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Abstract: For ¢ > 2 and h € Z[xy,...,x/] of degree k > 2, we show that every subset
A C{1,2,...,N} lacking nonzero differences in h(Z’) satisfies |A| <, Ne~<1°2M" where
c=c(h)>0,u=[k—1)2+1]""if ¢ =2, and u = 1/2 if £ > 3, provided h(Z") contains a
multiple of every natural number and /4 satisfies certain nonsingularity conditions. We also
explore these conditions in detail, drawing on a variety of tools from algebraic geometry.

1 Introduction

Originating with conjectures of Erdds and Lovasz, an extensive literature has developed over the past
several decades concerning the existence of particular differences within dense sets of integers. For sets
A, B C Z, we define the sum and difference sets, respectively, as usual by A+B={a+b:a € A,b € B},
and we also define the following threshold.

Definition 1.1. For X C Z and N € N, we define D(X,N) = max {|A|: A C[1,N], (A—A)NX C {0}}.

We use [1,N] to denote {1,2,...,N} and |A| to denote the size of a finite set A. To clarify, D(X,N) is the
threshold such that any subset of {1,2,..., N} with more than D(X,N) elements necessarily contains two
distinct elements that differ by an element of X. As an introductory offering prior to extensive discussions
of history, motivation, notation, and terminology, a very special case of our results in this paper is the
following:
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Theorem 1.2. Suppose h € Z[x,y] is a homogeneous polynomial of degree k > 2. If A(h) # 0, then
D(h(Z*),N) <; Ne<(oeN)", (1)

where ¢ = c(h) >0 and p = [(k—1)2+1]7.

Here A denotes the usual homogeneous discriminant, and we use < to denote “less than a constant times”,
with subscripts indicating on what parameters, if any, the implied constant depends. We take the same
convention with subscripts on Big O notation. Theorem 1.2 follows from Corollary 2.6 and our main
result, Theorem 2.4, of which we discuss various improvements and important special cases throughout
Section 2.

1.1 Background

Lovasz asked whether a set of positive upper density must contain two distinct elements that differ by
a perfect square, or equivalently whether D(S,N) = o(N), where S = {n” : n € N}. Similarly, Erd6s
conjectured that D(P — 1,N) = o(N), where P —1 = {p—1: p prime}. Furstenberg [10] verified the
former using ergodic methods, specifically his correspondence principle, in the same paper in which he
provided the second known proof of Szemerédi’s Theorem on arithmetic progressions. Independently
and concurrently, Sarkozy ([35], [36]) verified both conjectures with a Fourier analytic density increment
argument driven by the Hardy-Littlewood circle method. Further, Sarkdzy’s results included quantitative
information, showing D(S,N) <¢ N(logN)~1/3+€ and D(P — 1,N) < N(loglogN) "¢ for every £ > 0.

These results have been incrementally improved and generalized in multiple ways, both through
tightening of the quantitative bounds and expansion of the possibilities for the set X of prohibited
differences. Regarding the former, Pintz, Steiger and Szemerédi [26] utilized a more elaborate Fourier
analytic strategy to show

D(S,N) < N(logN)‘ClOgIOgIOglogN o
for a constant ¢ > 0.

Dramatically improving Sarkozy’s original bound, Ruzsa and Sanders [32] showed
D(P—1,N) < Ne<lloeN)* 3)

with u = 1/4, recently improved to 4 = 1/3 by Wang [39]. Regarding alternative choices for the set
of prohibited differences, one must first consider obvious local obstructions. For example, we consider
P — 1, rather than P, because P N4Z = 0 implies D(P,N) > [N /4] by taking A to be a congruence class
modulo 4. Analogously, if & € Z[x] and h(Z) contains no multiples of g € N, then D(h(Z),N) > [N/q].
Therefore, for even a qualitative o(N) result, it is clearly necessary that #(Z) contains a nonzero multiple
of every g € N, in which case we say that & is an intersective polynomial. Examples of intersective
polynomials include any nonzero polynomial with an integer root or a collection of rational roots with
coprime denominators. However, there are also intersective polynomials with no rational roots, such as
(> —19)(x* +x+1).

DISCRETE ANALYSIS, 2021:11, 46pp. 2


http://dx.doi.org/10.19086/da

MULTIVARIATE POLYNOMIAL VALUES IN DIFFERENCE SETS

Balog, Pelikén, Pintz, and Szemerédi [1] extended (2) with S replaced by {n* : n € N} for any fixed
k € N. For a general univariate intersective polynomial, Kamae and Mendes-France [18] established the
qualitative o(N) result, the first quantitative bounds were due to Lucier [23], and the second author [28]
fully extended (2). In a recent preprint, Bloom and Maynard [3] both simplified and improved the ideas
of [26], using a more traditional density increment to establish

D(S,N) < N(logN)*CloglogIOgN @

for a constant ¢ > 0, which is currently the best-known bound for the original square difference question.
Further, the methods of [3] are completely compatible with those of [28], so in fact (4) should hold for
the full class of intersective polynomials. For other intermediate and related results, as well as alternative
proofs, the reader may refer to (in chronological order) [11], [37], [24], [22], [21], [25], [14], [30], and
[12].

Also in [28], the second author showed that if g, € Z[x] are intersective polynomials, then
D(8(Z)+h(Z),N) < Ne 1V, (5)

where ¢ = ¢(g,h) > 0 and u = p(deg(g),deg(h)) > 0. Further, the second author [31] considered the
simplest nontrivial case of a non-diagonal multivariate polynomial, showing that for a binary quadratic
form h(x,y) = ax* + bxy 4 cy? € Z[x,y] with b> — 4ac # 0, we have

D(h(Z*),N) < Ne V10N, (6)

1.2 Motivation

As outlined in Section 2.4 of [28], the quoted upper bounds in the previous section, all of which result
from adaptations of the two aforementioned Fourier analytic arguments developed in [35] and [26],
respectively, are partially determined by the degree of decay in local exponential averages similar to

C]71 qzl eZn’ih(s)a/q. 7
s=0

The best general upper bound for (7) is of the order g '/* where k = deg(h), but the elaborate double
iteration method developed in [26], and the simplified improvement developed in [3], which lead to upper
bounds like (2) and (4), require decay at or near q‘l/ 2 which we refer to as square-root cancellation.
Inspired by [1], the second author [28] eliminated this discrepancy for k > 2 in the general case by
employing a polynomial-specific sieve to the set of considered inputs that, roughly speaking, reduced the
issue to estimating (7) at prime moduli, for which the desired square-root cancellation is a well-known
result of Weil. This sieve technique can be thought of as a bridge from the integer setting to the best
available exponential sum estimates over finite fields.

Ruzsa and Sanders [32], and later Wang [39], were able to adapt the more traditional density increment
method to establish (3), which is a stronger type of upper bound as compared with (2) or (4), based on
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two key factors: the high degree of decay in the relevant exponential averages, which are modifications of

~1
1 o2mis/ :M
¢(q) ;) 1 00

(S,q):l

and the careful analysis of the distribution of primes in arithmetic progressions, including the consideration
of exceptional zeros of Dirichlet L-functions. In the polynomial setting, the distribution of inputs in
arithmetic progressions is not as delicate of an issue, though it does rear its head when employing a sieve,
but this level of local decay is out of reach with a single variable. Specifically, bounds like (1) from the
density increment require decay at or near ¢~ (more specifically, g~! times a function of average value
at most polylogarithmic in ¢, and the exponent u depends on the power of the logarithm), which we refer
to as g-cancellation.

While the image of a multivariate intersective polynomial does not necessarily contain the image of
a univariate intersective polynomial, it is the case that, by only exploiting cancellation in one variable,
the methods of [28] and [3] can be adapted to show that (4) holds for such an image, so upper bounds
in the multivariate setting are only novel if they are stronger than (4). The observation made in [28]
to establish (5) was a rather simple one: if we consider differences of the form g(m) + h(n), then the
relevant exponential sum factors into a product, our sieve gives square-root cancellation in each variable,
and these combine to give g-cancellation. However, this observation does not fully generalize to the case
of a single polynomial in several variables with nonzero cross-terms. In particular, simple examples like
h(x,y) = (x+y)? make it clear that one cannot always exploit cancellation in each variable, so some sort
of nonsingularity assumption is required.

In the setting of binary quadratic forms, the natural assumption is nonzero discriminant, and since
sieving is not required to get square-root cancellation from each variable in degree 2, the adaptation of
the usual density increment is relatively straightforward, as done in [31] to establish (6). Section 2 of [31]
provides a helpful description of the density increment method in a simpler, sieve-free context.

For higher degrees, the sieve technique can indeed be adapted to the multivariate setting, which leads
us toward the best available estimates on exponential sums for multivariate polynomials over finite fields,
due to Deligne [8] in his proof of the Weil conjectures, and their associated nonsingularity assumptions.
Recall that A" and P" denote n-dimensional affine and projective space, respectively.

Definition 1.3. Suppose F is a field, £ € N, and g € F|[xy,...,x/] is a homogeneous polynomial. We say
that g is smooth if the vanishing of g defines a smooth hypersurface in P‘~! (as opposed to A). In other
words, g is smooth if the system g(x) = g—fl (x)=---= (%i (x) = 0 has no solution besides x; = --- =x; =0

in fg, where the bar indicates the algebraic closure. For a general polynomial & € F|xy,...,x;| with
h= ):f:O hi, where h' is homogeneous of degree i and /* # 0, we say that & is Deligne if the characteristic
of F does not divide k and /* is smooth.

Remark on notation. For the remainder of the paper, we take the notational convention that, for a
polynomial A, h* denotes the degree-i homogeneous part of 4, as opposed to £ raised to the i-th power.
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Theorem 1.4 (Theorem 8.4, [8]). Suppose { € Nand p € P. If h € Fp[xy,...,x/] is Deligne, then

Z eZﬂ:ih(x)/p < (deg(h) o 1)(P€/2~

xel)

This estimate provides a guide, but additional consideration is required to develop sufficient conditions
on a multivariate polynomial for an application of Theorem 1.4 that is compatible enough with the density
increment procedure to establish an upper bound like (1). We explore these details in Section 2.

1.3 Lower bounds and a special case

In all the nontrivial cases we have explored, there is a large gap in the best-known upper and lower bounds
for D(X,N). For an intersective polynomial z € Z[x], all known lower bounds with X = h(Z) are of order
N¢ for some ¢ < 1. The greedy algorithm gives ¢ = 1 — 1/deg(h), and higher values of ¢ are known for
monomials (see [33] and [20]) and certain other polynomials divisible by x% (due to Younis [41], and
explored from an algebraic number theory perspective by Wessel [40]). For X = P — 1, the gap is even
larger, and the best-known lower bound is of the form Ne(h) (see [34]). Younis [41] established lower
bounds for certain homogeneous multivariate polynomials, including D(S +S,N) > /N, where S is the
set of squares. All of these results are descended from methods of Ruzsa that transfer examples from
the modular setting to the integer setting. In the absence of stronger lower bounds, the greedy algorithm
gives D(X,N) > (N —1)/(|]X N[—=N,N]|+ 1) for any set X C Z (see [25]).

As an aside, one very special case where stronger upper bounds on D(X,N) are available, and where
the upper and lower bounds can be relatively close, is the case when X is itself, or at least contains, a
difference set. Specifically, if ¥ C {1,...,N} and X =Y —Y, then for a set A C {1,...,N} satisfying
(A—A)NX C {0}, wehavea+y+#d +y foralla,a’ € Aandy,y €Y with (a,y) # (d,y’). In particular,
the map (a,y) — a+yinto {1,...,2N} is an injection, so |A||Y| < 2N, and hence D(X,N) < 2N/|Y]|,
while the greedy algorithm gives D(X,N) > N/|X| > N/|Y|?. For an example relating to our discussion
of multivariate polynomials, if X is the set of differences of k-th powers for a fixed k € N, then we
have D(X,N) < N 1=1/k ‘but this observation does not immediately generalize beyond the case where
XDOY-Y.

2 Main definitions and results

The density increment procedure takes as input a set A C {1,2,...,N} lacking nonzero differences in the
image of a polynomial /, and produces a new, denser subset of a slightly smaller interval lacking nonzero
differences in the image of a potentially modified polynomial. The following definition keeps track of the
changes in the polynomial over the course of the iteration.

Definition 2.1. Fix ¢ € N. As in the univariate setting, we say that & € Z[xy,...,x/] is intersective if
h(Z") contains a nonzero multiple of every ¢ € N. Equivalently, / is intersective if it is not identically
zero and has a root in Zf, for every prime p, where Z,, denotes the p-adic integers.
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Suppose i € Z[xy,...,x,] is an intersective polynomial and fix, for each prime p, z,, € Zf, with A(z,) = 0.
All objects defined below certainly depend on this choice of p-adic integer roots, but we suppress that
dependence in the subsequent notation.

By reducing modulo prime powers and applying the Chinese Remainder Theorem, the choice of roots
determines, for each d € N, a unique ry € (—d, 0]’ with ry = 2z, mod p/ for all prime powers p/ | d.

