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Abstract: For ` ≥ 2 and h ∈ Z[x1, . . . ,x`] of degree k ≥ 2, we show that every subset
A⊆ {1,2, . . . ,N} lacking nonzero differences in h(Z`) satisfies |A| �h Ne−c(logN)µ

, where
c = c(h)> 0, µ = [(k−1)2 +1]−1 if `= 2, and µ = 1/2 if `≥ 3, provided h(Z`) contains a
multiple of every natural number and h satisfies certain nonsingularity conditions. We also
explore these conditions in detail, drawing on a variety of tools from algebraic geometry.

1 Introduction

Originating with conjectures of Erdős and Lovász, an extensive literature has developed over the past
several decades concerning the existence of particular differences within dense sets of integers. For sets
A,B⊆ Z, we define the sum and difference sets, respectively, as usual by A±B = {a±b : a ∈ A,b ∈ B},
and we also define the following threshold.

Definition 1.1. For X ⊆ Z and N ∈ N, we define D(X ,N) = max{|A| : A⊆ [1,N], (A−A)∩X ⊆ {0}} .

We use [1,N] to denote {1,2, . . . ,N} and |A| to denote the size of a finite set A. To clarify, D(X ,N) is the
threshold such that any subset of {1,2, . . . ,N} with more than D(X ,N) elements necessarily contains two
distinct elements that differ by an element of X . As an introductory offering prior to extensive discussions
of history, motivation, notation, and terminology, a very special case of our results in this paper is the
following:
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Theorem 1.2. Suppose h ∈ Z[x,y] is a homogeneous polynomial of degree k ≥ 2. If ∆(h) 6= 0, then

D(h(Z2),N)�h Ne−c(logN)µ

, (1)

where c = c(h)> 0 and µ = [(k−1)2 +1]−1.

Here ∆ denotes the usual homogeneous discriminant, and we use� to denote “less than a constant times”,
with subscripts indicating on what parameters, if any, the implied constant depends. We take the same
convention with subscripts on Big O notation. Theorem 1.2 follows from Corollary 2.6 and our main
result, Theorem 2.4, of which we discuss various improvements and important special cases throughout
Section 2.

1.1 Background

Lovász asked whether a set of positive upper density must contain two distinct elements that differ by
a perfect square, or equivalently whether D(S,N) = o(N), where S = {n2 : n ∈ N}. Similarly, Erdős
conjectured that D(P− 1,N) = o(N), where P− 1 = {p− 1 : p prime}. Furstenberg [10] verified the
former using ergodic methods, specifically his correspondence principle, in the same paper in which he
provided the second known proof of Szemerédi’s Theorem on arithmetic progressions. Independently
and concurrently, Sárközy ([35], [36]) verified both conjectures with a Fourier analytic density increment
argument driven by the Hardy-Littlewood circle method. Further, Sárközy’s results included quantitative
information, showing D(S,N)�ε N(logN)−1/3+ε and D(P−1,N)�ε N(log logN)−2+ε for every ε > 0.

These results have been incrementally improved and generalized in multiple ways, both through
tightening of the quantitative bounds and expansion of the possibilities for the set X of prohibited
differences. Regarding the former, Pintz, Steiger and Szemerédi [26] utilized a more elaborate Fourier
analytic strategy to show

D(S,N)� N(logN)−c log logloglogN (2)

for a constant c > 0.

Dramatically improving Sárközy’s original bound, Ruzsa and Sanders [32] showed

D(P−1,N)� Ne−c(logN)µ

(3)

with µ = 1/4, recently improved to µ = 1/3 by Wang [39]. Regarding alternative choices for the set
of prohibited differences, one must first consider obvious local obstructions. For example, we consider
P−1, rather than P, because P∩4Z= /0 implies D(P,N)≥ dN/4e by taking A to be a congruence class
modulo 4. Analogously, if h ∈ Z[x] and h(Z) contains no multiples of q ∈ N, then D(h(Z),N)≥ dN/qe.
Therefore, for even a qualitative o(N) result, it is clearly necessary that h(Z) contains a nonzero multiple
of every q ∈ N, in which case we say that h is an intersective polynomial. Examples of intersective
polynomials include any nonzero polynomial with an integer root or a collection of rational roots with
coprime denominators. However, there are also intersective polynomials with no rational roots, such as
(x3−19)(x2 + x+1).
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Balog, Pelikán, Pintz, and Szemerédi [1] extended (2) with S replaced by {nk : n ∈ N} for any fixed
k ∈ N. For a general univariate intersective polynomial, Kamae and Mendes-France [18] established the
qualitative o(N) result, the first quantitative bounds were due to Lucier [23], and the second author [28]
fully extended (2). In a recent preprint, Bloom and Maynard [3] both simplified and improved the ideas
of [26], using a more traditional density increment to establish

D(S,N)� N(logN)−c log loglogN (4)

for a constant c > 0, which is currently the best-known bound for the original square difference question.
Further, the methods of [3] are completely compatible with those of [28], so in fact (4) should hold for
the full class of intersective polynomials. For other intermediate and related results, as well as alternative
proofs, the reader may refer to (in chronological order) [11], [37], [24], [22], [21], [25], [14], [30], and
[12].

Also in [28], the second author showed that if g,h ∈ Z[x] are intersective polynomials, then

D(g(Z)+h(Z),N)�g,h Ne−c(logN)µ

, (5)

where c = c(g,h) > 0 and µ = µ(deg(g),deg(h)) > 0. Further, the second author [31] considered the
simplest nontrivial case of a non-diagonal multivariate polynomial, showing that for a binary quadratic
form h(x,y) = ax2 +bxy+ cy2 ∈ Z[x,y] with b2−4ac 6= 0, we have

D(h(Z2),N)�h Ne−c
√

logN . (6)

1.2 Motivation

As outlined in Section 2.4 of [28], the quoted upper bounds in the previous section, all of which result
from adaptations of the two aforementioned Fourier analytic arguments developed in [35] and [26],
respectively, are partially determined by the degree of decay in local exponential averages similar to

q−1
q−1

∑
s=0

e2πih(s)a/q. (7)

The best general upper bound for (7) is of the order q−1/k where k = deg(h), but the elaborate double
iteration method developed in [26], and the simplified improvement developed in [3], which lead to upper
bounds like (2) and (4), require decay at or near q−1/2, which we refer to as square-root cancellation.
Inspired by [1], the second author [28] eliminated this discrepancy for k > 2 in the general case by
employing a polynomial-specific sieve to the set of considered inputs that, roughly speaking, reduced the
issue to estimating (7) at prime moduli, for which the desired square-root cancellation is a well-known
result of Weil. This sieve technique can be thought of as a bridge from the integer setting to the best
available exponential sum estimates over finite fields.

Ruzsa and Sanders [32], and later Wang [39], were able to adapt the more traditional density increment
method to establish (3), which is a stronger type of upper bound as compared with (2) or (4), based on

DISCRETE ANALYSIS, 2021:11, 46pp. 3

http://dx.doi.org/10.19086/da


JOHN R. DOYLE AND ALEX RICE

two key factors: the high degree of decay in the relevant exponential averages, which are modifications of

φ(q)−1
q−1

∑
s=0

(s,q)=1

e2πis/q =
µ(q)
φ(q)

,

and the careful analysis of the distribution of primes in arithmetic progressions, including the consideration
of exceptional zeros of Dirichlet L-functions. In the polynomial setting, the distribution of inputs in
arithmetic progressions is not as delicate of an issue, though it does rear its head when employing a sieve,
but this level of local decay is out of reach with a single variable. Specifically, bounds like (1) from the
density increment require decay at or near q−1 (more specifically, q−1 times a function of average value
at most polylogarithmic in q, and the exponent µ depends on the power of the logarithm), which we refer
to as q-cancellation.

While the image of a multivariate intersective polynomial does not necessarily contain the image of
a univariate intersective polynomial, it is the case that, by only exploiting cancellation in one variable,
the methods of [28] and [3] can be adapted to show that (4) holds for such an image, so upper bounds
in the multivariate setting are only novel if they are stronger than (4). The observation made in [28]
to establish (5) was a rather simple one: if we consider differences of the form g(m)+ h(n), then the
relevant exponential sum factors into a product, our sieve gives square-root cancellation in each variable,
and these combine to give q-cancellation. However, this observation does not fully generalize to the case
of a single polynomial in several variables with nonzero cross-terms. In particular, simple examples like
h(x,y) = (x+ y)2 make it clear that one cannot always exploit cancellation in each variable, so some sort
of nonsingularity assumption is required.

In the setting of binary quadratic forms, the natural assumption is nonzero discriminant, and since
sieving is not required to get square-root cancellation from each variable in degree 2, the adaptation of
the usual density increment is relatively straightforward, as done in [31] to establish (6). Section 2 of [31]
provides a helpful description of the density increment method in a simpler, sieve-free context.

For higher degrees, the sieve technique can indeed be adapted to the multivariate setting, which leads
us toward the best available estimates on exponential sums for multivariate polynomials over finite fields,
due to Deligne [8] in his proof of the Weil conjectures, and their associated nonsingularity assumptions.
Recall that An and Pn denote n-dimensional affine and projective space, respectively.

Definition 1.3. Suppose F is a field, ` ∈ N, and g ∈ F [x1, . . . ,x`] is a homogeneous polynomial. We say
that g is smooth if the vanishing of g defines a smooth hypersurface in P`−1 (as opposed to A`). In other
words, g is smooth if the system g(xxx)= ∂g

∂x1
(xxx)= · · ·= ∂g

∂x`
(xxx)= 0 has no solution besides x1 = · · ·= x` = 0

in F`, where the bar indicates the algebraic closure. For a general polynomial h ∈ F [x1, . . . ,x`] with
h = ∑

k
i=0 hi, where hi is homogeneous of degree i and hk 6= 0, we say that h is Deligne if the characteristic

of F does not divide k and hk is smooth.

Remark on notation. For the remainder of the paper, we take the notational convention that, for a
polynomial h, hi denotes the degree-i homogeneous part of h, as opposed to h raised to the i-th power.
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Theorem 1.4 (Theorem 8.4, [8]). Suppose ` ∈ N and p ∈ P. If h ∈ Fp[x1, . . . ,x`] is Deligne, then∣∣∣∣∣∣ ∑xxx∈F`
p

e2πih(xxx)/p

∣∣∣∣∣∣≤ (deg(h)−1)`p`/2.

This estimate provides a guide, but additional consideration is required to develop sufficient conditions
on a multivariate polynomial for an application of Theorem 1.4 that is compatible enough with the density
increment procedure to establish an upper bound like (1). We explore these details in Section 2.

1.3 Lower bounds and a special case

In all the nontrivial cases we have explored, there is a large gap in the best-known upper and lower bounds
for D(X ,N). For an intersective polynomial h ∈ Z[x], all known lower bounds with X = h(Z) are of order
Nc for some c < 1. The greedy algorithm gives c = 1−1/deg(h), and higher values of c are known for
monomials (see [33] and [20]) and certain other polynomials divisible by x2 (due to Younis [41], and
explored from an algebraic number theory perspective by Wessel [40]). For X = P−1, the gap is even
larger, and the best-known lower bound is of the form No(1) (see [34]). Younis [41] established lower
bounds for certain homogeneous multivariate polynomials, including D(S+S,N)�

√
N, where S is the

set of squares. All of these results are descended from methods of Ruzsa that transfer examples from
the modular setting to the integer setting. In the absence of stronger lower bounds, the greedy algorithm
gives D(X ,N)≥ (N−1)/(|X ∩ [−N,N]|+1) for any set X ⊆ Z (see [25]).

As an aside, one very special case where stronger upper bounds on D(X ,N) are available, and where
the upper and lower bounds can be relatively close, is the case when X is itself, or at least contains, a
difference set. Specifically, if Y ⊆ {1, . . . ,N} and X = Y −Y , then for a set A ⊆ {1, . . . ,N} satisfying
(A−A)∩X ⊆ {0}, we have a+y 6= a′+y′ for all a,a′ ∈ A and y,y′ ∈Y with (a,y) 6= (a′,y′). In particular,
the map (a,y) 7→ a+ y into {1, . . . ,2N} is an injection, so |A||Y | ≤ 2N, and hence D(X ,N) ≤ 2N/|Y |,
while the greedy algorithm gives D(X ,N)� N/|X | ≥ N/|Y |2. For an example relating to our discussion
of multivariate polynomials, if X is the set of differences of k-th powers for a fixed k ∈ N, then we
have D(X ,N)� N1−1/k, but this observation does not immediately generalize beyond the case where
X ⊇ Y −Y .

2 Main definitions and results

The density increment procedure takes as input a set A⊆ {1,2, . . . ,N} lacking nonzero differences in the
image of a polynomial h, and produces a new, denser subset of a slightly smaller interval lacking nonzero
differences in the image of a potentially modified polynomial. The following definition keeps track of the
changes in the polynomial over the course of the iteration.

Definition 2.1. Fix ` ∈ N. As in the univariate setting, we say that h ∈ Z[x1, . . . ,x`] is intersective if
h(Z`) contains a nonzero multiple of every q ∈ N. Equivalently, h is intersective if it is not identically
zero and has a root in Z`

p for every prime p, where Zp denotes the p-adic integers.
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Suppose h ∈ Z[x1, . . . ,x`] is an intersective polynomial and fix, for each prime p, zzzp ∈ Z`
p with h(zzzp) = 0.

All objects defined below certainly depend on this choice of p-adic integer roots, but we suppress that
dependence in the subsequent notation.

By reducing modulo prime powers and applying the Chinese Remainder Theorem, the choice of roots
determines, for each d ∈ N, a unique rrrd ∈ (−d,0]` with rrrd ≡ zzzp mod p j for all prime powers p j | d.

We define a completely multiplicative function λ (depending on h and {zzzp}) on N by letting λ (p) = pmp

for each prime p, where mp is the multiplicity of zzzp as a root of h, that is,

mp = min

{
i1 + · · ·+ i` :

∂ i1+···+i`h

∂xi1
1 · · ·∂xi`

`

(zzzp) 6= 0

}
.

Roughly speaking, λ (d) is the largest guaranteed factor of h(nnn) for nnn≡ rrrd (mod d).

Definition 2.2. With notation as described above, for each d ∈ N we define the auxiliary polynomial
hd ∈ Z[x1, . . . ,x`] by

hd(xxx) = h(rrrd +dxxx)/λ (d).

Combining the hypotheses of Theorem 1.4 with the technical details of the density increment iteration,
the following definition captures a sufficient condition for the success of the method.

Definition 2.3. When considering polynomials with integer coefficients, we use the terms smooth and
Deligne as previously defined by embedding the coefficients in the field of rational numbers. In particular,
h ∈ Z[x1, . . . ,x`] of degree k ≥ 1 is Deligne if the system hk(xxx) = ∂hk

∂x1
(xxx) = · · · = ∂hk

∂x`
(xxx) = 0 has no

solution besides x1 = · · ·= x` = 0 in Q`
. In this case, there exists a finite set of primes X = X(h) such that

the reduction of h modulo p is Deligne for all p /∈ X : Indeed, one can take X(h) to be the set of primes
dividing the Macaulay resultant Res

(
hk, ∂hk

∂x1
, · · · , ∂hk

∂x`

)
, which is nonzero precisely when h is Deligne.

