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The Euler number of hyper-Kahler
manifolds of OG10 type

Klaus Hulek, Radu Laza, Giulia Sacca

Abstract

Using the [21] construction, we give a simple proof for the fact
that the Euler characteristic of a hyper-Kéhler manifold of OG10
type is x(OG10) = 176,904, a result previously established by Moz-
govoy [22].

1 Introduction

Algebraic manifolds with trivial canonical bundle, or more generally
Ricci-flat compact Kéhler manifolds, are an important class of manifolds
and play a special role in the classification of algebraic varieties. By
the famous decomposition theorem of Beauville and Bogomolov [2], Ricci
flat compact Kéahler manifolds are, up to finite cover, products of tori,
Calabi-Yau manifolds (CY) and hyper-Kéhler manifolds (HK), the latter
also known as irreducible holomorphic symplectic manifolds (IHSM). So

far only very few examples of hyper-Kéahler manifolds are known: these
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are two infinite series (with one case in each even dimension) namely
manifolds which are deformation equivalent to Hilbert schemes of points
on K3 surfaces and so-called generalized Kummer varieties, together with
two sporadic examples in dimension 6 and 10 respectively, due to O’Grady
(denoted OG6 and OG10 below). It is a basic question to understand the
topology (e.g. the Betti numbers) of these manifolds. The two infinite
series are closely related to symmetric powers of K3 surfaces and abelian
surfaces respectively, leading to a full description of their cohomology rings
(e.g. [13,14]). The topology of the six dimensional O’Grady example was
determined by the third author and her collaborators [23]. The purpose of
this note is to give a simple proof for the computation of the topological
Euler characteristic for OG10, a result first established in the thesis of S.
Mozgovoy [22].

Theorem 1.1. The Euler characteristic for a hyper-Kdhler manifold of
OG10 type is 176, 904.

An obvious natural question is to determine the Betti (and Hodge) num-
bers of hyper-Kéahler manifolds Z of OG10 type. This will be discussed
elsewhere!. For now, we only note the following known (mostly general)
restrictions on the Betti numbers. Clearly, by definition, b;(Z) = 0 for
all hyper-Kéahler manifolds. Also, the second Betti number has been com-
puted for all known examples of HK. In particular, the case of OG10
was done by Rapagnetta [26], who showed that by(Z) = 24. By Verbit-
sky [30] (see also [20]), it is also known that for any HK Z of dimension
2n, and any k € {2,...,n}, the cup product defines a natural inclusion
Sym* H*(Z,Z) — H?®(Z,Z), and thus by, > (»*F71). Salamon [29]

proved that
2n

2> (—1)! (317 — n)byp_; = nban.
=1

Together with the knowledge of the Euler number, these relations give

!(Note added in proof) This was now settled in [9]. Subsequently, further information
on the cohomology of hyper-Kahler manifolds of OG10 type was obtained in [12].
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some strong restrictions on the Betti numbers, but not sufficient to deter-
mine them for hyper-Kéhler manifolds of OG10 type.

