
Enabling Science with Functions-as-a-Service: New
Features and Usage of the Abaco Platform

Joe Stubbs, Christian R. Garcia, Julia Looney
Anagha Jamthe, Mike Packard and Matthew Vaughn.

Texas Advanced Computing Center
University of Texas at Austin

Austin, TX 78758
Email: [jstubbs, cgarcia,jlooney, ajamthe, mpackard, vaughn]@tacc.utexas.edu

Abstract—The Abaco Platform is an NSF funded project en-
abling researchers and developers to run containerized functions
on infrastructure at the Texas Advanced Computing Center by
making simple API calls over HTTP. Sometimes referred to
as a “serverless” platform, Abaco reduces the administrative
cost of research projects by eliminating the need to maintain
infrastructure to run these workloads. Since its initial production
release in January 2018, several major new features driven by
feedback from the community have been released, including:
an autoscaler capability for automatically managing the pool
of workers for an actor; actor aliases, events and additional
features designed to support building complex actor networks;
synchronous executions for very low latency actors; and a global
search capability. During this time, a number of new projects
across a wide range of domains of science and engineering have
adopted Abaco in interesting ways. In this paper, we describe
the major new capabilities of Abaco since its initial production
release and we discuss some of the innovative ways projects have
been leveraging them to enable research.

Keywords—Docker, containers, functions-as-a-service, actors,
REST API, autoscaling, cloud computing.

I. INTRODUCTION

Abaco (Actor Based Containers) is an open-source, dis-
tributed computing platform and web-based Application Pro-
gramming Interface (API) hosted at the Texas Advanced
Computing Center at The University of Texas, where clients
execute atomic, independent workloads, or functions, on cloud
infrastructure. In Abaco, such functions are referred to as
actors, and clients define actors by making an API request to
Abaco that includes a reference to a publicly available Docker
image. Once an actor is defined, a client can send the actor
a message by making an API request to the URI assigned
to the actor. Abaco queues such messages on an internal
message queue assigned to the actor, and, for each message,
Abaco launches a container from the actor’s Docker image.
The system injects the original message into the container —
as an environment variable in the case of a text message, and
over a Unix Domain Socket in the case of a binary message —
before starting the container’s primary executable. In addition
to performing basic computations, the actor executable can
take advantage of a number of special aspects of the Abaco
runtime environment including a full authentication context
with which it can persist state, create new actors, and send
messages to existing actors. Actors can also read and write

to high-performance attached storage and exploit other kinds
of specialized hardware, including nodes with large memory,
many-core, and even GPUs. While supervising the container
execution, Abaco collects any results registered by the actor
as well as the associated container logs, resource utilization,
and other data, and exposes this information to the end
user through various endpoints. As such, Abaco provides
a unique functions-as-a-service platform combining Linux
container technology, HTTP web API architecture, and the
Actor Model of Concurrent Computation, a theoretical model
of computation pioneered by Carl Hewitt in the 1970s [1].

For science gateways specifically, Abaco supports virtually
any and all asynchronous (i.e., long-running) task execution
that might be required; for example: account initialization
tasks when new users sign up, indexing file collections on
large servers when new data arrives, analyzing web server log
data for usage patterns, compiling the latest version on an HPC
code, etc. Some projects have even built data pre-processing
and analysis pipelines by networking multiple actors together.
By running workloads on Abaco, a gateway project frees itself
of administering the servers and other infrastructure where the
tasks themselves run.

The National Science Foundation funded Abaco as a three
year project beginning in September of 2017, and the initial
production software release appeared in January of 2018.
Since that time, usage of Abaco has grown substantially
and a number of major new features have been released in
response to community feedback and demand. First, Abaco
added an autoscaler feature to simplify user management and
administration of an actor’s worker execution pool while si-
multaneously improving resource utilization dramatically. The
autoscaler considers the system’s available compute resources
and the total number of pending messages for each actor
to allow it to assign resources where they are needed most.
While most actors run asynchronously, Abaco introduced
synchronous executions for actors with very fast response
times. To reduce latency, synchronous actors can be tagged
with the ”sync” hint which instructs Abaco to alter its standard
autoscaler algorithm for improved performance.