We define a completely multiplicative function A (depending on 4 and {z,,}) on N by letting A (p) = p""»
for each prime p, where m,, is the multiplicity of z,, as a root of h, that is,

ai1+...+i[h

i iy
oxj -+ dx

(zp) # 0} .

mp:min{i1+-'-+i4:

Roughly speaking, A(d) is the largest guaranteed factor of i(n) for n = r; (mod d).
Definition 2.2. With notation as described above, for each d € N we define the auxiliary polynomial
hy € Z[xl, e ,Xg'] by

ha(x) = h(rg+dx)/A(d).

Combining the hypotheses of Theorem 1.4 with the technical details of the density increment iteration,
the following definition captures a sufficient condition for the success of the method.

Definition 2.3. When considering polynomials with integer coefficients, we use the terms smooth and
Deligne as previously defined by embedding the coefficients in the field of rational numbers. In particular,

h € Zlxy,...,x;] of degree k > 1 is Deligne if the system h*(x) = %’:(x) == g—l;lj(x) = 0 has no
solution besides x; =---=x,=01n @g. In this case, there exists a finite set of primes X = X (h) such that

the reduction of 4 modulo p is Deligne for all p ¢ X: Indeed, one can take X (%) to be the set of primes

IhF

, Tn)’ which is nonzero precisely when 4 is Deligne.

dividing the Macaulay resultant Res <hk , 3—;’?, e
(See also Prop. A.9.1.6 of [16].)

Further, we say that h is strongly Deligne if there exists a finite set of primes X = X (h) and a choice
{2zp} pep of p-adic integer roots of / such that the reduction of #; modulo p is Deligne for all p ¢ X and
all d € N. We note that strongly Deligne polynomials are necessarily both Deligne and intersective.

To highlight some of the subtlety of this definition, we first note that hfl = %hk, so for a prime p {d, we
have that if 4 is Deligne modulo p, then h; is Deligne modulo p. However, complications arise when
p | d, because K, has a factor of d’ /A (d), and hence vanishes modulo p for all i > m,,. For an example of
a polynomial that is Deligne and intersective but not strongly Deligne, see “the ugly” in Section 2.4.

[(k—1)2+1]7" ife=2

) . The central result of this paper is the
1/2 if¢>3

For k,0 > 2, we let u(k,0) = {
following:
Theorem 2.4. If{ > 2 and h € Z|xy,...,x;] is a strongly Deligne polynomial of degree k > 2, then
D(h(Z'),N) < Ne~<osM" ™" ®)

where ¢ = c(h) > 0.
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Remark. In Theorem 2.4, the full image h(Z!) is considered for ease of exposition, and to make the
conclusion invariant under input translation. However, by inspection of the proof, the same upper bound
can be seen to hold for D(h([1,N¢]*),N) for any & > 0, with ¢ and the implied constant depending on €.
Also, in several of our results and definitions, we exclude the case kK = 1 only out of convenience due to
its triviality in this context. Specifically, if & € Z[xy,...,x,] with deg(h) = 1, then D(h(Z"),N) <, 1 if
0 € h(Z') and D(h(Z"),N) >, N otherwise.

After setting the stage with preliminary definitions and observations in Section 3, we prove Theorem
2.4 in Section 4, and then establish the needed exponential sum estimates, which we state separately as
Theorem 3.9, in Section 7. More imminently, in Sections 2.1 and 2.2, we describe sufficient conditions
under which h € Z[xy,...,x/] is strongly Deligne, and hence (8) holds. Then, in Section 2.3, we explain
that in many cases we may still get a bound similar to (8) even when the strongly Deligne condition is
significantly relaxed.

2.1 The integer root case

The simplest sufficient condition for the intersectivity of a nonzero polynomial is the existence of an
integer root. In this case, all p-adic integer roots can be taken to equal said integer root, which simplifies
the auxiliary polynomial definition, giving rise to a pleasantly tangible sufficient condition for the strongly
Deligne property, as captured with the following proposition.

Proposition 2.5. Suppose { > 2 and h € Z[xy,...,x;| with h(0) = 0. If the highest and lowest degree
homogeneous parts of h are smooth, then h is strongly Deligne.

Proof. Suppose h satisfies the hypotheses, let k = deg(h), let j denote the lowest degree of the nonzero
terms of &, and let X denote the finite set of primes p such that p | jk or either /* or i/ is not smooth modulo
p. Making the natural choice of p-adic integer roots z, = 0 for all p, we then have hy(x) = h(dx)/d’,
hence h'(x) = d"/h(x). Fix p ¢ X. If ptd, then the highest degree part of /1, modulo p is a nonzero
multiple of #¥, which is smooth modulo p, hence h, is Deligne modulo p. If p | d, then the only
nonvanishing homogeneous part of A, is precisely 4/, which is smooth modulo p, hence A, is Deligne
modulo p. O

Remark. We note that h(Z"), hence the threshold D(h(Z"),N), as well as the Deligne and strongly
Deligne properties, are all invariant under translations of the form A(x + n) for a fixed n € Z’. In
particular, Proposition 2.5 applies provided there exists n € Z such that i(n) = 0 and the highest and
lowest degree parts of (x+n) are smooth. More generally, all of our results that hold for a polynomial A
also hold for the full translation equivalence class of 4.

For homogeneous bivariate polynomials, smoothness of the corresponding (0-dimensional) variety is
equivalent to non-vanishing of the discriminant. Therefore, for £ = 2, we have the following, which in
particular combines with Theorem 2.4 to yield Theorem 1.2 as a special case.

Corollary 2.6. Suppose h € Z|x,y| with h(0,0) = 0. If the highest and lowest degree homogeneous parts
of h have nonzero homogeneous discriminant, then h is strongly Deligne.
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2.2 The Deligne case

Taking the next step in complexity, here we consider the case of a polynomial that is Deligne and
intersective, but may not have an integer root. Recalling that if p | d, then hil vanishes modulo p for all
i > m,, we make the following definition with the hopes of exploiting the fact that a nonzero homogeneous
linear polynomial is guaranteed to be smooth.

Definition 2.7. For ¢ € N and h € Zxy,...,x;| we say that h is smoothly intersective if there exists a
choice {2z, } ey of p-adic integer roots of / such that m, = 1 for all but finitely many p. In other words,
the variety defined by 4 = 0 has at least one point over Z,, for all p, and at least one nonsingular point
over Zj, for all but finitely many p.

For low-hanging examples of polynomials that are intersective but not smoothly intersective, one
could consider the square of any intersective polynomial, but such polynomials do not pass even our
coarsest of nonsingularity filters. For an example of a polynomial that is intersective but not smoothly
intersective in a more subtle and problematic way, see our discussion of “the ugly” in Section 2.4.
Combining the motivation for the smoothly intersective definition with the fact that the highest degree
part of a Deligne polynomial is assumed to be smooth, the following proposition provides a sufficient
condition for the strongly Deligne property, and includes two notable special cases.

Proposition 2.8. Suppose { > 2 and h € Z[x\,...,x;| is Deligne and intersective with deg(h) = k > 2. If
there exists a choice {2, } pcp of p-adic integer roots of h satisfying m, € {1,k} for all but finitely many p,
then h is strongly Deligne. In particular, if k = 2 or h is smoothly intersective, then h is strongly Deligne.

Using estimates on the number of nonsingular points on irreducible varieties over finite fields, we
obtain the following convenient criterion for smooth intersectivity.

Proposition 2.9. Suppose ¢ > 2 and h € Z|xy,...,xy] is Deligne and intersective, and let h= gy --- g,
be an irreducible factorization of h in Z[x\,...,x|. If g; is geometrically irreducible for some 1 <i<n,
then h is smoothly intersective, hence strongly Deligne.

Remark. The conclusion of Proposition 2.9 remains true under weaker assumptions on the factorization
of h. We give this cleaner statement here, but prove the more general statement in Corollary 5.4.

For ¢ > 3, the Deligne condition actually implies geometric irreducibility, yielding the following:

Corollary 2.10. Suppose ¢ >3 and h € Z[xy,...,x¢]. If h is Deligne and intersective, then h is smoothly
intersective, hence strongly Deligne.

Proof. By Proposition 2.9, it suffices to show that if / is a Deligne polynomial in £ > 3 variables, then /4 is
geometrically irreducible. Suppose to the contrary that 7 = g g, with g1,g> € @[xl ,...,X¢] nonconstant of
degrees d and k — d, respectively. In particular, we have i = g¢gh~¢. Each of {g¢ =0} and {g"~? =0}
has codimension 1 in P‘~! (since they are hypersurfaces) and dimension at least 1 (since we assumed
¢>3). In particular, {g¢ = 0} and {g¥~? = 0} have nontrivial intersection, and any intersection point
must be a singular point of the union {/* = 0}, contradicting the fact that / is Deligne. O
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In Section 5, we collect some crucial tools from algebraic geometry, which are followed by the proofs
of both Proposition 2.8 and the aforementioned generalization of Proposition 2.9.

2.3 The singular case

While the Deligne condition is required to apply Theorem 1.4 to get the desired cancellation in our
exponential sums, brief consideration reveals that the condition is not strictly necessary for a bound
like (8) to hold, provided the failure of the Deligne condition is in balance with the freedom of extra
variables. For a particularly simple example, consider A(x,y,z) = (x+2)* + (x +z)y® +»*. This is a
homogeneous degree-4 polynomial, and the variety V C P2 defined by its vanishing has a unique singular
point, namely (1:0: —1). In particular, /4 is not Deligne. However, by fixing z = 0, we can define
g(x,y) = h(x,y,0) = x* 4+ xy* +y*, which is a bivariate homogeneous polynomial of nonzero discriminant.
In particular, g is strongly Deligne, so Theorem 2.4 applies, and moreover g(Z?) = h(Z?), so (8) holds
for h as well, applied as if £ = 2 as opposed to £ = 3.

This example hints at a less black-and-white consideration of the singularity of a projective variety.
For h € Z[xy,...,x;] with deg(h) = k > 1, h is Deligne precisely when the variety V C P! defined by
h* = 0 is nonsingular. The example above indicates that we should really only need to avoid this variety
being “too singular”, which leads to the following definition.

Definition 2.11. For ¢ € N and a nonconstant homogeneous polynom1al g € Zlxy,...,xl, let vV C P!
be the variety defined by g = 0, and let V* be the singular locus of V. We define the rank of g to be
the codimension of V* in P!, with the convention that the empty set has dimension —1, hence the
codimension of the empty set in P~ is £. This is a notion of rank developed by Birch in [2] and utilized,
for example, in [6].

For h € Z[xy,...,x;] with deg(h) = k > 1, the rank of /¥ should, roughly speaking, encode the number
of variables r such that g(Z") C h(Z") for some Deligne polynomial g € Z|xy,...,x,]. In particular, &
is Deligne if and only if the rank of /¥ is £. In Section 6, using careful dimension-lowering arguments,
we successfully expand the class of polynomials for which a result analogous to Theorem 2.4 holds,
generalizing our efforts from Sections 2.1 and 2.2 as follows.

Theorem 2.12. Suppose ¢ > 2 and h € Z[xy,...,x;| with h(0) = 0 and deg(h) =k > 2. Let r be the
minimum rank of the highest and lowest degree homogeneous parts of h. If r > 2, then

D((Z'),N) < Ne~<0osV ™ ©)
where ¢ = c(h) > 0.

Theorem 2.13. Suppose { > 2 and h € Z|x1,. .., x| is intersective of degree k > 2. Let r be the rank of h¥.
If r > 3, OR if r = 2 and there exists a choice {2} ycp of p-adic integer roots of h satisfying m, € {1,k}
for all but finitely many p, then (9) holds.

Remark. To shed light on the hypotheses of Theorems 2.12 and 2.13, we note that, for £ > 2 and a
nonconstant homogeneous polynomial g € Z[xy,...,x;] of rank r, we have r > 2 if and only if g is
squarefree—in other words, if and only if g = 0 defines a reduced variety.
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2.4 Summary of results

For this section, we suppose k,¢ > 2 and h € Z|xy, ..., x;] with deg(h) = k, and we let r denote the rank of
k. We assume £ is intersective, as otherwise D(h(Z"),N) >, N. The following bullet points summarize
the reach and limitations of our results.

* The good: In addition to previously known results on sums of univariate intersective polynomials
(Theorems 1.2 and 5.7 of [28]), we now have that (9) holds provided £, or in the case of (iii) any
translation of 4, meets any of the following criteria:

(1) r > 3 (including Deligne with ¢ > 3)
(ii) r =k =2 (including Deligne with £ = k = 2)
(iii) r =2 (including Deligne with ¢ = 2), h(0) = 0, and the lowest degree homogeneous part of &

has rank at least 2. This includes as a special case bivariate homogeneous polynomials with
nonzero discriminant, which is Theorem 1.2 from the introduction.

