desirable properties, we would like to use CVaR as our

risk measure. However, because posterior distributions ob-

tained via Bayesian IRL are often discrete (Ramachandran

& Amir, 2007; Sadigh et al., 2017; Hadfield-Menell et al.,

2017; Brown & Niekum, 2018), we cannot directly optimize

for CVaR using the definition in Equation (2) since this def-

inition only works for atomless distributions. Instead, we

make use of the following definition of CVaR, proposed by

Rockafellar et al. (2000), that works for any distribution:

CVaRα[X] = max
σ

(

σ −
1

1− α
E[(σ −X)+]

)

, (3)

where (x)+ = max(0, x) and σ roughly corresponds to the

VaRα. To gain intuition for this formula, note that if we

define σ = VaRα[X] we can rewrite CVaRα as

CVaRα[X] = Ef(X)[X | X ≤ σ]

= σ − Ef(X)[σ −X | X ≤ σ]

= σ −
Ef(X)[1X≤σ · (σ −X)]

P (X ≤ σ)

= σ −
1

1− α
Ef(X)[(σ −X)+]

where 1x = 1 is the indicator function that evaluates to 1 if

x is True and 0 otherwise, and where we used the linearity

of expectation, the definition of conditional expectation, and

the definitions of VaRα[X], and (x)+. Taking the maxi-

mum over σ ∈ R, gives us the definition in Equation (3).

4. Bayesian Robust Optimization for

Imitation Learning

In Section 4.1 we describe the Bayesian robust optimiza-

tion for imitation learning (BROIL) objective, previously

proposed by (Brown et al., 2020b). Then, in sections 4.2

and 4.3, we derive a novel policy gradient update for BROIL

and provide an intuitive explanation for the result.

4.1. Soft-Robust BROIL Objective

Rather than seeking a purely risk-sensitive or purely risk-

neutral approach, we seek to optimize a soft-robust objec-

tive that balances the expected and probabilistic worst-case

performance of a policy. Given some performance metric

ψ(πθ, R) where R ∼ P(R), Brown et al. (2020b) recently

proposed Bayesian Robust Optimization for Imitation Learn-

ing (BROIL) which seeks to optimize the following:

max
πθ

λ·EP(R)[ψ(πθ, R)]+(1−λ)·CVaRα

[

ψ(πθ, R)
]

(4)

For MDPs with discrete states and actions and known dy-

namics, Brown et al. (2020b) showed that this problem can

be formulated as a linear program which can be solved in

polynomial time. However, many MDPs of interest involve

continuous states and actions and unknown dynamics.

4.2. BROIL Policy Gradient

We now derive a policy gradient objective for BROIL

that allows us to extend BROIL to continuous states and

actions and unknown transition dynamics, enabling ro-

bust policy learning in a wide variety of practical set-

tings. Given a parameterized policy πθ and N possible

reward hypotheses, there are many possible choices for

the performance metric ψ(πθ, R). Brown et al. (2020a)

considered two common metrics: (1) expected value, i.e.,

ψ(πθ, R) = v(π,R) = Eτ∼πθ
[R(τ)] and (2) baseline re-

gret, i.e., ψ(πθ, R) = v(πθ, R) − v(πE , R) where πE de-

notes an expert policy (usually estimated from demonstra-

tions). In Appendix A we derive a more general form for any

performance metric ψ(πθ, R) and also give the derivation

for the baseline regret performance metric. For simplicity,

we let ψ(πθ, R) = v(π,R) (expected return) hereafter.

To find the policy that maximizes Equation (4) we need the

gradient with respect to the policy parameters θ. For the

first term in Equation (4), we have

∇θEP(R)[v(πθ, R)] ≈

N
∑

i=1

P(ri)∇θEτ∼πθ
[ri(τ)]. (5)

Next, we consider the gradient of the CVaR term. CVaR is

not differentiable everywhere so we derive a sub-gradient.

Given a finite number of samples from the reward function

posterior, we can write this sub-gradient as

∇θ max
σ

(

σ −
1

1− α

N
∑

i=1

P(ri)
(

σ − Eτ∼πθ
[ri(τ)]

)

+

)

(6)

where (x)+ = max(0, x). To solve for the sub-gradient of

this term, note that given a fixed policy πθ, we can solve

for σ via a line search: since the objective is piece-wise
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linear we only need to check the value at each point v(π, ri),
for each reward function sample from the posterior since

these are the endpoints of each linear segment. If we let

vi = v(π, ri) then we can quickly iterate over all reward

function hypotheses and solve for σ as

σ∗ = argmax
σ∈{v1,...,vN}

(

σ −
1

1− α

N
∑

i=1

P(ri)
[

σ − vi
]