Our argument for the computation of x(Z) is an adaptation of Beauville’s
method for counting curves on a K3 surface [3] which extends the stan-
dard computation of the Euler number for K3 surfaces by counting the
number of singular fibers in an elliptic K3 surface. Similarly, our starting
point is the construction of [21] for hyper-Kéahler manifolds Z of OG10
type as Lagrangian fibrations Z = J — B associated to a cubic fourfold
X C P5. Namely, the general fiber 7 is the intermediate Jacobian of the
cubic threefold Y, = X N Hy where Hy is the hyperplane corresponding to
a point b € B := (P5)". This leads, as originally observed in [10], to an
open Lagrangian fibration 7 /U over the smooth locus U = B\ XV (with
J = Jv)- On the other hand, by a result of Mumford [24] the interme-
diate Jacobian 73 is isomorphic to a Prym variety. Using this description,
n [21], the compactification Z = J was then constructed, étale locally,
as a relative compactified Prym over B. Returning to the proof of The-
orem 1.1, by standard arguments, recalled in Section 2, it will be enough
to consider only the fibers with x(7,) # 0 (Cor. 2.2), which are only
finitely many. Now, by construction, the discriminant in B of J/B is the
dual variety XV, which is naturally stratified in terms of singularities of
the tangent hyperplanes to X (i.e. the singularities of the cubic threefold
XNH). For a point in the discriminant, the associated limit compactified
intermediate Jacobian has non-zero Euler characteristic only if it has no
abelian factor, which in turn is equivalent, under the assumption that X
is generic, to saying that H is a 5-tangent hyperplane to X. As in the case
of very general elliptically fibered K 3s, the contribution (of the 5-tangent
hyperplane sections) to the Euler characteristic is 1 (Cor. 3.4). Thus
the computation of the Euler characteristic reduces to the enumerative
question of counting the number of 5-tangent hyperplanes to a general
cubic fourfold. These type of questions (and much more) are answered
by the theory of Thom polynomials of singularities (e.g. Riményi [28],
Kazarian [16]).
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At this point we would like to compare our approach to that of Moz-
govoy [22]. His starting point goes back to O’Grady [25] (see also [26])
who first constructed hyper-Kéhler manifolds of OG10 type as symplec-
tic resolutions M of certain moduli spaces M of sheaves on K3 surfaces
S. Namely, applying O’Grady’s construction to the case of polarized K3
surfaces (S, H) of degree 2, one notes that the linear system |2H| has
dimension 5 and then by associating to each sheaf its Fitting support,
one obtains a fibration M — |2H| whose fibers are themselves moduli
spaces of sheaves on (possibly singular) curves C' € [2H|. Similar to the
argument that we use here, Mozgovoy then uses this fibration and the
additivity of the Euler number to compute X(M ). However, this is tech-
nically somewhat involved as the curve C' can be singular, reducible and
even non-reduced. Consequently, one needs to keep track of the Euler
numbers for various special fibers. In contrast, in our situation there is
only one type of relevant special fiber, which comes with multiplicity 1 and
Euler characteristic 1. Furthermore, one can view Mozgovoy’s computa-
tion as a degeneration of our computation. This is due to the fact that
cubic fourfolds degenerate to the secant variety of the Veronese surface
in P%; the limit mixed Hodge structure associated to such a 1-parameter
degeneration is pure, and, in fact, can be naturally identified with the
Hodge structure of a degree 2 K3 surface S (see [18]). Keeping track of
the associated [21] fibration as the cubic fourfold X degenerates to the
secant variety of the Veronese surface, one recovers the original O’Grady
construction associated to S as described above (see [17, §5.3] for details).
Finally, in the limit, the 5-tangent hyperplanes that we consider lead to the
special curves that enter into Mozgovoy’s computation. In other words,
the locus £ of Lagrangian fibered OG10 manifolds constructed by [21] is
20-dimensional, giving a Noether—Lefschetz divisor in the moduli space 9t
of polarized OG10 hyper-Kahler manifolds, while the locus £’ obtained by
O’Grady’s method starting with a degree 2 K 3 surface S is 19-dimensional.
The argument sketched above says that £ C £ (and, in fact, a divisor),

showing that indeed one can regard Mozgovoy’s computation as a limit of
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ours.

2 The Prym construction of OG10 and enumer-

ative geometry

2.1 Preliminaries

We recall that the Euler characteristic for algebraic varieties satisfies
X(Z) = x(2)(:= Y (-1)'dimg H{(Z,Q)) (e.g. [11, p. 141]). Conse-
quently, the Euler characteristic is additive with respect to open and
closed embeddings, i.e. for W C Z closed, and U = Z \ W, we have
X(Z) = x(W)+x(U). Furthermore, the Euler characteristic is multiplica-
tive for smooth proper fibrations of algebraic varieties. In particular, in
our set-up: fibrations in complex tori - the Euler characteristic for the
smooth part is 0 (e.g. x(J) = 0, where J/U is as in the introduction).
Thus, it remains to consider the behavior of the fibration J/B over the
singular part. In fact, by considering a Whitney stratification, one can
show that only the fibers with non-zero Euler characteristic are relevant
for the computation. Moreover, it turns out that there is only a finite

number of them. Specifically, the following holds.

