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Abstract

As humans interact with autonomous agents to
perform increasingly complicated, potentially
risky tasks, it is important to be able to efficiently
evaluate an agent’s performance and correctness.
In this paper we formalize and theoretically an-
alyze the problem of efficient value alignment
verification: how to efficiently test whether the
behavior of another agent is aligned with a hu-
man’s values. The goal is to construct a kind of
“driver’s test” that a human can give to any agent
which will verify value alignment via a minimal
number of queries. We study alignment verifica-
tion problems with both idealized humans that
have an explicit reward function as well as prob-
lems where they have implicit values. We analyze
verification of exact value alignment for rational
agents and propose and analyze heuristic and ap-
proximate value alignment verification tests in a
wide range of gridworlds and a continuous au-
tonomous driving domain. Finally, we prove that
there exist sufficient conditions such that we can
verify exact and approximate alignment across an
infinite set of test environments via a constant-
query-complexity alignment test.

1. Introduction

If we desire autonomous agents that can interact with and
assist humans and other agents in performing complex, risky
tasks, then it is important that humans can verify that these
agents’ policies are aligned with what is expected and de-
sired. This alignment is often termed value alignment and is
defined in the Asilomar Al Principles' as follows: "Highly
autonomous Al systems should be designed so that their
goals and behaviors can be assured to align with human
values throughout their operation." In this paper, we pro-
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vide a theoretical analysis of the problem of efficient value
alignment verification: how to efficiently test whether a
robot is aligned with a human’s values.

Existing work on value alignment often focuses on qualita-
tive evaluation of trust (Huang et al., 2018) or asymptotic
alignment of an agent’s performance via interactions and ac-
tive learning (Hadfield-Menell et al., 2016; Christiano et al.,
2017; Sadigh et al., 2017). By contrast, our work analyzes
the difficulty of efficiently evaluating another agent’s cor-
rectness by formally defining value alignment and seeking
efficient tests for value alignment verification that are appli-
cable when two or more agents already have learned a policy
or reward function and want to efficiently test compatibility.
To the best of our knowledge, we are the first to define and
analyze the problem of value alignment verification. In par-
ticular, we propose exact, approximate, and heuristic tests
that one agent can use to quickly and efficiently verify value
alignment with another agent.

As depicted in Figure 1, the goal of value alignment verifi-
cation is to construct a kind of “driver’s test” that a human
can give to any agent which will verify value alignment and
consists of only a small number of queries. We define values
in the reinforcement learning sense, i.e., with respect to a re-
ward function: a robot is exactly value aligned with a human
if the robot’s policy is optimal under the human’s reward
function. The two agents in a value alignment verification
problem (human and robot) may have different communica-
tion mechanisms and different value introspection abilities.
Thus, the way we analyze value alignment verification will
depend on whether the human’s and robot’s access to their
values is explicit, e.g., able to write down a value function or
reward function or implicit, e.g., able to answer preference
queries or sample actions from a policy. The most general
version of value alignment verification involves a human
with implicit values who seeks to verify the value alignment
of a robot with implicit values, e.g. a black-box policy. This
setting motivates our work; however, it is challenging and
we postpone many questions for future research.

We follow a ground-up approach where we analyze the dif-
ficulty of value alignment verification starting in the most
idealized setting, and then gradually relax our assumptions.
We first analyze sufficient conditions under which efficient
exact value alignment verification is possible in the explicit
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human, explicit robot setting, where an idealized human
tester knows their reward function and so does the robot.
When the robot is rational with respect to a reward func-
tion that is a linear combination of known features, we
show that it is possible to provably verify the alignment of
any rational explicit robot via a succinct test consisting of
either reward queries, value queries, or trajectory prefer-
ence queries. We next consider the explicit human, implicit
robot setting, where an idealized human knows their reward
function, but seeks to efficiently verify the alignment of a
black-box policy via action queries. We study heuristics for
generating value alignment verification tests in this setting
and compare their performance on a range of gridworlds.

Finally, in Section 4.5 we study the most general setting
of implicit human, implicit robot. We propose an algo-
rithm for approximate value alignment verification in con-
tinuous state and action spaces and provide empirical re-
sults in a continuous autonomous driving domain where
the human can only query the robot for preferences over
trajectories. We conclude with a brief discussion of the
challenge of designing value alignment verification tests
that generalize across multiple MDPs. Somewhat sur-
prisingly, we provide initial theory demonstrating that if
the human can create the test environment for the robot,
then exact and approximate value alignment across an in-
finite family of MDPs can be verified by observing the
robot’s policy in only two carefully constructed test envi-
ronments. Source code and videos are available at https:
//sites.google.com/view/icml-vav.