+

)

. (7)

Solving for σ∗ requires estimating vi by collecting a

set T of on-policy trajectories τ ∼ πθ where τ =
(s0, a0, s1, a1, . . . , sT , aT ):

vi ≈
1

|T |

∑

τ∈T

T
∑

t=0

ri(st, at). (8)

Solving for σ∗ does not require additional data collection

beyond what is required for standard policy gradient ap-

proaches. We simply evaluate the set of rollouts T from πθ
under each reward function hypothesis, ri and then solve

the optimization problem above to find σ∗. While this re-

quires more computation than a standard policy gradient

approach—we have to evaluate each rollout underN reward

functions—this does not increase the online data collection,

which is often the bottleneck in RL algorithms.

Given the solution σ∗ found by solving the optimization

problem in (7), we perform a step of policy gradient opti-

mization by following the sub-gradient of CVaR with re-

spect to the policy parameters θ:

∇θ CVaRα =
1

1− α

N
∑

i=1

P(ri)1σ∗≥v(πθ,ri)∇θv(πθ, ri)

(9)

where 1x is the indicator function that evaluates to 1 if x is

True and 0 otherwise. Given the sub-gradient of the BROIL

objective (9), the only thing remaining to compute is the

standard policy gradient. Note that in standard RL, we write

the policy gradient as (Sutton & Barto, 2018):

∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[

T
∑

t=0

∇θ log πθ(at | st)Φt(τ)

]

where Φt is a measure of the performance of trajectory τ
starting at time t. One of the most common forms of Φt(τ)
is the on-policy advantage function (Schulman et al., 2015)

with respect to some single reward function:

Φt(τ) = Aπθ (st, at) = Qπθ (st, at)− V πθ (st). (10)

If we define Φri
t in terms of a particular reward function

ri, then, as we show in Appendix A, we can rearrange

terms in the standard policy gradient formula to obtain the

following form for the BROIL policy gradient which we

estimate using a set T of on-policy trajectories τ ∼ πθ
where τ = (s0, a0, s1, a1, . . . , sT , aT ) as follows:

∇θBROIL ≈
1

|T |

∑

τ∈T

[ T
∑

t=0

∇θ log πθ(at | st)wt(τ)

]

(11)

where

wt(τ) =

N
∑

i=1

P(ri)Φ
ri
t (τ)

(

λ+
1− λ

1− α
1σ∗≥v(π,ri)

)

(12)

is the weight associated with each state-action pair (st, at)
in the set of trajectory rollouts T . The resulting vanilla

policy gradient algorithm is summarized in Algorithm 1. In

Appendix C we show how to apply a trust-region update

based on Proximal Policy Optimization (Schulman et al.,

2017b) for more stable policy gradient optimization.

4.3. Intuitive Interpretation of the Policy Gradient

Consider the policy gradient weight wt given in Equa-

tion (12). If λ = 1, then

wt(τ) =

N
∑

i=1

P(Ri)Φ
Ri

t (τ) = ΦR̄
t (τ) (13)

where R̄ is the expected reward under the posterior. Thus,

λ = 1 is equivalent to standard policy gradient optimization

under the mean reward function and gradient ascent will

focus on increasing the likelihood of actions that look good

in expectation over the reward function distribution P(R).
Alternatively, if λ = 0, then

wt(τ) =
1

1− α

N
∑

i=1

1σ∗≥v(π,Ri)P(Ri)Φ
Ri

t (τ) (14)

and gradient ascent will increase the likelihood of actions

that look good under reward functions that the current pol-

icy πθ performs poorly under, i.e., policy gradient updates

will focus on improving performance under all Ri such that

v(π,Ri) ≤ σ∗, weighting the gradient according to the like-

lihood of these worst-case reward functions. The update

rule also multiplies by 1/(1− α) which acts to normalize

the magnitude of the gradient: as α → 1 we update on

reward functions further into the tail, which have smaller

probability mass. Thus, λ ∈ [0, 1] allows us to blend be-

tween maximizing policy performance in expectation versus

worst-case and α ∈ [0, 1) determines how far into the tail

of the distribution to focus the worst-case updates.

5. Experiments

In experiments, we consider the following questions: (1)

Can PG-BROIL learn control policies in MDPs with contin-

uous states and actions and unknown transition dynamics?
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Algorithm 1 Policy Gradient BROIL

1: Input: initial policy parameters θ0, samples from re-

ward function posterior r1, . . . , rN and associated prob-

abilities, P(r1), . . . ,P(rN ).
2: for k = 0, 1, 2, . . . do

3: Collect set of trajectories Tk = {τi} by running pol-

icy πθk in the environment.