(See also Prop. A.9.1.6 of [16].)

Further, we say that h is strongly Deligne if there exists a finite set of primes X = X(h) and a choice
{zzzp}p∈P of p-adic integer roots of h such that the reduction of hd modulo p is Deligne for all p /∈ X and
all d ∈ N. We note that strongly Deligne polynomials are necessarily both Deligne and intersective.

To highlight some of the subtlety of this definition, we first note that hk
d =

dk

λ (d)h
k, so for a prime p - d, we

have that if h is Deligne modulo p, then hd is Deligne modulo p. However, complications arise when
p | d, because hi

d has a factor of di/λ (d), and hence vanishes modulo p for all i > mp. For an example of
a polynomial that is Deligne and intersective but not strongly Deligne, see “the ugly” in Section 2.4.

For k, ` ≥ 2, we let µ(k, `) =

{
[(k−1)2 +1]−1 if `= 2
1/2 if `≥ 3

. The central result of this paper is the

following:

Theorem 2.4. If `≥ 2 and h ∈ Z[x1, . . . ,x`] is a strongly Deligne polynomial of degree k ≥ 2, then

D(h(Z`),N)�h Ne−c(logN)µ(k,`)
, (8)

where c = c(h)> 0.
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Remark. In Theorem 2.4, the full image h(Z`) is considered for ease of exposition, and to make the
conclusion invariant under input translation. However, by inspection of the proof, the same upper bound
can be seen to hold for D(h([1,Nε ]`),N) for any ε > 0, with c and the implied constant depending on ε .
Also, in several of our results and definitions, we exclude the case k = 1 only out of convenience due to
its triviality in this context. Specifically, if h ∈ Z[x1, . . . ,x`] with deg(h) = 1, then D(h(Z`),N)�h 1 if
0 ∈ h(Z`) and D(h(Z`),N)�h N otherwise.

After setting the stage with preliminary definitions and observations in Section 3, we prove Theorem
2.4 in Section 4, and then establish the needed exponential sum estimates, which we state separately as
Theorem 3.9, in Section 7. More imminently, in Sections 2.1 and 2.2, we describe sufficient conditions
under which h ∈ Z[x1, . . . ,x`] is strongly Deligne, and hence (8) holds. Then, in Section 2.3, we explain
that in many cases we may still get a bound similar to (8) even when the strongly Deligne condition is
significantly relaxed.

2.1 The integer root case

The simplest sufficient condition for the intersectivity of a nonzero polynomial is the existence of an
integer root. In this case, all p-adic integer roots can be taken to equal said integer root, which simplifies
the auxiliary polynomial definition, giving rise to a pleasantly tangible sufficient condition for the strongly
Deligne property, as captured with the following proposition.

Proposition 2.5. Suppose ` ≥ 2 and h ∈ Z[x1, . . . ,x`] with h(000) = 0. If the highest and lowest degree
homogeneous parts of h are smooth, then h is strongly Deligne.

Proof. Suppose h satisfies the hypotheses, let k = deg(h), let j denote the lowest degree of the nonzero
terms of h, and let X denote the finite set of primes p such that p | jk or either hk or h j is not smooth modulo
p. Making the natural choice of p-adic integer roots zzzp = 000 for all p, we then have hd(xxx) = h(dxxx)/d j,
hence hi

d(xxx) = di− jhi(xxx). Fix p /∈ X . If p - d, then the highest degree part of hd modulo p is a nonzero
multiple of hk, which is smooth modulo p, hence hd is Deligne modulo p. If p | d, then the only
nonvanishing homogeneous part of hd is precisely h j, which is smooth modulo p, hence hd is Deligne
modulo p.

Remark. We note that h(Z`), hence the threshold D(h(Z`),N), as well as the Deligne and strongly
Deligne properties, are all invariant under translations of the form h(xxx+ nnn) for a fixed nnn ∈ Z`. In
particular, Proposition 2.5 applies provided there exists nnn ∈ Z` such that h(nnn) = 0 and the highest and
lowest degree parts of h(xxx+nnn) are smooth. More generally, all of our results that hold for a polynomial h
also hold for the full translation equivalence class of h.

For homogeneous bivariate polynomials, smoothness of the corresponding (0-dimensional) variety is
equivalent to non-vanishing of the discriminant. Therefore, for `= 2, we have the following, which in
particular combines with Theorem 2.4 to yield Theorem 1.2 as a special case.

Corollary 2.6. Suppose h ∈ Z[x,y] with h(0,0) = 0. If the highest and lowest degree homogeneous parts
of h have nonzero homogeneous discriminant, then h is strongly Deligne.
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2.2 The Deligne case

Taking the next step in complexity, here we consider the case of a polynomial that is Deligne and
intersective, but may not have an integer root. Recalling that if p | d, then hi

d vanishes modulo p for all
i>mp, we make the following definition with the hopes of exploiting the fact that a nonzero homogeneous
linear polynomial is guaranteed to be smooth.

Definition 2.7. For ` ∈ N and h ∈ Z[x1, . . . ,x`] we say that h is smoothly intersective if there exists a
choice {zzzp}p∈P of p-adic integer roots of h such that mp = 1 for all but finitely many p. In other words,
the variety defined by h = 0 has at least one point over Zp for all p, and at least one nonsingular point
over Zp for all but finitely many p.

For low-hanging examples of polynomials that are intersective but not smoothly intersective, one
could consider the square of any intersective polynomial, but such polynomials do not pass even our
coarsest of nonsingularity filters. For an example of a polynomial that is intersective but not smoothly
intersective in a more subtle and problematic way, see our discussion of “the ugly” in Section 2.4.
Combining the motivation for the smoothly intersective definition with the fact that the highest degree
part of a Deligne polynomial is assumed to be smooth, the following proposition provides a sufficient
condition for the strongly Deligne property, and includes two notable special cases.

Proposition 2.8. Suppose `≥ 2 and h ∈ Z[x1, . . . ,x`] is Deligne and intersective with deg(h) = k ≥ 2. If
there exists a choice {zzzp}p∈P of p-adic integer roots of h satisfying mp ∈ {1,k} for all but finitely many p,
then h is strongly Deligne. In particular, if k = 2 or h is smoothly intersective, then h is strongly Deligne.

Using estimates on the number of nonsingular points on irreducible varieties over finite fields, we
obtain the following convenient criterion for smooth intersectivity.

Proposition 2.9. Suppose ` ≥ 2 and h ∈ Z[x1, . . . ,x`] is Deligne and intersective, and let h = g1 · · ·gn

be an irreducible factorization of h in Z[x1, . . . ,x`]. If gi is geometrically irreducible for some 1≤ i≤ n,
then h is smoothly intersective, hence strongly Deligne.

Remark. The conclusion of Proposition 2.9 remains true under weaker assumptions on the factorization
of h. We give this cleaner statement here, but prove the more general statement in Corollary 5.4.

For `≥ 3, the Deligne condition actually implies geometric irreducibility, yielding the following:

Corollary 2.10. Suppose `≥ 3 and h ∈ Z[x1, . . . ,x`]. If h is Deligne and intersective, then h is smoothly
intersective, hence strongly Deligne.

Proof. By Proposition 2.9, it suffices to show that if h is a Deligne polynomial in `≥ 3 variables, then h is
geometrically irreducible. Suppose to the contrary that h = g1g2 with g1,g2 ∈Q[x1, . . . ,x`] nonconstant of
degrees d and k−d, respectively. In particular, we have hk = gd

1gk−d
2 . Each of {gd

1 = 0} and {gk−d
2 = 0}

has codimension 1 in P`−1 (since they are hypersurfaces) and dimension at least 1 (since we assumed
`≥ 3). In particular, {gd

1 = 0} and {gk−d
2 = 0} have nontrivial intersection, and any intersection point

must be a singular point of the union {hk = 0}, contradicting the fact that h is Deligne.
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In Section 5, we collect some crucial tools from algebraic geometry, which are followed by the proofs
of both Proposition 2.8 and the aforementioned generalization of Proposition 2.9.

2.3 The singular case

While the Deligne condition is required to apply Theorem 1.4 to get the desired cancellation in our
exponential sums, brief consideration reveals that the condition is not strictly necessary for a bound
like (8) to hold, provided the failure of the Deligne condition is in balance with the freedom of extra
variables. For a particularly simple example, consider h(x,y,z) = (x+ z)4 +(x+ z)y3 + y4. This is a
homogeneous degree-4 polynomial, and the variety V̂ ⊆ P2 defined by its vanishing has a unique singular
point, namely (1 : 0 : −1). In particular, h is not Deligne. However, by fixing z = 0, we can define
g(x,y) = h(x,y,0) = x4+xy3+y4, which is a bivariate homogeneous polynomial of nonzero discriminant.
In particular, g is strongly Deligne, so Theorem 2.4 applies, and moreover g(Z2) = h(Z3), so (8) holds
for h as well, applied as if `= 2 as opposed to `= 3.

This example hints at a less black-and-white consideration of the singularity of a projective variety.
For h ∈ Z[x1, . . . ,x`] with deg(h) = k ≥ 1, h is Deligne precisely when the variety V̂ ⊆ P`−1 defined by
hk = 0 is nonsingular. The example above indicates that we should really only need to avoid this variety
being “too singular”, which leads to the following definition.

Definition 2.11. For ` ∈ N and a nonconstant homogeneous polynomial g ∈ Z[x1, . . . ,x`], let V̂ ⊆ P`−1

be the variety defined by g = 0, and let V̂ s be the singular locus of V̂ . We define the rank of g to be
the codimension of V̂ s in P`−1, with the convention that the empty set has dimension −1, hence the
codimension of the empty set in P`−1 is `. This is a notion of rank developed by Birch in [2] and utilized,
for example, in [6].

For h∈Z[x1, . . . ,x`] with deg(h) = k≥ 1, the rank of hk should, roughly speaking, encode the number
of variables r such that g(Zr) ⊆ h(Z`) for some Deligne polynomial g ∈ Z[x1, . . . ,xr]. In particular, h
is Deligne if and only if the rank of hk is `. In Section 6, using careful dimension-lowering arguments,
we successfully expand the class of polynomials for which a result analogous to Theorem 2.4 holds,
generalizing our efforts from Sections 2.1 and 2.2 as follows.

Theorem 2.12. Suppose ` ≥ 2 and h ∈ Z[x1, . . . ,x`] with h(000) = 0 and deg(h) = k ≥ 2. Let r be the
minimum rank of the highest and lowest degree homogeneous parts of h. If r ≥ 2, then

D(h(Z`),N)�h Ne−c(logN)µ(k,r)
, (9)

where c = c(h)> 0.

Theorem 2.13. Suppose `≥ 2 and h ∈ Z[x1, . . . ,x`] is intersective of degree k≥ 2. Let r be the rank of hk.
If r ≥ 3, OR if r = 2 and there exists a choice {zzzp}p∈P of p-adic integer roots of h satisfying mp ∈ {1,k}
for all but finitely many p, then (9) holds.

Remark. To shed light on the hypotheses of Theorems 2.12 and 2.13, we note that, for ` ≥ 2 and a
nonconstant homogeneous polynomial g ∈ Z[x1, . . . ,x`] of rank r, we have r ≥ 2 if and only if g is
squarefree—in other words, if and only if g = 0 defines a reduced variety.
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2.4 Summary of results

For this section, we suppose k, `≥ 2 and h ∈ Z[x1, . . . ,x`] with deg(h) = k, and we let r denote the rank of
hk. We assume h is intersective, as otherwise D(h(Z`),N)�h N. The following bullet points summarize
the reach and limitations of our results.

• The good: In addition to previously known results on sums of univariate intersective polynomials
(Theorems 1.2 and 5.7 of [28]), we now have that (9) holds provided h, or in the case of (iii) any
translation of h, meets any of the following criteria:

(i) r ≥ 3 (including Deligne with `≥ 3)

(ii) r = k = 2 (including Deligne with `= k = 2)

(iii) r = 2 (including Deligne with `= 2), h(000) = 0, and the lowest degree homogeneous part of h
has rank at least 2. This includes as a special case bivariate homogeneous polynomials with
nonzero discriminant, which is Theorem 1.2 from the introduction.

(iv) r = 2 (including Deligne with ` = 2) and h is smoothly intersective, the latter of which in
particular holds if any irreducible (over Z) factor of h is geometrically irreducible. Parts of
this item can be made slightly more general, as seen in the hypotheses of Proposition 2.9 and
Corollary 5.4.
An interesting example of (iv) that does not fit into any other category is h(x,y) = x3 +y3−q,
where q is a prime congruent to 1 modulo 90090 that is not expressable as the sum of two
integer cubes, of which there are plenty. This polynomial has no rational root, and it cannot
be decomposed into a sum of two univariate intersective polynomials, but it is Deligne and it
has simple roots in Z2

p for all primes p. This example was discussed in a remark following
Theorem 1.2 in [28] to illustrate a limitation of that result.

• The bad: The methods utilized here fail to improve on univariate results in the case that r = 1, or
equivalently the case that hk has a repeated factor. It should be noted that we can only definitively
say that it is impossible to reach beyond the cutting edge of the univariate setting if h = f ◦g for
some g ∈ Z[x1, . . . ,x`] and f ∈ Z[x] with deg( f )≥ 2, because in this case h(Z`)⊆ f (Z). This was
hinted at in the introduction with the example h(x,y) = (x+ y)2. In this situation, hk is a proper
power of the highest-degree part of g, so we definitely have r = 1. While it is certainly possible
to have r = 1 without h being given as a composition of this sort, our current methods cannot
distinguish between the two.

• The ugly: A more subtle remaining hurdle is the case where r = 2 (including Deligne with `= 2),
k≥ 3, and h does not meet either of the criteria described in items (iii) or (iv). Focusing on the `= 2
Deligne case, such a polynomial must satisfy ∆(hk) 6= 0, must be intersective and hence have roots
in Z2

p for all primes p, but by Proposition 2.8, for infinitely many p, all roots in Z2
p must satisfy

2≤ mp ≤ k−1. In particular, by Proposition 2.9, at least one coefficient in every geometrically
irreducible factor of h must fail to be an integer. Finally, by Corollary 2.6, if h satisfies h(0,0) = 0,
then the lowest degree part of h must have discriminant 0.
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One example is

h(x,y) = x4−2y4 +2x2(x+ y)+(x+ y)2 =
(

x2−
√

2y2 +(x+ y)
)(

x2 +
√

2y2 +(x+ y)
)
.