(iv) r =2 (including Deligne with ¢ = 2) and 4 is smoothly intersective, the latter of which in
particular holds if any irreducible (over Z) factor of 4 is geometrically irreducible. Parts of
this item can be made slightly more general, as seen in the hypotheses of Proposition 2.9 and
Corollary 5.4.

An interesting example of (iv) that does not fit into any other category is i(x,y) = x> +y* — ¢,
where ¢ is a prime congruent to 1 modulo 90090 that is not expressable as the sum of two
integer cubes, of which there are plenty. This polynomial has no rational root, and it cannot
be decomposed into a sum of two univariate intersective polynomials, but it is Deligne and it
has simple roots in ZIZJ for all primes p. This example was discussed in a remark following
Theorem 1.2 in [28] to illustrate a limitation of that result.

* The bad: The methods utilized here fail to improve on univariate results in the case that r = 1, or
equivalently the case that /¥ has a repeated factor. It should be noted that we can only definitively
say that it is impossible to reach beyond the cutting edge of the univariate setting if 4 = f o g for
some g € Z[xy,...,x;] and f € Z[x] with deg(f) > 2, because in this case h(Z") C f(Z). This was
hinted at in the introduction with the example /(x,y) = (x+y)2. In this situation, /¥ is a proper
power of the highest-degree part of g, so we definitely have r = 1. While it is certainly possible
to have r = 1 without 4 being given as a composition of this sort, our current methods cannot
distinguish between the two.

The ugly: A more subtle remaining hurdle is the case where = 2 (including Deligne with £ = 2),
k > 3, and h does not meet either of the criteria described in items (iii) or (iv). Focusing on the £ = 2
Deligne case, such a polynomial must satisfy A(#¥) # 0, must be intersective and hence have roots
in Zf, for all primes p, but by Proposition 2.8, for infinitely many p, all roots in Zf, must satisfy
2 <mj, <k— 1. In particular, by Proposition 2.9, at least one coefficient in every geometrically
irreducible factor of 7 must fail to be an integer. Finally, by Corollary 2.6, if 4 satisfies 4(0,0) = 0,
then the lowest degree part of 4 must have discriminant 0.
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One example is
B y) =5 =20 4 22 (e y) + (b 9) = (2= V224 (k) ) (P4 V2 o+ (64+)).

For any prime p such that 2 is not a square in Q,,, the only Q, roots of & are (0,0) and (—1,0).
With these choices for z,, the highest degree nonvanishing part of /2, modulo p is either (x + y)? or
(x—y)?, respectively. In both cases A(h2) = 0, and hence &, is not Deligne at this infinite collection
of primes. In other words, £ is not strongly Deligne, and we cannot claim that (9) holds.

* The future: The issue in the previous bullet point may represent an avoidable artifact of the
method, in which case the upper bound (9) could be shown to hold for all intersective polynomials
satisfying r > 2. Regarding improved bounds, as noted in Section 2.3 of [31], and as implicitly
referenced in [32] when noting that the exponent u in (3) could be increased to 1/2 conditioned
on the Generalized Riemann Hypothesis, an upper bound of order N e~ cVioeN appears to be the
limit of a Fourier analytic L? density increment. More specifically, if (8,N) + (8’,N’) represents
the change in density and interval size at each step of the iteration, then any further improvement
would require either N’ /N to decay more slowly than any power of &, or 8’/ to tend to infinity, as
0 — 0, both of which appear incompatible with the method. To be clear, this is not at all to say that
much stronger upper bounds do not hold, even in the univariate polynomial setting. As discussed
in Section 1.3, this question is rather murky. However, to achieve such a goal would likely require
a fundamentally different proof strategy.

3 Preliminaries

In this section we make some preliminary definitions and observations required to execute the sieve-
powered L? density increment strategy utilized to prove Theorem 2.4.

3.1 Fourier analysis and the circle method on Z

We embed our finite sets in Z, on which we utilize an unnormalized discrete Fourier transform. Specif-
ically, for a function F' : Z — C with finite support, we define F' : T — C, where T denotes the circle
parameterized by the interval [0, 1] with 0 and 1 identified, by

Fla)=Y F(x)e ™,
XEZ

Given N € N and a set A C [1,N] with |A| = SN, we examine the Fourier analytic behavior of A by
considering the balanced function, f4, defined by f4 = 14 — 81[171\,].

As is standard, we decompose the frequency space into two pieces: the points of T that are close to
rational numbers with small denominator, and the complement.
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Definition 3.1. Given ¥ > 0 and Q > 1, we define, for each a,g € Nwith0 <a <g—1,

a g
My, (7) = {a eT:|a-2|< y} M1 = | Magg(@), and M () = UM, () = U Masg (7).
q (a.q)=1 rlg a=0

We then define the major arcs by

M(y,0) = [JMy(y),

and the minor arcs by m(y,Q) = T \ M(y, Q). We note that if 2yQ* < 1, then

Ma/q(Y) me/r(Y) =0 (10)

whenever a/q # b/r and g,r < Q.

3.2 Inheritance proposition

As previously noted, we defined auxiliary polynomials to keep track of an inherited lack of prescribed
differences at each step of a density increment iteration. The following proposition makes this inheritance
precise.

Proposition 3.2. Suppose { €N, h € Z[xy,...,x/] is intersective, d,q € N, and A C N.
If (A—A)Nhy(ZY) C{0} and A’ C {a: x+ A(q)a € A} for some x € Z, then (A’ — A") Nhyqa(Z") C {0}.
Proof. Suppose that A CN, A’ C {a:x+A(q)a € A}, and

a—d =hga(n) = h(rea+qdn)/A(qd) #0

for some n € Z¢, a,d' € A'. By construction we have that r,y = ry mod d, so there exists s € Z* such that
r4q = rq+ds. Further, A is completely multiplicative, and therefore

0 hy(s+qn) = h(rq+d(s+qn)) /2(d) = 2(q)hga(n) = A(q)a— A(q)d’ € A—A.

Since a —d’ # 0, we have (A —A) Nhy(Z") € {0}, and the contrapositive is established. O

3.3 Sieve definitions and observations

As in [28], we apply a polynomial-specific sieve to our set of considered inputs in order to, roughly
speaking, reduce our analysis of local exponential averages to the case of prime moduli, which in the
multivariate setting allows for the application of Theorem 1.4. To this end, for £ € N, an intersective
polynomial i € Z[xy,...,x;], and each prime p and d € N, we define y;(p) to be the smallest power such
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that Vi; modulo p¥%(P) does not vanish identically as a function on (Z/p¥?)Z)¢, and we let j;(p) denote
the number of solutions to Vi = 0 in (Z/p¥P)Z)!. Then, for d € N and Y > 0 we define

Wy(Y) = {n eN’: Vhy(n) # 0 mod p¥P) forall p < Y}.

In the absence of a subscript d in the usage of ¥(p), j(p), and W(Y), we assume d = 1, in which case
the definitions make sense even for non-intersective polynomials. Further, for any g € Z[xi,...,x/] and
q € N, we define

Wi(Yy) = {n e N’:Vg(n) £ 0 mod p"?) forall p <Y, p'V) | q}.

Unlike in the univariate case, the size of W (Y') here can be estimated with a straightforward application
of the inclusion-exclusion principle, as opposed to a Brun sieve truncation thereof (see Proposition 2.4 in
[28]). To achieve this goal, however, we must first look forward and invoke an estimate established in
Section 7.1. For the following two statements, we assume ¢ > 2 and g € Zlxy,...,x;| withdeg(g) =k > 1.

Lemma 3.3. If p is prime and g is Deligne modulo p, then j(p) <y 1.

Proposition 3.4. For any x1,...,x;,Y > 0 we have

IBAW(Y)| =x1x2- XgH<1— )>—|—E, (11)

p<Y 1)t

where B = [1,x1] X -+ x [1,x¢],

O(X"ogt(Y)) ift=2
E= :
oxh ift=3

X =max{xy,...,x}, C=C(k,{), and the implied constants depend only on k, ¥, the moduli at which Vg
identically vanishes, and the primes p <Y modulo which g is not Deligne.

Proof. Fix xi,...,x4,Y >0 and let X = max{xy,...,x;}. For primes p; < p» < --- < p,, we let

Apopy = Apyep (X1,...,x0) = Hn € B:Vg(n) =0 mod pzl(p") forall 1 <i< s}’ .

Fixing ¥ > 0 and letting r denote the number of primes that are at most Y, we have by the Chinese
Remainder Theorem and the inclusion-exclusion principle that

BOWD)| =Y. (=1 Y, App, (12)
s=0 p1<--<ps<Y
Further, _
P ;55))[)61 “xé_‘_va (13)
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where [R,| < j(p)(X/p"P) =1, We trivially have j(p) < p"P)*, while if g is Deligne modulo p, then
v(p) = 1 and, by Lemma 3.3, j(p) < C = C(k,£). In particular, we can apply the Chinese Remainder
Theorem again and extend (13) to

Ap,

P> (14)

where |R,,...,,| < KC*(X/p1---ps)*~!, where K depends only on the moduli at which Vg identically
vanishes and the primes p <Y modulo which g is not Deligne. Now, by (12) and (14) we have

BWOI=Y (1) L A

s=0 p1<--<ps<Y
r S ;
i(pi)
:Z(—l)‘ Z (xl "XZH Y(pf)g+RP1 Ps)
s=0 p1<-<ps<Y i=1 p;
i(p)
= x1x x;pI:[Y <1 pm’)f) +E,
where
. ol i1 C
E| < KX'! — =KX <1+_>,
‘§3m<~-z<"psgy (p1---ps)! 1:1; P!
and the estimate follows. O

3.4 Control over gradient vanishing: Part I

A potential hazard of the density increment method is the possibility that, as d grows, Vh,; could
identically vanish at a larger and larger collection of moduli. This section is dedicated to establishing that,
for strongly Deligne polynomials, this does not occur. We begin by noting that the collection of moduli
at which a polynomial identically vanishes is firmly controlled in terms of its degree and the gcd of its
coefficients. Throughout this section we assume &, ¢ € N.

Definition 3.5. We define a multi-index to be an (-tuple i = (iy,...,is) of nonnegatiye integers. We
let |i| =iy +---+1ip, we let il =ij!---iy!, and for x = (xy,...,x7), we let x' = x{'---x/. Finally, for a
polynomial g(x), we let d’g = ,-a"‘g .

dx)! "-Qx[

Proposition 3.6. If g(x) = ¥ i<k aix’ € Zlxy, ... x| is identically zero modulo q € N, then
q | k'ged({ai}).

Proof. We first note that g is identically zero as a function on Z/¢Z if and only if the polynomial g/q is
integer-valued. In this case, since products of binomial coefficients

@ _ (ic;) (ff) _ x(x—l)..i.l(!x—i] +1) '_.x(x—l)..l:g(!x—ig—i-l)
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form a Z-basis for integer-valued polynomials in Q[xi,...,x], we can write g(x) = ¥j;j<x gbi (%) for
b; € Z. In particular, by clearing denominators we see that the coefficients of k!g are all divisible by ¢,
and the proposition follows. 0

Further, we note that the ged of the coefficients of each partial derivative of a polynomial & € Z[xy, ..., x|
divides k! times the gcd of the nonconstant coefficients of 4. With this in mind, the following definition
and proposition complete the task at hand.

Definition 3.7. For h(x) = ¥ <xaix’ € Z[x1,...,x;], we define

cont(h) = ged({a; : |i| > 0}).

We note that our use of cont(/) does not precisely align with the standard notion of the content of a
polynomial, as we exclude the constant coefficient.

Proposition 3.8. If h € Z[x),...,x/] is a strongly Deligne polynomial of degree k, then

cont(hy) <p 1.

Proof. Suppose d € N and h € Z[xy,...,x/] is a strongly Deligne polynomial of degree k. Let {z,} o
and X denote the choice of p-adic integer roots and the finite set of primes, respectively, guaranteed by
the strongly Deligne condition. In particular, %, is Deligne modulo p for all p ¢ X. Because constant
polynomials are not Deligne, cont(%,) can only be divisible by primes in X.

Recalling that h;(x) = h(ry +dx)/A(d), we make the trivial note that for any multi-index i with |i| =k,
the x coefficient of hy is precisely d* /2 (d) times the corresponding coefficient a; of h. In particular,

dk
cont(hy) | ——a; whenever |i| = k. (15)

A(d)
Now fix p € X. By definition of the multiplicity m,, there exists a multi-index i with |i| = m, and
d'h(z,) # 0, so in particular d°h(z,) has some finite p-adic valuation vi(p).

If p"1(P)+14 4, then by (15), we have that p*"1(P)Tv2(P)+1 4 cont(h,), where va(p) is the minimum p-adic
valuation amongst the degree-k coefficients of 4. Now suppose that p*1(?)+1 |d.