Next, a set of features were developed to support actor
networks: sets of actors that coordinate to perform a larger
task. Abaco’s event subsystem allows actors to automatically



execute in response to certain events on other actors, and its
aliases feature provides a mechanism for insulating an actor
from changes to other actors it sends messages to. Abaco
nonces ease integration with third-party systems with different
authentication systems, and are additionally supported at the
alias level. Finally, a powerful, global search feature was
recently added to Abaco allowing for full-text exact and fuzzy
search across all primary collections and object attributes
including actors, workers, executions, and logs.

Usage and adoption by new projects has also increased
across this time. A sophisticated Extract, Transform, Load
(ETL) pipeline referred to as RoundTrip [2] has been de-
veloped as part of the Synergistic Discovery and Design
project to automate experimental design and analysis in grand
challenge problems in computational biology [3]. A significant
subsystem of RoundTrip consists of a complex network of
roughly 30 Abaco actors. GenApp [4], another NSF funded
project providing a tool for developers to rapidly build web
portals for computational science, now supports building and
running containerized applications on the Abaco cloud [5]. A
number of prominent science gateway projects are utilizing
Abaco for a variety of asynchronous tasks such as new user
account initialization, resource monitoring, email and alert
delivery, etc. A NASA JPL project is starting to use Abaco as
part of a data pipeline geared at allowing scientists to measure
the mass of exoplanets in an effort to determine a planet’s
habitability [6]. Finally, Abaco was recently leveraged by the
UT Austin Covid-19 Modelling consortitum for asynchronous
task execution [7].

We provide additional details regarding the new features
and usage introduced above, as well as a look at our future
development plans for Abaco in the subsequent sections.

II. NEW FEATURES

In this section we provide details on the major new features
of Abaco recently developed and released.

A. Autoscaler

Abaco makes use of an internal agent referred to as a
worker to facilitate actor executions. When a worker is started,
it is assigned exactly one actor to manage, and the worker
listens to the actor’s message queue for new messages for
the actor. When Abaco puts a new message on the actor’s
message queue, the worker receives it, performs some light
pre-processing, and then launches a new container from the
Docker image defined for the actor. The worker monitors
the execution to completion before returning to the actor’s
message queue for another message.

As a result, the number of messages an actor can process
concurrently is equal to the number of workers assigned to
the actor. Abaco provides a /workers endpoint in its API
that allows users to manually start and stop workers for
actors they own, but manually scaling the worker pool is
challenging technically and the endpoint comes with a number
of restrictions to prevent abuse and provide stability across the
cluster.

To address this issue, Abaco developed an autoscaler capa-
bility to automatically scale the pool of workers assigned to
a given actor. The autoscaler is a separate Abaco component
that tracks the sizes of the actor message queues as well as
the number of workers assigned compared to the total number
of workers supported by a given installation as shown in
Figure 1. It starts new workers for actors that have additional
messages pending and it stops workers for actors that do
not. The autoscaler thereby eliminates the burden of worker
management on end users. Additionally, by shutting down idle
workers, the autoscaler reclaims resources from the cluster,
making the overall system more efficient. Based on anecdotal
feedback from users, the autoscaler has been one of the most
helpful and popular new features.

The scalability of the autoscaler and the Abaco system in
general was examined extensively in a previous study where it
was established that Abaco scaled correctly to 100 JetStream
“m1.medium” instances running a variety of different work-
loads, including matrix multiplication for various matrix sizes
and SHA256 hashing ([8]). The autoscaler compared very well
to “manual scaling”, and Abaco in general compared well to
running the code directly on JetStream. A sample of these data
are shown in Figure 2, where Abaco achieves over 19 TFLOPs
running a matrix multiplication code on 100 nodes.

B. Synchronous Executions and Actor Hints

Synchronous executions are related to another feature of
Abaco referred to as actor hints. When registering an actor, a
user can supply a list of strings representing “tags” or metadata
about the actor. Additionally, Abaco recognizes “official” hints
that control configurable aspects of the actor runtime. For
example, the “sync” hint tells Abaco that the user expects the
actor to respond to synchronous messages. For such actors,
Abaco adjusts its autoscaler algorithm to not reduce the worker
pool all the way to 0 as quickly. Keeping a single “warm”
worker ready for actors responding to synchronous messages
prevents the actor from experiencing latency spikes associated
with the performance penalty of starting the initial worker.

