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Abstract

As humans interact with autonomous agents to

perform increasingly complicated, potentially

risky tasks, it is important to be able to efficiently

evaluate an agent’s performance and correctness.

In this paper we formalize and theoretically an-

alyze the problem of efficient value alignment

verification: how to efficiently test whether the

behavior of another agent is aligned with a hu-

man’s values. The goal is to construct a kind of

“driver’s test” that a human can give to any agent

which will verify value alignment via a minimal

number of queries. We study alignment verifica-

tion problems with both idealized humans that

have an explicit reward function as well as prob-

lems where they have implicit values. We analyze

verification of exact value alignment for rational

agents and propose and analyze heuristic and ap-

proximate value alignment verification tests in a

wide range of gridworlds and a continuous au-

tonomous driving domain. Finally, we prove that

there exist sufficient conditions such that we can

verify exact and approximate alignment across an

infinite set of test environments via a constant-

query-complexity alignment test.

1. Introduction

If we desire autonomous agents that can interact with and

assist humans and other agents in performing complex, risky

tasks, then it is important that humans can verify that these

agents’ policies are aligned with what is expected and de-

sired. This alignment is often termed value alignment and is

defined in the Asilomar AI Principles1 as follows: "Highly

autonomous AI systems should be designed so that their

goals and behaviors can be assured to align with human

values throughout their operation." In this paper, we pro-
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vide a theoretical analysis of the problem of efficient value

alignment verification: how to efficiently test whether a

robot is aligned with a human’s values.

Existing work on value alignment often focuses on qualita-

tive evaluation of trust (Huang et al., 2018) or asymptotic

alignment of an agent’s performance via interactions and ac-

tive learning (Hadfield-Menell et al., 2016; Christiano et al.,

2017; Sadigh et al., 2017). By contrast, our work analyzes

the difficulty of efficiently evaluating another agent’s cor-

rectness by formally defining value alignment and seeking

efficient tests for value alignment verification that are appli-

cable when two or more agents already have learned a policy

or reward function and want to efficiently test compatibility.

To the best of our knowledge, we are the first to define and

analyze the problem of value alignment verification. In par-

ticular, we propose exact, approximate, and heuristic tests

that one agent can use to quickly and efficiently verify value

alignment with another agent.

As depicted in Figure 1, the goal of value alignment verifi-

cation is to construct a kind of “driver’s test” that a human

can give to any agent which will verify value alignment and

consists of only a small number of queries. We define values

in the reinforcement learning sense, i.e., with respect to a re-

ward function: a robot is exactly value aligned with a human

if the robot’s policy is optimal under the human’s reward

function. The two agents in a value alignment verification

problem (human and robot) may have different communica-

tion mechanisms and different value introspection abilities.

Thus, the way we analyze value alignment verification will

depend on whether the human’s and robot’s access to their

values is explicit, e.g., able to write down a value function or

reward function or implicit, e.g., able to answer preference

queries or sample actions from a policy. The most general

version of value alignment verification involves a human

with implicit values who seeks to verify the value alignment

of a robot with implicit values, e.g. a black-box policy. This

setting motivates our work; however, it is challenging and

we postpone many questions for future research.

We follow a ground-up approach where we analyze the dif-

ficulty of value alignment verification starting in the most

idealized setting, and then gradually relax our assumptions.

We first analyze sufficient conditions under which efficient

exact value alignment verification is possible in the explicit
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human, explicit robot setting, where an idealized human

tester knows their reward function and so does the robot.

When the robot is rational with respect to a reward func-

tion that is a linear combination of known features, we

show that it is possible to provably verify the alignment of

any rational explicit robot via a succinct test consisting of

either reward queries, value queries, or trajectory prefer-

ence queries. We next consider the explicit human, implicit

robot setting, where an idealized human knows their reward

function, but seeks to efficiently verify the alignment of a

black-box policy via action queries. We study heuristics for

generating value alignment verification tests in this setting

and compare their performance on a range of gridworlds.