For any prime p such that 2 is not a square in Qp, the only Qp roots of h are (0,0) and (−1,0).
With these choices for zzzp, the highest degree nonvanishing part of hp modulo p is either (x+ y)2 or
(x−y)2, respectively. In both cases ∆(h2

p) = 0, and hence hp is not Deligne at this infinite collection
of primes. In other words, h is not strongly Deligne, and we cannot claim that (9) holds.

• The future: The issue in the previous bullet point may represent an avoidable artifact of the
method, in which case the upper bound (9) could be shown to hold for all intersective polynomials
satisfying r ≥ 2. Regarding improved bounds, as noted in Section 2.3 of [31], and as implicitly
referenced in [32] when noting that the exponent µ in (3) could be increased to 1/2 conditioned
on the Generalized Riemann Hypothesis, an upper bound of order Ne−c

√
logN appears to be the

limit of a Fourier analytic L2 density increment. More specifically, if (δ ,N) 7→ (δ ′,N′) represents
the change in density and interval size at each step of the iteration, then any further improvement
would require either N′/N to decay more slowly than any power of δ , or δ ′/δ to tend to infinity, as
δ → 0, both of which appear incompatible with the method. To be clear, this is not at all to say that
much stronger upper bounds do not hold, even in the univariate polynomial setting. As discussed
in Section 1.3, this question is rather murky. However, to achieve such a goal would likely require
a fundamentally different proof strategy.

3 Preliminaries

In this section we make some preliminary definitions and observations required to execute the sieve-
powered L2 density increment strategy utilized to prove Theorem 2.4.

3.1 Fourier analysis and the circle method on Z

We embed our finite sets in Z, on which we utilize an unnormalized discrete Fourier transform. Specif-
ically, for a function F : Z→ C with finite support, we define F̂ : T→ C, where T denotes the circle
parameterized by the interval [0,1] with 0 and 1 identified, by

F̂(α) = ∑
x∈Z

F(x)e−2πixα .

Given N ∈ N and a set A ⊆ [1,N] with |A| = δN, we examine the Fourier analytic behavior of A by
considering the balanced function, fA, defined by fA = 1A−δ1[1,N].

As is standard, we decompose the frequency space into two pieces: the points of T that are close to
rational numbers with small denominator, and the complement.
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Definition 3.1. Given γ > 0 and Q≥ 1, we define, for each a,q ∈ N with 0≤ a≤ q−1,

Ma/q(γ) =

{
α ∈ T :

∣∣∣α− a
q

∣∣∣< γ

}
, Mq(γ) =

⋃
(a,q)=1

Ma/q(γ), and M′q(γ) =
⋃
r|q

Mr(γ) =
q−1⋃
a=0

Ma/q(γ).

We then define the major arcs by

M(γ,Q) =
Q⋃

q=1

Mq(γ),

and the minor arcs by m(γ,Q) = T\M(γ,Q). We note that if 2γQ2 < 1, then

Ma/q(γ)∩Mb/r(γ) = /0 (10)

whenever a/q 6= b/r and q,r ≤ Q.

3.2 Inheritance proposition

As previously noted, we defined auxiliary polynomials to keep track of an inherited lack of prescribed
differences at each step of a density increment iteration. The following proposition makes this inheritance
precise.

Proposition 3.2. Suppose ` ∈ N, h ∈ Z[x1, . . . ,x`] is intersective, d,q ∈ N, and A⊆ N.

If (A−A)∩hd(Z`)⊆ {0} and A′ ⊆ {a : x+λ (q)a ∈ A} for some x ∈ Z, then (A′−A′)∩hqd(Z`)⊆ {0}.

Proof. Suppose that A⊆ N, A′ ⊆ {a : x+λ (q)a ∈ A}, and

a−a′ = hqd(nnn) = h(rrrqd +qdnnn)/λ (qd) 6= 0

for some nnn ∈ Z`, a,a′ ∈ A′. By construction we have that rrrqd ≡ rrrd mod d, so there exists sss ∈ Z` such that
rrrqd = rrrd +dsss. Further, λ is completely multiplicative, and therefore

0 6= hd(sss+qnnn) = h(rrrd +d(sss+qnnn))/λ (d) = λ (q)hqd(nnn) = λ (q)a−λ (q)a′ ∈ A−A.

Since a−a′ 6= 0, we have (A−A)∩hd(Z`) 6⊆ {0}, and the contrapositive is established.

3.3 Sieve definitions and observations

As in [28], we apply a polynomial-specific sieve to our set of considered inputs in order to, roughly
speaking, reduce our analysis of local exponential averages to the case of prime moduli, which in the
multivariate setting allows for the application of Theorem 1.4. To this end, for ` ∈ N, an intersective
polynomial h ∈ Z[x1, . . . ,x`], and each prime p and d ∈ N, we define γd(p) to be the smallest power such
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that ∇hd modulo pγd(p) does not vanish identically as a function on (Z/pγd(p)Z)`, and we let jd(p) denote
the number of solutions to ∇hd = 000 in (Z/pγd(p)Z)`. Then, for d ∈ N and Y > 0 we define

Wd(Y ) =
{

nnn ∈ N` : ∇hd(nnn) 6≡ 000 mod pγd(p) for all p≤ Y
}
.

In the absence of a subscript d in the usage of γ(p), j(p), and W (Y ), we assume d = 1, in which case
the definitions make sense even for non-intersective polynomials. Further, for any g ∈ Z[x1, . . . ,x`] and
q ∈ N, we define

W q(Y ) =
{

nnn ∈ N` : ∇g(nnn) 6≡ 000 mod pγ(p) for all p≤ Y, pγ(p) | q
}
.

Unlike in the univariate case, the size of W (Y ) here can be estimated with a straightforward application
of the inclusion-exclusion principle, as opposed to a Brun sieve truncation thereof (see Proposition 2.4 in
[28]). To achieve this goal, however, we must first look forward and invoke an estimate established in
Section 7.1. For the following two statements, we assume `≥ 2 and g ∈ Z[x1, . . . ,x`] with deg(g) = k≥ 1.

Lemma 3.3. If p is prime and g is Deligne modulo p, then j(p)�k,` 1.

Proposition 3.4. For any x1, . . . ,x`,Y > 0 we have

|B∩W (Y )|= x1x2 · · ·x` ∏
p≤Y

(
1− j(p)

pγ(p)`

)
+E, (11)

where B = [1,x1]×·· ·× [1,x`],

E =

{
O(X `−1 logC(Y )) if `= 2
O(X `−1) if `≥ 3

,

X = max{x1, . . . ,x`}, C =C(k, `), and the implied constants depend only on k, `, the moduli at which ∇g
identically vanishes, and the primes p≤ Y modulo which g is not Deligne.

Proof. Fix x1, . . . ,x`,Y > 0 and let X = max{x1, . . . ,x`}. For primes p1 < p2 < · · ·< ps, we let

Ap1···ps =Ap1···ps(x1, . . . ,x`) =
∣∣∣{nnn ∈ B : ∇g(nnn)≡ 000 mod pγ(pi)

i for all 1≤ i≤ s
}∣∣∣ .

Fixing Y > 0 and letting r denote the number of primes that are at most Y , we have by the Chinese
Remainder Theorem and the inclusion-exclusion principle that

|B∩W (Y )|=
r

∑
s=0

(−1)s
∑

p1<···<ps≤Y
Ap1···ps . (12)

Further,

Ap =
j(p)

pγ(p)`
x1 · · ·x`+Rp, (13)
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where |Rp| �` j(p)(X/pγ(p))`−1. We trivially have j(p)≤ pγ(p)`, while if g is Deligne modulo p, then
γ(p) = 1 and, by Lemma 3.3, j(p) ≤C =C(k, `). In particular, we can apply the Chinese Remainder
Theorem again and extend (13) to

Ap1···ps = x1 · · ·x`
s

∏
i=1

j(pi)

pγ(pi)`
i

+Rp1···ps , (14)

where |Rp1···ps | ≤ KCs(X/p1 · · · ps)
`−1, where K depends only on the moduli at which ∇g identically

vanishes and the primes p≤ Y modulo which g is not Deligne. Now, by (12) and (14) we have

|B∩W (Y )|=
r

∑
s=0

(−1)s
∑

p1<···<ps≤Y
Ap1···ps

=
r

∑
s=0

(−1)s
∑

p1<···<ps≤Y

(
x1 · · ·x`

s

∏
i=1

j(pi)

pγ(pi)`
i

+Rp1···ps

)

= x1x2 · · ·x` ∏
p≤Y

(
1− j(p)

pγ(p)`

)
+E,

where

|E| ≤ KX `−1
r

∑
s=0

∑
p1<···<ps≤Y

Cs

(p1 · · · ps)`−1 = KX `−1
∏
p≤Y

(
1+

C
p`−1

)
,

and the estimate follows.

3.4 Control over gradient vanishing: Part I

A potential hazard of the density increment method is the possibility that, as d grows, ∇hd could
identically vanish at a larger and larger collection of moduli. This section is dedicated to establishing that,
for strongly Deligne polynomials, this does not occur. We begin by noting that the collection of moduli
at which a polynomial identically vanishes is firmly controlled in terms of its degree and the gcd of its
coefficients. Throughout this section we assume k, ` ∈ N.

Definition 3.5. We define a multi-index to be an `-tuple iii = (i1, . . . , i`) of nonnegative integers. We
let |iii| = i1 + · · ·+ i`, we let iii! = i1! · · · i`!, and for xxx = (x1, . . . ,x`), we let xxxiii = xi1

1 · · ·x
i`
` . Finally, for a

polynomial g(xxx), we let ∂ iiig = ∂ |iii|g
∂xi1

1 ···∂x
i`
`

.

Proposition 3.6. If g(xxx) = ∑|iii|≤k aiiixxxiii ∈ Z[x1, . . . ,x`] is identically zero modulo q ∈ N, then

q | k!gcd({aiii}).

Proof. We first note that g is identically zero as a function on Z/qZ if and only if the polynomial g/q is
integer-valued. In this case, since products of binomial coefficients(

xxx
iii

)
=

(
x1

i1

)
· · ·
(

x`
i`

)
=

x(x−1) . . .(x− i1 +1)
i1!

· · · x(x−1) . . .(x− i`+1)
i`!
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form a Z-basis for integer-valued polynomials in Q[x1, . . . ,x`], we can write g(x) = ∑|iii|≤k qbiii
(xxx

iii

)
for

biii ∈ Z. In particular, by clearing denominators we see that the coefficients of k!g are all divisible by q,
and the proposition follows.

Further, we note that the gcd of the coefficients of each partial derivative of a polynomial h ∈ Z[x1, . . . ,x`]
divides k! times the gcd of the nonconstant coefficients of h. With this in mind, the following definition
and proposition complete the task at hand.

Definition 3.7. For h(xxx) = ∑|iii|≤k aiiixxxiii ∈ Z[x1, . . . ,x`], we define

cont(h) = gcd({aiii : |iii|> 0}).

We note that our use of cont(h) does not precisely align with the standard notion of the content of a
polynomial, as we exclude the constant coefficient.

Proposition 3.8. If h ∈ Z[x1, . . . ,x`] is a strongly Deligne polynomial of degree k, then

cont(hd)�h 1.

Proof. Suppose d ∈ N and h ∈ Z[x1, . . . ,x`] is a strongly Deligne polynomial of degree k. Let {zzzp}p∈P
and X denote the choice of p-adic integer roots and the finite set of primes, respectively, guaranteed by
the strongly Deligne condition. In particular, hd is Deligne modulo p for all p /∈ X . Because constant
polynomials are not Deligne, cont(hd) can only be divisible by primes in X .

Recalling that hd(xxx) = h(rrrd +dxxx)/λ (d), we make the trivial note that for any multi-index iii with |iii|= k,
the xxxiii coefficient of hd is precisely dk/λ (d) times the corresponding coefficient aiii of h. In particular,

cont(hd) |
dk

λ (d)
aiii whenever |iii|= k. (15)

Now fix p ∈ X . By definition of the multiplicity mp, there exists a multi-index iii with |iii| = mp and
∂ iiih(zzzp) 6= 0, so in particular ∂ iiih(zzzp) has some finite p-adic valuation v1(p).

If pv1(p)+1 - d, then by (15), we have that pkv1(p)+v2(p)+1 - cont(hd), where v2(p) is the minimum p-adic
valuation amongst the degree-k coefficients of h. Now suppose that pv1(p)+1 | d.

Let biii denote the xxxiii coefficient of hd . By Taylor’s formula, we have that

biii =
dmp

λ (d)
∂ iiih(rrrd)

iii!
.

By definition of λ we have p - (dmp/λ (d)), and since rrrd ≡ zzzp mod pv1(p)+1 and pv1(p)+1 - ∂ iiih(zzzp), we
have that pv1(p)+1 - biii. In either case, we have that pkv1(p)+v2(p)+1 - cont(hd), and hence

cont(hd)≤ ∏
p∈X

pkv1(p)+v2(p)+1�h 1,

as required.
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For strongly Deligne h ∈ Z[x1, . . . ,x`] with deg(h) = k, we have now established control over not only the
error term in the size of Wd(Y ), but also the main term, since Lemma 3.3, Proposition 3.6, and Proposition
3.8 give

∏
p≤Y

(
1− jd(p)

pγd(p)`

)
�h ∏

C=C(h)≤p≤Y

(
1− C

p`

)
�h 1 (16)

for all d ∈ N and Y ≥ 2.

3.5 Summary of new exponential sum estimates

In Section 7, we combine new and old techniques to establish the sieved multivariate exponential sum
estimates necessary to prove Theorem 2.4. These estimates are obtained through a sequence of lemmas
presented in the context of the larger proof, so we separately present a summary here in case the estimates
are of independent interest to the reader.

For the following theorem, a multivariate generalization of Theorem 2.7 in [28], we utilize all the
sieve-related notation and definitions from Section 3.3. Further, we use τ and ω to denote the divisor and
distinct prime divisor counting functions, respectively, as well as φ to denote the Euler totient function.

Theorem 3.9. For k, `≥ 2, g(xxx) = ∑|iii|≤k aiiixxxiii ∈ Z[x1, . . . ,x`], J = ∑|iii|≤k |aiii|, and a,q ∈ N, the following
estimates hold:

(i) Major arc estimate: If X ,Y > 0 and α = a/q+β , then

∑
nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α = q−` ∏
p≤Y

pγ(p)-q

(
1− j(p)

pγ(p)`

)
∑

sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q
∫
[0,X ]`

e2πig(xxx)β dxxx

+Ok,`

(
qE(1+ JXk|β |)`

)
,

where E is as in Proposition 3.4.

(ii) Local cancellation: If (a,q) = 1 and Y > 0, then∣∣∣∣∣ ∑
sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q

∣∣∣∣∣≤C1

{
(k−1)`ω(q)Φ(q, `)q`/2 if q≤ Y

Cω(q)
2 τ(q)`q`−1/k for all q

,

where C2 = C2(k), Φ(q,2) = (q/φ(q))C2 , Φ(q, `)�k,` 1 for ` ≥ 3, and C1 depends only on the
moduli at which ∇g identically vanishes and the primes p≤ Y dividing q modulo which g is not
Deligne.