When a user sends a message to an actor, Abaco puts the
message in the actor’s queue and then, in the typical case,
responds to the user immediately with an identifier for the
execution associated with the message. The user can then
make subsequent requests to the API to check the status
of the execution and retrieve additional information such as
the execution results, logs, resource utilization, etc. However,
Abaco has added support for synchronous executions: in this
case, when a user sends an actor a message, Abaco will
block until the execution completes, and then respond with
the execution result. This mode works very well for actors
implementing lightweight microservices or other low-latency
functions.

C. Actor Networks

The Actor Model implemented in Abaco allows users to
build up complex networks of actors coordinating on a larger
task. While powerful, engineering such an actor network

2



Fig. 1. Abaco architecture

Fig. 2. Abaco performance: a comparison of speeds achieved using Abaco
manual scaling and autoscaling to the speed achieved by running the code
directly on JetStream as well as the theoretical speed of the hardware.

can be challenging to develop and maintain. Abaco pro-
vides three primary sets of features to aid in these efforts.
First, Abaco includes a rich event system which tracks all
primary state changes in the platform, including changes
in status of an actor, such as to the READY state, the
ERROR state, etc., and changes in status of an execution
(SUBMITTED, RUNNING, COMPLETE). Users can register
URLs to receive webhooks — HTTP POST requests with
event data included in the message payload — for events as
they occur. Alternatively, users can create actors to manage
the events of other actors using the actor link property. When
a user links actor A to actor B, Abaco will automatically send
a message to actor B whenever an event on actor A occurs.
This creates a loose coupling between the actors and allows
for interesting patterns such as the supervisor pattern, popular
in systems such as Erlang [9].

Actor aliases provide another helpful feature for networks.

Put simply, an alias is a user-provided identifier that maps to
a specific actor; however, the key point is that users control
the mapping and can update it at any time. To see how this
is useful, suppose actor A needs to send messages to actor
B as part of an actor network. Instead of “hard coding” the
identifier of actor B, actor A instead sends messages to an
alias that maps to B. If in the future, changes are needed and
messages from actor A need to be routed to a new actor, C,
this can be accomplished automatically by updating the alias.
No code changes in actor A are required.

Actor config objects are another useful feature when devel-
oping complex actor networks. Config objects in Abaco are
JSON objects that are managed independently of any given
actor but that are shared with one or more actors. Config
objects contain valuable configuration metadata for an actor,
such as the URL, port and credentials for a database service.
When a worker starts an execution for an actor that has been
shared a config object, the worker injects the entire JSON
object into an environment variable for the actor code to
use. Thus, instead of hard-coding such configuration into the
definitions of all the actors that need it, Abaco config objects
centralize the data in one place. Additionally, if the definition
of a config object is updated, all actor executions immediately
get the updated data — there is no need to redeploy the actor.
In this way, users can update the configuration of all actors in
a network simultaneously.

D. Global Search

As part of the most recent 1.6 release, Abaco provides a
powerful global search capability has been built on top of
the MongoDB aggregation system allowing users to search
based on any attribute associated with resources that they have
permission to view. All objects in the primary Abaco collec-
tions are retrievable by search, including actors, executions,
workers and logs. The Abaco search uses a formal grammar
comprised of attributes, operations and values, and includes

3



TABLE I
TOTAL ABACO USAGE SINCE JAN, 2018

Metric Total
Total Number of Actors 43, 784
Total Executions 729, 327
Total Runtime (seconds) 20, 766, 431
Total CPU (jiffies) 6.21x1018

Total Network IO (bytes) 5.85x1014

the ability to perform full-text exact-match and fuzzy-match
searches. Retrieving all executions with status SUBMITTED
or finding all logs containing a specific error message across
all executions for all actors the user has access to are just two
simple examples of searches that can now be performed with
a single API call.