2. Related work

Value Alignment: Most work on value alignment focuses
on how to iteratively train a learning agent such that its
final behavior is aligned with a user’s intentions (Leike
et al., 2018; Russell et al., 2015; Amodei et al., 2016).
One example is cooperative inverse reinforcement learn-
ing (CIRL) (Hadfield-Menell et al., 2016; Fisac et al., 2020;
Shah et al., 2020), which formulates value alignment as
a game between a human and a robot, where both try to
maximize a shared reward function that is only known by
the human. CIRL and other research on value alignment
focus on ensuring the learning agent asymptotically con-
verges to the same values as the human teacher, but do not
provide a way to check whether value alignment has been
achieved. By contrast, we are interested in value alignment
verification. Rather than assuming a cooperative setting, we
assume the robot being tested has already learned a policy
or reward function and the human wants to efficiently verify
whether the robot is value aligned.

Reward Learning: Inverse reinforcement learning
(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Arora

& Doshi, 2018) and active preference learning (Wirth
et al., 2017; Christiano et al., 2017; Biyik et al., 2019)
algorithms aim to determine the reward function of a
human via offline demonstrations or online queries. In
contrast, value alignment verification only seeks to answer
the question of whether two agents are aligned, without
concern for the exact reward function of the robot. In
Section 6 we prove that value alignment verification can
be performed in a constant number of queries whereas
active reward learning requires a logarithmic number of
queries (Amin & Singh, 2016; Amin et al., 2017). In cases
where the human has implicit values, active reward learning
can be used to infer the reward function of the human
tester, and then this inferred reward function can be used to
automatically generate a high-confidence value alignment
test. While active reward learning may be a subcomponent
of value alignment verification, it focuses on customizing
reward inference queries for a single agent, whereas value
alignment verification seeks to design a single alignment
test that works for all agents.

Machine Teaching: In machine teaching (Zhu et al.,
2018), a teacher seeks to optimize a minimal set of train-
ing data such that a student (running a particular learning
algorithm) learns a desired set of model parameters. Value
alignment verification can be seen as a form of machine fest-
ing rather than teaching—machine teaching algorithms typi-
cally search for a minimal set of training data that will teach
a learner a specific model, whereas we seek a minimal set of
questions that will allow a tester to verify whether another
agent’s learned model is correct. Thus, in machine teaching,
the teacher provides examples and their answers, but in ma-
chine testing the tester provides examples and then queries
the testee for the answer. While machine teaching has been
applied to sequential decision making domains (Cakmak &
Lopes, 2012; Huang et al., 2017; Brown & Niekum, 2019),
we are not aware of any work that considers the problem of
value alignment verification.

Policy Evaluation Policy evaluation (Sutton & Barto,
1998) aims to answer the question, "How much return would
another agent achieve according to my values?" By focus-
ing on the simpler decision problem, "Is the robot value
aligned with the human?", we seek tests that are much more
sample-efficient than running a full policy evaluation. Oft-
Policy Evaluation (OPE) seeks to perform policy evaluation
without executing the testee’s policy (Precup, 2000; Thomas
et al., 2015; Hanna et al., 2017). However, OPE is often
sample-inefficient, provides high-variance estimates, and
typically assumes explicit access to the tester’s reward func-
tion, and the tester and testee policies. Value alignment
verification is applicable in settings where the policies and
reward functions of both agents may be implicit and only
accessible indirectly.
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Figure 1. The tester provides a reward function either explicitly or implicitly to a test generation algorithm which distills the human’s
values into a succinct alignment test. This single test is used to efficiently verify the value alignment of any agent.

3. Notation

We adopt notation proposed by Amin et al. (Amin et al.,
2017) where a Markov Decision Process (MDP) M con-
sists of an environment £ = (S, A, P,Sy,7) and a re-
ward function R : § — R. An environment F, con-
sists of a set of states S, a set of actions A, a transi-
tion function P : S x A x § — [0,1] from state-action
pairs to a distribution over next states, a discount factor
v € [0,1), and a distribution over initial states Sp. A pol-
icym : § x A — [0,1] is a mapping from states to a
distribution over actions. The state and state-action values
of a policy 7 are VZ(s) = E[>;20 7' R(s:) | so = 3]
and Q%(s,a) = Ew[Zfio Y'R(s;) | so = s,a0 = a] for
s € Sand a € A. We denote Vj;(s) = max, V5 (s) and
Q%(s,a) = max; Q%(s,a). The expected value of a pol-
icy is denoted by Vj = Eges, [V ()]

We assume that the arg max operator returns a set, i.e.,
argmax, f(z) = {x | f(y) < f(x),Yy}. We let
T € argmax, V7 denote an optimal policy under reward
function R. We also let Ar(s) = argmaxy e QR(s,a’)
denote the set of all optimal actions at state s under reward
function R. Thus, Agr(s) = {a € A| 7} (als) > 0}