Finally, in Section 4.5 we study the most general setting

of implicit human, implicit robot. We propose an algo-

rithm for approximate value alignment verification in con-

tinuous state and action spaces and provide empirical re-

sults in a continuous autonomous driving domain where

the human can only query the robot for preferences over

trajectories. We conclude with a brief discussion of the

challenge of designing value alignment verification tests

that generalize across multiple MDPs. Somewhat sur-

prisingly, we provide initial theory demonstrating that if

the human can create the test environment for the robot,

then exact and approximate value alignment across an in-

finite family of MDPs can be verified by observing the

robot’s policy in only two carefully constructed test envi-

ronments. Source code and videos are available at https:

//sites.google.com/view/icml-vav.

2. Related work

Value Alignment: Most work on value alignment focuses

on how to iteratively train a learning agent such that its

final behavior is aligned with a user’s intentions (Leike

et al., 2018; Russell et al., 2015; Amodei et al., 2016).

One example is cooperative inverse reinforcement learn-

ing (CIRL) (Hadfield-Menell et al., 2016; Fisac et al., 2020;

Shah et al., 2020), which formulates value alignment as

a game between a human and a robot, where both try to

maximize a shared reward function that is only known by

the human. CIRL and other research on value alignment

focus on ensuring the learning agent asymptotically con-

verges to the same values as the human teacher, but do not

provide a way to check whether value alignment has been

achieved. By contrast, we are interested in value alignment

verification. Rather than assuming a cooperative setting, we

assume the robot being tested has already learned a policy

or reward function and the human wants to efficiently verify

whether the robot is value aligned.

Reward Learning: Inverse reinforcement learning

(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Arora

& Doshi, 2018) and active preference learning (Wirth

et al., 2017; Christiano et al., 2017; Bıyık et al., 2019)

algorithms aim to determine the reward function of a

human via offline demonstrations or online queries. In

contrast, value alignment verification only seeks to answer

the question of whether two agents are aligned, without

concern for the exact reward function of the robot. In

Section 6 we prove that value alignment verification can

be performed in a constant number of queries whereas

active reward learning requires a logarithmic number of

queries (Amin & Singh, 2016; Amin et al., 2017). In cases

where the human has implicit values, active reward learning

can be used to infer the reward function of the human

tester, and then this inferred reward function can be used to

automatically generate a high-confidence value alignment

test. While active reward learning may be a subcomponent

of value alignment verification, it focuses on customizing

reward inference queries for a single agent, whereas value

alignment verification seeks to design a single alignment

test that works for all agents.

Machine Teaching: In machine teaching (Zhu et al.,

2018), a teacher seeks to optimize a minimal set of train-

ing data such that a student (running a particular learning

algorithm) learns a desired set of model parameters. Value

alignment verification can be seen as a form of machine test-

ing rather than teaching—machine teaching algorithms typi-

cally search for a minimal set of training data that will teach

a learner a specific model, whereas we seek a minimal set of

questions that will allow a tester to verify whether another

agent’s learned model is correct. Thus, in machine teaching,

the teacher provides examples and their answers, but in ma-

chine testing the tester provides examples and then queries

the testee for the answer. While machine teaching has been

applied to sequential decision making domains (Cakmak &

Lopes, 2012; Huang et al., 2017; Brown & Niekum, 2019),

we are not aware of any work that considers the problem of

value alignment verification.

Policy Evaluation Policy evaluation (Sutton & Barto,

1998) aims to answer the question, "How much return would

another agent achieve according to my values?" By focus-

ing on the simpler decision problem, "Is the robot value

aligned with the human?", we seek tests that are much more

sample-efficient than running a full policy evaluation. Off-

Policy Evaluation (OPE) seeks to perform policy evaluation

without executing the testee’s policy (Precup, 2000; Thomas

et al., 2015; Hanna et al., 2017). However, OPE is often

sample-inefficient, provides high-variance estimates, and

typically assumes explicit access to the tester’s reward func-

tion, and the tester and testee policies. Value alignment

verification is applicable in settings where the policies and

reward functions of both agents may be implicit and only

accessible indirectly.
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but not value aligned since they lead to more than one opti-

mal policy, one or more of which may not be optimal under

the human’s reward function. In the next section we show

that if we remove all such edge cases, we can construct an

aligned reward polytope (ARP) similar to the CRS, which

enables provable value alignment verification. Furthermore,

we show that the aligned reward polytope can be used for

alignment verification even when the human cannot directly

query for the robot’s reward function.