4: Estimate expected return of πθk under each reward

function hypothesis rj using Eq. (8).

5: Solve for σ∗ using Eq. (7)

6: Estimate policy gradient using Eq. (11) and Eq. (12).

7: Update θ using gradient ascent.

8: end for

(2) Does optimizing PG-BROIL with different values of λ
effectively trade-off between maximizing for expected re-

turn and maximizing robustness? (3) When demonstrations

are ambiguous, can PG-BROIL outperform other imitation

learning baselines by hedging against uncertainty? Code

and videos are available at https://sites.google.

com/view/pg-broil.

5.1. Prior over Reward Functions

We first consider an RL agent with a priori uncertainty over

the true reward function. This setting allows us to initially

avoid the difficulties of inferring a posterior distribution

over reward functions and carefully examine whether PG-

BROIL can trade-off expected performance and robustness

(CVaR) under epistemic uncertainty over the true reward

function. We study 3 domains: the classical CartPole bench-

mark (Brockman et al., 2016), a pointmass navigation task

inspired by (Thananjeyan et al., 2020b) and a robotic reach-

ing task from the from the DM Control Suite (Tassa et al.,

2020). All domains are characterized by a robot navigating

in an environment where some states have uncertain costs.

All domains have unknown transition dynamics and contin-

uous states and actions (except CartPole which has discrete

actions). We implement PG- BROIL on top of OpenAI

Spinning Up (Achiam, 2018). For cartpole we implement

PG-BROIL on top of REINFORCE (Peters & Schaal, 2008)

and for remaining domains we implement PG-BROIL on

top of PPO (Schulman et al., 2017b) (see Appendix C).

5.1.1. EXPERIMENTAL DOMAINS

CartPole: We consider a risk-sensitive version of the classic

CartPole benchmark (Brockman et al., 2016). The reward

function isR(s) = b ·sx, where sx is the position of the cart

on the track, and there is uncertainty over b. Our prior over b
is distributed uniformly in the range [-1, 0.2]. The center of

the track is sx = 0. We sample values of b between -1 and

0.2 across even intervals of 0.2 width to form a discrete pos-

terior distribution for PG-BROIL. The reward distribution

is visualized in Figure 2a. Based on our prior distribution

over reward functions, the left side of the track (sx < 0) is

associated with a higher expected reward but a worse worst

case scenario (the potential for negative rewards). By con-

trast, the robust solution is to stay in the middle of the track

in order to perform well across all possible reward functions

since the center of the track has less risk of a significantly

negative reward than the left or right sides of the track.

Pointmass Navigation: We next consider a risk-sensitive

continuous 2-D navigation task inspired by Thananjeyan

et al. (2020b). Here the objective is to control a pointmass

robot towards a known goal location with forces in cardinal

directions in a system with linear Gaussian dynamics and

drag. There are gray regions of uncertain cost that can

either be traversed or avoided as illustrated in Figure 2b. For

example, these regions could represent grassy areas which

are likely easy to navigate, but where the grass may occlude

mud or holes which would impede progress and potentially

cause damage or undue wear and tear on the robot. The

robot has prior knowledge that it needs to reach the goal

location g = (0, 0) on the map, depicted by the red star. We

represent this prior with a nominal cost for each step that is

the distance to the goal from the robot’s position. We add

a penalty term of uncertain cost for going through the gray

region giving the following reward function posterior:

R(s) = −
(

‖sx,y − g‖22 + b · 1gray

)

, b ∼ P(b), (15)

where 1gray is an indicator for entering a gray region, and

where the distribution P(b) over the penalty b is given as

b -500 -40 0 40 50

P(b) 0.05 0.05 0.2 0.3 0.4

On average it is favorable to go through the gray region

(E[b] = +5), but there is some probability that going

through the gray region is highly unfavorable:

Reacher: We design a modified version of the Reacher

environment from the DeepMind Control Suite (Tassa et al.,

2020) (Figure 2c), which is a 2 link planar arm where the

robot can apply joint torques to each of the 2 joints to guide

the end effector of the arm to a goal position on the plane.

We modify the original environment by including an area of

uncertainty (large red circle). When outside the uncertain

region, the robot receives a reward which penalizes the

distance between the end effector and the goal (small yellow

circle). Thus, the robot is normally incentivized to guide the

end effector to the goal as quickly as possible. When the end

effector is inside the uncertain region, the robot has an 80%

chance of receiving a +2 bonus, a 10% chance of receiving a

-2 penalty, and a 10% chance of neither happening (receiving

rewards as if it were outside the uncertain region). The large

red circle can be interpreted as a region on the table that

has a small chance of causing harm to the robot or breaking
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Table 2. Reacher from Demos: We evaluate PG-BROIL and base-

line imitation learning algorithms when learning from preferences

over demonstrations. Results are averages (± one st. dev.) over 3

seeds and 100 test episodes with a horizon of 200 steps per episode.