(iii) Minor arc estimate: If X ,Y,Z ≥ 2, Y Z ≤ X, (a,q) = 1, and |α−a/q|< q−2, then∣∣∣∣∣ ∑
nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α

∣∣∣∣∣�k,` cont(g)6(logY )ekX `

(
e−

logZ
logY +

(
J logk2

(JqX)

(
q−1 +

Z
X
+

qZk

Xk

))2−k)
.
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4 Proof of Theorem 2.4

In this section, we exploit the estimates enumerated in Theorem 3.9 and apply a Fourier analytic L2

density increment, essentially an improved, streamlined version of Sárközy’s [35] original method, in
order to prove Theorem 2.4. The core of this method has been utilized in [23], [22], [32], and [30], among
others. Most specifically, this section very closely follows Section 5 of [28].

4.1 Main iteration lemma and proof of Theorem 2.4

For the remainder of Section 4 we fix k, ` ≥ 2, a strongly Deligne polynomial h ∈ Z[x1, . . . ,x`] with
deg(h) = k, and positive constants C0 = C0(h) and c0 = c0(h) that are appropriately large and small,
respectively. For N ∈ N we let

Q= Q(N,h) = ec0
√

logN .

For a density δ ∈ (0,1], we define θ(k, `,δ ) by θ(k, `,δ )= 1 if `≥ 3 and θ(k,2,δ )= log−k(k−2)((c0δ )−1).

We deduce Theorem 2.4 from the following iteration lemma, which makes precise the aforementioned
passage from a set lacking nonzero differences in the image of a polynomial to a new, denser subset of a
slightly smaller interval lacking nonzero differences in the image of an appropriate auxiliary polynomial.

Lemma 4.1. Suppose A ⊆ [1,N] with |A| = δN. If (A−A)∩hd(Z`) ⊆ {0}, C0,δ
−1 ≤ Q, and d ≤ Nc0 ,

then there exists q�h δ−2 and A′ ⊆ [1,N′] such that N′�h δ 4kN,

|A′| ≥ (1+ cθ(k, `,δ ))δN′,

where c = c(h)> 0, and
(A′−A′)∩hqd(Z`)⊆ {0}.

Proof of Theorem 2.4. Throughout this proof, we let C and c denote sufficiently large or small positive
constants, respectively, which we allow to change from line to line, but which depend only on h.

Suppose A⊆ [1,N] with |A|= δN and

(A−A)∩h(Z`)⊆ {0}.

Setting A0 = A, N0 = N, d0 = 1, and δ0 = δ , Lemma 4.1 yields, for each m, a set Am ⊆ [1,Nm] with
|Am|= δmNm and (Am−Am)∩hdm(Z`)⊆ {0}. Further, we have that

Nm ≥ cδ
4kNm−1 ≥ (cδ )4kmN, (17)

δm ≥ (1+ cθ(k, `,δ ))δm−1, (18)

and
dm ≤ (cδ )−2dm−1 ≤ (cδ )−2m, (19)
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as long as
C,δ−1

m ≤ ec
√

logNm , d ≤ Nc
m. (20)

By (18), the density δm will exceed 1, and hence (20) must fail, for m = M = M(h,δ ), where

M(h,δ ) =

{
C log(Cδ−1) if `≥ 3
C log(k−1)2

(Cδ−1) if `= 2
.

However, by (17), (18), and (19), (20) holds for m = M if

(cδ )4kM = eC logµ(k,`)−1
(Cδ−1) ≤ Nc. (21)

Therefore, (21) must fail, or in other words δ �h e−c(logN)µ(k,`)
, as claimed.

4.2 L2 Fourier concentration and proof of Lemma 4.1

The philosophy behind the proof of Lemma 4.1 is that the condition (A−A)∩hd(Z`)⊆ {0} represents
highly nonrandom behavior, which should be detectable in the Fourier analytic behavior of A. Specifically,
we locate one small denominator q such that f̂A has L2 concentration around rationals with denominator q,
then invoke a standard lemma stating that L2 concentration of f̂A implies the existence a long arithmetic
progression on which A has increased density.

Lemma 4.2. Suppose A⊆ [1,N] with |A|= δN, η = c0δ , and γ = η−2k/N. If (A−A)∩hd(Z`)⊆ {0},
C0,δ

−1 ≤ Q, d ≤ Nc0 , and |A∩ (N/9,8N/9)| ≥ 3δN/4, then there exists q≤ η−2 such that∫
M′q(γ)

| f̂A(α)|2dα �h θ(k, `,δ )δ 2N.

Lemma 4.1 follows from Lemma 4.2 and the following standard L2 density increment lemma.

Lemma 4.3 (Lemma 2.3 in [29], see also [23], [32]). Suppose A⊆ [1,N] with |A|= δN. If 0 < θ ≤ 1,
q ∈ N, γ > 0, and ∫

M′q(γ)
| f̂A(α)|2dα ≥ θδ

2N,

then there exists an arithmetic progression

P = {x+ `q : 1≤ `≤ L}

with qL�min{θN,γ−1} and |A∩P| ≥ (1+θ/32)δL.

Proof of Lemma 4.1. Suppose A⊆ [1,N], |A|= δN, (A−A)∩hd(Z`)⊆ {0}, C0,δ
−1 ≤ Q, and d ≤ Nc0 .

If |A∩ (N/9,8N/9)|< 3δN/4, then max{|A∩ [1,N/9]|, |A∩ [8N/9,N]|}> δN/8. In other words, A has
density at least 9δ/8 on one of these intervals.
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Otherwise, Lemmas 4.2 and 4.3 apply, so in either case, letting η = c0δ , there exists q ≤ η−2 and an
arithmetic progression

P = {x+ `q : 1≤ `≤ L}

with qL�h δ 2kN and
|A∩P| ≥ (1+ cθ(k, `,δ ))δL.

Partitioning P into subprogressions of step size λ (q), the pigeonhole principle yields a progression

P′ = {y+aλ (q) : 1≤ a≤ N′} ⊆ P

with N′ ≥ qL/2λ (q) and |A∩P′|/N′ ≥ |A∩P|/L. This allows us to define a set A′ ⊆ [1,N′] by

A′ = {a ∈ [1,N′] : y+aλ (q) ∈ A},

which satisfies |A′|= |A∩P′| and N′�h δ 2kN/λ (q)�h δ 4kN. Moreover, (A−A)∩hd(Z`)⊆{0} implies
(A′−A′)∩hqd(Z`)⊆ {0} by Proposition 3.2.

Our task for this section is now completely reduced to a proof of Lemma 4.2.

4.3 Preliminary notation for proof of Lemma 4.2

Before delving into the proof of Lemma 4.2, we take the opportunity to define some relevant sets
and quantities, depending on our strongly Deligne polynomial h ∈ Z[x1, . . . ,x`], scaling parameter d, a
parameter Y > 0, and the size N of the ambient interval. In all the notation defined below, we suppress all
of the aforementioned dependence, as the relevant objects will be fixed in context.

We define Wd , γd , and jd in terms of h as in Section 3.3. We then let M =
( N

9J

)1/k, where J is the sum
of the absolute value of all the coefficients of hd , and hence hd([1,M]`)⊆ [−N/9,N/9]. We let

w = ∏
p≤Y

(
1− jd(p)

pγd(p)`

)
,

and we let T = wM`.

We let Z = {nnn ∈ Z` : hd(nnn) = 0}, and we let H =
(
[1,M]`∩Wd(Y )

)
\Z. We note that the hypothesis

Q≥C0 allows us to assume at any point that Q, and hence also N, are sufficiently large with respect to h,
which we take as a perpetual assumption moving forward. Under this assumption, it follows from (11),
(16), and the estimate

|Z∩ [1,M]`| �h M`−1 (22)

that
|H| ≥ T/2. (23)
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4.4 Proof of Lemma 4.2

Suppose A ⊆ [1,N] with |A| = δN, (A−A)∩ hd(Z`) ⊆ {0}, C0,δ
−1 ≤ Q, and d ≤ Nc0 . Further, let

η = c0δ , let Q = η−2, and let Y = η−2k. Since hd(H)⊆ [−N/9,N/9]\{0}, we have

∑
x∈Z
nnn∈H

fA(x) fA(x+hd(nnn)) = ∑
x∈Z
nnn∈H

1A(x)1A(x+hd(nnn))−δ ∑
x∈Z
nnn∈H

1A(x)1[1,N](x+hd(nnn))

−δ ∑
x∈Z
nnn∈H

1A(x+hd(nnn))1[1,N](x)+δ
2

∑
x∈Z
nnn∈H

1[1,N](x)1[1,N](x+hd(nnn))

≤
(

δ
2N−2δ |A∩ (N/9,8N/9)|

)
|H|.

Therefore, if |A∩ (N/9,8N/9)| ≥ 3δN/4, then by (23) we have

∑
x∈Z
nnn∈H

fA(x) fA(x+hd(nnn))≤−δ
2NT/4. (24)

We see from (22) and orthogonality of characters that

∑
x∈Z
nnn∈H

fA(x) fA(x+hd(nnn)) =
∫ 1

0
| f̂A(α)|2S(α)dα +Oh(NM`−1), (25)

where
S(α) = ∑

nnn∈[1,M]`∩Wd(Y )

e2πihd(nnn)α .

Combining (24) and (25), we have∫ 1

0
| f̂A(α)|2|S(α)|dα ≥ δ

2NT/8. (26)

Letting γ = η−2k/N, Theorem 3.9 yields that for α ∈Mq(γ), q≤ Q, we have

|S(α)| �h (k−1)`ω(q)
Φ(q, `)q−`/2T, (27)

where Φ(q,2) = (q/φ(q))C for C =C(k) and Φ(q, `)�k,` 1 for `≥ 3. Further, for α ∈m(γ,Q) we have

|S(α)| ≤ δT/16. (28)

The proof of the estimates in Theorem 3.9 and the subsequent deduction of (27) and (28) can be found in
Section 7. From (28) and Plancherel’s Identity, we have∫

m(γ,Q)
| f̂A(α)|2|S(α)|dα ≤ δ

2NT/16,

which together with (26) yields ∫
M(γ,Q)

| f̂A(α)|2|S(α)|dα ≥ δ
2NT/16. (29)
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From (27) and (29) , we have

Q

∑
q=1

(k−1)`ω(q)
Φ(q)q−`/2

∫
Mq(γ)

| f̂A(α)|2dα �h δ
2N. (30)

For ` = 2, the function b(q) = (k− 1)2ω(q)(q/φ(q))C satisfies b(qr) ≥ b(r), and we make use of the
following proposition, which is based on a trick that originated in [32].

Proposition 4.4 (Proposition 5.6, [28]). For any γ,Q > 0 satisfying 2γQ2 < 1, and for any function
b : N→ [0,∞) satisfying b(qr)≥ b(r) for all q,r ∈ N, we have

max
q≤Q

∫
M′q(γ)

| f̂A(α)|2dα ≥ Q
(

2
Q

∑
q=1

b(q)
)−1 Q

∑
r=1

b(r)
r

∫
Mr(γ)

| f̂A(α)|2dα.

Because b is a multiplicative function, b(pv) = (k−1)2(1+1/(p−1))C�k 1 for all prime powers pv,
and

Q

∑
q=1

b(q)
q
≤ ∏

p≤Q

(
1+

b(p)
p

+
b(p)

p2 + · · ·
)
= ∏

p≤Q

(
1+

(k−1)2

p
+Ok(1/p2)

)
�k log(k−1)2

Q,

it follows from Theorem 01 of [13] that

Q

∑
q=1

b(q)�k Q log(k−1)2−1 Q,

and the lemma for `= 2 follows from (30) and Proposition 4.4. For `≥ 3, since (k−1)`ω(q)�k,`,ε qε for
any ε > 0, the sum ∑

∞
q=1(k−1)`ω(q)q−`/2 is convergent, and hence (30) immediately yields

max
q≤Q

∫
Mq(γ)

| f̂A(α)|2dα �h δ
2N.

Since Mq(γ)⊆M′q(γ), this establishes the lemma for `≥ 3.

5 Criteria for strongly Deligne polynomials

In this section, we prove Proposition 2.8 and a stronger version of Proposition 2.9. We begin, though, by
collecting a few facts from algebraic geometry that will be useful in subsequent sections. Throughout this
section, for a variety V , we let V s denote the singular locus of V , and we let V ns =V \V s.

5.1 Results from algebraic geometry

We first state a classical version of Bézout’s Theorem; see [9, Example 8.4.6].
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Lemma 5.1 (Bézout’s Theorem). Let V1, . . . ,Vk be subvarieties of P`. Then deg
⋂k

i=1Vi ≤∏
k
i=1 degVi. In

particular, if the intersection is finite, then
∣∣∣⋂k

i=1Vi

∣∣∣≤∏
k
i=1 degVi.

We now record estimates due to Lang and Weil [19] on the number of points on varieties over finite
fields. The following is a well known consequence of Theorem 1 of [19] (see, for example, Theorem 5.1
of [27]), but we give the short proof for completeness.

Lemma 5.2. Let k, `, m, and r be positive integers, and let q be a prime power. Let V be a (reduced)
closed subvariety of P`, defined over Fq (the field with q elements), of degree k and dimension r. Let
m≥ 1 be the number of geometrically irreducible components of V which are defined over Fq. Then

|V (Fq)|, |V ns(Fq)|= mqr +Ok,`,r(qr−1/2). (31)

Moreover, the same is true if we replace V with a closed subvariety W ⊆ A`.

Proof. The proof is by induction on r, noting that the case r = 0 is elementary, and amounts to considering
the following observations.

1. If P ∈ Z(Fq) for a component Z ⊂ V not defined over Fq, then P = Pσ ∈ Zσ 6= Z for nontrivial
σ ∈ Gal(Fq/Fq), hence P ∈ Z∩Zσ , which has dimension strictly less than r. Thus, the number of
points on components not defined over Fq is absorbed into the error term.

2. Each component of V defined over Fq has qr +Ok,`,r(qr−1/2) by Theorem 1 of [19]. Summing the
number of points on each component is an overcount, but the surplus is due to points on pairwise
intersections of components, which again is absorbed into the error term. (Note that m≤ k, so even
after multiplying the error by m, the implied constant still depends only on k, `, and r.) Thus |V (Fq)|
has the claimed magnitude.

3. We have V ns := V \V s; since V s has dimension at most r− 1 and degree controlled by k, r, and `
(by Bézout’s Theorem), the size of V s(Fq) is included in the error term. Thus, |V ns(Fq)| also has the
desired magnitude.

4. Finally, if we let V be the projective closure of W , then W =V \ (V ∩H), where H is the hyperplane
at infinity. Since V ∩H has lower dimension and degree k, we are once again removing a set whose
cardinality is subsumed by the error term, so W (Fq) (and, similarly, W ns(Fq)) has the appropriate
cardinality.