4.3. Sufficient Conditions for Provable Verification of

Exact Value Alignment

We seek an efficient value alignment verification test which

enables a human to query the robot to determine exact value

alignment as in Corollary 1. The following theorem demon-

strates that provable verification of exact value alignment is

possible under a variety of query types.

Theorem 1. Under the assumption of a rational robot that

shares linear reward features with the human, efficient exact

value alignment verification is possible in the following

query settings: (1) Query access to reward function weights

w
′, (2) Query access to samples of the reward function

R′(s), (3) Query access to V ∗
R′(s) and Q∗

R′(s, a), and (4)

Query access to preferences over trajectories.

4.3.1. CASE 1: REWARD WEIGHT QUERIES

We first consider the case where the human can directly

query the robot for their reward function weights w′. While

this problem setting is mainly of theoretical interest, we

will show that Cases (2) and (3) also reduce to this setting.

Querying directly for the robot’s reward function is maxi-

mally efficient since by definition it only requires a single

query. Although one can solve for the optimal policy un-

der a given w
′ and evaluate it under the human’s reward

function w, this brute force approach is computationally

demanding and must be repeated for each robot that needs

to be tested. By contrast, we will prove that there exists a

single efficient verification test that does not require solving

for the robot’s optimal policy and can be used to verify the

alignment of any robot.

As mentioned in the previous section, the CRS for the hu-

man’s optimal policy does not provide a sufficient test for

value alignment verification. Under the assumption of a

rational robot, a sufficient condition for value alignment

verification is to test whether a robot’s reward function lies

in the following set:

Definition 3. Given an MDP M composed of environment

E and reward function R, the aligned reward set (ARS) is

defined as the following set of reward functions:

ARS(R) = {R′ | OPT(R′) ⊆ OPT(R)}. (6)

Using Definition 3, we prove the following lemma which

will enable efficient verification of exact value alignment.

As a reminder, we use the notation Qπ
R(s, a) = w

TΦ
(s,a)
π ,

for Φ
(s,a)
π = Eπ[

∑∞
t=0 γ

tφ(st) | s0 = s, a0 = a], and

AR(s) = argmaxa′∈A Q∗
R(s, a

′).

Lemma 1. Given an MDP M = (E,R), assuming the

human’s reward function R, and the robot’s reward function

R′ can be represented as linear combinations of features

φ(s) ∈ R
k, i.e., R(s) = w

Tφ(s), R′(s) = w
′Tφ(s), and

given an optimal policy π∗
R under R then

w
′ ∈

⋂

(s,a,b)∈O

HR
s,a,b =⇒ R′ ∈ ARS(R) (7)

where HR
s,a,b =

{

w | w
T (Φ

(s,a)
π∗

R
− Φ

(s,b)
π∗

R
) > 0

}

and

O = {(s, a, b)|s ∈ S, a ∈ AR(s), b /∈ AR(s)} .

Proof sketch. First we show π∗
R is optimal under R′ using

the policy improvement theorem. Then, using the unique-

ness of the optimal value function, we show that all optimal

actions under R are also optimal actions under R′, and so

all optimal policies under R′ are optimal under R. (see

Appendix A.3 for the full proof).