As is common (Ziebart et al., 2008; Barreto et al., 2017,
Brown et al., 2020), we assume that the reward function is
linear under features ¢ : S ~— R¥, so that R(s) = wT(s),
where w € RF. Thus, we use R and w interchange-
ably. Note that this assumption of a linear reward func-
tion is not restrictive as these features can be arbitrarily
complex nonlinear functions of the state and could be ob-
tained via unsupervised learning from raw state observa-
tions (Laskin et al., 2020; Brown et al., 2020). Given
that R(s) = w7’ ¢(s), the state-action value function can
be written in terms of discounted expectations over fea-
tures (Abbeel & Ng, 2004): QT (s, a) = wT %), where

o) — Er[> 207 d(st) | s0=s,a0 = al.

4. Value Alignment Verification

In this section we first explicitly define value alignment
and value alignment verification. Next, we discuss how

assuming rationality of the robot enables efficient provable
value alignment verification. We then examine how to per-
form (approximate) value alignment verification in tabular
MDPs under different forms of test queries, including re-
ward, value, preference, and action queries. We conclude
this section by presenting a method for approximate value
alignment verification when the tester is a human with im-
plicit values and the state and action spaces are continuous.

We first formalize value alignment. Consider two agents: a
human and a robot. We will assume that the human has a
(possibly implicit) reward function that provides the ground
truth for determining value alignment verification of the
robot. We define (approximate) value alignment as follows:

Definition 1. Given reward function R, policy ' is e-value
aligned in environment E if and only if

Vi(s) = VB (s) < e, Vs € S. (1)

Exact value alignment is achieved when € = 0.

We are interested in efficient value alignment verification
where we can correctly classify agents as aligned or mis-
aligned within certain error tolerances while keeping the
total test size small. Formally, efficient (approximate) value
alignment verification is a solution to the following:

min |T],s.t. Vo' € I,Vs € S ()
TCT

Vii(s) — VE (s) > e = Pr[x’ passes test T] < Stpr
Vi(s) — V& (s) < e = Pr[r’ fails test T] < Oy

where T is the choice set of possible test queries, II de-
notes the set of robot policies for which we design the test,
Otp, O € [0, 1] denote the allowable false positive rate and
false negative rate, and |T'| denotes the cardinality, or com-
plexity of the test, T'. If € = dp,, = 0, then we seek the test
that enables exact value alignment verification.

4.1. Query Types and Rational Agents

The difficulty of solving Equation 2 can change significantly
as a function of €, dgpr, Oy, the set of policies for which
we design the test II, and the type of queries available in
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the choice set 7. For example, exact alignment is impos-
sible in settings where one can only query for actions (see
Appendix A.1). Even when possible, achieving high confi-
dence may require multiple action queries at every state.

One of the main goals of this paper is to understand un-
der what settings we can achieve efficient, provable value
alignment verification. Towards this end, we assume that
the robot behaves rationally with respect to some reward
function R’. A rational agent is one that picks actions to
maximize its utility (Russell & Norvig, 2016). Formally 7/
is a rational agent if:

Va € A,7'(als) >0 = a € argmax Qp/(s,a), (3)

where arg max, Q% (s, a) returns the set of all optimal ac-
tions at state s under R'.

Note that rationality in itself does not restrict the set of poli-
cies II for which we can test, since all policies are rational
under the trivial all zero reward function (Ng & Russell,
2000). Rationality also does not limit the choice set 7 since
a rational agent can answer any question related to its policy
or values. The rationality assumption is helpful because
it directly connects the behavior of the agent to a reward
function: given behavior we can infer rewards and given re-
wards we can infer behavior. It also allows us to extrapolate
robot behavior to new situations, enabling efficient value
alignment verification.

4.2. Exact Value Alignment

We start with the idealized query setting of explicit human,
explicit robot. In this section we discuss exact value align-
ment (e = 0, dg,r = 0) of a rational robot and review related
work by (Ng & Russell, 2000) on sets of rewards consistent
with an optimal policy. Then in the next section we will
examine how to construct verification tests for exact align-
ment. We assume that both the human and robot know the
states reward features ¢(s), and that the robot acts rationally
with respect to a reward function linear in these features.

Consider two rational agents with reward functions R and
R’. Because there are infinite reward functions that lead to
the same optimal policy (Ng & Russell, 2000), determining
that 3s € S, R(s) # R’(s) does not necessarily imply
misalignment. For ease of notation, we define

OPT(R) ={m|7(a]s) >0=a € argm(?XQ*R(s,a)},

as the set of all optimal (potentially stochastic) policies in
MDP (E, R). Combining Definition (1) and Equation (3)
immediately gives us that a rational robot is aligned with
a human if all optimal policies under the robot’s reward
function are also optimal policies under the human’s reward
function. We formally state this as the following Corollary.