III. USE CASES AND USAGE

Since its initial production release in January of 2018,
the Abaco platform has seen significant usage and adoption.
Almost 44,000 actors have been registered and Abaco has per-
formed nearly 730,000 actor executions that have collectively
run for over 20 million seconds (346,000 hours) consuming
nearly 100 TB of network I/O. Precise usage statistics are
given in table I.

In the remainder of this section, we highlight some of the
more interesting, advanced, and exemplar projects making use
of the Abaco platform.

A. RoundTrip in the Synergistic Discovery and Design Project

The Synergistic Discovery and Design (SD2) project tackles
grand challenge problems in synthetic design across domains
such as computational biology and chemistry in which quality,
formal mathematical models are unavailable [3]. In lieu of
models, experimental data and machine learning techniques
are combined with automated design. An elaborate Extract
Transform Load (ETL) pipeline, referred to as RoundTrip,
has been developed for SD2 to automate the experimental
design, execution and analysis of efforts to build digital circuit
components such as AND and OR gates in microorganisms
such as yeast and bacteria. RoundTrip must interface with
semi-structured experimental request objects, cloud-laboratory
experiments, and machine learning analyses. A significant sub-
system of RoundTrip is implemented as a network of nearly 30
Abaco actors, making it perhaps the most sophisticated such
actor network. RoundTrip is capable of handling a number of
different Experimental Request (ER) types. In April of 2020,
RoundTrip succeeded in reducing the overall time to process
ERs from three weeks to approximately four hours, reducing
laboratory idle time from several weeks to a few days.

B. Containerized Codes in GenApp

The NSF funded project GenApp has adopted Abaco as a
compute backend for containerized applications [4]. GenApp
allows developers to rapidly build and deploy full-featured,
end user applications with graphical user interfaces for exe-
cuting research codes on a variety of HPC and high-throughput

resources. Genapp can automate the process of containerizing
an existing code and executing it on the Abaco platform.

C. Asynchronous Task Execution in Science Gateways

A number of science gateways, including an analysis portal
launched very recently by the UT Austin Covid-19 Modelling
Consortium, use Abaco for asynchronous task execution [7].
For example, to finalize account creation when a new user
initially logs in, a number of tasks get queued with Abaco
actors such as creating a UID and GID for the user and
generating and storing SSH key pairs for use on HPC storage
and execution resources, adding the user to project alloca-
tions, etc. Actors are used to monitor the health of complex
infrastructure such as data transfer nodes with large network
mounts to high-performance storage. Another set of actors
manage external messaging and alerts by delivering emails,
Slack notifications, etc. In one case, the third-party Mailgun
service is used for email delivery. The “mailgun actor” owns
credentials for sending email through the Mailgun service, and
no other part of the system requires the credentials. This is a
common and successful pattern where an actor becomes a very
light-weight microservice running on scalable infrastructure
that the web development team does not need to manage.

D. NASA JPL NEID Automated Data Pipeline

In February of 2020, TACC started working with NASA
JPL to build a data analysis pipeline for the NEID project.
The NEID, a specialized spectrometer installed at the top
of Arizona’s Kitt Peak, collects data which can be used to
compute the mass and density of exoplanets, planets in other
solar systems, a first step towards determining habitability.
Large sets of raw data are transmitted from the telescope
in Arizona to the California Institute of Technology and
then to the Texas Advanced Computing Center via a Globus
transfer multiple times per day [10]. A series of sophisticated
algorithms developed at Penn State and CalTech reduce the
raw to a set of level 0, level 1 and level 2 data products.
These products are then transferred back to CalTech. The team
is developing a mix of Abaco actors and codes running on
traditional HPC systems at TACC to automate the end-to-end
data pipeline, removing any human from the loop.

IV. FUTURE WORK

A number of new features are planned for Abaco over
the coming months and years. First, the Abaco platform will
become a first-class API in the new Tapis v3 system being
developed. Tapis is a hosted web framework for reproducible,
distributed computational research and will provide support
for data management and analysis of streaming data. Among
other capabilities, Abaco functions will integrate directly with
the Tapis Streams API to enable users to execute actors in
response to streaming data events.