Lemma 1 provides a sufficient condition for verifying exact

value alignment. We now have the necessary theory to

construct an efficient value alignment verification test in the

explicit human, explicit robot setting. We aim to efficiently

verify whether the robot’s reward function, R′, is within the

above intersection of half-spaces, which we call the Aligned

Reward Polytope (ARP), as this gives a sufficient condition

for R′ being value aligned with the human’s reward function

R. Our analysis in this section will be useful later when we

consider approximate tests for value alignment verification

when one or both of the agents have implicit values.2

The verification test is constructed by precomputing the

following matrix representation of the ARP:

∆ =





Φ
(s,a)
π∗

R
− Φ

(s,b)
π∗

R

...



 , (8)

where each row corresponds to a tuple (s, a, b) ∈ O. Thus,

a is an optimal action and b is a suboptimal action under R
and each row of ∆ represents the normal vector for a strict

half-space constraint based on feature count differences be-

tween an optimal and suboptimal action. Note that, using

this notation, exact value alignment can now be verified by

checking whether ∆w
′ > 0. This test can be made more

2Our results may also be of interest in the analysis of explicit
robot, explicit robot teaming, e.g., ad hoc teamwork (Stone et al.,
2010) where value alignment verification could provide a frame-
work for verifying whether two robots can work together.
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efficient by only including non-redundant half-space normal

vectors in ∆. In Appendix G.2 we discuss a straightforward

linear programming technique to efficiently obtain the mini-

mal set of half-space constraints that define the intersection

of half-spaces specified in Lemma 1.

4.3.2. CASE 2: REWARD QUERIES

We now consider the case where the tester can query for

samples of the robot’s reward function R′(s). Verifying

alignment via queries to R′(s) can be reduced to Case (1)

by querying the robot for R′(s) over a sufficient number

of states and then solving for a system of linear equations

to recover w′, since we assume both the human and robot

have access to the reward features φ(s).3 Let Φ be defined

as the matrix where each row corresponds to the feature

vector φ(s)T for a distinct state s ∈ S. Then, the number

of required queries is equal to rank(Φ) since we only need

samples corresponding to linearly independent rows of Φ.

Thus, if w′ ∈ R
k, in the worst case we only need k samples

from the robot’s reward function, since we have rank(Φ) ≤
k. If there is noise in the sampling procedure, then linear

regression can be used to efficiently estimate the robot’s

weight vector w′. Given w
′ we can verify value alignment

by checking whether ∆w
′ > 0.

4.3.3. CASE 3: VALUE FUNCTION QUERIES

Given query access to the robot’s state and state-action value

functions, w′ can be determined by noting that R′(s) =

w
′Tφ(s) and

R′(s) = Q∗
R′(s, a)− γEs′ [V

∗
R′(s′)] . (9)

Computing the expectation requires enumerating succes-

sor states. If we define the maximum degree of the MDP

transition function as

dmax = max
s∈S,a∈A

|{s′ ∈ S | P (s, a, s′) > 0}|, (10)

then at most the dmax possible next state value queries

are needed to evaluate the expectation. Thus, at most

rank(Φ)(dmax + 1) queries to the robot’s value functions

are needed to recover w′, and the tester can verify value

alignment via Case (1). Since rank(Φ) ≤ k as before, at

most k(dmax + 1) queries are required for w′ ∈ R
k.

4.3.4. CASE 4: PREFERENCE QUERIES

Finally, we consider the implicit robot setting where the

tester can only query the robot for preferences over tra-

jectories, ξ. Each preference over trajectories, ξA ≺ ξB ,

induces the constraint w′T (Φ(ξB) − Φ(ξA)) > 0, where

Φ(ξ) =
∑n

i=1 γ
iφ(si) is the cumulative discounted reward

3Note that our results also hold for rewards that are functions
of (s, a) and (s, a, s′).

features along a trajectory. Thus, our choice set of tests,

T , consists of all trajectory preference queries, and we

can guarantee value alignment if we have a test T such

that wT (Φ(ξB)− Φ(ξA)) > 0, ∀(ξA, ξB) ∈ T implies that

w ∈
⋂

HR
s,a,b. We can then construct ∆ in a similar fashion

as above, except each row corresponds to a half-space nor-

mal resulting from a preference over individual trajectories

(see Appendix A.3). Only a logarithmic number of prefer-

ences over randomly generated trajectories are needed to

accurately represent
⋂

HR
s,a,b via intersection of half-spaces

formed by the rows in ∆ (Brown et al., 2019).