(b) CRS(r).

(a) Policy 7

Figure 2. An example of the consistent reward set (CRS) for a
policy 7 in a simple gridworld and a linear reward function with
two binary reward features (white and gray) with reward weights
wo and wy, respectively.

Corollary 1. We have exact value alignment in environ-
ment E between a rational robot with reward function
R’ and a human with reward function R if OPT(R’) C
OPT(R).

We now review foundational work on IRL by Ng and Rus-
sell (Ng & Russell, 2000) which inspires our proposed ap-
proach for efficient value alignment verification.

Definition 2. Given an environment E, the consistent re-
ward set (CRS) of a policy 7 in environment E is defined as
the set of reward functions under which T is optimal:

CRS() = {R | = € OPT(R)}. 4)

When R(s) = wl ¢(s), the CRS is the following polytope:

Corollary 2. (Ng & Russell, 2000; Brown & Niekum, 2019)
Given an environment E, the CRS(r) is given by the fol-
lowing intersection of half-spaces:

{weRF | wT(®l0) — g0y >,

Va € arg max QF(s,a'),be A,s € S}. )

As an example consider the grid world MDP shown in Fig-
ure 2. The CRS is an intersection of half-spaces which
define all reward functions under which 7 is optimal. Note
that the all zero reward function and the reward function
where white cells have zero reward are included; however,
not all optimal policies under these reward functions lead to
the policy shown in Figure 2a.

Thus, we cannot directly use Corollary 2 to verify alignment
with a human’s optimal policy—Corollary 2 only provides
a necessary, but not sufficient, condition for testing whether
a reward function R’ is value aligned with a policy 7. Con-
sider the example of the trivial all zero reward function: it is
always in the CRS of any policy; however, an agent optimiz-
ing the zero reward can result in any arbitrary policy. Even
ignoring the all zero reward, rewards can be on the bound-
aries of the CRS polytope that are consistent with a policy,
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but not value aligned since they lead to more than one opti-
mal policy, one or more of which may not be optimal under
the human’s reward function. In the next section we show
that if we remove all such edge cases, we can construct an
aligned reward polytope (ARP) similar to the CRS, which
enables provable value alignment verification. Furthermore,
we show that the aligned reward polytope can be used for
alignment verification even when the human cannot directly
query for the robot’s reward function.

4.3. Sufficient Conditions for Provable Verification of
Exact Value Alignment

We seek an efficient value alignment verification test which
enables a human to query the robot to determine exact value
alignment as in Corollary 1. The following theorem demon-
strates that provable verification of exact value alignment is
possible under a variety of query types.

Theorem 1. Under the assumption of a rational robot that
shares linear reward features with the human, efficient exact
value alignment verification is possible in the following
query settings: (1) Query access to reward function weights
w’', (2) Query access to samples of the reward function
R'(s), (3) Query access to V5, (s) and Q% (s, a), and (4)

Query access to preferences over trajectories.

4.3.1. CASE 1: REWARD WEIGHT QUERIES

We first consider the case where the human can directly
query the robot for their reward function weights w’. While
this problem setting is mainly of theoretical interest, we
will show that Cases (2) and (3) also reduce to this setting.
Querying directly for the robot’s reward function is maxi-
mally efficient since by definition it only requires a single
query. Although one can solve for the optimal policy un-
der a given w’ and evaluate it under the human’s reward
function w, this brute force approach is computationally
demanding and must be repeated for each robot that needs
to be tested. By contrast, we will prove that there exists a
single efficient verification test that does not require solving
for the robot’s optimal policy and can be used to verify the
alignment of any robot.

As mentioned in the previous section, the CRS for the hu-
man’s optimal policy does not provide a sufficient test for
value alignment verification. Under the assumption of a
rational robot, a sufficient condition for value alignment
verification is to test whether a robot’s reward function lies
in the following set:

Definition 3. Given an MDP M composed of environment
E and reward function R, the aligned reward set (ARS) is
defined as the following set of reward functions:

ARS(R) = {R' | OPT(R') C OPT(R)}. (6)

Using Definition 3, we prove the following lemma which
will enable efficient verification of exact value alignment.

As a reminder, we use the notation Q7%(s,a) = wl®ls®)

for (5 — Er[> o7 d(st) | so = s,a0 = a], and
Ag(s) = argmaxyea Qg (s, a’).
Lemma 1. Given an MDP M = (E,R), assuming the

human’s reward function R, and the robot’s reward function
R/ can be represented as linear combinations of features

#(s) € R, ie, R(s) = wlg(s), R'(s) = w'" ¢(s), and

given an optimal policy Ty, under R then

we () HE,, = ReARS(R) (]
(s,a,b)eO
s,a s,b
where Hf, , = {w | WT((I)ST;) - @;E)) > 0} and

O ={(s,a,b)|s € S,a € Ag(s),b ¢ Agr(s)}.