Proposition 2.1. Let Z° — B° be a proper morphism of complezx alge-
braic varieties such that x(Zy) = 0 for all b € B°, then x(Z) = 0.

Proof. This is a particular case of [8, Prop. 2.4] which gives a general
“multiplicative” formula for the Euler characteristic for a proper map of

algebraic varieties (in terms of a Whitney stratification). O
From this, we conclude:

Corollary 2.2. Let Z — B be a proper surjective morphism, and g be a
finite set such that x(Zp) =0 for b € B\ Xg. Then x(Z) = yex, X(Zb)-
O
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As already mentioned, we will apply this result to the Lagrangian fibra-
tion Z = J/B constructed in [21] as a model for OG10 HK manifolds (we
note that the locus of Lagrangian fibered OG10 is a codimension 1 locus
in moduli). Below, we review this construction and discuss the relevant

stratification of the discriminant.

2.2 The [21] construction of OG10

Let X C P5 be a general cubic fourfold, and let B := (P?)V be the
projective space parameterizing its hyperplane sections. We denote by
U C (P?)Y the open locus parameterizing smooth hyperplane sections. A
hyperplane section Y, = X N Hy, for b € U is a smooth cubic threefold,
whose associated intermediate Jacobian J(Y}) is a principally polarized
abelian variety of dimension 5 (cf. [4]). Considering the family of such
intermediate Jacobians leads to a morphism of quasi-projective varieties
my : J — U, and furthermore J carries a holomorphic symplectic form,
with respect to which J /U is a Lagrangian fibration (see [10, §8.5.2]). The
content of [21] is the construction of a smooth compactification J/B of

J /U such that the holomorphic form extends and remains non-degenerate.

Theorem 2.3 (Laza—Sacca—Voisin [21]). Let X be a general cubic four-
fold. There exists a smooth projective compactification Z = J of J, which
1s a hyper—Kdhler manifold and such that my extends to a Lagrangian fi-
bration 7 : J — B. Moreover, Z = J is of OG10 type.

As discussed above, in order to prove Theorem 1.1, we need to under-
stand the singular fibers of 7/ B and their Euler characteristic. This is
closely related to the study of degenerations of intermediate Jacobians
(see esp. [5,6]). The main tool for studying degenerations of intermedi-
ate Jacobians is Mumford’s description of the intermediate Jacobian as a
Prym variety. Specifically, if Y is a smooth cubic threefold, and £ C Y is
a general line, then the projection from ¢ realizes Y = Bl,)Y as a conic
bundle over P2. The discriminant of ¥ — P? is a quintic curve C', and

furthermore Y — P2 naturally determines an étale double cover D — C.
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Mumford’s theorem then says that J(Y) = Prym(D, C'). Based on earlier
results of Beauville, Casalaina-Martin and Laza [6] have noticed that the
Prym construction also works well in the singular case (for Y mildly sin-
gular), as long as one makes a careful choice of the line ¢. Furthermore, if
Y is any hyperplane section of a (Hodge) general cubic fourfold X, then ¢
can be chosen to be a “very good line” (see [21, Def. 2.9]). In short, the

relevant statement for us is the following;:

Proposition 2.4 ( [21, Prop. 2.3], [6]). Let X be a general cubic fourfold.
Then for any hyperplane section Y = X N H there exists a line £ CY such
that

1. The double cover f: D — C associated to the conic bundle Y — P?

is étale and both curves D and C are irreducible;

2. The singularities of Y and those of C' are in one-to-one correspon-
dence, including the analytic type (i.e. there is a bijection ¢ :

Sing(Y') — Sing(C), and the germ (Y,y) is a double suspension of
(Ce(y)))-

Remark 2.5. A key fact about the hyperplane sections of a general cu-
bic fourfold X is that the linear system of hyperplane sections of X gives
a simultaneous versal deformation of the singularities of any hyperplane
section Y of X (see [21, Prop. 3.6]; see also [5, Sect. 3] for a related discus-
sion). The same is true for the associated curves C'. More precisely, given
Y and a choice of very good line ¢, one gets a (possibly singular) quintic
C. A small embedded deformation of (Y,¢) (in X) determines a family
of quintics, which versally deform the singularities of C. In particular,
this bounds the Milnor number of the singularities of C', and by standard
singularity theory, it follows that only the types Ai,..., As, D4, D5 can
occur. Finally, property (2) above says that C has the same number and

type of A; and Dy, singularities as Y.