5.2 A key equivalence

The following equivalence observation yields a strengthening of Proposition 2.9 as a corollary, and is also
instrumental in subsequent proofs.
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Lemma 5.3. Let V be a variety (reduced, but not necessarily irreducible) of dimension d ≥ 1 defined
over Z. For a sufficiently large (with respect to V ) prime p, the following are equivalent:

(a) V ns(Fp) 6= /0.

(b) V ns(Zp) 6= /0.

(c) At least one of the geometric components of V is defined over Zp.

Proof.

((a) =⇒ (b)) Suppose V ns(Fp) 6= /0, and let Q ∈ V ns(Fp). By Hensel’s lemma, there exists P ∈ V (Zp)
such that P̃ = Q. Since P̃ is nonsingular, so must be P.

((b) =⇒ (c)) Let P ∈ V ns(Zp), and let Z be a geometric component of V containing P. As in part 1
of the proof of Lemma 5.2, if Z were not defined over Fq, then P would lie in the intersection of two
components, hence would be a singular point on V , contradicting our assumption on P.

((c) =⇒ (a)) Let Z1, . . . ,Zm be the irreducible components of V . By Lemma 5.2, for each 1≤ i≤ m there
exists a bound Bi such that for all p≥ Bi with Zi defined over Zp, Zns

i (Fp) contains a point that does not
lie on Z j for any j 6= i. Letting B = max{B1, . . . ,Bm}, we have that for p≥ B, the existence of Zi defined
over Zp implies the existence of Q ∈ Zns

i (Fp)\
⋃

j 6=i Z j(Fp). Since Q is nonsingular on Zi and is not a
point of intersection with any other component Z j, we have Q ∈V ns(Fp).

As previously noted, if h ∈ Z[x1, . . . ,x`] is Deligne, then h = 0 defines a reduced variety. Further, a
nonsingular point over Zp on this variety corresponds precisely to a root zzzp ∈ Z`

p of h satisfying mp = 1,
hence Lemma 5.3 establishes the following sufficient condition for smooth intersectivity. Here we let Z
denote the ring of algebraic integers.

Corollary 5.4. Suppose `≥ 2 and h ∈ Z[x1, . . . ,x`] is Deligne and intersective, and let h = g1 · · ·gn be
an irreducible factorization of h in Z[x1, . . . ,x`]. If, for all but finitely many p ∈ P, gi has coefficients in
Zp for some 1≤ i≤ n, then h is smoothly intersective, hence strongly Deligne.

Note that Proposition 2.9 is an immediate consequence of Corollary 5.4, since the hypotheses of
the proposition imply that one of the factors over Z is defined over Z, hence over Zp for all p. We now
complete this section by using Lemma 5.3 to prove Proposition 2.8.

Proof of Proposition 2.8. Let ` ≥ 2, and suppose h ∈ Z[x1, . . . ,x`] is Deligne and intersective with
deg(h) = k ≥ 2. Let {zzzp}p∈P be a choice of p-adic integer roots of h satisfying mp ∈ {1,k} for all
but finitely many p. Let X denote the finite set of primes such that

• mp /∈ {1,k}, or

• p | k, or

• hk is not smooth modulo p, or

• the equivalence in Lemma 5.3 fails.
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We note that the first item is assumed to be finite, the second item is clearly finite, the fourth item is
proven to be finite in Lemma 5.3, and the third item is finite because h is Deligne (see Definition 2.3).

Fix d ∈ N and p /∈ X . If p - d or mp = k, then p - dk

λ (d) , so hk
d = dk

λ (d)h
k is a nonzero scalar multiple of hk,

hence remains smooth modulo p. Therefore, hd is Deligne modulo p.

The remaining case is p | d and mp = 1. In this case, since hi
d has a factor of di

λ (d) , the definition of λ

assures that the polynomial hi
d identically vanishes modulo p for all i > 1. Since nonzero homogeneous

linear polynomials are automatically smooth, we need only argue that

h1
d(xxx) =

d
λ (d)

`

∑
i=1

∂h
∂xi

(rrrd)xi

does not identically vanish modulo p. We know that p - d
λ (d) by definition of λ . Further, the fact that h is

Deligne ensures that h = 0 defines a reduced variety, so by Lemma 5.3, we can choose zzzp to reduce to a
nonsingular point over Fp. Since rrrd ≡ zzzp (mod p), we have that ∂h

∂xi
(rrrd)≡ ∂h

∂xi
(zzzp) 6≡ 0 (mod p) for some

1≤ i≤ `, as required. Therefore, hd is Deligne modulo p for all p /∈ X , hence h is strongly Deligne.

6 Dimension lowering argument

In this section, we generalize the phenomenon exemplified at the beginning of Section 2.3, establishing
Theorems 2.12 and 2.13 by reducing to the case covered in Theorem 2.4. In the integer root setting,
this reduction is very direct, as Theorem 2.12 follows immediately from Theorem 2.4 and the following
proposition.

Proposition 6.1. Suppose ` ≥ 2 and h ∈ Z[x1, . . . ,x`] with h(000) = 0. Let r be the minimum rank of
the highest and lowest degree homogeneous parts of h. If r ≥ 2, then there exists a strongly Deligne
polynomial g ∈ Z[x1, . . . ,xr] such that g(Zr)⊆ h(Z`).

Before delving into the proof of this proposition, we state a version of Bertini’s theorem that will
allow us to eliminate the singularity in the top-degree parts of our polynomials, one dimension at a time.
Throughout this section we let (Pn)∗ denote the dual space of Pn, that is, the space of hyperplanes in Pn.
Note that (Pn)∗ is isomorphic to Pn, with the hyperplane {a0x0 + · · ·+anxn = 0} ∈ (Pn)∗ corresponding
to the point (a0 : · · · : an) ∈ Pn. A linear system of hyperplanes in Pn is a linear subspace of (Pn)∗.
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Theorem 6.2 (Bertini’s Theorem). Let V be a (quasi-projective) subvariety of Pn with irreducible
components V1, . . . ,Vm of equal dimension d ≥ 1, and let L⊆ (Pn)∗ be a linear system. After a change
of coordinates if necessary, we may assume that there exists k ∈ {0, . . . ,n} such that L is the space
of all hyperplanes of the form {akxk + · · ·+ anxn = 0}. Assume that the coordinates xk, . . . ,xn do not
simultaneously vanish at any point on V (i.e., the linear system L has no base-points in V ), so that

ΦL : V −→ Pn−k

(z0 : · · · : zn) 7−→ (zk : · · · : zn)

defines a morphism. Then there exists a nonempty open subset U ⊆ L such that for all hyperplanes
H ∈U,

(a) V ns∩H is nonsingular, and

(b) dim(V s∩H)< dimV s (if V s 6= /0).

Moreover, if dimΦL(V )≥ 2, then U may be chosen so that for all H ∈U we have

(c) for all 1≤ i≤ m, the intersection Vi∩H is either empty or geometrically irreducible.

Remark. Theorem 6.2 is stated somewhat more generally than we need, so we specify the two situations
for which we will actually need the result:

1. Let V be a closed hypersurface in Pn and let L = (Pn)∗. Then ΦL is just the inclusion map of
V into Pn, and the hypotheses of Theorem 6.2 are satisfied. Moreover, since each component Vi

is a closed subvariety of Pn of positive dimension, each intersection Vi ∩H is nonempty; thus, if
d = dimV = dimΦL(V )≥ 2, then Vi∩H is irreducible for all 1≤ i≤ m and all H ∈U .

2. Identify An with the Zariski open subset {x0 6= 0} ⊂ Pn. Let V be a closed hypersurface in An

not containing the origin 000 = (0, . . . ,0), and let L be the space of all hypersurfaces of the form
{a1x1 + · · ·+ anxn = 0}. Then the conditions of Theorem 6.2 are satisfied once again. A fiber of
ΦL is precisely the intersection of V with a line in An passing through 000. Since V is closed in An

and does not contain 000, V cannot contain a line through 000, hence each such intersection is finite. In
particular, this means the map ΦL has finite fibers, so dimΦL(V ) = dimV = d. Moreover, the failure
of a hyperplane H ∈ L to intersect every Vi is a proper Zariski closed condition. Therefore, removing
such hyperplanes from U if necessary, we again have that Vi∩H is nonempty for all 1≤ i≤ n and
H ∈U , thus Vi∩H is irreducible for all 1≤ i≤ n and H ∈U as long as d ≥ 2.

Proof of Theorem 6.2. Consider the set X of hyperplanes H ∈ L satisfying the following conditions:

(a′) V ns
i ∩H is nonsingular for all 1≤ i≤ m;

(b′) H does not contain any components of V s
i nor (Vi∩Vj) for 1≤ i, j ≤ m with i 6= j; and

(c′) for all 1≤ i≤ m, the intersection Vi∩H is either empty or geometrically irreducible (if d ≥ 2).
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We begin by showing that if H ∈ X, then H satisfies properties (a), (b), and (c). Indeed, condition (c′) is
exactly condition (c), so we need only show that H also satisfies (a) and (b).

For (a), note that a point P ∈ V is nonsingular if and only if P is a nonsingular point on Vi for some
1≤ i≤m and P /∈Vj for all j 6= i. Thus V ns is a disjoint union V ns =

⊔m
i=1Wi, where each Wi is a subset of

V ns
i . Then (a) follows from (a′) since V ns∩H =

⊔m
i=1(Wi∩H) and each Wi∩H ⊆V ns

i ∩H is nonsingular.
Finally, (b′) implies that H intersects each component of V s properly (assuming V s 6= /0), so (b) follows.

It remains to show that X contains a Zariski open subset of L. By the standard form of Bertini’s Theorem
(see Corollaire 6.11 of [17], or Corollary 10.9 and Remark 10.9.1 of [15]), since L has no base-points in
V , the set of hyperplanes H ∈ L satisfying (a′) and (c′) contains a nonempty open subset of L. Moreover,
H containing any of a finite collection of nonempty subvarieties of Pn is a proper closed condition on H,
so condition (b′) is a nonempty open condition; therefore, X contains a nonempty open subset of L.

Armed with Theorem 6.2, the proof of Proposition 6.1 is pleasingly straightforward.

Proof of Proposition 6.1. Suppose that ` ≥ 2 and h ∈ Z[x1, . . . ,x`] with h(000) = 0. Let k and j denote
the highest and lowest degrees, respectively, of the terms appearing in h, and let r denote the minimum
rank of hk and h j. Let V̂k,V̂j ⊆ P`−1 denote the varieties defined by hk = 0 and h j = 0, respectively. By
Theorem 6.2 (see also case 1 of the remark that follows) applied to the linear system L= (P`−1)∗ and the
varieties V̂k and V̂j, respectively, the set of hyperplanes H in P`−1 satisfying

• H ∩V̂ ns
k and H ∩V̂ ns

j are nonsingular, and

• dim(H ∩V̂ s
k )< dimV̂ s

k , if V s 6= /0, and dim(H ∩V̂ s
j )< dimV̂ s

j , if V̂ s
j 6= /0,

contains a nonempty open subset U ⊆ (P`−1)∗. Thus, we can choose H ∈U defined by the vanishing of
l(x1, . . . ,x`) = a1x1 + · · ·+a`−1x`−1− x` with a1, . . . ,a`−1 ∈ Z. Here, we’re using the fact that the set of
integer points is Zariski dense in the affine space A`−1 ⊂ P`−1 ∼= (P`−1)∗.

Let µ(x1, . . . ,x`−1) := a1x1 + · · ·+an−1x`−1, and set

g1(x1, . . . ,x`−1) := h(x1, . . . ,x`−1,µ(x1, . . . ,x`−1)).

Note that, by construction, g1(Z`−1) ⊆ h(Z`), g1(000) = 0, and the highest and lowest degrees of the
nonzero terms of g1 are still k and j, respectively.

Now, the subvariety Ŵk (resp., Ŵj) of P`−2 defined by gk
1 = 0 (resp., g j

1 = 0) is isomorphic to H∩V̂k (resp.,
H ∩V̂j). In particular, the minimum rank of gk

1 and g j
1 can only drop below r if both singular loci were

originally empty, which would imply r = `. Thus, repeating this process (`− r) times yields a sequence
of polynomials (gi(x1, . . . ,x`−i))

`−r
i=0 , with g0 := h, satisfying

• gi(Z`−i)⊆ gi−1(Z`−i+1) for all 1≤ i≤ `− r,

• gi(000) = 0 for all 0≤ i≤ `− r,

• the highest and lowest degrees of the nonzero terms of each gi are k and j, respectively, and

• the rank of each gk
i (resp., g j

i ) is at least r.
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Finally, let g := g`−r ∈ Z[x1, . . . ,xr], so the rank for each of gk and g j is r. In other words, gk and g j are
smooth, and thus by Proposition 2.5, g is strongly Deligne.

Remark. The conclusion of Proposition 6.1 technically holds for r = 1 as well, since nonconstant
univariate polynomials are necessarily Deligne; however, this case is not useful for our purposes.

6.1 Proof of Theorem 2.13

We now proceed with the more elaborate of our two dimension-lowering arguments, in which we
cannot exploit the existence of an integer root. Throughout this section, we fix `≥ 2 and a polynomial
h ∈ Z[x1, . . . ,x`] satisfying all hypotheses of Theorem 2.13, and we recall that k = deg(h) and r denotes
the rank of hk. Note that the hypotheses of Theorem 2.13 imply that r ≥ 2. We assume without loss of
generality that h(000) 6= 0, which is permissible because h(Z`) is invariant under input translation. We
let V ⊆ A` and V̂ ⊆ P`−1 denote the varieties defined by h = 0 and hk = 0, respectively. The following
crucial lemma says that we can eliminate the singularity in the top-degree part of h, one dimension at a
time, while maintaining the existence of nonsingular Fp-points.

Lemma 6.3. Suppose `≥ 3. Then there exists a homogeneous linear polynomial l ∈ Z[x1, . . . ,x`], monic
in x`, for which the following holds: Letting L̂ and L denote the hyperplanes in P`−1 and A`, respectively,
defined by l = 0, we have

(i) dim(V̂ ∩ L̂)s < dimV̂ s, if V̂ s 6= /0; and

(ii) For sufficiently large p, V ns(Fp) 6= /0 implies (V ∩L)ns(Fp) 6= /0.

Proof. Let L̂ and L denote the linear systems of hyperplanes in P`−1 and hyperplanes in A` passing
through 000, respectively. We identify each of L̂ and L with P`−1, with the point aaa = (a1 : · · · : a`) ∈ P`−1

corresponding to the hyperplanes {a1x1 + · · ·+a`x` = 0} in P`−1 and A`, respectively.