For PG-BROIL, we set α = 0.9 and report results for λ = 0.15.

ALGORITHM
AVG. STEPS IN

UNCERTAIN REGION

AVG. STEPS IN

TARGET REGION

BC 11.3 ± 27.4 39.9 ± 62.3
GAIL 2.3 ± 1.7 5.1 ± 13.0
RAIL 2.1 ± 1.2 4.6 ± 27.0
PBRL 28.4 ± 37.7 16.8 ± 30.4
BAYESIAN REX 13.5 ± 35.0 94.5 ± 70.1
PG-BROIL 1.7 ± 7.2 102.0 ± 60.5

ences over demonstrations of varying quality in a training

domain where the uncertain reward region is never close

to the goal and where none of the demonstrations show the

reacher arm entering the uncertain region. We then intro-

duce domain shift by both optimizing and testing policies in

reacher environments unseen in the demonstrations, where

the goal location is randomized and sometimes the uncertain

reward region is in between the the reacher arm and the goal.

The inferred reward function is a linear combination of 2

features: TARGET and UNCERTAIN REGION which are

simply binary indicators which identify whether the agent is

in the target location or in the uncertain region respectively.

In the posterior generated using Bayesian REX, we find

that the weight learned for the TARGET feature is strongly

positive over all reward functions. UNCERTAIN REGION,

having no information from any of the demonstrations, has

a wide variety of possible values from -1 to +1 (reward

weights are normalized to have unit L2-norm). Both the

mean and MLE reward functions assign a positive weight

to both the TARGET and UNCERTAIN REGION features,

resulting in Bayesian REX and PBRL frequently entering

the uncertain region as shown in Table 2. By contrast, PG-

BROIL hedges against its uncertainty over the quality of the

uncertain region and avoids it. See Appendix D.3.

5.2.3. ATARI BOXING FROM DEMOS

For this experiment, we give the agent 3 preferences over

suboptimal demos of the Atari Boxing game (Bellemare

et al., 2013). We use Bayesian REX to infer a reward func-

tion posterior where each inferred reward functions is a lin-

ear combinations of 3 binary indicator features identifying

whether the agent hit its opponent, got hit, or stayed away

from the opponent. The mean and MLE reward functions

both assign a high weight to hitting the opponent, ignoring

the risk of getting hit by the opponent due to always staying

close to the opponent in order to score hits on it. PG-BROIL

tries to satisfy multiple reward functions by both trying to

avoid getting hit and scoring hits, resulting in better per-

(a)

ALGORITHM GAME SCORE

BC 1.7 ± 5.3
GAIL -0.2 ± 5.8
RAIL 0.5 ± 4.9
PBRL -15.0 ± 8.2
BAYESIAN REX 1.6 ± 4.7
PG-BROIL 23.9 ± 13.5

(b)

Figure 4. Atari Boxing: We evaluate PG-BROIL against baseline

imitation learning algorithms when learning from preferences over

demonstrations. Results are averages (± one st. dev.) over 3

random seeds and 100 test episodes. For PG-BROIL, we set

α = 0.9 and report results for the best λ (λ = 0.3). The game

score is the number of hits the trained agent (white) scored minus

the number of times the agent gets hit by the opponent (black).

formance under the true reward as shown in Table 4. See

Appendix D.5 for more details.

6. Discussion and Future Work

Summary: We derive a novel algorithm, PG-BROIL, for

safe policy optimization in continuous MDPs that is ro-

bust to epistemic uncertainty over the true reward function.

Experiments evaluating PG-BROIL with different prior dis-

tributions over reward hypotheses suggest that solving PG-

BROIL with different values of λ can produce a family of

solutions that span the Pareto frontier of policies which

trade-off expected performance and robustness. Finally, we

show that PG-BROIL improves upon state-of-the-art imita-

tion learning methods when learning from small numbers

of demonstrations by not just optimizing for the most likely

reward function, but by also hedging against poor perfor-

mance under other likely reward functions.

Future Work and Limitations: We found that PG-BROIL

can sometimes become unstable for values of lambda close

to zero—likely due to the indicator function in the CVaR

policy gradient. We experimented with entropic risk mea-

sure (Föllmer & Knispel, 2011), a continuously differen-

tiable alternative to CVaR, but obtained similar results to

CVaR (see Appendix B). Future work also includes using

contrastive learning (Laskin et al., 2020) and deep Bayesian

reward function inference (Brown et al., 2020a) to enable

robust policy learning from raw pixels.
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