Returning to the [21] construction of J/B, we note that locally, in
the étale or analytic topology, J/B is the relative compactified Prym
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associated to a family of curves (D,C) which is obtained via projection
from a (local) family of good lines on the universal family of hyperplane
sections V/B of X. By [21, Prop. 5.1 and Thm. 5.7] the fiber of 7 : 7 —
B over b € B is the compactified Prym variety of a double cover D — C

of irreducible locally planar curves, i.e.
T = Prym(D,C) =: Ppc. (2.1)

(We note that since both C' and D are irreducible with planar singulari-
ties, there is no ambiguity in the definition of the compactified Prym). We
recall that the compactified Prym is a natural adaptation (in the double
cover set-up) of the compactified Jacobian. We refer to [21, §4] and to
Section 3 for the relevant notation, definitions and first properties of com-
pactified Prym varieties. For the moment, we recall that the compactified
Prym variety has an abelian variety factor, namely the “compact part” of
the generalized Prym variety of D over C' (see Section 3 for the relevant
definitions). As discussed in Section 3 below (based on ideas from [3]),
the relevant case for us is when this abelian factor vanishes. Under the
étale assumption, this is equivalent to saying that the genus of the nor-

malization of C is 1, a case that is described geometrically below.

Lemma 2.6. Let C' be a plane quintic with a combination of A; and Dy,
singularities, denoted Y ; miA;+>_, npDy. Let g = g(C) be the geometric
genus, and pyor(C) = Y ;1 -my+ Y, k- ny be the total Milnor number.
Assume that C' is irreducible and por(C) < 5. Then g > 1, and g = 1 iff
Zl myA; + Zk npDy = 5A;.

Proof. The arithmetic genus of a quintic curve C is 6. Since C' is irre-
ducible, each relevant singularity gives a genus drop of § according to the

following table

Singularity A2l—1 Agl D4 D5
o 1 1 3 |3
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Assuming C' is as in the lemma, we get
pa(C) —pg(C) = Zmlé(Al) + ané(Dk) < Zml A+ an -k < 5.
l k l k

We thus obtain py(C') > 1, and the equality holds if and only if C has 54,

singularities. O

2.3 Stratification of the dual variety XV

Motivated by Lemma 2.6, we will need to count the hyperplane sections
Y of X that lead to 5 nodal plane quintics (via the projection from a very
good line). In view of Proposition 2.4, this is equivalent to counting the
5-tangent hyperplanes to a general cubic fourfold. This is part of a more
general question regarding the structure of the dual variety XV that we
briefly review below.

Let X C P5 be a general cubic fourfold. The dual variety XV is naturally
stratified in terms of the singularities of the associated hyperplane section
Y = X NH,, (for b € XV C B). More precisely, Y will have some
combination of AD singularities R = ), myA;+)_, ni Dy, with my,ny > 0,
i.e. Y has exactly m; singular points of type A; and n; singular points of
type Dg. Prescribing a combination of singularities R will define a stratum
g of XV. In our set-up (i.e. X a general cubic), we know (cf. Rem. 2.5)
that at worst As and Ds occur and furthermore the codimension of the
stratum Y g associated to R =, miA; + > nypDy, is

pror(R) = L-my+> k-ny <5. (2.2)
l k

The versality property of Remark 2.5 easily allows one to determine the
incidence of various strata (e.g. ¥p, C X3a,); we refer the interested
reader to [7] for further discussion of the local structure of the strata
YR, and their geometric relevance. What is relevant here is to note that
each Yy is a projective variety in (P°)¥ and thus has a degree dr and

(expected) codimension pyer(R) (e.g. da, = deg(XV) = 3-2%). The com-
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putation of the degree dp is a classical question in enumerative geometry
and singularity theory. The theory of Thom polynomials (Riményi [28],
Kazarian [16]) gives an effective method of computing the various dp as
long as the simultaneous versal property (cf. Rem. 2.5) holds (in partic-
ular, the expected codimension g (R) is the actual codimension). For
the low dimensional cases and small p;0:(R), Kazarian [16] gave explicit
formulae. In particular, all that is needed for our purposes is the de-
gree deg(Xs54, ), or equivalently the number of 5-tangent hyperplanes to a

general cubic fourfold X.