The hypotheses of Theorem 6.2 are satisfied by V̂ and L̂ (resp., V and L), as explained in case 1
(resp., case 2) of the remark immediately following the theorem. Thus, there is a nonempty open set
U ⊆ P`−1 such that for all aaa = (a1 : · · · : a`) ∈ U , the hyperplanes L̂aaa ⊂ P`−1 and Laaa ⊂ A` defined
by laaa := a1x1 + · · ·+ a`x` = 0 satisfy the conclusion of Theorem 6.2 (intersected with V̂ ⊂ P`−1 and
V ⊂ A`, respectively). Similar to the proof of Proposition 6.1, we may choose aaa ∈ U of the form
aaa = (a1 : · · · : a`−1 : 1) with a1, . . . ,a`−1 ∈ Z. Set l := laaa for such a choice of aaa ∈U , hence also L̂ = L̂aaa

and L = Laaa. By construction, we immediately have that l ∈ Z[x1, . . . ,x`], l is monic in x`, and property (i)
holds, so it remains only to show that (ii) holds.

Let V1, . . . ,Vm be the geometrically irreducible components of V . Since dimV = `−1≥ 2, our choice of
aaa guarantees that the geometrically irreducible components of V ∩L are Vi∩L with 1≤ i≤ m. (We are
again using Theorem 6.2 and case 2 of the remark that follows.) By Lemma 5.3, if p is sufficiently large,
then V ns(Fp) 6= /0 implies that Vi is defined over Zp for some 1≤ i≤ m. Since L is defined over Z, hence
over Zp, the intersection Vi∩L is also defined over Zp. Appealing to Lemma 5.3 once more implies that
(V ∩L)ns(Fp) is nonempty.
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The hyperplane produced by Lemma 6.3 quickly yields a suitable polynomial with one fewer variable.

Corollary 6.4. Suppose `≥ 3. Then there exists g′ ∈ Z[x1, . . . ,x`−1] with deg(g′) = k such that

(i) g′(000) 6= 0;

(ii) g′(Z`−1)⊆ h(Z`);

(iii) dim(Ŵ ′)s < dimV̂ s, if V̂ s 6= /0; and

(iv) for sufficiently large p, V ns(Fp) 6= /0 implies (W ′)ns(Fp) 6= /0;

where Ŵ ′ ⊂ P`−2 and W ′ ⊂ A`−1 are the varieties defined by (g′)k = 0 and g′ = 0, respectively.

Proof. Let L = Laaa be as in Lemma 6.3, and write l = laaa = a1x1 + · · ·+a`−1x`−1 + x`. To ease notation,
we also set µ = µaaa :=−(a1x1 + · · ·+a`−1x`−1). Now, define

g′(x1, . . . ,x`−1) := h(x1, . . . ,x`−1,µ(x1, . . . ,x`−1)).

Clearly g′(Z`−1)⊆ h(Z`) and, since µ is homogeneous, g′(000) = h(000) 6= 0. Finally, since V ∩L∼=W ′ and
V̂ ∩ L̂∼= Ŵ ′, properties (iii) and (iv) follow immediately from Lemma 6.3.

Recall our assumption that the rank satisfies r ≥ 2. Repeated application of Corollary 6.4 yields the
following:

Corollary 6.5. There exists g ∈ Z[x1, . . . ,xr] with deg(g) = k such that

(i) g(Zr)⊆ h(Z`);

(ii) g is Deligne; and

(iii) for sufficiently large p, V ns(Fp) 6= /0 implies W ns(Fp) 6= /0;

where W ⊆ Ar is the variety defined by g = 0.

Proof. When `≥ 3, this follows immediately by applying Corollary 6.4 recursively (`− r) times. The
fact that r ≥ 2 ensures that at each step we are applying Corollary 6.4 to a polynomial in at least 3
variables.

When ` = 2, the statement is trivial, since r = 2 implies that h is already Deligne, so we can take
g = h.

Remark. Using the construction from the proof of Corollary 6.4, the polynomial g of Corollary 6.5 may
be written in the form

g(x1, . . . ,xr) = h(x1, . . . ,xr,µr+1(x1, . . . ,xr), . . . ,µ`(x1, . . . ,xr)),

where each µ j is a homogeneous linear polynomial. We will use this precise form in our proof of
Theorem 2.13, which we are now ready to begin.
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Proof of Theorem 2.13. Let g∈Z[x1, . . . ,xr] be as in Corollary 6.5, and let W ⊆Ar be the variety defined
by g = 0. Throughout this proof we use the notation x̃xx = (x1, . . . ,xr) and xxx = (x1, . . . ,x`).

As mentioned in the remark above, g may be given by g(x̃xx) = h(Mx̃xx), where

M(x1, . . . ,xr) = (x1, . . . ,xr,µr+1(x1, . . . ,xr), . . . ,µ`(x1, . . . ,xr))

for linear forms µr+1, . . . ,µ`. Note that g and the linear forms have been constructed once and for all
from h, so any quantities depending on them implicitly depend only on h.

Let X = X(h) be the set of primes p for which

• p | k;

• gk is not smooth modulo p; or

• W ns(Fp) = /0 and mp 6= k for all zzzp ∈V (Zp).

The first item clearly defines a finite set, the second item defines a finite set because g is Deligne (see
Definition 2.3). If r ≥ 3, then the third item defines a finite set by Lemma 5.3 and the fact that Deligne
polynomials in r ≥ 3 variables are geometrically irreducible, as seen in the proof of Corollary 2.10. If
r = 2, then item (iii) of Corollary 6.5, Lemma 5.3, and the hypotheses of Theorem 2.13 ensure that the
third item defines a finite set. Thus, X is finite.

In order to construct auxiliary polynomials hd for d ∈ N, we first choose Zp-roots of h as follows: If
p ∈ X , then choose a point zzzp ∈V (Zp) arbitrarily; such points exist because h is intersective. For p /∈ X
with W ns(Fp) 6= /0, choose z̃zzp ∈W (Zp) to be a Hensel lift of a nonsingular point on W (Fp), then set
zzzp = Mz̃zzp ∈V (Zp). Finally, for all remaining p /∈ X , fix zzzp ∈V (Zp) with mp = k.

For each prime p, by definition of multiplicity, we have a decomposition of the form

h(xxx+ zzzp) = ∑
mp≤|iii|≤k

biiixxxiii (32)

for biii ∈ Zp. However, the substitution xxx = Mx̃xx could cause some homogeneous parts to identically vanish,
so we define m̃p to be the multiplicity of 000 as a root of h(Mx̃xx+ zzzp), so in particular

h(Mx̃xx+ zzzp) = ∑
mp≤|iii|≤k

biii(Mx̃xx)iii = ∑
m̃p≤|iii|≤k

aiiix̃xxiii, (33)

where aiii 6= 0 for some iii with |iii|= m̃p. We quickly note that m̃p = mp for all p /∈ X . If p /∈ X with mp = k,
the degree-k part of h(Mx̃xx+ zzzp) is the same as the degree-k part of g. If p /∈ X and zzzp = Mz̃zzp as above,
then h(Mx̃xx+ zzzp) is precisely g(x̃xx+ z̃zzp), and in particular the linear part does not vanish modulo p.

To account for this possible increase in multiplicity for primes p∈X , we define a completely multiplicative
function λ̃ (d) by setting λ (p) = pm̃p for all primes p. We define {rrrd}d∈N from {zzzp}p∈P as usual from
the Chinese remainder theorem, then define the slightly modified auxiliary polynomials {h̃d}d∈N by

h̃d(xxx) = h(rrrd +dxxx)/λ̃ (d).
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We note that h̃d can potentially have non-integer coefficients, with denominators divisible by primes
in X . However, the analog of Proposition 3.2, and the deduction of Lemma 4.1 from Lemma 4.2 and
Proposition 3.2, still hold because d | λ̃ (d) and λ̃ is completely multiplicative.

We now let d′ = ∏p|d p(m̃p−mp+1)ordp(d) ≤ dk, and we define

gd(x̃xx) = h̃d(sssd +Mx̃xx) = h(rrrd′+dMx̃xx)/λ̃ (d),

where sssd satisfies rrrd′ = rrrd +dsssd . We will establish the following properties of gd :

(i) gd(Zr)⊆ h̃d(Z`),

(ii) gd has integer coefficients,

(iii) gd is Deligne modulo p for all p /∈ X ,

(iv) The coefficients of gd are of size Oh(dk2
),

(v) cont(gd)�h 1.

Unlike Proposition 6.1, these efforts cannot be applied “externally” to immediately yield Theorem 2.13
because the family {gd}d∈N is not necessarily the set of auxiliary polynomials of a single intersective
polynomial. However, the enumerated properties of this family make it perfectly suited for us to apply
our efforts “internally”, using the estimates enumerated in Theorem 3.9, as follows:

(1) Replace all occurrences of hd in the proof of Theorem 2.4 with h̃d . The fact that h̃d potentially
has non-integer coefficients is not a problem, as the analog of Proposition 3.2 still holds, and as
explained in the next step.

(2) When proving Lemma 4.2 (the only piece of the proof of Theorem 2.4 that requires integer
coefficients or a nonsingularity condition), use that (A−A)∩gd(Zr)⊆ (A−A)∩ h̃d(Z`)⊆ {0},
then do the remainder of the proof with hd replaced by gd . For this purpose, properties (ii)-(v) above
assure that gd functions as if it were the auxiliary polynomial of a strongly Deligne polynomial in r
variables. In particular, the conclusion of Lemma 4.2 holds with θ(k, `,δ ) replaced by θ(k,r,δ ).

(3) The remainder of the argument is identical, and Theorem 2.13 follows.

Our task is now reduced to verifying properties (i)-(v). Properties (i) and (iv) are immediate from the
definition of gd and h̃d . We next simultaneously establish (ii) and the property

ordp(cont(gd))�h,p 1 for all p ∈ P. (34)

When we later establish (iii), it immediately combines with (34) to yield (v), because p - cont(gd) if gd is
Deligne modulo p. We fix p ∈ P and set j = ordp(d). By (32), we have

gd(x̃xx) = h̃d(sssd +Mx̃xx) =
1

λ̃ (d)
h(rrrd′+dMx̃xx) =

1
λ̃ (d)

∑
mp≤|i|≤k

biii(dMx̃xx+ rrrd′− zzzp)
iii. (35)
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Since p j | d and p(m̃p−mp+1) j divides all coordinates of rrrd′− zzzp, all terms in the summation apart from

∑
mp≤|iii|≤m̃p−1

biii(dMx̃xx)iii (36)

have coefficients divisible by p jm̃p , and the polynomial (36) identically vanishes by definition of m̃p.
Since ordp(λ̃ (d)) = jm̃p, all coefficients of gd have nonnegative p-adic valuation. Since p ∈ P was
arbitrary, it follows that gd has integer coefficients.

Further, we see in (35) that all degree-m̃p terms have a factor of p j apart from those arising from

dm̃p

λ̃ (d)
∑
|iii|=m̃p

biii(Mx̃xx)iii =
dm̃p

λ̃ (d)
∑
|iii|=m̃p

aiiix̃xxiii,

where aiii 6= 0 for some iii with |iii|= m̃p.

Since p - (dm̃p/λ̃ (d)), we have that

ordp(cont(gd))≤ v := min
|iii|=m̃p

ordp(aiii),

provided j > v. Alternatively, if j ≤ v, then ordp(cont(gd)) is at most kv plus the minimum p-adic
valuation of the degree-k coefficients of g, which establishes (34).

Our task is now reduced to verifying property (iii), for which we fix p /∈ X , and proceed similarly to the
proof of Proposition 2.8. Since gk

d is precisely dk

λ̃ (d)
gk, we know that if p - d or mp = k, then gk

d modulo p

is a nonzero multiple of gk, hence remains smooth. Therefore, gd is Deligne modulo p.

The remaining case is when p | d and zzzp = Mz̃p, where z̃p ∈W (Zp) is a Hensel lift of a nonsingular point
of W (Fp), so in particular the linear part of g(x̃xx+ z̃p) = h(Mx̃xx+ zzzp) does not identically vanish modulo p.

Using (32), letting j = ordp(d), we note that ordp(λ̃ (d)) = j and p j divides all coordinates of rrrd′− zzzp,
and we have

gd(x̃xx) =
1

λ̃ (d)
∑

1≤|iii|≤k
biii(dMx̃xx+ rrrd′− zzzp)

iii = p j f (x̃xx)+
d

λ̃ (d)
∑
|iii|=1

biii(Mx̃xx)iii +C

for some f ∈ Zp[x1, . . . ,xr] and constant C. In particular, modulo p, the highest-degree part of gd is a
nonzero multiple of the nonvanishing linear part of g(x̃xx+ z̃zzp), hence gd is Deligne modulo p. All five
properties of gd are now verified and the proof of Theorem 2.13 is complete.

7 Exponential sum estimates

In this final section, we establish the exponential sum estimates claimed in Theorem 3.9, which we then
use to deduce (27) and (28). This effort consists primarily of careful multivariate adaptations of the tools
used to prove Theorem 2.7 in [28], but we begin with another foray into varieties over finite fields.
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7.1 Control over gradient vanishing: Part II

Since we are sieving away inputs at which the gradient of our polynomial vanishes, but then appealing to
Theorem 1.4, which is a complete exponential sum estimate, it is important for us to have an upper bound
on the number of points our sieve might be throwing away. With this in mind, we make the following
definition.

Definition 7.1. For a field F and g ∈ F [x1, . . . ,x`] we define the gradient locus of g to be the variety

Gg = {xxx ∈ A` : ∇g(xxx) = 000} ⊆ A`.

The following proposition establishes firm control over the gradient locus of a Deligne polynomial.

Proposition 7.2. Suppose F is a field, ` ∈ N, and g ∈ F [x1, . . . ,x`] with deg(g) = k ≥ 1. If g is Deligne,
then Gg = /0 or dimGg = 0.

Proof. First, assume g is not homogeneous. Let G(x0,x1, . . . ,x`) be the homogenization of g. Thus, we
have

g(x1, . . . ,x`) = G(1,x1, . . . ,x`) and gk(x1, . . . ,x`) = G(0,x1, . . . ,x`).

The variety
Ŵ := {G = 0}∩{x0 = 0} ⊂ P`

is isomorphic to {gk = 0}, hence is nonsingular since g is Deligne. Thus, the Jacobian matrix
∂G
∂x0

∂G
∂x1

· · · ∂G
∂x`

1 0 · · · 0


has rank 2 at every point on Ŵ . In other words, the system

G = x0 =
∂G
∂x1

= · · ·= ∂G
∂x`

= 0

has no solutions in P`. The equation G = 0 is actually superfluous here; by Euler’s theorem on homoge-
neous functions, we have

kG(x0,x1, . . . ,x`) = x0
∂G
∂x0

+ x1
∂G
∂x1

+ · · ·+ x`
∂G
∂x`

,

so the vanishing of x0 and the x1- through x`-partials would guarantee the vanishing of G. Here we use
the fact that the characteristic of F does not divide k, as included in the definition of the Deligne property.
It follows that the system

x0 =
∂G
∂x1

= · · ·= ∂G
∂x`

= 0
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has no solutions in P`, so the subvariety of P` defined by

∂G
∂x1

= · · ·= ∂G
∂x`

= 0 (37)

is contained in {xxx ∈ P` | x0 6= 0} ∼= A` and has dimension 0. But, for ααα = (α1, . . . ,α`) ∈ A`, we have

∂g
∂xi

(ααα) =
∂G
∂xi

(1,ααα)

for all 1 ≤ i ≤ `. Thus, Gg is (isomorphic to) the zero-dimensional subvariety of P` given by (37),
concluding the proof in the case that g is not homogeneous.