Proof sketch. First we show 7}, is optimal under R’ using
the policy improvement theorem. Then, using the unique-
ness of the optimal value function, we show that all optimal
actions under R are also optimal actions under R/, and so
all optimal policies under R’ are optimal under R. (see
Appendix A.3 for the full proof). O

Lemma 1 provides a sufficient condition for verifying exact
value alignment. We now have the necessary theory to
construct an efficient value alignment verification test in the
explicit human, explicit robot setting. We aim to efficiently
verify whether the robot’s reward function, R, is within the
above intersection of half-spaces, which we call the Aligned
Reward Polytope (ARP), as this gives a sufficient condition
for R’ being value aligned with the human’s reward function
R. Our analysis in this section will be useful later when we
consider approximate tests for value alignment verification
when one or both of the agents have implicit values.”

The verification test is constructed by precomputing the
following matrix representation of the ARP:

@‘(ns*,a) - (I)Srs*,b)
A= | TR TR ®)

where each row corresponds to a tuple (s, a,b) € O. Thus,
a is an optimal action and b is a suboptimal action under R
and each row of A represents the normal vector for a strict
half-space constraint based on feature count differences be-
tween an optimal and suboptimal action. Note that, using
this notation, exact value alignment can now be verified by
checking whether Aw’ > 0. This test can be made more

2QOur results may also be of interest in the analysis of explicit
robot, explicit robot teaming, e.g., ad hoc teamwork (Stone et al.,
2010) where value alignment verification could provide a frame-
work for verifying whether two robots can work together.
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efficient by only including non-redundant half-space normal
vectors in A. In Appendix G.2 we discuss a straightforward
linear programming technique to efficiently obtain the mini-
mal set of half-space constraints that define the intersection
of half-spaces specified in Lemma 1.

4.3.2. CASE 2: REWARD QUERIES

We now consider the case where the tester can query for
samples of the robot’s reward function R'(s). Verifying
alignment via queries to R’(s) can be reduced to Case (1)
by querying the robot for R'(s) over a sufficient number
of states and then solving for a system of linear equations
to recover w’, since we assume both the human and robot
have access to the reward features ¢(s).> Let @ be defined
as the matrix where each row corresponds to the feature
vector ¢(s)7 for a distinct state s € S. Then, the number
of required queries is equal to rank(®) since we only need
samples corresponding to linearly independent rows of .
Thus, if w/ € R*, in the worst case we only need k£ samples
from the robot’s reward function, since we have rank(®) <
k. If there is noise in the sampling procedure, then linear
regression can be used to efficiently estimate the robot’s
weight vector w’. Given w’ we can verify value alignment
by checking whether Aw’ > 0.

4.3.3. CASE 3: VALUE FUNCTION QUERIES

Given query access to the robot’s state and state-action value
functions, w’ can be determined by noting that R'(s) =

w'T ¢(s) and

R(s) = Qh(s,0) =B V(). ©

Computing the expectation requires enumerating succes-
sor states. If we define the maximum degree of the MDP
transition function as

{s' € S| P(s,a,s") >0}, (10

dmax = Juax
then at most the dp,,x possible next state value queries
are needed to evaluate the expectation. Thus, at most
rank(®)(dmax + 1) queries to the robot’s value functions
are needed to recover w’, and the tester can verify value
alignment via Case (1). Since rank(®) < k as before, at
most k(dmax + 1) queries are required for w’ € R¥.

4.3.4. CASE 4: PREFERENCE QUERIES

Finally, we consider the implicit robot setting where the
tester can only query the robot for preferences over tra-
jectories, &. Each preference over trajectories, £4 < &p,
induces the constraint w'” (®(£p) — ®(€4)) > 0, where
(&) =1, 7' ¢(s;) is the cumulative discounted reward

3Note that our results also hold for rewards that are functions
of (s,a) and (s, a, s").

features along a trajectory. Thus, our choice set of tests,
T, consists of all trajectory preference queries, and we
can guarantee value alignment if we have a test T such
that w2 (®(Ep) — ®(£4)) > 0,V(€a,ER) € T implies that
w € (HE, ,. We can then construct A in a similar fashion
as above, éxéept each row corresponds to a half-space nor-
mal resulting from a preference over individual trajectories
(see Appendix A.3). Only a logarithmic number of prefer-
ences over randomly generated trajectories are needed to
accurately represent (| H %, via intersection of half-spaces
formed by the rows in A i]érown etal., 2019).