Let b; denote the x* coefficient of /1;. By Taylor’s formula, we have that

~d™ J'h(ry)
AMd) i

By definition of A we have p 1 (d"/A(d)), and since r4 = z, mod p*"'(P)*! and p"1(P)*1 t 9in(z,), we
have that p"'(P)*1 | b;. In either case, we have that p*"1(P)*v2(P)+1 4 cont(h,), and hence

cont(hy) < H pkv1(p)+vz(p)+1 < 1,
peEX

as required. O
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For strongly Deligne h € Z[xy, ..., x;] with deg(h) = k, we have now established control over not only the
error term in the size of W;(Y'), but also the main term, since Lemma 3.3, Proposition 3.6, and Proposition

3.8 give
Ja(p) 9
M(-20)> T (1-5)=n a0

p<Y (h)<p<Y

foralld e Nand Y > 2.

3.5 Summary of new exponential sum estimates

In Section 7, we combine new and old techniques to establish the sieved multivariate exponential sum
estimates necessary to prove Theorem 2.4. These estimates are obtained through a sequence of lemmas
presented in the context of the larger proof, so we separately present a summary here in case the estimates
are of independent interest to the reader.

For the following theorem, a multivariate generalization of Theorem 2.7 in [28], we utilize all the
sieve-related notation and definitions from Section 3.3. Further, we use T and @ to denote the divisor and
distinct prime divisor counting functions, respectively, as well as ¢ to denote the Euler totient function.

Theorem 3.9. Fork,{ > 2, g(x) = Z‘i‘gka,-x" € Zlxt, -, xe), J = Yjij< lai
estimates hold:

,and a,q € N, the following

(i) Major arc estimate: I[f X,Y > 0and a =a/q+ B, then

Z p2rignma _ qfe H <1 . i(p) ) Z o2mig(s)a/q / o280 1y
ne[LXTW () e PPt g Tyowaw) 0.x)"
p'Pq

+ 0 (E(1+IX4B))')
where E is as in Proposition 3.4.
(ii) Local cancellation: If (a,q) =1 and Y > 0, then

— 1)fo(q) 2 o<
SCl{(k 1) V(g 0)q"* ifg<Y

eZTL’ig(s)a/q ,
s (q)q K forallg

s€{0,....,g—1}inwa(Y)

where Cy = Cy(k), ®(q,2) = (q/9(q))2, P(q,¢) <y 1 for £ >3, and C\ depends only on the
moduli at which Vg identically vanishes and the primes p <Y dividing g modulo which g is not
Deligne.

(iii) Minor arc estimate: If X,Y,Z >2,YZ <X, (a,q) =1, and |a —a/q| < ¢, then

logZ qZk

-
. _logZ Z
) e2msMa| ) cont(g)®(log¥ )X’ <e log? - <J10gk2 (JgX) <q1 txt Xk)> ) .

ne[LX]{\nW(Y)
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4 Proof of Theorem 2.4

In this section, we exploit the estimates enumerated in Theorem 3.9 and apply a Fourier analytic L?
density increment, essentially an improved, streamlined version of Sarkozy’s [35] original method, in
order to prove Theorem 2.4. The core of this method has been utilized in [23], [22], [32], and [30], among
others. Most specifically, this section very closely follows Section 5 of [28].

4.1 Main iteration lemma and proof of Theorem 2.4

For the remainder of Section 4 we fix k,¢ > 2, a strongly Deligne polynomial & € Z|xy,...,x;] with
deg(h) = k, and positive constants Cy = Cy(h) and ¢y = co(h) that are appropriately large and small,

respectively. For N € N we let
Q = Q(N, h) = eoVioeN,

For a density & € (0, 1], we define 8 (k, £, 8) by (k,¢,8) =1if £ >3 and 6 (k,2,8) =log **=2)((co8)~1).

We deduce Theorem 2.4 from the following iteration lemma, which makes precise the aforementioned
passage from a set lacking nonzero differences in the image of a polynomial to a new, denser subset of a
slightly smaller interval lacking nonzero differences in the image of an appropriate auxiliary polynomial.

Lemma 4.1. Suppose A C [1,N] with |A| = SN. If (A —A) Nhg(Z') C {0}, Co, 67! < Q, and d < N,
then there exists ¢ <, 8> and A’ C [1,N'] such that N' >, 3%*N,

A" > (1+cB(k,(,8))5N,

where ¢ = c¢(h) > 0, and
(A" — A" Nhea(Z") C {0}.

Proof of Theorem 2.4. Throughout this proof, we let C and ¢ denote sufficiently large or small positive
constants, respectively, which we allow to change from line to line, but which depend only on 4.

Suppose A C [1,N] with |A| = SN and
(A—A)Nh(Z") C {0}.

Setting Ag = A, No =N, dy = 1, and & = 8, Lemma 4.1 yields, for each m, a set A,, C [1,N,,] with
|Am| = 8Ny and (A, — A,) Nhy, (Z') C {0}. Further, we have that

Ny > c8%N,,_ > (c8)*"N, (17)
Sn > (1+¢0(k,,8))8,1, (18)

and
Ay < (¢8) Pdp_y < (c8)7", (19)
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as long as
C,8,  <eViogNn g < NC. (20)
By (18), the density J,, will exceed 1, and hence (20) must fail, for m = M = M(h, §), where

Clog(Ccs—) if¢>3
M(h7 ) = (k—1)2 ~1 . A"
Clog (Co™") ife=2

However, by (17), (18), and (19), (20) holds for m = M if

(c8)HM = (Clog" 07 (€57) < e, 21)

(k)

Therefore, (21) must fail, or in other words § <, e c(logN)#! , as claimed. ]

4.2 L’ Fourier concentration and proof of Lemma 4.1

The philosophy behind the proof of Lemma 4.1 is that the condition (A —A) N hy(Z*) C {0} represents
highly nonrandom behavior, which should be detectable in the Fourier analytic behavior of A. Specifically,
we locate one small denominator g such that ]?A has L? concentration around rationals with denominator g,
then invoke a standard lemma stating that L? concentration of fA implies the existence a long arithmetic
progression on which A has increased density.

Lemma 4.2. Suppose A C [1,N] with |A| = 8N, 1 = ¢¢8, and y=n"*/N. If (A—A)Nhy(Z") C {0},
Co, 671 <Q,d <N, and |AN(N/9,8N/9)| > 36N /4, then there exists ¢ < 12 such that

/ [fa(a)|Pda >, 6(k, 0, 8)8°N.
M, (7)

Lemma 4.1 follows from Lemma 4.2 and the following standard L? density increment lemma.

Lemma 4.3 (Lemma 2.3 in [29], see also [23], [32]). Suppose A C [1,N] with |A| =6N. If0 <6 <1,
qgeN, y>0, and

| V(o) Pda > 08,
M (7)

q
then there exists an arithmetic progression

P={x+/lq:1<(<L}

with gL > min{ON,y '} and |ANP| > (1+6/32)5L.
Proof of Lemma 4.1. Suppose A C [I,N], |A| = SN, (A—A)Nhy(Z") C {0}, Cp, 67! < Q, and d < N.
If [AN(N/9,8N/9)| < 38N /4, then max{|AN[1,N/9]|,]AN[8N/9,N]|} > SN /8. In other words, A has

density at least 96 /8 on one of these intervals.
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Otherwise, Lemmas 4.2 and 4.3 apply, so in either case, letting 1 = co8, there exists ¢ < 72 and an
arithmetic progression

P={x+/0q:1<(<L}

with gL >, 6%*N and
JANP| > (14O (k,¢,8))SL.

Partitioning P into subprogressions of step size A(g), the pigeonhole principle yields a progression
P ={y+tal(q):1<a<N}CP

with N' > gL/2A(gq) and |ANP'|/N" > |ANP|/L. This allows us to define a set A’ C [1,N'] by
A'={a€[1,N']:y+al(q) €A},

which satisfies |A’| = |ANP'| and N’ >, 8N /A(q) >, §*N. Moreover, (A —A)Nhy(Z*) C {0} implies
(A'—A") Nhga(Z") C {0} by Proposition 3.2. O

Our task for this section is now completely reduced to a proof of Lemma 4.2.

4.3 Preliminary notation for proof of Lemma 4.2

Before delving into the proof of Lemma 4.2, we take the opportunity to define some relevant sets
and quantities, depending on our strongly Deligne polynomial & € Z[xy,...,x], scaling parameter d, a
parameter Y > 0, and the size N of the ambient interval. In all the notation defined below, we suppress all

of the aforementioned dependence, as the relevant objects will be fixed in context.
We define Wy, 74, and j; in terms of 4 as in Section 3.3. We then let M = (%) 1/ k, where J is the sum
of the absolute value of all the coefficients of /4, and hence hy([1,M]") C [-N/9,N/9]. We let

=I5,

p<¥

and we let T = wM?.

We let Z = {n € Z' : hy(n) = 0}, and we let H = ([1,M]* NW,(Y)) \ Z. We note that the hypothesis
Q > (Cy allows us to assume at any point that Q, and hence also N, are sufficiently large with respect to A,
which we take as a perpetual assumption moving forward. Under this assumption, it follows from (11),
(16), and the estimate

ZO[1,M])"] <, M1 (22)

that
H|>T)2. (23)
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4.4 Proof of Lemma 4.2

Suppose A C [1,N] with |A| = SN, (A —A)Nhye(Z") C {0}, Co,6' < Q, and d < N. Further, let
N =cod,let Q=n"2 and letY = n~2* Since hy(H) C [-N/9,N/9]\ {0}, we have

ZfA fA x—i—hd ZIA lA x—l—hdn 521A 1[1N X+hd( ))
XEZ XEZ XEZ
ncH neH neH
-0 Z lA(x+hd(”))1[1,N](x)+52 Z Lm (0) 1 vy (X + ha(n))
neit neit

< (621\/ —28|AN(N/9, 8N/9)\) IH|.
Therefore, if |[AN(N/9,8N/9)| > 38N /4, then by (23) we have
Y fa(x) fa(x+ha(n)) < —8°NT /4. (24)

X€Z
ncH

We see from (22) and orthogonality of characters that

Y At hatm) = [ (@) PS(@pdoct o,vm ), es)

X€EZ
ncH

where

S(OC) _ Z ezmhd(n)oc‘

ne[l,M)iNWy,(Y)
Combining (24) and (25), we have

LI
/ Fa(@)PIS(a)|do > 82NT /8. 26)
0
Letting ¥y =12 /N, Theorem 3.9 yields that for a € M, (), g < Q, we have
S(a)| < (k= 1) W(q,0)g T, 27)
where ®(gq,2) = (q/9(q))€ for C = C(k) and ®(q,¢) <, 1 for £ > 3. Further, for o € m(y, Q) we have
S(ar)] < 8T /16. (28)

The proof of the estimates in Theorem 3.9 and the subsequent deduction of (27) and (28) can be found in
Section 7. From (28) and Plancherel’s Identity, we have

/ Fa(@)PIS(a)|da < 82NT /16,
m(y,0)
which together with (26) yields

/ |fa(@))?|S(ax)|dot > 6>NT /16. (29)
M(,0)
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From (27) and (29) , we have

Q o~
Y (k— 1)@ (q)g" / Fa(@)Pda > 82N. (30)
g=1 M ( )

q\?

For ¢ = 2, the function b(g) = (k— 1) (q/¢(q))C satisfies b(gr) > b(r), and we make use of the
following proposition, which is based on a trick that originated in [32].

Proposition 4.4 (Proposition 5.6, [28]). For any ¥,Q > 0 satisfying 2yQ* < 1, and for any function
b: N — [0,e0) satisfying b(qr) > b(r) for all q,r € N, we have

y b(r)

N 0 -1 -
2 2
max | el da Q<2q§ b)) Y2 @

q<Q r=1 r

Because b is a multiplicative function, b(p*) = (k—1)2(1+1/(p—1))¢ < 1 for all prime powers p",
and

Y 2 2
)y 1) I1 <1+ bl() ) 13( p” +0k(1/p2>> < log® "0,

= 4 p<Q

it follows from Theorem 01 of [13] that
Q 2
Y b(g) <k Qlog* "1 0,
g=1

and the lemma for ¢ = 2 follows from (30) and Proposition 4.4. For £ > 3, since (k — 1)/®(@) Lpe q° for
any € >0, the sum Y7 (k — 1){@(@)g=t/2 is convergent, and hence (30) immediately yields

max/ (o) Pda >, 8°N.

9<0 JM,(y

Since M, () € M (7), this establishes the lemma for £ > 3. O

5 Criteria for strongly Deligne polynomials

In this section, we prove Proposition 2.8 and a stronger version of Proposition 2.9. We begin, though, by
collecting a few facts from algebraic geometry that will be useful in subsequent sections. Throughout this
section, for a variety V, we let V* denote the singular locus of V, and we let V™ =V \ V5.

5.1 Results from algebraic geometry

We first state a classical version of Bézout’s Theorem; see [9, Example 8.4.6].
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Lemma 5.1 (Bézout’s Theorem). Let Vi,...,V; be subvarieties of P’. Then deg ﬂ;‘zl Vi< Hf?: 1degV;. In

particular, if the intersection is finite, then ’ﬂf;l Vil < Hf;l degV;.