4.4. Value Alignment Verification Heuristics

In the next section we relax our assumptions on the robot and

consider the explicit human, implicit robot setting, where

the human seeks to verify value alignment but the robot

has a black-box policy that only affords action queries.

In this case, we resort to heuristics for value alignment

as exact value alignment verification becomes impossible,

and ε-value alignment verification by directly attempting to

solve Equation (2) when T consists of state-action queries

is computationally intractable. As we discuss in detail in

Appendix B, a direct optimization approach would involve

estimating Π by computing the optimal policies for a large

number of different reward functions, evaluating each policy

under w to determine which policies are not ε-aligned with

the tester’s reward function R, and then solving a combina-

torial optimization problem over all possible state queries.

Instead, we resort to efficient heuristics. We consider three

heuristic alignment tests designed to work in the black-box

value alignment verification setting, where the tester can

only ask the robot policy action queries over states. Each

heuristic test consists of a method for selecting states at

which to test the robot by querying for an action from the

robot’s policy and checking if that action is an optimal action

under the human’s reward function. Note that querying only

a subset of states for robot actions is fundamentally limited

to value alignment verification tests with δfpr > 0 since

we will never know for sure that the agent will not take

a different action in that state if we query its policy again.

Thus, receiving the “right answer"—an optimal action under

the tester’s reward R—to an action query in a state is not a

sufficient condition for exact value alignment. We briefly

discuss three action query heuristics with full details in

Appendix C. Figure 3 shows examples of the state queries

generated by each heuristic in a simple gridworld.

Critical States Heuristic Our first heuristic is inspired by

the notion of critical states: states where Q∗
R(s, π

∗
R(s))−

1
|A|

∑

a∈A Q∗
R(s, a) > t, and t is a user defined thresh-

old (Huang et al., 2018). We adapt this idea to form a

critical state alignment heuristic test (CS) consisting of criti-

cal states under the human’s reward function R. Intuitively,



Value Alignment Verification

these states are likely to be important; however, often many

critical states will be redundant since different states are

often important for similar reasons (see Figure 3).

Machine Teaching Heuristic Our next heuristic is based

on Set Cover Optimal Teaching (SCOT) (Brown & Niekum,

2019), a machine teaching algorithm that approximates the

minimal set of maximally informative state-action trajecto-

ries necessary to teach a specific reward function to an IRL

agent. Brown & Niekum (2019) prove that the learner will

recover a reward function in the intersection of halfspaces

that define the CRS (Corollary 2). We generate informative

trajectories using SCOT, and turn them into alignment tests

by querying the robot for their action at each state along the

trajectories. SCOT replaces the explicit checking of half-

space constraints in Section 4.3 with implicit half-space

constraints that are inferred by querying for robot actions

at states along trajectories, thus introducing approximation

error and the possibility of false positives. Furthermore, gen-

erating a test using SCOT is more computationally intensive

than generating a test via the CS heuristic; however, unlike

CS, SCOT will seek to avoid redundant queries by reasoning

about reward features over a collection of trajectories.

ARP Heuristic Our third heuristic takes inspiration from

the definition of the ARP to define a black-box alignment

heuristic (ARP-bb). ARP-bb first computes ∆ (see Equa-

tion (8)), removes redundant half-space constraints via lin-

ear programming, and then only queries for robot actions

from the states corresponding to the non-redundant con-

straints (rows) in ∆. Intuitively, states that are queried

by ARP-bb are important in the sense that taking differ-

ent actions reveals important information about the reward

function. However, ARP-bb uses single-state action queries

to approximate checking each half-space constraint. Thus,

ARP-bb trades off smaller query and computational com-

plexity with the potenital for larger approximation error.