4.4. Value Alignment Verification Heuristics

In the next section we relax our assumptions on the robot and
consider the explicit human, implicit robot setting, where
the human seeks to verify value alignment but the robot
has a black-box policy that only affords action queries.
In this case, we resort to heuristics for value alignment
as exact value alignment verification becomes impossible,
and e-value alignment verification by directly attempting to
solve Equation (2) when 7 consists of state-action queries
is computationally intractable. As we discuss in detail in
Appendix B, a direct optimization approach would involve
estimating II by computing the optimal policies for a large
number of different reward functions, evaluating each policy
under w to determine which policies are not e-aligned with
the tester’s reward function R, and then solving a combina-
torial optimization problem over all possible state queries.

Instead, we resort to efficient heuristics. We consider three
heuristic alignment tests designed to work in the black-box
value alignment verification setting, where the tester can
only ask the robot policy action queries over states. Each
heuristic test consists of a method for selecting states at
which to test the robot by querying for an action from the
robot’s policy and checking if that action is an optimal action
under the human’s reward function. Note that querying only
a subset of states for robot actions is fundamentally limited
to value alignment verification tests with dg,, > 0 since
we will never know for sure that the agent will not take
a different action in that state if we query its policy again.
Thus, receiving the “right answer"—an optimal action under
the tester’s reward R—to an action query in a state is not a
sufficient condition for exact value alignment. We briefly
discuss three action query heuristics with full details in
Appendix C. Figure 3 shows examples of the state queries
generated by each heuristic in a simple gridworld.

Critical States Heuristic Our first heuristic is inspired by
the notion of critical states: states where Q% (s, mh(s)) —
Y aca @r(s,a) > t, and t is a user defined thresh-

& (Huang et al., 2018). We adapt this idea to form a
critical state alignment heuristic test (CS) consisting of criti-
cal states under the human’s reward function R. Intuitively,
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these states are likely to be important; however, often many
critical states will be redundant since different states are
often important for similar reasons (see Figure 3).

Machine Teaching Heuristic Our next heuristic is based
on Set Cover Optimal Teaching (SCOT) (Brown & Niekum,
2019), a machine teaching algorithm that approximates the
minimal set of maximally informative state-action trajecto-
ries necessary to teach a specific reward function to an IRL
agent. Brown & Niekum (2019) prove that the learner will
recover a reward function in the intersection of halfspaces
that define the CRS (Corollary 2). We generate informative
trajectories using SCOT, and turn them into alignment tests
by querying the robot for their action at each state along the
trajectories. SCOT replaces the explicit checking of half-
space constraints in Section 4.3 with implicit half-space
constraints that are inferred by querying for robot actions
at states along trajectories, thus introducing approximation
error and the possibility of false positives. Furthermore, gen-
erating a test using SCOT is more computationally intensive
than generating a test via the CS heuristic; however, unlike
CS, SCOT will seek to avoid redundant queries by reasoning
about reward features over a collection of trajectories.

ARP Heuristic Our third heuristic takes inspiration from
the definition of the ARP to define a black-box alignment
heuristic (ARP-bb). ARP-bb first computes A (see Equa-
tion (8)), removes redundant half-space constraints via lin-
ear programming, and then only queries for robot actions
from the states corresponding to the non-redundant con-
straints (rows) in A. Intuitively, states that are queried
by ARP-bb are important in the sense that taking differ-
ent actions reveals important information about the reward
function. However, ARP-bb uses single-state action queries
to approximate checking each half-space constraint. Thus,
ARP-bb trades off smaller query and computational com-
plexity with the potenital for larger approximation error.

4.5. Implicit Value Alignment Verification

We now discuss value alignment verification in the implicit
human, implicit robot setting. Without an explicit represen-
tation of the human’s values we cannot directly compute
the aligned reward polytope (ARP) via enumeration over
states and actions to create an intersection of half-spaces as
described above. Instead, we propose the pipeline outlined
in Figure 1 where an Al system elicits and distills human
preferences and then generates a test which can be used to
approximately verify the alignment of any rational agent.

As is common for active reward learning algorithms (Biyik
et al., 2019), we assume that the preference elicitation al-
gorithm outputs both a set of preferences over trajectories
P = {(&,&) : & > &} and a set of reward weights w
sampled from the posterior distribution {w;} ~ P(w|P).

Given P and P(w|P), the ARP of the human’s implicit
reward function can be approximated as

() {w[w(@&) - 2(&)) >0},
(&:,&5)€EP
(11)

which generalizes the definition of the ARP to MDPs with
continuous states and actions. To see this, note that the
intersection of half-spaces in Lemma | enumerates over
states and pairs of optimal and suboptimal actions under
the human’s reward R to create the set of half-space normal
vectors A, where each normal vector is a difference of
expected feature counts. This enumeration can only be done
in discrete MDPs. Equation (11) approximates the ARP for
continuous MDPs via half-space normal vectors constructed
with empirical feature count differences obtained from pairs
of actual trajectories over continuous states and actions.