The Abaco project will add support for executing actor
containers on a Kubernetes cluster for additional scalability,
and, by request, will architect support for remote deployments
to allow institutions to provide compute power to TACC’s

4



Abaco instance for running their own actors locally. (Institu-
tions are already free to deploy the entire open-source Abaco
platform locally, as has recently been done at the Centers
for Disease Control). The development team is working on a
prototype to add support for exposing actors over gRPC which
would open a number of possibilities including bi-directional
streaming between client and actor or between two actors.
Another research and development effort is attempting to add
support for conflict-free replicated data types (CRDTs) to the
actor state API, to enable actors that process multiple messages
in parallel and persist state safely without having to deal with
coordination.

Several additional utility features are planned such as time-
scheduled actor executions analogous to cron, integration with
an on-premise container image registry to allow users to
register actors with images containing security sensitive and/or
proprietary software, and many more.

V. RELATED WORK

Abaco draws comparison to a number of commercial
and open-source Functions-as-a-Service (FaaS) platforms. In
the commercial space, the most popular offerings include
AWS Lambda [11], Azure Functions [12] and Google Cloud
Functions [13], but other commercial cloud vendors also
provide FaaS platforms (e.g., IBM Cloud Functions based
on Apache OpenWhisk [14]). Open-source projects include
Apache OpenWhisk [15], Fn [16], IronFunctions [17], Knative
[18], Kubeless [19], OpenFaas [20], etc. To our knowledge,
Abaco is the only FaaS platform built on top of the Actor
Model, allowing actors to save state across executions, create
actors, etc., and Abaco is the only hosted platform with
direct integration into the nation cyberinfrastructure ecosystem
of advanced storage and computing resources. Additionally,
Abaco does not impose resource or runtime limits for actor
container executions and is freely available for use by the
research community.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation Office of Advanced CyberInfrastructure,
award number 1740288.

REFERENCES

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[2] D. Bryce et al., “Round-trip: An automated pipeline for experimental
design, execution, and analysis,” in International Workshop on Bio-
Design Automation. submitted, 2020.

[3] (2020) Sd2e. [Online]. Available: https://www.tacc.utexas.edu/research-
development/tacc-projects/sd2e

[4] (2020) Genapp. [Online]. Available: https://genapp.rocks
[5] E. Brookes and J. Stubbs, “Genapp, containers and Abaco,” in Proceed-

ings of the Practice and Experience on Advanced Research Computing,
2019, pp. 1–8.

[6] (2020) NASA’s NEID: A new tool for ’weighing’ unseen planets. [On-
line]. Available: https://www.jpl.nasa.gov/news/news.php?feature=7571

[7] (2020) Ut-covid-19. [Online]. Available: https://covid-19.tacc.utexas.edu
[8] C. Garcia et al., “The Abaco platform: A performance and scalability

study on the Jetstream cloud,” in The 16th International Conference on
Grid, Cloud, and Cluster Computing (GCC’20). Springer Nature, 2020.

[9] (2020) Erlang. [Online]. Available:
https://erlang.org/doc/man/supervisor.html

[10] W. Allcock et al., “Secure, efficient data transport and replica manage-
ment for high-performance data- intensive computing.” Proceedings of
the IEEE Mass Storage Conference, pp. 13-28 April 2001.

[11] (2020) Aws lambda. [Online]. Available:
https://aws.amazon.com/lambda/

[12] (2020) Microsoft azure functions. [Online]. Available:
https://azure.microsoft.com/en-us/services/functions

[13] (2020) Google cloud functions. [Online]. Available:
https://cloud.google.com/functions

[14] (2020) Ibm functions. [Online]. Available:
https://www.ibm.com/cloud/functions

[15] (2020) Apache openwhisk. [Online]. Available:
https://openwhisk.apache.org

[16] (2020) Fn. [Online]. Available: https://fnproject.io/
[17] (2020) Iron io. [Online]. Available: https://github.com/iron-io/functions
[18] (2020) Knative. [Online]. Available: https://knative.dev/
[19] (2020) Kubeless. [Online]. Available: https://kubeless.io/
[20] (2020) Openfaas. [Online]. Available: https://www.openfaas.com

5