We now record estimates due to Lang and Weil [19] on the number of points on varieties over finite
fields. The following is a well known consequence of Theorem 1 of [19] (see, for example, Theorem 5.1
of [27]), but we give the short proof for completeness.

Lemma 5.2. Let k, ¢, m, and r be positive integers, and let g be a prime power. Let V be a (reduced)
closed subvariety of P!, defined over ¥y (the field with q elements), of degree k and dimension r. Let
m > 1 be the number of geometrically irreducible components of V which are defined over F,. Then

V(F,)|, [V™(Fy)| = mg" + Oxyr(q" /). 31)

Moreover, the same is true if we replace V with a closed subvariety W C A’

Proof. The proof is by induction on r, noting that the case r = 0 is elementary, and amounts to considering
the following observations.

1. If P € Z(F,) for a component Z C V not defined over Fy, then P = P° € Z° # Z for nontrivial
o € Gal(F,/F,), hence P € ZNZ°, which has dimension strictly less than r. Thus, the number of
points on components not defined over I, is absorbed into the error term.

2. Each component of V defined over [, has ¢" + Okw(q”l/ 2) by Theorem 1 of [19]. Summing the
number of points on each component is an overcount, but the surplus is due to points on pairwise
intersections of components, which again is absorbed into the error term. (Note that m < k, so even
after multiplying the error by m, the implied constant still depends only on k, ¢, and r.) Thus |V (F,)|
has the claimed magnitude.

3. We have V™ :=V \ V5; since V* has dimension at most » — 1 and degree controlled by k, r, and ¢
(by Bézout’s Theorem), the size of V*(IF,) is included in the error term. Thus, |[V™(F,)| also has the
desired magnitude.

4. Finally, if we let V be the projective closure of W, then W =V \ (VN H), where H is the hyperplane
at infinity. Since V N H has lower dimension and degree k, we are once again removing a set whose
cardinality is subsumed by the error term, so W(F,) (and, similarly, W"(F,)) has the appropriate
cardinality. O

5.2 A Kkey equivalence

The following equivalence observation yields a strengthening of Proposition 2.9 as a corollary, and is also
instrumental in subsequent proofs.
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Lemma 5.3. Let V be a variety (reduced, but not necessarily irreducible) of dimension d > 1 defined
over Z. For a sufficiently large (with respect to V) prime p, the following are equivalent:

(a) V™(F,) # 0.
(b) V™(Z,) #0.

(c) At least one of the geometric components of V is defined over Z,,.

Proof.

((@) == (b)) Suppose V"™(FF ) # 0, and let Q € V*(F,). By Hensel’s lemma, there exists P € V(Z,)
such that P = Q. Since P is nonsingular, so must be P.

((b) = (c)) Let P € V™(Z,,), and let Z be a geometric component of V containing P. As in part 1
of the proof of Lemma 5.2, if Z were not defined over I, then P would lie in the intersection of two
components, hence would be a singular point on V, contradicting our assumption on P.

((c) = (a)) Let Zy, ..., Z,, be the irreducible components of V. By Lemma 5.2, for each 1 <i < m there
exists a bound B; such that for all p > B; with Z; defined over Z,,, Z}*(F ) contains a point that does not
lie on Z; for any j # i. Letting B = max{Bi,..., By}, we have that for p > B, the existence of Z; defined
over Z, implies the existence of Q € Z*(F,) \ U, Z;(F,). Since Q is nonsingular on Z; and is not a
point of intersection with any other component Z;, we have Q € V™(F,,). O

As previously noted, if & € Z[xy,...,x,] is Deligne, then & = 0 defines a reduced variety. Further, a
nonsingular point over Z, on this variety corresponds precisely to a root z,, € Zf, of h satisfying m;, = 1,
hence Lemma 5.3 establishes the following sufficient condition for smooth intersectivity. Here we let Z
denote the ring of algebraic integers.

Corollary 5.4. Suppose ¢ > 2 and h € Z|xy,...,x;| is Deligne and intersective, and let h = g - - - g, be
an irreducible factorization of h in Z[xi,...,x¢). If, for all but finitely many p € P, g; has coefficients in
Ly, for some 1 < i < n, then h is smoothly intersective, hence strongly Deligne.

Note that Proposition 2.9 is an immediate consequence of Corollary 5.4, since the hypotheses of
the proposition imply that one of the factors over Z is defined over Z, hence over Z,, for all p. We now
complete this section by using Lemma 5.3 to prove Proposition 2.8.

Proof of Proposition 2.8. Let ¢ > 2, and suppose h € Z[xj,...,xs] is Deligne and intersective with
deg(h) = k > 2. Let {z,},cp be a choice of p-adic integer roots of h satisfying m, € {1,k} for all
but finitely many p. Let X denote the finite set of primes such that

* my, ¢ {1,k}, or
* plk, or
« Kk is not smooth modulo p, or

* the equivalence in Lemma 5.3 fails.
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We note that the first item is assumed to be finite, the second item is clearly finite, the fourth item is
proven to be finite in Lemma 5.3, and the third item is finite because / is Deligne (see Definition 2.3).

FixdeNandp ¢ X. If pfd orm, =k, then p{ %, so bk = %h’“ is a nonzero scalar multiple of 4,
hence remains smooth modulo p. Therefore, A, is Deligne modulo p.

The remaining case is p | d and m, = 1. In this case, since A, has a factor of ( ik the definition of A

assures that the polynomial h;l identically vanishes modulo p for all i > 1. Since nonzero homogeneous
linear polynomials are automatically smooth, we need only argue that

_ 4

¢
9= 30 Lo

does not identically vanish modulo p. We know that p ¢ ﬁ by definition of A. Further, the fact that A is
Deligne ensures that 7 = 0 defines a reduced variety, so by Lemma 5.3, we can choose z,, to reduce to a
nonsingular point over IF,. Since ry =z, (mod p), we have that %(rd) = %(zl’) # 0 (mod p) for some

1 <i </, as required. Therefore, i, is Deligne modulo p for all p ¢ X, hence £ is strongly Deligne. [

6 Dimension lowering argument

In this section, we generalize the phenomenon exemplified at the beginning of Section 2.3, establishing
Theorems 2.12 and 2.13 by reducing to the case covered in Theorem 2.4. In the integer root setting,
this reduction is very direct, as Theorem 2.12 follows immediately from Theorem 2.4 and the following
proposition.

Proposition 6.1. Suppose ¢ > 2 and h € Z|x\,...,x;] with h(0) = 0. Let r be the minimum rank of
the highest and lowest degree homogeneous parts of h. If r > 2, then there exists a strongly Deligne
polynomial g € Z[xy,...,x,] such that g(Z") C h(Z").

Before delving into the proof of this proposition, we state a version of Bertini’s theorem that will
allow us to eliminate the singularity in the top-degree parts of our polynomials, one dimension at a time.
Throughout this section we let (P")* denote the dual space of P”, that is, the space of hyperplanes in P".
Note that (P")* is isomorphic to P", with the hyperplane {agxo + - - - + a,x, = 0} € (P")* corresponding
to the point (ag : --- : a,) € P". A linear system of hyperplanes in P" is a linear subspace of (P")*.
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Theorem 6.2 (Bertini’s Theorem). Let V be a (quasi-projective) subvariety of P" with irreducible
components Vi, ...,V of equal dimension d > 1, and let L C (P")* be a linear system. After a change
of coordinates if necessary, we may assume that there exists k € {0,...,n} such that £ is the space
of all hyperplanes of the form {ayx; + - + anx, = 0}. Assume that the coordinates xy, ... ,x, do not
simultaneously vanish at any point on'V (i.e., the linear system £ has no base-points in' V), so that

$p vV — Pk
(zo: :zn) > (zxiv - 2n)
defines a morphism. Then there exists a nonempty open subset U C L such that for all hyperplanes

HecU,

(a) V"N H is nonsingular, and

(b) dim(V*NH) <dimV*® (if VS #£0).
Moreover, if dim® . (V) > 2, then U may be chosen so that for all H € U we have

(c) forall 1 <i< m, the intersection V; N\ H is either empty or geometrically irreducible.

Remark. Theorem 6.2 is stated somewhat more generally than we need, so we specify the two situations
for which we will actually need the result:

1. Let V be a closed hypersurface in P" and let £ = (P")*. Then ® is just the inclusion map of
V into P", and the hypotheses of Theorem 6.2 are satisfied. Moreover, since each component V;
is a closed subvariety of P" of positive dimension, each intersection V; N H is nonempty; thus, if
d =dimV =dim®g (V) > 2, then V;NH is irreducible forall 1 <i<mandall H € U.

2. Identify A" with the Zariski open subset {xo # 0} C P". Let V be a closed hypersurface in A"
not containing the origin 0 = (0,...,0), and let £ be the space of all hypersurfaces of the form
{aix; + -+ +ayx, = 0}. Then the conditions of Theorem 6.2 are satisfied once again. A fiber of
@, is precisely the intersection of V with a line in A" passing through 0. Since V is closed in A"
and does not contain 0, V cannot contain a line through 0, hence each such intersection is finite. In
particular, this means the map @ has finite fibers, so dim®; (V) = dimV = d. Moreover, the failure
of a hyperplane H € £ to intersect every V; is a proper Zariski closed condition. Therefore, removing
such hyperplanes from U if necessary, we again have that V; N H is nonempty for all 1 <i <n and
H € U, thus V;NH is irreducible for all 1 <i<mnand H € U as long as d > 2.

Proof of Theorem 6.2. Consider the set X of hyperplanes H € £ satisfying the following conditions:

@) V2N H is nonsingular for all 1 <i <m;
(b') H does not contain any components of V?* nor (V;NV;) for 1 <, j < m with i # j; and

(c’) forall 1 <i< m, the intersection V; N H is either empty or geometrically irreducible (if d > 2).
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We begin by showing that if H € X, then H satisfies properties (a), (b), and (c). Indeed, condition (¢’) is
exactly condition (c), so we need only show that H also satisfies (a) and (b).

For (a), note that a point P € V is nonsingular if and only if P is a nonsingular point on V; for some
I<i<mandP ¢ V; for all j #i. Thus V™ is a disjoint union V" = " | Wi, where each W, is a subset of
V. Then (a) follows from (a') since V* NH = | /| (W;N H) and each W;NH C V™ N H is nonsingular.
Finally, (b’) implies that H intersects each component of V* properly (assuming V* # 0), so (b) follows.

It remains to show that X contains a Zariski open subset of £. By the standard form of Bertini’s Theorem
(see Corollaire 6.11 of [17], or Corollary 10.9 and Remark 10.9.1 of [15]), since £ has no base-points in
V, the set of hyperplanes H € £ satisfying (a’) and (c’) contains a nonempty open subset of £. Moreover,
H containing any of a finite collection of nonempty subvarieties of P" is a proper closed condition on H,
so condition (b’) is a nonempty open condition; therefore, X contains a nonempty open subset of £. [

Armed with Theorem 6.2, the proof of Proposition 6.1 is pleasingly straightforward.

Proof of Proposition 6.1. Suppose that ¢ > 2 and h € Z|xy,...,x;] with 2(0) = 0. Let k and j denote
the highest and lowest degrees, respectively, of the terms appearing in A, and let r denote the minimum
rank of #* and h/. Let Vk, ? C P! denote the varieties defined by #* = 0 and i/ = 0, respectively. By
Theorem 6 2 (see . also case 1 of the remark that follows) applied to the linear system £ = (P~ !)* and the
varieties V; and Vj, respectively, the set of hyperplanes H in P/~ ! satisfying

e HN ans and HN V;‘S are nonsingular, and
« dim(H NV}) < dimV3, if V® #0, and dim(H N V) < dim V5, if V3 # 0,

contains a nonempty open subset U C (P*~1)*. Thus, we can choose H € U defined by the vanishing of
I(x1,...,x¢)) =aix;+---+ar_1xp—1 —x¢ with ay,...,a;_ € Z. Here, we’re using the fact that the set of
integer points is Zariski dense in the affine space A‘~! c P~ = (P~1)*,

Let p(xy,...,xp—1) :=ayx; +---+a,—1x,—1, and set

&1 (xl,. .. ,ngl) = h(xl, ce ,XZfl,[.L(xl,. .. ,ngl)).
Note that, by construction, g (Zéil) - h(ZZ), €1(0) = 0, and the highest and lowest degrees of the
nonzero terms of g are still k and j, respectively.

Now, the subvariety Wi (resp., Wj) of P“~2 defined by g’f =0 (resp., g{ =0) is isomorphic to HN Vi (resp.,
HN \7j). In particular, the minimum rank of g’f and g{ can only drop below r if both singular loci were

originally empty, which would imply r = ¢. Thus, repeating this process (¢ — r) times yields a sequence

of polynomials (g;(x1,...,x/— ))f ~y» With go := h, satisfying

e gi(Z) Cgi(ZH ) forall 1 <i<l—r,
* gi(0)=0forall0<i</l—r,
* the highest and lowest degrees of the nonzero terms of each g; are k and J, respectively, and

* the rank of each g{-“ (resp., glj ) is at least r.
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Finally, let g := g/, € Z[xi,...,x,], so the rank for each of g* and g/ is r. In other words, g* and g/ are
smooth, and thus by Proposition 2.5, g is strongly Deligne. O

Remark. The conclusion of Proposition 6.1 technically holds for r = 1 as well, since nonconstant
univariate polynomials are necessarily Deligne; however, this case is not useful for our purposes.