Theorem 2.7 (Kazarian [16, Sect. 10]). Let X be a general cubic fourfold.
Then there are exactly 176,904 hyperplanes H which are 5 tangent to X.

Proof. The specific formula relevant to us is listed in [15, p. 6-7] (see
“enum[4,5]” in loc. cit.). For the reader’s convenience, we reproduce the
formula for the number of 5-tangent hyperplanes to a general degree d > 3

hypersuface in P°:

msA, (d):ﬁ (d—2)d(d?3—18d?2+154d?! —832d2°+3,181d'° —9,332d'8+23,306d'7 —56,258d'6
+137,704d5 —315,702d14+632,037d13 —1,167,746d 2 +2,276,543d*1 —4,606,484d1°
+8,183,892d% —12,182,630d®+19,262,625d" —37,322,080d5+63,347,155d°

—172,821,310d*+73,475,394d> —156,527,928d% +284,455,368d—193,415,040).

Setting d = 3, we get ms4,(3) = 176,904 as claimed. O

Remark 2.8. For comparison, we recall the situation for lower dimen-
sional cubics. It is a standard fact that a cubic surface has 45 tritangent
hyperplanes. For a general cubic threefold Y, there are 495(= 24(25 —
1) — 1) 4-tangent hyperplanes to Y. This can be obtained as a special
case of Kazarian’s results, or alternatively (and more geometrically), as
the number of non-trivial odd theta characteristic for the intermediate
Jacobian J(Y'). The latter claim follows by using the Prym description
J(Y) = Prym(D, C) as above, and relating the 4-tangent hyperplanes to

Y to a certain configuration of conics relative to the quintic C' (which was
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studied in [31]). We note that 176,904 = 35(3% — 1), which indicates a
relationship to the group of 3-torsion points on an abelian variety, but we

are not aware of a direct geometric link.

3 The Euler characteristic of compactified Prym

varieties

The [21] model Z = J/B of OG10 HK manifolds can be understood
by means of relative compactified Prym varieties associated to double
covers of plane quintics. Here, after a brief review of the compactified
Prym varieties, we discuss the Euler characteristic of compactified Pryms.
The main results (Prop. 3.1 and Cor. 3.4) are analogous to results of

Beauville [3] for Jacobians.

3.1 Compactified Prym varieties

Let f: D — C be an étale double cover of irreducible locally planar
curves and let ¢ : D — D be the fixed point free involution associated to
the covering. We denote by JdD the degree d generalized Jacobian of D and
by jf:l) its degree d compactified Jacobian, parameterizing locally free and
torsion free sheaves of rank 1 and degree d, respectively. We recall that
since D is irreducible with locally planar singularities, di is irreducible,
and its smooth locus is precisely J% (e.g. [27]). We denote by Jp and
Jp the degree 0 generalized and compactified Jacobians. Notice, however,
that because D is irreducible, j% is independent of the degree.

In [21, §4] (cf. also [1, §3]), the compactified Prym variety is defined as

the identity component of the fixed locus of the involution

—L*:jD—>jD

F+— (*F)Y :=Home, (V" F,Op)
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acting on the degree zero compactified Jacobian of D. In formulae:

PD/C = FiXO(—L*) - JD.

We refer the reader to [21, §4] for more details on this construction. Let
g = pa(C) be the arithmetic genus of C. By [21, Prop. 4.10 and Cor.
4.16], the compactified Prym variety Pp /c 1s an irreducible projective
variety of dimension g — 1. The open dense subset Pp,c = Pp /cNJp
parameterizing line bundles, also called the generalized Prym variety, can
be described in the following way. Let D and C be the normalization of
the curves D and C respectively, and denote by g the genus of C so that
g = g — 6 for some § > 0. There is a natural étale double cover D—C

and Pp,c fits in the exact sequence of algebraic groups
O—)G—>PD/C—>PE/5—>O, (3.1)

where G is an affine group of dimension ¢ (a product of additive and mul-
tiplicative groups) and the Prym variety Pp /G is a principally polarized
abelian variety of dimension g— 1. More precisely, G is isomorphic to (9*5 /
Of = Ggesing(c)(05/OF)e and can be viewed inside O% /0], = G x G
with the anti—diagonal embedding.