4.5. Implicit Value Alignment Verification

We now discuss value alignment verification in the implicit

human, implicit robot setting. Without an explicit represen-

tation of the human’s values we cannot directly compute

the aligned reward polytope (ARP) via enumeration over

states and actions to create an intersection of half-spaces as

described above. Instead, we propose the pipeline outlined

in Figure 1 where an AI system elicits and distills human

preferences and then generates a test which can be used to

approximately verify the alignment of any rational agent.

As is common for active reward learning algorithms (Bıyık

et al., 2019), we assume that the preference elicitation al-

gorithm outputs both a set of preferences over trajectories

P = {(ξi, ξj) : ξi � ξj} and a set of reward weights w

sampled from the posterior distribution {wi} ∼ P (w|P).

Given P and P (w|P), the ARP of the human’s implicit

reward function can be approximated as

ARP (R) ≈
⋂

(ξi,ξj)∈P

{w | wT (Φ(ξi)− Φ(ξj)) > 0
}

,

(11)

which generalizes the definition of the ARP to MDPs with

continuous states and actions. To see this, note that the

intersection of half-spaces in Lemma 1 enumerates over

states and pairs of optimal and suboptimal actions under

the human’s reward R to create the set of half-space normal

vectors ∆, where each normal vector is a difference of

expected feature counts. This enumeration can only be done

in discrete MDPs. Equation (11) approximates the ARP for

continuous MDPs via half-space normal vectors constructed

with empirical feature count differences obtained from pairs

of actual trajectories over continuous states and actions.

This test can be further generalized to ε-value alignment

(Definition 1) to test agents with bounded rationality or

slightly misspecified reward functions. One method of con-

structing an ε-alignment test is to use the mean posterior

reward E[w] to approximate the value difference of each

pair of trajectories E[w](Φ(ξi)− Φ(ξj)), and only include

preference queries with estimated value differences of at

least ε. A robot with implicit values is verified as ε-value

aligned by test T if its preferences over each pair of trajec-

tories in T match the preferences provided by the human

(see Appendix F for more details).

5. Experiments

We now study the empirical performance of value alignment

verification tests, first in the explicit human setting and then

in the implicit human setting.

5.1. Value Alignment Verification with Explicit Human

We first study the explicit human setting and analyze the

efficiency and accuracy of exact value alignment verification

tests and heuristics. We consider querying for the weight

vector of the robot (ARP-w), querying for trajectory pref-

erences (ARP-pref), and the action-query heuristics: CS,

SCOT, and ARP-bb, described in Section 4.4.

5.1.1. CASE STUDY

To illustrate the types of test queries found via value align-

ment verification, we consider two domains inspired by

the AI safety gridworlds (Leike et al., 2017). The first do-

main, island navigation is shown in Figure 3. Figure 3a

shows the optimal policy under the tester’s reward function,

R(s) = 50 ·1green(s)− 1 ·1white(s)− 50 ·1blue(s), where

1color(s) is an indicator feature for the color of the grid

cell. Shown in figures 3b and 3c are the two preference

queries generated by ARP-pref which consist of pairwise
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trajectory queries (black is preferable to orange under R).

Preference query 1 verifies that the robot would rather move

the to terminal state (green) rather than visit more white

cells. Preference query 2 verifies that the robot would rather

visit white cells than blue cells. Figures 3d, 3e, and 3f show

action query tests designed using the ARP-bb, SCOT, and

CS heuristics. The robot is asked which action its policy

would take in each of the states marked with a question

mark. To pass the test, the agent must respond with an

optimal action under the human’s policy in each of these

states. ARP-bb chooses two states based on the half-space

constraints defined by the expected feature counts of π∗
R,

resulting in an small but myopic test. SCOT queries over a

maximally informative trajectory that starts near the water,

but includes several redundant states. CS only reasons about

Q-value differences and asks many redundant queries (see

Appendix D for more results).