6.1 Proof of Theorem 2.13

We now proceed with the more elaborate of our two dimension-lowering arguments, in which we
cannot exploit the existence of an integer root. Throughout this section, we fix £ > 2 and a polynomial
h € Z[xy,...,x| satisfying all hypotheses of Theorem 2.13, and we recall that k = deg(h) and r denotes
the rank of #*. Note that the hypotheses of Theorem 2.13 imply that r > 2. We assume without loss of
generality that /(0) # 0, which is permissible because 4(Z’) is invariant under input translation. We
let V C A’ and V C P‘~! denote the varieties defined by h = 0 and /* = 0, respectively. The following
crucial lemma says that we can eliminate the singularity in the top-degree part of 4, one dimension at a
time, while maintaining the existence of nonsingular I ,-points.

Lemma 6.3. Suppose ¢ > 3. Then there exists a homogeneous linear polynomial | € Z|x;,...,x;|, monic
in xg, for which the following holds: Letting L and L denote the hyperplanes in P*~" and A, respectively,
defined by [ =0, we have

(i) dim(VNL)* < dimV?, if VS £ 0; and

(ii) For sufficiently large p, V™*(F ) # 0 implies (V NL)"(F,) # 0.

Proof. Let £ and £ denote the linear systems of hyperplanes in P~ and hyperplanes in A’ passing
through 0, respectively. We identify each of £ and £ with P‘~!, with the pointa = (a; : --- : ay) € P!
corresponding to the hyperplanes {ajx; +--- +apx, = 0} in P“~! and A, respectively.

The hypotheses of Theorem 6.2 are satisfied by V and £ (resp., V and £), as explained in case 1
(resp., case 2) of the remark immediately following the theorem. Thus, there is a nonempty open set
U C P! such that for all a = (ay :---:ay) € U, the hyperplanes Za c P! and L, C A? defined
by Il := ayx1 + - -- + apxy = 0 satisty the conclusion of Theorem 6.2 (intersected with V c P! and
V C A, respectively). Similar to the proof of Proposition 6.1, we may choose a € U of the form
a=(ay:---:ap_1:1)withay,...,a;_1 € Z. Setl := I, for such a choice of a € U, hence also L=1,
and L = L,. By construction, we immediately have that [ € Z[x;,...,x/], [ is monic in x;, and property (i)
holds, so it remains only to show that (ii) holds.

Let Vi,...,V,, be the geometrically irreducible components of V. Since dimV = £ — 1 > 2, our choice of
a guarantees that the geometrically irreducible components of VN L are V; L with 1 <i < m. (We are
again using Theorem 6.2 and case 2 of the remark that follows.) By Lemma 5.3, if p is sufficiently large,
then V“S(FP) # 0 implies that V; is defined over Z,, for some 1 <i < m. Since L is defined over Z, hence
over Zp, the intersection V; N L is also defined over Z,. Appealing to Lemma 5.3 once more implies that
(VNL)™(F,) is nonempty. O
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The hyperplane produced by Lemma 6.3 quickly yields a suitable polynomial with one fewer variable.
Corollary 6.4. Suppose { > 3. Then there exists g’ € Z|xy,...,xo_1] with deg(g') = k such that
(i) £'(0) #0;
(i) g(Z'~") C h(Z");
(iii) dim(W')* < dimV*, if V* & 0; and
(iv) for sufficiently large p, V"S(F),) # 0 implies (W')™(F,) # 0;

where W' C P2 and W' C A1 are the varieties defined by (g')* = 0 and g’ = 0, respectively.

Proof. Let L =L, be as in Lemma 6.3, and write [ = [, = ajx; +--- +ay_1xs_1 + x¢. To ease notation,
we also set L = Uy := —(ajx; + - +ar—1x,—1). Now, define

g/(xla s >xf—l) = h(X1,- .- ,XK_],‘LL(Xl,. - X0—1 ))
Clearly g’(Z*~") C h(Z") and, since u is homogeneous, g’(0) = /(0) # 0. Finally, since V N L= W’ and
VNL=W’, properties (iii) and (iv) follow immediately from Lemma 6.3. O
Recall our assumption that the rank satisfies » > 2. Repeated application of Corollary 6.4 yields the
following:

Corollary 6.5. There exists g € Zlxy,...,x,] with deg(g) = k such that
(i) &(Z") C h(Z");
(ii) g is Deligne; and

(iii) for sufficiently large p, V™ (F,) # 0 implies W™ (FF,,) # 0;

where W C A" is the variety defined by g = 0.

Proof. When ¢ > 3, this follows immediately by applying Corollary 6.4 recursively (¢ — r) times. The
fact that » > 2 ensures that at each step we are applying Corollary 6.4 to a polynomial in at least 3
variables.

When ¢ = 2, the statement is trivial, since r = 2 implies that % is already Deligne, so we can take
g = h‘ D

Remark. Using the construction from the proof of Corollary 6.4, the polynomial g of Corollary 6.5 may
be written in the form

g(xla"'axr) :]’l()C[,.--7x,-,[lr+1(X1,...,xr),...,l.lg(XI,...,xr)),

where each u; is a homogeneous linear polynomial. We will use this precise form in our proof of
Theorem 2.13, which we are now ready to begin.
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Proof of Theorem 2.13. Let g € Z[xy,...,x,| be as in Corollary 6.5, and let W C A" be the variety defined
by g = 0. Throughout this proof we use the notation ¥ = (x1,...,x,) and x = (x1,...,x¢).

As mentioned in the remark above, g may be given by g(X) = h(MXx), where

M(x1y.ooyxr) = (X1 e e oy Xy Mg 1 (X0 e ooy X0 ) ey (X1 oo ey X))
for linear forms f,41,..., ly. Note that g and the linear forms have been constructed once and for all
from £, so any quantities depending on them implicitly depend only on A.

Let X = X (h) be the set of primes p for which

*plk
« g is not smooth modulo p; or

« W(F,) =0 and m, # k for all z, € V(Z),).

The first item clearly defines a finite set, the second item defines a finite set because g is Deligne (see
Definition 2.3). If » > 3, then the third item defines a finite set by Lemma 5.3 and the fact that Deligne
polynomials in r > 3 variables are geometrically irreducible, as seen in the proof of Corollary 2.10. If
r =2, then item (iii) of Corollary 6.5, Lemma 5.3, and the hypotheses of Theorem 2.13 ensure that the
third item defines a finite set. Thus, X is finite.

In order to construct auxiliary polynomials &, for d € N, we first choose Z,-roots of h as follows: If
p € X, then choose a point z,, € V(Z),) arbitrarily; such points exist because h is intersective. For p ¢ X
with W™(F,) # 0, choose Z, € W(Z,) to be a Hensel lift of a nonsingular point on W (F,), then set
2p =MZ, € V(Z,). Finally, for all remaining p ¢ X, fix z, € V(Z,,) with m, = k.

For each prime p, by definition of multiplicity, we have a decomposition of the form

h(x+zp)= Y bixt (32)

my<|i|<k

for b; € Z,. However, the substitution x = MX could cause some homogeneous parts to identically vanish,
so we define 71, to be the multiplicity of 0 as a root of #/(MX + z,), so in particular

h(Mx+zp)= Y biMx)'= Y a¥, (33)

my<Ji|<k iy <Ji|<k

where a; # 0 for some i with |i| = 171,. We quickly note that i, = m,, forall p ¢ X. If p ¢ X with m, =k,
the degree-k part of h(MX + z),) is the same as the degree-k part of g. If p ¢ X and z, = MZ, as above,
then h(MXx + z,) is precisely g(X +Z,), and in particular the linear part does not vanish modulo p.

To account for this possible increase in multiplicity for primes p € X, we define a completely multiplicative
function A (d) by setting A (p) = p™ for all primes p. We define {r;}sen from {z,} ,cp as usual from
the Chinese remainder theorem, then define the slightly modified auxiliary polynomials {/;}4cn by

ha(x) = h(rg+dx)/2.(d).
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We note that /2, can potentially have non-integer coefficients, with denominators divisible by primes
in X. However, the analog of Proposition 3.2, and the deduction of Lemma 4.1 from Lemma 4.2 and
Proposition 3.2, still hold because d | A(d) and A is completely multiplicative.

We now let d’ = [],4 plie=mpt)ordy(d) < gk and we define
2a(%) = ha(sq+MZx) = h(ry +dMZ) /L (d),

where s satisfies ry = ry + ds,;. We will establish the following properties of g;:

() 8a(Z") C ha(Z"),
(i1) gg has integer coefficients,
(iii) gy is Deligne modulo p for all p ¢ X,
(iv) The coefficients of g, are of size Oh(dkz),

(v) cont(gy) < 1.

Unlike Proposition 6.1, these efforts cannot be applied “externally” to immediately yield Theorem 2.13
because the family {g,}cn is not necessarily the set of auxiliary polynomials of a single intersective
polynomial. However, the enumerated properties of this family make it perfectly suited for us to apply
our efforts “internally”, using the estimates enumerated in Theorem 3.9, as follows:

(1) Replace all occurrences of /i, in the proof of Theorem 2.4 with hy. The fact that Ay potentially
has non-integer coefficients is not a problem, as the analog of Proposition 3.2 still holds, and as
explained in the next step.

(2) When proving Lemma 4.2 (the only piece of the proof of Theorem 2.4 that requires integer
coefficients or a nonsingularity condition), use that (A —A) N gy (Z") C (A —A) Nhy(Z") C {0},
then do the remainder of the proof with £, replaced by g;. For this purpose, properties (ii)-(v) above
assure that g, functions as if it were the auxiliary polynomial of a strongly Deligne polynomial in r
variables. In particular, the conclusion of Lemma 4.2 holds with 6(k, ¢, d) replaced by 6(k,r,§).

(3) The remainder of the argument is identical, and Theorem 2.13 follows.

Our task is now reduced to verifying properties (i)-(v). Properties (i) and (iv) are immediate from the
definition of g; and /i;. We next simultaneously establish (ii) and the property

ord,(cont(gs)) < 1 forall p € P. (34)

When we later establish (iii), it immediately combines with (34) to yield (v), because p { cont(gy) if g4 is
Deligne modulo p. We fix p € P and set j = ord,(d). By (32), we have
1 1 .
——h(ry +dMx) = = Y, bi(dMx+ry—z,)'. (35)
A(d) A(d) i, i<k

8a(X) = ha(sq + M%) =
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(mp—mp+1)

Since p/ | d and p J divides all coordinates of ry — Zp, all terms in the summation apart from

Y  bi(aMz) (36)

my <|i|<mp—1

have coefficients divisible by p/», and the polynomial (36) identically vanishes by definition of 1.

Since ord,(A(d)) = ji,, all coefficients of g; have nonnegative p-adic valuation. Since p € P was
arbitrary, it follows that g; has integer coefficients.

Further, we see in (35) that all degree-7i1,, terms have a factor of p/ apart from those arising from

|i|=rm,

4 ™
i ,E 1w

i|=m,

where a; # 0 for some i with |i| = 7i,,.

Since p 1 (d™ /.(d)), we have that
ord,(cont(gy)) <v:= ‘.r‘nip ord,(a;),
i|=mm,

provided j > v. Alternatively, if j < v, then ord,(cont(g,)) is at most kv plus the minimum p-adic
valuation of the degree-k coefficients of g, which establishes (34).

Our task is now reduced to verifying property (iii), for which we fix p ¢ X, and proceed similarly to the
proof of Proposition 2.8. Since g’; is precisely f:;) g*, we know that if p {d or m,, = k, then g’;l modulo p

is a nonzero multiple of g*, hence remains smooth. Therefore, g, is Deligne modulo p.

The remaining case is when p | d and z, = MZ,,, where Z, € W(Z,) is a Hensel lift of a nonsingular point
of W(F,), so in particular the linear part of g(X+Z,) = h(MX + z,,) does not identically vanish modulo p.

Using (32), letting j = ord,(d), we note that ord,(A(d)) = j and p/ divides all coordinates of ry — z,,,
and we have

2il®) = (] 5, L ez = )+

d
(d) |

Y bi(Mx)'+C
il=1

>

for some f € Z,[x1,...,x,] and constant C. In particular, modulo p, the highest-degree part of g4 is a
nonzero multiple of the nonvanishing linear part of g(X¥ +Z,), hence g, is Deligne modulo p. All five
properties of g; are now verified and the proof of Theorem 2.13 is complete. O

7 Exponential sum estimates

In this final section, we establish the exponential sum estimates claimed in Theorem 3.9, which we then
use to deduce (27) and (28). This effort consists primarily of careful multivariate adaptations of the tools
used to prove Theorem 2.7 in [28], but we begin with another foray into varieties over finite fields.
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7.1 Control over gradient vanishing: Part II

Since we are sieving away inputs at which the gradient of our polynomial vanishes, but then appealing to
Theorem 1.4, which is a complete exponential sum estimate, it is important for us to have an upper bound
on the number of points our sieve might be throwing away. With this in mind, we make the following
definition.