It is well known that Jp acts on Jp by tensorization. It is shown
in [3, Lem 2.1] that the stabilizer of every point can be described in the
following way. First recall that if F' is a rank one torsion free sheaf, then
there is a partial normalization n’ : D’ — D and a torsion free sheaf
F' on D', such that Endp,/(F') = Opr and F = n/F’. The curve D' is
uniquely determined by the condition D" = Spec, , Endoy, (F). Moreover,
if deg F' =0 and 0’ = pa(D) — pa(D’), then deg F' = —¢’. Finally, by [3,
Lem 3.1] the morphism

n, jB,é " D
is an embedding. By [3, Lem. 2.1] the stabilizer of F' in Jp is precisely
the kernel of the pullback (n')* : Jp — Jpr. By restriction, Pp/c acts
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on Jp preserving Fix(—.*), so there is an action of Pp, Jc on P e Let
F be a point in Pp /c- An isomorphism F = (t*F)V, determines isomor-
phisms Endo,,  Fr = End@D’L(I)FL(m) for every x € D inducing an involu-
tion ¢/ : D' — D’ naturally lifting ¢. The curve C' = D’/ is a partial
normalization of C' and there is a corresponding pullback map between

Prym varieties

(’I’L/)* : PD/C’ — PD’/C"

The kernel of this morphism is naturally identified with Of,/OF and is
precisely the stabilizer in Pp,c of F'.

3.2 The Euler characteristic of compactified Pryms

This proof of the following is an adaptation to compactified Pryms of

the analogous statement by Beauville [3, Prop. 2.2].

Proposition 3.1. Let f : D — C and g be as above. If ¢ > 2 then
X(Pp,c) = 0.

Proof. 1t is enough to show that for any integer n > 2 there is a free
action of a group of order n on Pp sc- Indeed, this implies that x(Pp /c)
is divisible by n for every integer n > 2, and thus x(Pp sc) = 0. Consider
the sequence (3.1). Since G is a divisible (hence injective) abelian group,
this sequence is split (as a sequence of abelian groups). It follows that
as long as Py /G is an abelian variety of dimension > 1 (i.e. as long as
g > 2), we can find a group K, of order n in Pp,c which maps injectively
to P

D
is contained in the kernel of Pp,c — Pj /G it follows that K, acts freely

/6 Since by the above discussion the stabilizer of any point of Pp, /C

on Pp sc- This completes the proof. ]

We are now left with computing the Euler characteristic of the com-
pactified Prym variety of an étale double cover of irreducible curves of

geometric genus 1. In view of Lemma 2.6 we only need to focus on nodal
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curves, so for the rest of this section we make the following assumption
() C is a nodal curve.

We recalled earlier that for every partial normalization n’ : D' — D

there is a natural closed embedding

n;(J_/é/) C jD.

Notice the shift by —§" = —(pa(D) — pa(D’)) in the degree. We wish
to describe the intersection of Pp ¢ with each n;(jjg,é/). We will do so
expressing this intersection in terms of a “twisted” Prym. First, let us
recall a few facts about relative duality applied to the finite morphism
n' : D' — D. Since n/ is a finite morphism, it admits a relative dualizing

sheaf which we denote by w, . By relative duality
HOmOD (nikFI? OD) = niﬂomODl(Fla wn’).

Since D and D’ are nodal curves, their dualizing sheaves are locally free
and wpr = wy ® (n')*wp is a line bundle on D’ of degree degw, = —2¢'.

There is a commutative diagram

— 5/ — 5/
T ——J5) F > Homg 1 (F', wy)

e

J_DHJD n;F’|—>n;’HomoD/(F’7wn/).