Finally, suppose g is homogeneous. Again using Euler’s theorem on homogeneous functions, we
write

kg(x1, . . . ,x`) = x1
∂g
∂x1

+ · · ·+ x`
∂g
∂x`

.

Thus, if all partials of g vanish at xxx, then g(xxx) = 0 as well. By hypothesis, g = gk is smooth, so there
are no common zeroes of g, ∂g

∂x1
, . . . , ∂g

∂x`
in P`, so in A` the only possible common zero is the origin.

Therefore, Gg contains at most one point.

Proposition 7.2 combines with Bézout’s Theorem (Lemma 5.1) to yield the following estimate on the
size of the gradient vanishing locus for a Deligne polynomial over a finite field, which yields Lemma 3.3
as a special case.

Corollary 7.3. If ` ≥ 1 and g ∈ Fq[x1, . . . ,x`] is a Deligne polynomial of degree k ≥ 1, then |Gg| is
bounded by a constant depending only k and `.

7.2 Major arc estimates

In this section we establish item (i) of Theorem 3.9. Derivations of asymptotic formulas of this type
typically rely on partial summation, so we begin with a multivariate version thereof, proven by induction
from the usual formula.

Lemma 7.4 (Multivariable Partial Summation). Suppose ` ∈ N and a : N`→ C. Suppose further that
ψ : R`→ C is C`. For any X > 0, we have

∑
nnn∈[1,X ]`

a(nnn)ψ(nnn) = A(X , . . . ,X)ψ(X , . . . ,X)

+
`

∑
i=1

(−1)i
∑

1≤ j1<···< ji≤`

∫
[0,X ]i

A(?)
∂ iψ

∂x j1 · · ·∂x ji
(?) dx j1 · · ·dx ji ,

where
A(x1, . . . ,x`) = ∑

nnn∈[1,x1]×···×[1,x`]
a(nnn)

and ? = (X , . . . ,x j1 , . . . ,x ji , . . . ,X), with x j1 , . . . ,x ji plugged into coordinate positions j1, . . . , ji and all
other coordinates evaluated at X.
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Proof. We induct on `. The base case `= 1 is the usual partial summation formula

∑
1≤n≤X

a(n)ψ(n) = A(X)ψ(X)−
∫ X

0
A(x)ψ ′(x) dx.

Fix `≥ 2 and assume the formula holds for `−1. Defining some notation before proceeding, let

Ã(x1, . . . ,x`−1,n`) = ∑
nnn∈[1,x1]×···×[1,x`−1]

a(nnn,n`),

let

Ĩ( j1, . . . , ji,n`) =
∫
[0,X ]i

Ã(?,n`)
∂ iψ

∂x j1 · · ·∂x ji
(?,n`) dx j1 · · ·dx ji ,

and let

I( j1, . . . , ji) =
∫
[0,X ]i

A(?)
∂ iψ

∂x j1 · · ·∂x ji
(?) dx j1 · · ·dx ji ,

where A and ? are as defined in the statement of the lemma. By our inductive hypothesis, we have

∑
nnn∈[1,X ]`

a(nnn)ψ(nnn) = ∑
1≤n`≤X

∑
nnn∈[1,X ]`−1

a(nnn,n`)ψ(nnn,n`)

= ∑
1≤n`≤X

(
Ã(X , . . . ,X ,n`)ψ(X , . . . ,X ,n`)+

`−1

∑
i=1

(−1)i
∑

1≤ j1<···< ji≤`−1
Ĩ( j1, . . . , ji,n`)

)
.

We now apply the standard single-variable formula to the first term and each individual integral, yielding

∑
1≤n`≤X

Ã(X , . . . ,n`)ψ(X , . . . ,n`) = A(X , . . . ,X)ψ(X , . . . ,X)−
∫ X

0
A(X , . . . ,x`)

∂ψ

∂x`
(X , . . . ,x`)dx`, (38)

and

∑
1≤n`≤X

(−1)iĨ( j1, . . . , ji,n`)

= (−1)i
∫
[0,X ]i

(
A(?,X)

∂ iψ

∂x j1 · · ·∂x ji
(?,X)−

∫ X

0
A(?,x`)

∂ i+1ψ

∂x j1 · · ·∂x ji∂x`
(?,x`)dx`

)
dx j1 · · ·dx ji

= (−1)iI( j1, . . . , ji)+(−1)i+1I( j1, . . . , ji, `).

Summing this final expression over 1≤ i≤ `−1 and over all choices of 1≤ j1 < · · ·< ji ≤ `−1 accounts
for all required terms with 1 ≤ i ≤ ` and 1 ≤ j1 < · · · < ji ≤ `, with the single exception of i = 1 and
j1 = `, which is precisely the integral present in (38), and the induction is complete.

We use Lemma 7.4 and the same calculation as in Proposition 3.4 to establish our asymptotic formula
for sieved multivariate exponential sums near rationals with small denominator.
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Lemma 7.5. Suppose `,k ∈ N, g(xxx) = ∑|iii|≤k aiiixxxiii ∈ Z[x1, . . . ,x`], and let J = ∑|iii|≤k |aiii|. If X ,Y > 0,
a,q ∈ N, and α = a/q+β , then

∑
nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α = q−` ∏
p≤Y

pγ(p)-q

(
1− j(p)

pγ(p)`

)
∑

sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q
∫
[0,X ]`

e2πig(xxx)β dxxx

+Ok,`

(
qE(1+ JXk|β |)`

)
,

where E is as in Proposition 3.4.

Proof. We begin by noting that for any a,q ∈ N and 0≤ x1, . . . ,x` ≤ X , letting

B = [1,x1]×·· ·× [1,x`],

we have

T (x1, . . . ,x`) := ∑
nnn∈B∩W (Y )

e2πig(nnn)a/q

= ∑
sss∈{0,...,q−1}`

e2πig(sss)a/q |{nnn ∈ B∩W (Y ) : nnn≡ sss (mod q)}| .

For s ∈W q(Y ) we have by the same calculation as Proposition 3.4 that

|{nnn ∈ B∩W (Y ) : nnn≡ sss (mod q)}|= x1 · · ·x`
q` ∏

p≤Y
pγ(p)-q

(
1− j(p)

pγ(p)`

)
+E/q`−1,

where E is as in Proposition 3.4, whereas for s /∈W q(Y ) the set is empty.

Therefore,

T (x1, . . . ,x`) =
x1 · · ·x`

q` ∏
p≤Y

pγ(p)-q

(
1− j(p)

pγ(p)`

)
∑

sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q +O(qE) . (39)

Letting ψ(nnn) = e2πig(nnn)β , we now decompose our sum as

∑
nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α = ∑
nnn∈[1,X ]`

(
1W (Y )(nnn)e

2πig(nnn)a/q
)

ψ(nnn)

and apply Lemma 7.4, yielding

∑
nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α = T (X , . . . ,X)ψ(X , . . . ,X)

+
`

∑
m=1

(−1)m
∑

1≤ j1<···< jm≤`

∫
[0,X ]m

T (?)
∂ mψ

∂x j1 · · ·∂x jm
(?) dx j1 · · ·dx jm ,
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where ? is as in Lemma 7.4. Substituting (39) gives the main term

q−` ∏
p≤Y

pγ(p)-q

(
1− j(p)

pγ(p)`

)
∑

sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q
(

X `
ψ(X , . . . ,X)

+
`

∑
m=1

(−1)m
∑

1≤ j1<···< jm≤`
X `−m

∫
[0,X ]m

x j1 · · ·x jm
∂ mψ

∂x j1 · · ·∂x jm
(?) dx j1 · · ·dx jm

)
.

By iteratively applying integration by parts, this equals

q−` ∏
p≤Y

pγ(p)-q

(
1− j(p)

pγ(p)`

)
∑

sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q
∫
[0,X ]`

ψ(xxx)dxxx,

as desired. It remains to bound the error term that results from our substitution of (39). This error term is
the sum of a first term of order qE and 2`−1 terms of the form

qE
(∫

[0,X ]m

∂ mψ

∂x j1 · · ·∂x jm
(?) dx j1 · · ·dx jm

)
.

Iteratively applying the product rule, we see that ∂ mψ

∂x j1 ···∂x jm
is the sum of less than m! terms bounded in

absolute value by (2πkmJ|β |) jX jk−m for some 1≤ j ≤ m. In particular, each integral is bounded by

`! max
1≤ j≤`

(2πk`JXk|β |) j ≤ `!(1+2πk`JXk|β |)`,

and the error bound follows.

7.3 Local cancellation

In this section, we apply Theorem 1.4 to establish the necessary cancellation in our sieved local exponential
sums, yielding item (ii) in Theorem 3.9. We begin by invoking a multivariate version of Hensel’s Lemma
that allows us to reduce to the case of prime moduli. This statement in particular follows from Theorem 1.1
of [5].

Lemma 7.6 (Multivariable Hensel’s Lemma). Suppose ` ∈ N, g ∈ Z[x1, . . . ,x`], p is prime, nnn ∈ Z`, and
γ,v ∈ N with v≥ 2γ−1. If

g(nnn)≡ 0 mod p2γ−1

and ∇g(nnn) 6≡ 000 mod pγ , then there exists mmm ∈ Z` with g(mmm)≡ 0 mod pv.

We now prove the following multivariate generalization of Lemma 4.3 in [28].
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Lemma 7.7. Suppose ` ∈ N, g ∈ Z[x1, . . . ,x`] with deg(g) = k ≥ 2, and Y > 0. If q ∈ N has prime
factorization q = pv1

1 · · · pvr
r with p1 < · · ·< pt ≤ Y < pt+1 < · · ·< pr, and (a,q) = 1, then∣∣∣∣∣ ∑

sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q

∣∣∣∣∣≤C1

t

∏
i=1

(
(k−1)`p`/2

i + j(pi)
) r

∏
i=t+1

C2(vi +1)`pvi(`−1/k)
i ,

where C2 =C2(k) and C1 depends only on the moduli at which ∇g identically vanishes and the primes
p≤ Y dividing q modulo which g is not Deligne. Further, the sum is 0 if vi ≥ 2γ(pi) for some 1≤ i≤ t.

Proof. Factor q = pv1
1 · · · pvr

r as in the lemma. By the Chinese Remainder Theorem, we have

∑
sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q =
r

∏
m=1

∑
sss∈{0,...,pvm

m −1}`∩W pvm
m (Y )

e2πig(sss)am/pvm
m ,

where a1, . . . ,ar are the unique residues satisfying a/q≡ a1/pv1
1 + · · ·+ar/pvr

r mod 1.

Suppose pv = pvm
m with γ(p) > 1 and v < 2γ(p). By definition of γ , ∇g identically vanishes modulo

pγ(p)−1. Since p2γ(p)−1 ≤ p3(γ(p)−1), we can bound pv by the cube of a modulus at which ∇g identically
vanishes, trivially bound the corresponding sum, and absorb it into the constant C1 in the conclusion of
the lemma.

Next suppose pv = pvm
m with p≤ Y and v = γ(p) = 1. Recalling that j(p) is the number of zeros of ∇g

modulo p and applying Theorem 1.4, we have for p - b that∣∣∣∣∣ ∑
sss∈{0,...,p−1}`∩W p(Y )

e2πig(sss)b/p

∣∣∣∣∣≤ (k−1)`p`/2 + j(p),

provided g is Deligne modulo p, and the remaining such primes are absorbed into C1.

Now suppose that pv = pvm
m with p ≤ Y and v ≥ 2γ(p), and let w = 2γ(p)− 1. If sss ∈ {0, . . . , pv− 1}`

and s̃ss is the reduced residue class of sss modulo pw, then we have that g(sss) ≡ pwt + g(s̃ss) (mod pv) for
some 0≤ t ≤ pv−w−1. Conversely, if s̃ss ∈ {0, . . . , pw−1}` with ∇g(s̃ss) 6≡ 000 (mod pγ(p)), then for every
0≤ t ≤ pv−w−1, Lemma 7.6 applied to the polynomial g(xxx)− (pwt +g(s̃ss)) yields sss ∈ {0, . . . , pv−1}`
with g(sss)≡ pwt +g(s̃ss) (mod pv).

In other words, the map F on Z/pv−wZ defined by g(pwt + s̃ss)≡ pwF(t)+g(s̃ss) (mod pv) is a bijection.
In particular, if p - b, then

∑
sss∈{0,...,pv−1}`∩W pv

(Y )

e2πig(sss)b/pv
= ∑

s̃ss∈{0,...,pw−1}`
∇g(s̃ss)6≡000 (mod pγ(p))

pv−w−1

∑
t=0

e2πig(pwt+s̃ss)b/pv

= ∑
s̃ss∈{0,...,pw−1}`

∇g(s̃ss)6≡000 (mod pγ(p))

pv−w−1

∑
t=0

e2πi(pwt+g(s̃ss))b/pv

= 0,
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where the last equality is the fact that the sum in t runs over the full collection of pv−w-th roots of unity.

Finally, suppose pv = pvm
m with p > Y . We note that W pv

(Y ) = N and we only exploit cancellation in a
single variable. To this end, for each s̃ss = (s2, . . . ,s`) ∈ {0, . . . , pv−1}`−1, we define g̃ by g̃(x) = g(x, s̃ss).
Utilizing the standard single-variable complete sum estimate (see [4] for example), we have for b - p that∣∣∣∣∣ ∑

sss∈{0,...,pv−1}`
e2πig(sss)b/pv

∣∣∣∣∣≤ ∑
s̃ss∈{0,...,pv−1}`−1

∣∣∣∣∣p
v−1

∑
s=0

e2πig̃(s)b/pv

∣∣∣∣∣
�k pv(1−1/k)

∑
s̃ss∈{0,...,pv−1}`−1

gcd(cont(g̃), pv)1/k.

To analyze the remaining sum, we note that at the expense of the term gcd(cont(g), pv)1/k in our final
estimate, we can cancel factors of p from the coefficients of g and assume that p - cont(g). In this case,
suppose aiii = ai1,...,i` with 0 < |iii| ≤ k is a coefficient of g, corresponding to xi1

1 · · ·x
i`
` , that is not divisible

by p. Further, assume that i1 > 0, as if i1 = 0 then we could just relabel our coordinates. In this case,
for each 0 ≤ w ≤ v, gcd(cont(g̃), pv) = pw only if pw | si2

2 · · ·s
i`
` , so in particular pdw/ke | s2 · · ·s`, which

occurs for fewer than (w+1)`−1 pv(`−1)−w/k choices of s̃ss. In particular,

∑
s̃∈{0,...,pv−1}`−1

gcd(cont(g̃), pv)1/k ≤ gcd(cont(g), pv)1/k
v

∑
w=0

(w+1)`−1 pv(`−1)−w/k pw/k

≤ (v+1)` gcd(cont(g), pv)1/k pv(`−1).