Definition 7.1. For a field F and g € F[xi,...,x;| we define the gradient locus of g to be the variety

Go={xc A':Vg(x) =0} CA".

The following proposition establishes firm control over the gradient locus of a Deligne polynomial.

Proposition 7.2. Suppose F is a field, { € N, and g € F|x,...,x¢] with deg(g) = k > 1. If g is Deligne,
then Gy = 0 or dim G, = 0.

Proof. First, assume g is not homogeneous. Let G(xo,xp,...,x;) be the homogenization of g. Thus, we
have
g(xr,...,x)) =G(l,xy,...,x;) and gk(xl,...,xg) =G(0,x1,...,x0).

The variety
W:={G=0}N{xo=0} P’

is isomorphic to {gF = 0}, hence is nonsingular since g is Deligne. Thus, the Jacobian matrix

96 G  IJG
oxy Jxi oxy
1 0 --- 0

has rank 2 at every point on W. In other words, the system

oG G

G: —_ = e = —
0 o0x1 oxy

has no solutions in P‘. The equation G = 0 is actually superfluous here; by Euler’s theorem on homoge-
neous functions, we have

kG(xp,x1,...,X¢) = Xo=—

so the vanishing of xy and the x;- through x,-partials would guarantee the vanishing of G. Here we use
the fact that the characteristic of ' does not divide k, as included in the definition of the Deligne property.
It follows that the system

G G

xO = — == ..
o0x1 o0xy
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has no solutions in P/, so the subvariety of P! defined by

G dG

- === =0 37

o0x1 oxy 37
is contained in {x € P’ | x # 0} =2 A” and has dimension 0. But, for & = (a,...,q) € A’, we have

dg G

Fw=5l0a

for all 1 <i < /. Thus, G, is (isomorphic to) the zero-dimensional subvariety of P! given by (37),
concluding the proof in the case that g is not homogeneous.

Finally, suppose g is homogeneous. Again using Euler’s theorem on homogeneous functions, we

write 5 5
8 8
kg(x1,....,xp) =x1=—+ -+ xp=——.
glxi,. .., x0) ™
Thus, if all partials of g vanish at x, then g(x) = 0 as well. By hypothesis, g = g* is smooth, so there
are no common zeroes of g, z%i’ ety g—f[ in P‘, so in A’ the only possible common zero is the origin.
Therefore, G, contains at most one point. O

Proposition 7.2 combines with Bézout’s Theorem (Lemma 5.1) to yield the following estimate on the
size of the gradient vanishing locus for a Deligne polynomial over a finite field, which yields Lemma 3.3
as a special case.

Corollary 7.3. If { > 1 and g € Fy[x1,...,x¢] is a Deligne polynomial of degree k > 1, then |Gg| is
bounded by a constant depending only k and /.

7.2 Major arc estimates

In this section we establish item (i) of Theorem 3.9. Derivations of asymptotic formulas of this type
typically rely on partial summation, so we begin with a multivariate version thereof, proven by induction
from the usual formula.

Lemma 7.4 (Multivariable Partial Summation). Suppose £ € N and a : N — C. Suppose further that
v R! — Cis Cl. For any X > 0, we have

Y, am)y(n)=AX,... . X)y(X,....X)

ne(l,X])¢
4 ; aiw
ISV S A g ) -,
where
Axy,...,x7) = Z a(n)
ne(lx;]x-+x[1,x]
and x = (X,...,Xj,...,Xxj,...,X), with xj,,...,x;j, plugged into coordinate positions ji,..., j; and all

other coordinates evaluated at X.
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Proof. We induct on £. The base case ¢ = 1 is the usual partial summation formula

X
Y almw(n) =400 - [ AWV () dx

1<n<X

Fix ¢ > 2 and assume the formula holds for ¢ — 1. Defining some notation before proceeding, let

Alxy, ... x_1,mp) = Z a(n,ny),
nelxy]x-x[1x_]
let .
. . o'y
Ttdiond) = [ Ao s 2oy,
(J1s--esdisne) ol ( nZ)ale---B j,-( ng) dxj, - -dx;
and let _
'y
1(j1,...,ji) = A(x) =——=— (%) dxj, ---dx;.,
(]17 7]) 0.X] (*)aleaxj (*) Xji Xji

where A and « are as defined in the statement of the lemma. By our inductive hypothesis, we have

a(n)W(n) = Z Z a(”)”f)‘l/(nané)

nel1,x]¢ 1<ni<X ne[1,Xx]¢!
/—1
) (A(X,...,X,ng)l[/(X,...,X,ng)—|—Z(—l)’ Y I(jl,...,j,-,ng)>.
1<n, <X i=1 1<ji<--<ji<t—1

We now apply the standard single-variable formula to the first term and each individual integral, yielding

- X d
A mW(X, ) = A XY X) - [ A ) Y (X, vy, G8)
1<m<X 0 Xy
and
Z (_1>ii(jl7'-'7ji7nf)
1<n,<X

. alq/ ahLl
=(-1) A,Xi X) /A T d dx; ---dx;
=D [0X}’< & )8xj]~--<9 Xxj, * *XZ)c%cJ] axj,.axg(* %) xZ) i
( )11(]17 7]!) ( 1)i+11(j17"°7.]i7£)'
Summing this final expression over 1 <i < ¢— 1 and over all choices of 1 < j; < --- < j; < £—1 accounts

for all required terms with 1 <i</fand 1 < j; < --- < j; </, with the single exception of i = 1 and
Jj1 = £, which is precisely the integral present in (38), and the induction is complete. O

We use Lemma 7.4 and the same calculation as in Proposition 3.4 to establish our asymptotic formula
for sieved multivariate exponential sums near rationals with small denominator.
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Lemma 7.5. Suppose (,k € N, g(x) = Z|,-|§ka,-xi € Zlx1,...,xi), and let J = Yy <ilail- If X,Y >0,
a,q€N, and a=a/q+ P, then

mig(n)er _ —t _J(p) 2mig(s)a/q / 27ig(x)B
Z e =gq H (1 PPN Z e [OXVe dx
se{0 ’

ne[1.X]NW(Y) p<Y g—1}nwa(Y)
pYPig

50y

+0ue (aE(L+Ix41B)')

where E is as in Proposition 3.4.

Proof. We begin by noting that for any a,qg € Nand 0 < xy,...,x, <X, letting
B=[1,x1] x - x[1,x0],
we have

T(x1,...,x0) = Z e2mig(malq
neBOW ()

= Y O {(ne BNW(Y):n=s(mod g)}|.

For s € W4(Y') we have by the same calculation as Proposition 3.4 that

A I _ilp) -1
{neBNW(Y):n=s (modq)}| = 7 pll<l py(p)é>+E/q ,

pPlq
where E is as in Proposition 3.4, whereas for s ¢ W4(Y) the set is empty.
Therefore,

X1 Xy i(p) 2rig(s)a/
T(x1,...,x0) = 7 I1 <1_p}’(17)5> Z e M8 1 O (gE). (39)
p<Y §€{0,....g—1}NW4(Y)

PP

Letting y(n) = ¢™8™B  we now decompose our sum as

Z ezmg(n)a _ Z (1W(Y) (n)ezmg(n)a/q> ‘I/(n)

ne[LX][‘\nW(Y) nel1,x)¢
and apply Lemma 7.4, yielding
Yy o AmEme—rx,. . X)y(X,... X)

ne[1L.X]\NW(Y)

4 o
, v o,
FLEDF TG )

m=1 1§j1<"'<j/11§£
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where x is as in Lemma 7.4. Substituting (39) gives the main term

— jp ig(s)a
FIL(-2) 5 e
se{0

p<Y e = 1WA (Y)
pV(PHq
14 om
U —n l,l/
+ Y (=) X! / Xj Xy ——t (%) dx; ---dx~m>.
mgl 1§]1<Z<]m§f [O7X]m / ! ax.jl .”ax.jm . !

By iteratively applying integration by parts, this equals

qié H <1_ J)E(l;))[) Z eZﬂ:ig(s)a/q l[/(X)dx,
p s€{0,..

l
p(S)Y Lq—1}nwa(Yy) [0.X]
p""P1q

as desired. It remains to bound the error term that results from our substitution of (39). This error term is
the sum of a first term of order gE and 2 — 1 terms of the form

amw
E -~ . DY . .
I </[0,X}'" dxj, ---dxj, () dx;jy dx]m)

Iteratively applying the product rule, we see that ax,a.# is the sum of less than m! terms bounded in
J1

Jm

absolute value by (27k"J|B)/X /%™ for some 1 < j < m. In particular, each integral is bounded by

01 max (2mkJX* || < 01(1 427k X" |B])",
S)s

and the error bound follows. O]

7.3 Local cancellation

In this section, we apply Theorem 1.4 to establish the necessary cancellation in our sieved local exponential
sums, yielding item (ii) in Theorem 3.9. We begin by invoking a multivariate version of Hensel’s Lemma
that allows us to reduce to the case of prime moduli. This statement in particular follows from Theorem 1.1
of [5].

Lemma 7.6 (Multivariable Hensel’s Lemma). Suppose £ €N, g € Z[xy,...,x/], p is prime, n € Z, and

Y, v € Nwithv>2y—1. If
2y—1

g(n) =0mod p
and Vg(n) # 0 mod p?, then there exists m € Z.' with g(m) = 0 mod p".

We now prove the following multivariate generalization of Lemma 4.3 in [28].
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Lemma 7.7. Suppose { € N, g € Z[xy,...,x¢] with deg(g) =k >2, and Y > 0. If ¢ € N has prime
factorization g = p' ---pir with p; < -+ < p; <Y < pry1 < -+ < p, and (a,q) = 1, then

Z e2mig(s)a/q

t r
<Al (k=1'p*+itp)) T1 G+ 1P,
s€{0,....,g—1}NW4(Y) i

i=1 i=t+1

where Cy = C(k) and Cy depends only on the moduli at which Vg identically vanishes and the primes
p <Y dividing q modulo which g is not Deligne. Further, the sum is 0 if v; > 2y(p;) for some 1 <i<t.

Proof. Factor ¢ = p\'--- p)r as in the lemma. By the Chinese Remainder Theorem, we have

.
o2ig(s)alq — H Z 2mig(S)an/py

5€{0,....g— 1} nWa(y) m=1 g0, .. prm—1}nwri' (v)
where aj,...,a, are the unique residues satisfying a/q = a1 /p}' +---+a,/p)r mod 1.

Suppose p” = pi» with y(p) > 1 and v < 2y(p). By definition of y, Vg identically vanishes modulo
pYP)=1 Since p2rP)~1 < p3(P)=1) we can bound p" by the cube of a modulus at which Vg identically
vanishes, trivially bound the corresponding sum, and absorb it into the constant C; in the conclusion of
the lemma.

Next suppose p¥ = p,» with p <Y and v = y(p) = 1. Recalling that j(p) is the number of zeros of Vg
modulo p and applying Theorem 1.4, we have for p 1 b that

FTOb/P) < (k—1) p% + j(p),
5€{0,...p—1}NWr(Y)

provided g is Deligne modulo p, and the remaining such primes are absorbed into Cj.

Now suppose that p” = p» with p <Y and v > 2¥(p), and let w = 2y(p) — 1. If s € {0,...,p" — 1}’
and § is the reduced residue class of s modulo p", then we have that g(s) = p"t + g(§) (mod p”) for
some 0 <t < p"~* — 1. Conversely, if § € {0,..., p¥ — 1} with Vg(§) # 0 (mod p?P)), then for every
0 <t < p"™—1, Lemma 7.6 applied to the polynomial g(x) — (p"t + g(5)) yields s € {0,...,p" —1}*
with g(s) = p"t + g(5) (mod p").