5.1.2. SENSITIVITY ANALYSIS

We also analyze the accuracy and efficiency of value align-

ment verification in the explicit human, explicit robot and

explicit human, implicit robot settings for verifying exact

value alignment. We analyze performance across a suite

of random grid navigation domains with varying numbers

of states and reward features. We summarize our results

here and refer the reader to Appendix E for more details.

As expected, ARP-w and ARP-pref result in perfect accu-

racy. SCOT has uses fewer samples than the CS heuristic

while achieving nearly perfect accuracy. ARP-bb results

in higher accuracy tests, but generates more false positives

than SCOT. CS has significantly higher sample cost than the

other methods and requires careful tuning of the threshold

t to obtain good performance. Our results indicate that in

the implicit robot setting, ARP-pref and ARP-bb provide

highly efficient verification tests. Out of the action query

heuristics, SCOT achieved the highest accuracy, while hav-

ing larger sample complexity than ARP-bb, but achieving

lower sample complexity than CS.

5.2. Value Alignment Verification with Implicit Human

We next analyze approximate value alignment verification

in the continuous autonomous driving domain from Sadigh

et al. (2017), shown in Figure 4a, where we study the im-

plicit human, implicit robot setting and consider verifying

ε-value alignment. As depicted in Figure 1 we analyze the

use of active preference elicitation (Bıyık et al., 2019) to

perform value alignment verification with implicit human

values. We first analyze implicit value alignment verifica-

tion using preference queries to a synthetic human oracle

unobserved ground-truth reward function R.

We collected varying numbers of oracle preferences, and

computed a non-redundant ε-alignment test as described

in 4.5 and Appendix G.2. Tests were evaluated for accuracy

relative to a set of test reward weights. See Appendix G for

experimental parameters and details of the testing reward

generation protocol. Figure 4b displays the results of the

synthetic human experiments. The best tests achieved 100%

accuracy. Although collecting additional synthetic human

queries consistently improved verification accuracy, above

50 human queries, accuracy gains were minimal, demon-

strating the potential for human-in-the-loop preference elic-

itation. Furthermore, the generated verification tests were

often succinct: one of the tests with perfect accuracy re-

quired only six questions out of the original 100 elicited

preferences. Additional experiments and results are detailed

in Appendix G, including false positive and false negative

rate plots, and different methods of estimating the value gap

of questions. We also ran an initial pilot study using real

human preference labels which resulted in a verification test

that achieves 72% accuracy.

6. Generalization to Multiple MDPs

Up to this point, we have considered designing value align-

ment tests for a single MDP; however, it is also interesting

to try and design value alignment verification tests that en-

able generalization, e.g., if a robot passes the test, then this

verifies value alignment across many different MDPs.

As a step towards this goal, we present a result in the explicit

human, explicit robot setting where the human can construct

testing environments. We consider the idealized setting of an

omnipotent tester that is able to construct a set of arbitrary

test MDPs and can query directly for the entire optimal

policy of the robot in each MDP. This tester aims to verify

value alignment across an infinite family of environments

that share the same reward function. Our result builds on

prior analysis on the related problem of omnipotent active

reward learning. Amin & Singh (2016) prove that an active

learner can determine the reward function of another agent

within ε precision via O(log |S|+ log(1/ε)) policy queries.

By contrast, we prove in the following theorem that the

sample complexity of ε-value alignment verification is only

O(1) (see Appendix A.5 for the proof).

Theorem 2. Given a testing reward R (not necessarily

linear in known features), there exists a two-query test (com-

plexity O(1)) that determines ε-value alignment of a ratio-

nal agent over all MDPs that share the same state space

and reward function R, but may differ in actions, transitions,

discount factors, and initial state distribution.

We also note that if the human has access a priori to a finite

set of MDPs over which they want to verify value alignment,

then our results from earlier sections on exact, heuristic,

and approximate value alignment could be extended to this

setting. For example, we can define a generalized aligned

reward polytope for a family of MDPs as the intersection of
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