Proposition 3.2. Let D — C be an étale double cover of nodal and
irreducible curves and let D' — D be a partial normalization of D. Then
Ppjc N nfk(jg,‘sl) # (0 if and only if there is an involution ' : D' — D’
lifting ¢. If this is the case, then

Ppjcn n,(Jp) ) = Ppy e
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where as above C' = D'/ is a partial normalization of C.

Proof. We show that Pp ¢ ﬂnfk(jg,‘s ") is the image under 7, of a “twisted”
Prym variety sitting in J5° . Let F be a point in Fix(—*)N nfk(jl;,‘s/) and
let F’ be such that F' = n/F’. As observed above, this ensures that there
is an involution ¢/ : D' — D’, which lifts .. By uniqueness of the relative

dualizing sheaf we see that (v/)*w, = w, and hence
(F)Y = Homo, (0, F,Op) = nlHome, () F',wpy) .

Here, we have used that ¢* and (-)V commute, since they commute on the
dense open subset parametrizing locally free sheaves (similarly, (¢')* and
Home, (+,w,) commute); that for any sheaf & on D, *& = £ (and
similarly for ¢/); and duality for finite morphisms (cf. Prop. 4.25 and
Lem. 4.26 of [19]). It follows that, if F = (¢*F)Y, then F” is a fixed point

of the involution
76" 76
D! © JD/ — JD/

F'— Home,r (V) Fwy) .

This implies that

Fix(—*) Nl (J5Y) = Fix(r). (3.2)

Since (¢!')*wys = wyy it is not hard to see (e.g. [24, p. 329]) that there
exists a degree ¢’ line bundle L on D’ such that

ww 2 LV @ (/) L.

This shows that under the isomorphism J? . pr defined by tensoring

with L, we have an isomorphism
Fix (—(¢/)*) = Fix(7).

Now by [21, Cor. 4.16] both Fix(—:*) and Fix(—(¢)*) = Fix(7) have ex-
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actly four irreducible connected components which are isomorphic to each
other. The compactified Prym variety is the one containing the identity,
and the isomorphism of any component Z with the Prym is defined by
tensorization with a line bundle belonging to Z (cf. [21, (4.8)]). This shows
that this isomorphism preserves the local type of sheaves and hence that
every component has the same strata appearing. Now look at (3.2). The
right hand side has 4 connected components and hence so has the left
hand side. By the discussion above, if one component intersects n/,(.J -2 ,)
then so do all the others. In particular, each component of Fix(—:*) in-
tersects n’*(jjg,‘s /) in a connected closed subset which has to be isomorphic
to P D' /O - [

Remark 3.3. Without assuming that C' (and D) are nodal, the same
conclusion holds true for any stratum corresponding to a partial normal-

ization D’ that is also locally planar.

Corollary 3.4. If C is a nodal curve of geometric genus 1 then the Euler
characteristic X(PD/C) =1.

Proof. Under the assumption, Jp admits a stratification in generalized
Jacobians of partial normalizations of D. The stratification is indexed by
the subset of the set A of nodes of D in the following way. There is a
natural action of ¢ on A, so we can talk of (—invariant subsets of A. For
every subset B C A, the stratum corresponding to the normalization Dpg

of D at the nodes of B is isomorphic to
0— (CH#NE — Jp — J5 — 0.

By the proposition above, such a stratum intersects the compactified Prym
variety if and only if B is (—invariant. If this is the case, then the induced

stratum on the Prym is given by

Every stratum has trivial Euler number, except for the one corresponding
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to B = A, which is just one point. O

4 Completion of the proof of Theorem 1.1

By the discussion of Section 2 and Proposition 3.1, the only contribution
to the Euler characteristic is due to compactified Pryms P, /¢y Where C
is an irreducible plane quintic of geometric genus 1. By Lemma 2.6 and
Proposition 2.4, such curves arise via projections from a general line £ on
a b5-nodal hyperplane section ¥ = X N H. By Theorem 2.7, there are
176,904 such hyperplanes. Finally, by Corollary 3.4, the contribution of
each such hyperplane is 1. By Corollary 2.2, we conclude x(2) = x(J) =
176,904 - 1. O
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