In other words, the map F on Z/p"~"Z defined by g(p"t+5) = p"F(t) + g(5) (mod p") is a bijection.
In particular, if p 1 b, then

v=w__q
P2Tig($)b/p" _ Z Z o2mig(p" t+8)b/p*

S0, p" 1YW (1) Se{0,.p-1) =0
Vg(5)Z0 (mod p?(7))

v-w_ 1|

= Z Z 2P 1+8(3))b/p"
5e{o0,...,pw—1}¢  1=0
Vg(8)20 (mod p77))

=0,
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where the last equality is the fact that the sum in ¢ runs over the full collection of p*~"-th roots of unity.
Finally, suppose p” = p’» with p > Y. We note that W”' (Y) = N and we only exploit cancellation in a
single variable. To this end, for each § = (s2,...,s¢) € {0,...,p" — 1}, we define g by g(x) = g(x,5).
Utilizing the standard single-variable complete sum estimate (see [4] for example), we have for bt p that

Pl
e2mis($b/P" | < o2mig(s)b/p"
s€{0,...,p*—1}¢ 5€{0,...,p*—1}-1] s=0
< pTV Y ged(cont(g), p')' k.
5€{0,...,pr—1}¢-1
To analyze the remaining sum, we note that at the expense of the term gcd(cont(g), p")"/* in our final

estimate, we can cancel factors of p from the coefficients of g and assume that p { cont(g). In this case,
suppose a; = a;, ... ;, With 0 < |i| <k is a coefficient of g, corresponding to x’f - -x?, that is not divisible
by p. Further, assume that i; > 0, as if i; = 0 then we could just relabel our coordinates. In this case,
for each 0 < w < v, ged(cont(g), p*) = p* only if p* | 55 -- -s?, so in particular p/"/¥1 | 5,...s,, which
occurs for fewer than (w+ 1)~ 1p*(“~1)=w/k choices of §. In particular,

Y gcd(cont(g),p")'/* < ged(cont(g), p*)* Y (w 1) pr Tk pwk
5€{0,...,pr—1}4-1 w=0

< (v+1)" ged(cont(g), p*)/*p* =1,

The ged(cont(g), p*)!/* term can be absorbed into Cy, and the remaining bound on the exponential sum

modulo p” is a constant depending on k times p"! =18 (v 4+ 1) p!0=1) = (v 4 1)fp*(=1/8) a5 required.

Having accounted for all prime divisors of ¢, the proof is complete. O

Lemma 7.7 combines with Lemma 3.3 as well as the estimates [],, (1 + %) < (q/¢(g))€ and

I1 plg (1 + ﬁ) < 1 toyield item (ii) of Theorem 3.9, restated below.
Corollary 7.8. If( > 2, g € Z|x1,...,x¢] with deg(g) =k > 2, and (a,q) = 1, then

_1)o(q) 02 i, <
SCl{(k 1) 9D®(q,0)q"* ifq<Y

e2mig(s)a/q ’
' Wr(g)g "k forallg

s€{0,....g—1}NW4(Y)
where C, = Cy(k), ®(q,2) = (q/9(q))2, ®(q,¢) <iy 1 for £ >3, and Cy depends only on the moduli at
which Vg identically vanishes and the primes p <Y dividing g modulo which g is not Deligne.

7.4 Oscillatory integral estimate

In order to establish (28) in the case that « is close, but not too close, to a rational with very small
denominator, we need to control the oscillatory integral in the asymptotic formula given by Lemma 7.5.
To achieve this, we invoke the following standard estimate, given for example in Lemma 2.8 of [38].
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Lemma 7.9 (Van der Corput’s Lemma). If X >0, B #0, k € N, and g € Z[x] with deg(g) = k, then

'/Xe27rig(x)ﬁdx < |B|" V.
0

Utilizing Lemma 7.9 to exploit cancellation in a single variable, then trivially bounding the integral
in the remaining variables, we have the following bound for the integral in the conclusion of Lemma 7.5.

Corollary 7.10. IfX >0, B #0, k,l €N, and g € Zlx,...,x¢] with deg(g) = k, then

/[O &P < min{X X B

7.5 Minor arc estimates

In an effort to establish item (iii) of Theorem 3.9, we begin by invoking a variation of the most traditional
minor arc estimate, Weyl’s Inequality.

Lemma 7.11 (Lemma 3, [7]). Suppose k €N, g(x) = ag+ayx+---+ax* withag ... ,a; € R and a; € N.
IfX >0, a,q € Nwith (a,q) =1, and |0t —a/q| < g2, then

27/(
X (aplog® (agX) (g ' +x '+ —L .
<k <ak og" (arq )(q XX

X .
Z eng(n)Ot
n=1

We now carefully adapt Lemma 7.11 to our particular sieve, and to the multivariate setting, though as
in Corollary 7.10, we ultimately only exploit cancellation in a single variable.

Lemma 7.12. Suppose k,{ € N and g(x) = ¥ i<k aix' € Zlx, . ..,x;) with deg(g) = k. Suppose further
that X,Y,Z > 2,YZ < X, and a,q € N with (a,q) = 1, and let J =} ;< |ai|- If [« —a/q| < q 2, then

—k
o wz AN7/20%
<o cont(g)®(log¥ ) x* <e Rt 4 <Jlogk2 (JgX) <ql +-+ q)> ) .

Z ezmg(n)(x

k
ne[L X)W (Y) X X

Proof. Suppose k,£ € N and g(x) = ¥jjj<x aix’ € Z[xy,...,x;] with deg(g) = k. We begin by conducting
an invertible (over Z) change of variables to reduce to the case where the x’f coefficient ap . o) 18
nonzero. To this end, consider the polynomial § € Z[x,,...,x/] defined by §(x2,...,x/) = g*(1,x2,...,%0),
where gf denotes the top degree homogeneous part of g, noting that g is not identically zero. Let
(c2,...,c0) €{0,1,...,k}~ be such that g(cs,...,c;) #0.

As an aside, the existence of such a “small integer non-root” of a general nonzero multivariate polynomial
F € Z[xy,...,xj] can be shown via induction, which we sketch here. The base case j = 1 corresponds to
nonzero univariate polynomials, which have at most k roots, hence at least one non-root in {0, 1,...,k}.
Then, for higher degrees, fix one variable that appears at least once in F (without loss of generality,
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assume x| appears at least once), let d be the degree of F as a polynomial in x; only, and let (x5, .., x i)
be the polynomial of degree at most k — d that forms the xi’ coefficient. By the inductive hypothesis,
we can choose (my,...,m;) € {0,...,k}/~! such that F(my,...,m;) # 0. Then, F(x;,ma,...,m;) is a

nonzero degree-d polyomial in x;, which has a non-root in {0, ...,k}, completing the 1nduct10n.

Back to the proof at hand, we see that the change of variables x; = y; and x; = y; +cjy; for2 < j </
yields a yX coefficient of g(c2,...,c/) # 0. Let M denote the ¢ x ¢ matrix satisfying Mx =y corresponding
to the described change of variables, and let f(y1,...,y¢) = Yjij<k biy' be the polynomial satisfying
f(y) = g(M~'y). By taking the complex conjugate of the relevant exponential sum if necessary, we can
assume that b = b(k 0,..,0) > 0. Further, the effect of the transformation on the size of this coefficient is
well-controlled, in that b <t J.

Let T = M([1,X]"), so
Z eanig(n)oc — Z eZm‘f(n)oc’
ne[1,X]Ow () neTAW(Y)
where W(Y) is defined on each side in terms of the corresponding polynomial.

Let T denote the projection of T onto the last £ — 1 coordinates, noting that |7'| < (2kX)*~! due to the
details of our change of variables. For each fixed &t = (ny,...,n;) € N“~!, weletI = {n € N: (n,) € T},
which is an interval of integers of length at most X, we let W(Y) = {n € N: (n,ii) € W(Y)}, and we let
f(x) = f(x,i). We see trivially that

Z eZﬂ:if(n)a S (ka)[,I 1 2( Z eZm‘f(n)a . (40)

neTAW(Y) RET | einw (y)
We now proceed with 72 = (ny,...,ny) fixed, and we define L and m so that I = [m, L+ m)], so in particular
L < X. All subsequent conclusions will be independent of 7. Let P be the set of products p’ll(p ... pz(p ")

for primes p; < --- < py <Y, let P; denote the set of elements of P that are at most Z, and let P, denote
the set of elements of P that are greater than Z.

By inclusion-exclusion, we have

Z eZm’f(n)a — Z(_l)(l)(D) Z esz(n)a ’ (41)

ol DeP 1
nelnW(Y) € Vf(nj,);% (mod D)

where @(D) is the number of distinct prime factors of D. For D € P;, we use the fact that the set of n for

which V£(n,it) = 0 (mod D) is contained in the set of n for which f'(n) = 0 (mod D). Noting that f’
can have at most k roots modulo any prime at which it does not identically vanish, we have

L/D

Z (_l)a)(D) Z eZﬂ:if(n)oc <<k COl’lt Z kco max Z 27i f(Dn+m-+c)a

Dep, nel Dep, 0<C<D

)
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where the cont(g)? term accounts for the primes p for which y(p) > 1 by Proposition 3.6. Further, we
see from Lemma 7.11 and the estimate 1 < b < ; J that

L/D
Z 27if(Dn+m-c)o

Z k®P) max

DepP, 0<c<D

L D gD
<k Y, k“’(D)B <blogk2(qu) <q + = +(1]9Lk>>

DeP,

7 qzk k(D)
X ( J10g" (Jgx =
< ( og" (/g )(q +X+Xk>> ngl b

qZ*

Z
X(logY)* [ J10gX (Jgx kKl
L (og)<0g(Q)q T w :

where the last inequality uses that if C > 0, then

- _H<1+ ><H<1+ ><<logY) (42)

DeP p<y

This combines with (40) to close the book on the contributions to (41) from P;. It remains to account
for the contribution to (41) from P>. Because P> has so many elements, it is crucial for us to exploit the
cancellation provided by the term (—1)®(").

To this end, for a fixedn € I, let P" = {D € P: Vf(n,it) =0 (mod D)}, and let P§ = P" N P,. The only
issue is the possibility that way more elements of P? have an even number of prime factors than odd, or
vice versa, which we show below does not happen.

Let ¢ be the largest prime power of the form p?(?) with p <Y, and let ¢, be the largest such prime power
lying in P", noting that ¢, < g < cont(g)Y by Proposition 3.6. Let A denote the set of elements of P"
that have an even number of prime factors, let B denote the set of elements of P” that have odd number of
prime factors, and let A’ and B’, respectively, denote the same for elements of Py'. The quantity we need
control of is ||A’| — |B'||.

Let A; be the elements of A that are greater than Z and not divisible by g, and let A, be the elements of
A that are greater than ¢g,Z and divisible by ¢g,. Likewise define B and B,. The map D — ¢, D defines an
injection from A; to By, while the map D — D/q, defines an injection from A; to Bj. Letting A3 denote
all the elements of A greater than ¢,Z, we have

|A3] < A1] +|A2| < [Bi|+|Bo| < |B|.

Symmetrically, we have |B3| < |A’|. Finally, letting A4 and B4 denote the elements of A’ and B’ satisfying
Z <D < g,Z, we have |A’| = |A3| + |A4| <|B'|+ |A4| and similarly |B’| < |A’| + |Ba/|, so the magnitude
of |A"| —|B| i , which is the size of the set P" of elements of P" satisfying
Z<D<qZ.
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We now see

Z (_l)w(D) Z 2mf Zesz n)o Z

Dep, nel nel DePy

Vf(n,i)=0 (mod D)
<) P

nel
= Y H{nel:Vf(n,i)=0 (modD)}|
DeP
7<D<qZ
< (cont(g Z ke £
DeP D"
Z<D<qZ
(cont(g
DeEP
D>Z

provided YZ < X. If D € P with D > Z, then, since D < cont(g)zY“’(D) and Y > 2, we know that

cont(g)3e® D) 3 1. 43)
Finally, (42) and (43) imply
k@ (D) logz k) @D)
< cont(g)’e ioev Y (ck)
DeP pepr D
D>Z
< cont(g)’e” sy (logY )%,
and the lemma follows. O

We now conclude our discussion by combining the tools developed in this section to establish (27)
and (28), thus completing the proof of Theorem 2.4.

7.6 Proof of (27) and (28)

We return to the proof of Lemma 4.2 in Section 4.4, recalling all assumptions, notation, and fixed
parameters. We let Z = N°, and we let J denote the sum of the absolute value of the coefficients of A,
noting that

J<pd < Z5 (44)

Fixing o € T, the pigeonhole principle guarantees the existence of 1 < ¢ < M*/Z3 and (a,q) = 1 such

that
Z3k
< -
gM*’

a
o— —
q

DISCRETE ANALYSIS, 2021:11, 46pp. 42


http://dx.doi.org/10.19086/da

MULTIVARIATE POLYNOMIAL VALUES IN DIFFERENCE SETS

Letting B = ot — a/q, we have by Lemma 7.5, as well as Lemma 3.3, Proposition 3.6, and Lemma 3.8,
that

w

S(a) =

- eZm'g(s)a/q/ ieZn'ig(x)ﬁdx_i_ O <qu—1 logC(Y)Z‘”‘f) 7 45)
Wad 5€{0,....g—1}Nwa(Y) [0.M]*

Jja(p) >

W, = 1-— > 1.

=T (1- 4
py(mq

Combining (45) with Corollary 7.8, Lemma 3.8, and Corollary 7.10 yields (27) if

g<Qand|B| <7,

as well as (28) if
g<Qand|B|>7 or Q§q§Z3k.

For this latter conclusion, when applying Corollary 7.8 we use standard estimates that assure
C91(q)" <kre d°

for all € > 0. Finally, it follows from Lemma 7.12 and Proposition 3.8 that (28) holds whenever
Z3k < q SMk/Z3k' ]
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