The gcd(cont(g), pv)1/k term can be absorbed into C1, and the remaining bound on the exponential sum
modulo pv is a constant depending on k times pv(1−1/k)(v+1)`p`(v−1) = (v+1)`pv(`−1/k), as required.
Having accounted for all prime divisors of q, the proof is complete.

Lemma 7.7 combines with Lemma 3.3 as well as the estimates ∏p|q

(
1+ C

p

)
≤ (q/φ(q))C and

∏p|q

(
1+ C

p3/2

)
�C 1 to yield item (ii) of Theorem 3.9, restated below.

Corollary 7.8. If `≥ 2, g ∈ Z[x1, . . . ,x`] with deg(g) = k ≥ 2, and (a,q) = 1, then∣∣∣∣∣ ∑
sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q

∣∣∣∣∣≤C1

{
(k−1)`ω(q)Φ(q, `)q`/2 if q≤ Y

Cω(q)
2 τ(q)`q`−1/k for all q

,

where C2 =C2(k), Φ(q,2) = (q/φ(q))C2 , Φ(q, `)�k,` 1 for `≥ 3, and C1 depends only on the moduli at
which ∇g identically vanishes and the primes p≤ Y dividing q modulo which g is not Deligne.

7.4 Oscillatory integral estimate

In order to establish (28) in the case that α is close, but not too close, to a rational with very small
denominator, we need to control the oscillatory integral in the asymptotic formula given by Lemma 7.5.
To achieve this, we invoke the following standard estimate, given for example in Lemma 2.8 of [38].

DISCRETE ANALYSIS, 2021:11, 46pp. 38

http://dx.doi.org/10.19086/da


MULTIVARIATE POLYNOMIAL VALUES IN DIFFERENCE SETS

Lemma 7.9 (Van der Corput’s Lemma). If X > 0, β 6= 0, k ∈ N, and g ∈ Z[x] with deg(g) = k, then∣∣∣∣∫ X

0
e2πig(x)β dx

∣∣∣∣� |β |−1/k.

Utilizing Lemma 7.9 to exploit cancellation in a single variable, then trivially bounding the integral
in the remaining variables, we have the following bound for the integral in the conclusion of Lemma 7.5.

Corollary 7.10. If X > 0, β 6= 0, k, ` ∈ N, and g ∈ Z[x1, . . . ,x`] with deg(g) = k, then∣∣∣∣∫
[0,X ]`

e2πig(xxx)β dxxx
∣∣∣∣�min{X `,X `−1|β |−1/k}.

7.5 Minor arc estimates

In an effort to establish item (iii) of Theorem 3.9, we begin by invoking a variation of the most traditional
minor arc estimate, Weyl’s Inequality.

Lemma 7.11 (Lemma 3, [7]). Suppose k ∈N, g(x) = a0+a1x+ · · ·+akxk with a0 . . . ,ak ∈R and ak ∈N.
If X > 0, a,q ∈ N with (a,q) = 1, and |α−a/q|< q−2, then∣∣∣∣∣ X

∑
n=1

e2πig(n)α

∣∣∣∣∣�k X
(

ak logk2
(akqX)

(
q−1 +X−1 +

q
akXk

))2−k

.

We now carefully adapt Lemma 7.11 to our particular sieve, and to the multivariate setting, though as
in Corollary 7.10, we ultimately only exploit cancellation in a single variable.

Lemma 7.12. Suppose k, ` ∈ N and g(xxx) = ∑|iii|≤k aiiixxxiii ∈ Z[x1, . . . ,x`] with deg(g) = k. Suppose further
that X ,Y,Z ≥ 2, Y Z ≤ X, and a,q ∈ N with (a,q) = 1, and let J = ∑|iii|≤k |aiii|. If |α−a/q|< q−2, then∣∣∣∣∣ ∑

nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α

∣∣∣∣∣�k,` cont(g)6(logY )ekX `

(
e−

logZ
logY +

(
J logk2

(JqX)

(
q−1 +

Z
X
+

qZk

Xk

))2−k)
.

Proof. Suppose k, ` ∈ N and g(xxx) = ∑|iii|≤k aiiixxxiii ∈ Z[x1, . . . ,x`] with deg(g) = k. We begin by conducting
an invertible (over Z) change of variables to reduce to the case where the xk

1 coefficient a(k,0,...,0) is
nonzero. To this end, consider the polynomial g̃ ∈ Z[x2, . . . ,x`] defined by g̃(x2, . . . ,x`) = gk(1,x2, . . . ,x`),
where gk denotes the top degree homogeneous part of g, noting that g̃ is not identically zero. Let
(c2, . . . ,c`) ∈ {0,1, . . . ,k}`−1 be such that g̃(c2, . . . ,c`) 6= 0.

As an aside, the existence of such a “small integer non-root” of a general nonzero multivariate polynomial
F ∈ Z[x1, . . . ,x j] can be shown via induction, which we sketch here. The base case j = 1 corresponds to
nonzero univariate polynomials, which have at most k roots, hence at least one non-root in {0,1, . . . ,k}.
Then, for higher degrees, fix one variable that appears at least once in F (without loss of generality,
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assume x1 appears at least once), let d be the degree of F as a polynomial in x1 only, and let F̃(x2, . . . ,x j)
be the polynomial of degree at most k− d that forms the xd

1 coefficient. By the inductive hypothesis,
we can choose (m2, . . . ,m j) ∈ {0, . . . ,k} j−1 such that F̃(m2, . . . ,m j) 6= 0. Then, F(x1,m2, . . . ,m j) is a
nonzero degree-d polyomial in x1, which has a non-root in {0, . . . ,k}, completing the induction.

Back to the proof at hand, we see that the change of variables x1 = y1 and x j = y j + c jy1 for 2≤ j ≤ `
yields a yk

1 coefficient of g̃(c2, . . . ,c`) 6= 0. Let M denote the `×` matrix satisfying Mxxx = yyy corresponding
to the described change of variables, and let f (y1, . . . ,y`) = ∑|iii|≤k biiiyiii be the polynomial satisfying
f (yyy) = g(M−1yyy). By taking the complex conjugate of the relevant exponential sum if necessary, we can
assume that b = b(k,0,...,0) > 0. Further, the effect of the transformation on the size of this coefficient is
well-controlled, in that b�k,l J.

Let T = M([1,X ]`), so

∑
nnn∈[1,X ]`∩W (Y )

e2πig(nnn)α = ∑
nnn∈T∩W (Y )

e2πi f (nnn)α ,

where W (Y ) is defined on each side in terms of the corresponding polynomial.

Let T̃ denote the projection of T onto the last `−1 coordinates, noting that |T̃ | ≤ (2kX)`−1 due to the
details of our change of variables. For each fixed ñnn = (n2, . . . ,n`) ∈N`−1, we let I = {n ∈N : (n, ñnn) ∈ T},
which is an interval of integers of length at most X , we let W̃ (Y ) = {n ∈ N : (n, ñnn) ∈W (Y )}, and we let
f̃ (x) = f (x, ñnn). We see trivially that∣∣∣∣∣ ∑

nnn∈T∩W (Y )
e2πi f (nnn)α

∣∣∣∣∣≤ (2kX)`−1 max
ñnn∈T̃

∣∣∣∣∣∣ ∑
n∈I∩W̃ (Y )

e2πi f̃ (n)α

∣∣∣∣∣∣ . (40)

We now proceed with ñnn = (n2, . . . ,n`) fixed, and we define L and m so that I = [m,L+m], so in particular
L≤ X . All subsequent conclusions will be independent of ñnn. Let P be the set of products pγ(p1)

1 · · · pγ(ps)
s

for primes p1 < · · ·< ps ≤ Y , let P1 denote the set of elements of P that are at most Z, and let P2 denote
the set of elements of P that are greater than Z.

By inclusion-exclusion, we have∣∣∣∣∣∣ ∑
n∈I∩W̃ (Y )

e2πi f̃ (n)α

∣∣∣∣∣∣=
∣∣∣∣∣∣∣∑D∈P

(−1)ω(D)
∑
n∈I

∇ f (n,ñnn)≡000 (mod D)

e2πi f̃ (n)α

∣∣∣∣∣∣∣ , (41)

where ω(D) is the number of distinct prime factors of D. For D ∈ P1, we use the fact that the set of n for
which ∇ f (n, ñnn) ≡ 000 (mod D) is contained in the set of n for which f̃ ′(n) ≡ 0 (mod D). Noting that f̃ ′

can have at most k roots modulo any prime at which it does not identically vanish, we have∣∣∣∣∣∣∣ ∑
D∈P1

(−1)ω(D)
∑
n∈I

∇ f (n,ñnn)≡000 (mod D)

e2πi f̃ (n)α

∣∣∣∣∣∣∣�k (cont(g))2
∑

D∈P1

kω(D) max
0≤c≤D

∣∣∣∣∣L/D

∑
n=0

e2πi f̃ (Dn+m+c)α

∣∣∣∣∣ ,
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where the cont(g)2 term accounts for the primes p for which γ(p)> 1 by Proposition 3.6. Further, we
see from Lemma 7.11 and the estimate 1≤ b�k,l J that

∑
D∈P1

kω(D) max
0≤c≤D

∣∣∣∣∣L/D

∑
n=0

e2πi f̃ (Dn+m+c)α

∣∣∣∣∣�k,l ∑
D∈P1

kω(D) L
D

(
b logk2

(bqL)
(

q−1 +
D
L
+

qDk

bLk

))2−k

�k,l X
(

J logk2
(JqX)

(
q−1 +

Z
X
+

qZk

Xk

))2−k

∑
D∈P1

kω(D)

D

�k,l X(logY )k
(

J logk2
(JqX)

(
q−1 +

Z
X
+

qZk

Xk

))2−k

,

where the last inequality uses that if C > 0, then

∑
D∈P

Cω(D)

D
= ∏

p≤Y

(
1+

C
pγ(p)

)
≤ ∏

p≤Y

(
1+

C
p

)
� (logY )C. (42)

This combines with (40) to close the book on the contributions to (41) from P1. It remains to account
for the contribution to (41) from P2. Because P2 has so many elements, it is crucial for us to exploit the
cancellation provided by the term (−1)ω(D).

To this end, for a fixed n ∈ I, let Pn = {D ∈ P : ∇ f (n, ñnn)≡ 000 (mod D)}, and let Pn
2 = Pn∩P2. The only

issue is the possibility that way more elements of P2
n have an even number of prime factors than odd, or

vice versa, which we show below does not happen.

Let q be the largest prime power of the form pγ(p) with p≤ Y , and let qn be the largest such prime power
lying in Pn, noting that qn ≤ q�k cont(g)Y by Proposition 3.6. Let A denote the set of elements of Pn

that have an even number of prime factors, let B denote the set of elements of Pn that have odd number of
prime factors, and let A′ and B′, respectively, denote the same for elements of Pn

2 . The quantity we need
control of is ||A′|− |B′||.
Let A1 be the elements of A that are greater than Z and not divisible by qn, and let A2 be the elements of
A that are greater than qnZ and divisible by qn. Likewise define B1 and B2. The map D→ qnD defines an
injection from A1 to B2, while the map D→ D/qn defines an injection from A2 to B1. Letting A3 denote
all the elements of A greater than qnZ, we have

|A3| ≤ |A1|+ |A2| ≤ |B1|+ |B2| ≤ |B′|.

Symmetrically, we have |B3| ≤ |A′|. Finally, letting A4 and B4 denote the elements of A′ and B′ satisfying
Z < D≤ qnZ, we have |A′|= |A3|+ |A4| ≤ |B′|+ |A4| and similarly |B′| ≤ |A′|+ |B4|, so the magnitude
of |A′|− |B′| is bounded above by |A4|+ |B4|, which is the size of the set Pn of elements of Pn satisfying
Z < D≤ qnZ.
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We now see∣∣∣∣∣∣∣ ∑
D∈P2

(−1)ω(D)
∑
n∈I

∇ f (n,ñnn)≡000 (mod D)

e2πi f̃ (n)α

∣∣∣∣∣∣∣=
∣∣∣∣∣∑n∈I

e2πi f̃ (n)α
∑

D∈Pn
2

(−1)ω(D)

∣∣∣∣∣
≤∑

n∈I
|Pn|

= ∑
D∈P

Z<D≤qZ

|{n ∈ I : ∇ f (n, ñnn)≡ 000 (mod D)}|

�k (cont(g))2
∑

D∈P
Z<D≤qZ

kω(D)

(
L
D
+1
)

� (cont(g))3X ∑
D∈P
D>Z

kω(D)

D
,

provided Y Z ≤ X . If D ∈ P with D > Z, then, since D�k cont(g)2Y ω(D) and Y ≥ 2, we know that

cont(g)3eω(D)− logZ
logY �k 1. (43)

Finally, (42) and (43) imply

∑
D∈P
D>Z

kω(D)

D
�k cont(g)3e−

logZ
logY ∑

D∈P

(ek)ω(D)

D

� cont(g)3e−
logZ
logY (logY )ek,

and the lemma follows.

We now conclude our discussion by combining the tools developed in this section to establish (27)
and (28), thus completing the proof of Theorem 2.4.

7.6 Proof of (27) and (28)

We return to the proof of Lemma 4.2 in Section 4.4, recalling all assumptions, notation, and fixed
parameters. We let Z = Nc0 , and we let J denote the sum of the absolute value of the coefficients of hd ,
noting that

J�h dk ≤ Zk. (44)

Fixing α ∈ T, the pigeonhole principle guarantees the existence of 1≤ q≤Mk/Z3k and (a,q) = 1 such
that ∣∣∣∣α− a

q

∣∣∣∣< Z3k

qMk .
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Letting β = α−a/q, we have by Lemma 7.5, as well as Lemma 3.3, Proposition 3.6, and Lemma 3.8,
that

S(α) =
w

wqq` ∑
sss∈{0,...,q−1}`∩W q(Y )

e2πig(sss)a/q
∫
[0,M]`

e2πig(xxx)β dxxx+Oh

(
qM`−1 logC(Y )Z4k`

)
, (45)

where

wq = ∏
p≤Y

pγ(p)|q

(
1− jd(p)

pγd(p)`

)
�h 1.

Combining (45) with Corollary 7.8, Lemma 3.8, and Corollary 7.10 yields (27) if

q≤ Q and |β |< γ,

as well as (28) if
q≤ Q and |β | ≥ γ or Q≤ q≤ Z3k.

For this latter conclusion, when applying Corollary 7.8 we use standard estimates that assure

Cω(q)
τ(q)`�k,`,ε qε

for all ε > 0. Finally, it follows from Lemma 7.12 and Proposition 3.8 that (28) holds whenever
Z3k ≤ q≤Mk/Z3k.
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