ARP(R) ~

This test can be further generalized to e-value alignment
(Definition 1) to test agents with bounded rationality or
slightly misspecified reward functions. One method of con-
structing an e-alignment test is to use the mean posterior
reward E[w] to approximate the value difference of each
pair of trajectories E[w](®(&;) — ®(¢;)), and only include
preference queries with estimated value differences of at
least €. A robot with implicit values is verified as e-value
aligned by test T if its preferences over each pair of trajec-
tories in 7' match the preferences provided by the human
(see Appendix F for more details).

5. Experiments

We now study the empirical performance of value alignment
verification tests, first in the explicit human setting and then
in the implicit human setting.

5.1. Value Alignment Verification with Explicit Human

We first study the explicit human setting and analyze the
efficiency and accuracy of exact value alignment verification
tests and heuristics. We consider querying for the weight
vector of the robot (ARP-w), querying for trajectory pref-
erences (ARP-pref), and the action-query heuristics: CS,
SCOT, and ARP-bb, described in Section 4.4.

5.1.1. CASE STUDY

To illustrate the types of test queries found via value align-
ment verification, we consider two domains inspired by
the Al safety gridworlds (Leike et al., 2017). The first do-
main, island navigation is shown in Figure 3. Figure 3a
shows the optimal policy under the tester’s reward function,
R(s) =50 1green(s) — 1 - Lynite(s) — 50 - Lpiye(s), where
1color(8) is an indicator feature for the color of the grid
cell. Shown in figures 3b and 3c are the two preference
queries generated by ARP-pref which consist of pairwise
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trajectory queries (black is preferable to orange under R).
Preference query 1 verifies that the robot would rather move
the to terminal state (green) rather than visit more white
cells. Preference query 2 verifies that the robot would rather
visit white cells than blue cells. Figures 3d, 3e, and 3f show
action query tests designed using the ARP-bb, SCOT, and
CS heuristics. The robot is asked which action its policy
would take in each of the states marked with a question
mark. To pass the test, the agent must respond with an
optimal action under the human’s policy in each of these
states. ARP-bb chooses two states based on the half-space
constraints defined by the expected feature counts of 773,
resulting in an small but myopic test. SCOT queries over a
maximally informative trajectory that starts near the water,
but includes several redundant states. CS only reasons about
Q-value differences and asks many redundant queries (see
Appendix D for more results).

5.1.2. SENSITIVITY ANALYSIS

We also analyze the accuracy and efficiency of value align-
ment verification in the explicit human, explicit robot and
explicit human, implicit robot settings for verifying exact
value alignment. We analyze performance across a suite
of random grid navigation domains with varying numbers
of states and reward features. We summarize our results
here and refer the reader to Appendix E for more details.
As expected, ARP-w and ARP-pref result in perfect accu-
racy. SCOT has uses fewer samples than the CS heuristic
while achieving nearly perfect accuracy. ARP-bb results
in higher accuracy tests, but generates more false positives
than SCOT. CS has significantly higher sample cost than the
other methods and requires careful tuning of the threshold
t to obtain good performance. Our results indicate that in
the implicit robot setting, ARP-pref and ARP-bb provide
highly efficient verification tests. Out of the action query
heuristics, SCOT achieved the highest accuracy, while hav-
ing larger sample complexity than ARP-bb, but achieving
lower sample complexity than CS.

5.2. Value Alignment Verification with Implicit Human

We next analyze approximate value alignment verification
in the continuous autonomous driving domain from Sadigh
et al. (2017), shown in Figure 4a, where we study the im-
plicit human, implicit robot setting and consider verifying
e-value alignment. As depicted in Figure 1 we analyze the
use of active preference elicitation (Biyik et al., 2019) to
perform value alignment verification with implicit human
values. We first analyze implicit value alignment verifica-
tion using preference queries to a synthetic human oracle
unobserved ground-truth reward function R.

We collected varying numbers of oracle preferences, and
computed a non-redundant e-alignment test as described

in 4.5 and Appendix G.2. Tests were evaluated for accuracy
relative to a set of test reward weights. See Appendix G for
experimental parameters and details of the testing reward
generation protocol. Figure 4b displays the results of the
synthetic human experiments. The best tests achieved 100%
accuracy. Although collecting additional synthetic human
queries consistently improved verification accuracy, above
50 human queries, accuracy gains were minimal, demon-
strating the potential for human-in-the-loop preference elic-
itation. Furthermore, the generated verification tests were
often succinct: one of the tests with perfect accuracy re-
quired only six questions out of the original 100 elicited
preferences. Additional experiments and results are detailed
in Appendix G, including false positive and false negative
rate plots, and different methods of estimating the value gap
of questions. We also ran an initial pilot study using real
human preference labels which resulted in a verification test
that achieves 72% accuracy.

6. Generalization to Multiple MDPs

Up to this point, we have considered designing value align-
ment tests for a single MDP; however, it is also interesting
to try and design value alignment verification tests that en-
able generalization, e.g., if a robot passes the test, then this
verifies value alignment across many different MDPs.

As a step towards this goal, we present a result in the explicit
human, explicit robot setting where the human can construct
testing environments. We consider the idealized setting of an
omnipotent tester that is able to construct a set of arbitrary
test MDPs and can query directly for the entire optimal
policy of the robot in each MDP. This tester aims to verify
value alignment across an infinite family of environments
that share the same reward function. Our result builds on
prior analysis on the related problem of omnipotent active
reward learning. Amin & Singh (2016) prove that an active
learner can determine the reward function of another agent
within e precision via O(log |S| + log(1/€)) policy queries.
By contrast, we prove in the following theorem that the
sample complexity of e-value alignment verification is only
O(1) (see Appendix A.5 for the proof).

Theorem 2. Given a testing reward R (not necessarily
linear in known features), there exists a two-query test (com-
plexity O(1)) that determines e-value alignment of a ratio-
nal agent over all MDPs that share the same state space
and reward function R, but may differ in actions, transitions,
discount factors, and initial state distribution.

We also note that if the human has access a priori to a finite
set of MDPs over which they want to verify value alignment,
then our results from earlier sections on exact, heuristic,
and approximate value alignment could be extended to this
setting. For example, we can define a generalized aligned
reward polytope for a family of MDPs as the intersection of
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Figure 3. Examples of exact and heuristic value alignment verification tests for an island navigation gridworld (Leike et al., 2017). Only
two preference queries (b) and (c) are required to provably verify any robot policy (black should be preferred over orange). Figures (d)-(f)

show heuristic tests that query for actions at individual states.
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(a) Driving domain (b) Alignment test accuracy vs €
Figure 4. Implicit human, implicit robot: e-value alignment
verification in a continuous autonomous driving domain. (a) A
preference query. The human is asked if they prefer the blue or
the red trajectory w.r.t. the trajectory of the white car. (b) 80%
confidence intervals on verification accuracy for different values
of ¢, different human query budgets n, averaged over ten seeds.

the aligned reward polytope for each individual MDP. This
intersection of half-spaces provides a sufficient condition
for testing value alignment across the entire family of MDPs.
We leave this as a promising area for future work.

7. Discussion

We analyzed the problem of efficient value alignment veri-
fication: how to generate an efficient test that can be used
to verify the value alignment of another agent with respect
to the human’s reward function. We developed a theoretical
foundation for value alignment verification and proved suf-
ficient conditions for verifying the alignment of a rational
agent under explicit and implicit values for both the human
and robot. Our empirical analysis demonstrates that action
query heuristics can achieve low sample complexity and
high accuracy while only requiring black-box access to an
agent’s policy. When the human has only implicit access
to their values, we analyzed active preference elicitation
algorithms as a potential means to automatically construct
an approximate value alignment test that can efficiently test
another agent with implicit values.

The biggest assumption we make is that the reward function
is a linear combination of features shared by both the human
and robot. We would like to emphasize three points: First,
on representing rewards as linear combinations of features,
note that the features can be arbitrarily complex, and can
even be features learned via a deep neural network which
are then linearly transformed by a final linear layer (Brown

et al., 2020). Second, there is the issue of the human and the
robot sharing the features. The reason this might actually
be a reasonable assumption is that recent techniques enable
robots to detect when they cannot explain human input with
their existing features and ask for new input specific to the
missing features (Bobu et al., 2020; 2021), thereby explicitly
aligning the robot’s reward representation with the human’s
reward representation. Third, even if the features are not
perfectly aligned, our approach can still provide value by
learning a linear combination of features that approximates
the human’s reward function to design an alignment test.

Our pilot study with the driving simulation hints that this
might be the case, as it gives evidence that value alignment
verification is possible when using real human preferences
that are determined using pixel-based observations. Fur-
thermore, the only true requirement for generating value
alignment tests that query for robot actions or preferences is
for the tester to have a reward function that can be approxi-
mated by a linear combination of features. Thus, these tests
could be possibly be applied in cases where a human uses a
linear combination of learned or human-designed features
to construct an approximate alignment test for robots who
have pixel-based policies and/or rewards.

In conclusion, we believe that value alignment verification
is an important problem of practical interest, as it seeks
to enable humans to verify and build trust in Al systems.
It may also be possible for a robot to use value alignment
verification to verify the performance of a human, e.g., Al-
generated assessment tests. Future work also includes re-
laxing rationality assumptions, analyzing value alignment
verification tests in more complex domains, and perform-
ing a full user study to better analyze the use of human
preferences for alignment verification.
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