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ABSTRACT 
Floating offshore wind turbines hold great potential for future 

solutions to the growing demand for renewable energy 

production. Thereafter, the prediction of the offshore wind power 

generation became critical in locating and designing wind farms 

and turbines. The purpose of this research is to improve the 

prediction of the offshore wind power generation by the 

prediction of local wind speed using a Deep Learning technique. 

In this paper, the future local wind speed is predicted based on 

the historical weather data collected from National Oceanic and 

Atmospheric Administration. Then, the prediction of the wind 

power generation is performed using the traditional methods 

using the future wind speed data predicted using Deep Learning. 

The network layers are designed using both Long Short-Term 

Memory (LSTM) and Bi-directional LSTM (BLSTM), known to 

be effective on capturing long-term time-dependency. The 

selected networks are fine-tuned, trained using a part of the 

weather data, and tested using the other part of the data. To 

evaluate the performance of the networks, a parameter study has 

been performed to find the relationships among: length of the 

training data, prediction accuracy, and length of the future 

prediction that is reliable given desired prediction accuracy and 

the training size.   

Keywords: Offshore Wind Energy, Energy, Neural Network, 

Long-Short-Term Memory 

 

1. INTRODUCTION 

 Most of current offshore wind turbines (OWT) installed 

up to date are bottom-mounted substructures. This fixed type 

offshore wind turbines are installed in shallow water less than 25 

m depth. In opposition, a massive utilization of wind resource 

potential in U.S and many other countries has been suggested by 

installing the OWT in deeper water (Jonkman, 2009; Musial & 

Ram, 2010). Floating offshore wind turbines (FOWT) are 

considered as one of the most promising alternatives of current 

OWT by its greater wind energy potential. The FOWT installed 

in deeper water can be exposed to stronger and steadier wind 

fields which helps efficient wind energy generation. Moreover, 

wind farms in deeper waters are in general less sensitive to space 

availability, noise restriction, visual pollution, and regulatory 

problems. However, the inevitable presence of inherent 

uncertainties in the system inhibits accurate prediction of system 

design. The multi-faceted uncertainties in FOWT system have 

contributed to increases the cost of FOWT. As a part of the 

efforts to minimizing the uncertainties involved in the FOWT 

system, the paper is focusing on the reliable prediction of the 

wind energy, which may be critical on locating and siting the 

wind farms. Seemingly-minor reduction of an uncertainty may 

contribute to the large amount of the total cost saving. There have 

been a few research published in the prediction of wind speed 

using traditional Machine Learning (non-deep-learning), such as 

Support Vector Machine (SVM), while Deep Learning (DL) 

technique has hardly been used (Mohandes et al., 2004; Salcedo-

Sanz et al., 2011, Zhou et al., 2011, Salcedo-Sanz et al., 2014). 

By using the future predictability of Deep Learning technique, it 

is probable to apply this method to build accurate wind models 

that helps with deciding the optimized locations with less 

uncertainties compared to previously proposed models.  

On the other hand, a recent report (Grossman et al., 2013; 

Figure 1) shows that there is a rapid growing gap between the 

amount of data collected and the amount of analyses/usages of 

the information in science and engineering application. The 

motivation of this study is to find more effective methods to 

analyze the cumulated data and knowledges. The propose study 

in this paper presents a method using Deep Learning (DL) 

techniques for the wind power prediction.   

The paper presents the framework of wind power prediction 

using a DL technique. The wind speed prediction is performed 

mailto:dochoe@pvamu.edu


 2 © 2019 by ASME 

using Long Short-Term Memory (LSTM) neural networks. The 

framework includes design of the network, training and 

prediction of the wind speed using the trained networks, and 

calculation of the predicted wind power. The wind energy 

generation is presented in terms of the wind power density in this 

paper, which is the wind energy generation per blade sweep area 

in order to provide the generalized quantities instead of a specific 

wind turbine. 

 

 

FIGURE 1. DATA-ANALYSIS GAP IN SCIENCE AND 

ENGINEERING APPLICATION (GROSSMAN ET AL., 

2013) 

2. LSTM Neural Network 

In this paper, the wind speed prediction is performed using 

deep layered networks of LSTM and Bidirectional LSTM. 

LSTM neural network is one of Recurrent Neural Network 

(RNN), which is well-known to capture long-term dependencies 

and model sequential data. The bi-directional LSTM, which 

operates both forward and backward process of LSTM, enables 

the capture of the past and future contexts. Deep bi-directional 

LSTM is stacked LSTM of multiple layers as elaborated in later 

this section. In this research, we tested several alternative layers 

using (1) basic LSTM and multiple layers of LSTM, (2) bi-

directional LSTM (BiLSTM) and multiple layers of BiLSTM, 

and (3) Multiple layers of both LSTM and BiLSTM. 

The principal differentiator of LSTMs that a few additional 

gates are used at each time step to control the passing of 

information along the sequences which can capture long-term 

dependencies in higher accuracy detailed in the following 

equations and Figure 2. The input gate 𝒊𝑡 , the recurrent gate 

called “forget gate” 𝒇𝑡, and the output gate 𝒐𝑡, and a memory 

cell, 𝒄𝑡, are represented as follows (Gers et al. 1999 & Zhao etl 

al., 2017):  

𝒊𝑡 = 𝜎(𝑾𝑖𝒙𝑡 + 𝑽𝑖𝒉𝑡−1 + 𝒃𝑖), 
𝒇𝑡 = 𝜎(𝑾𝑓𝒙𝑡 + 𝑽𝑓𝒉𝑡−1 + 𝒃𝑓), 
𝒐𝑡 = 𝜎(𝑾𝑜𝒙𝑡 + 𝑽𝑜𝒉𝑡−1 + 𝒃𝑜), 

𝒄𝑡 = 𝒇𝑡  ⊙  𝒄𝑡−1+𝒊𝑡   ⊙ tanh(𝑾𝑐𝒙𝑡 + 𝑽𝑐𝒉𝑡−1 + 𝒃𝑐), 
𝒉𝑡 = 𝒐𝑡   ⊙ tanh(𝒄𝑡). 

where 𝑾 ∈ ℝ𝑑×𝑘  ,  V∈ ℝ𝑑×𝑑   𝒃 ∈ ℝ𝑑 ,   are the model 

parameters, k associated with W is dimensionality of hidden 

vectors, and ⊙ represents an element-wise product. Figure 2 

(a) shows the basic structures of LSTM regression.  

The bi-directional LSTM uses both forward and backward 

processed information as shown in Figure 2 (b), which can be 

represented as follows:  
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(a) LSTM regression 

 
(b) Bi-directional LSTM 

FIGURE 2 LSTM REGRESSION VS BI-DIRECTIONAL 

LSTM REGRESSION 

 
FIGURE 3. DEEP BI-DIRECTIONAL LSTM LAYERS 
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Figure 3 shows the deep LSTM layers, which is stacked bi-

directional LSTMs. The hidden output of one LSTM layer is 

propagated through time as in a single i-directional LSTM, and 

at the same time, the output of the one LSTM layer is used as the 

input data to the next bi-directional LSTM. Every hidden layer 

receives an input sequence which includes the output sequences 

of both forward and backward layers from the previous layer. 

Figure 4 shows sample configurations of layering the LSTM and 

BiLSTM networks during the full analyses using MATLAB.  

 
FIGURE 4. ALTERNATIVE LAYERS OF LSTM AND BI-

DIRECITONAL LSTM 

3. Wind Speed Predicted by LSTM layers 

The data used for the example analysis of this research was 

collected from the National Oceanic and Atmospheric 

Administration (NOAA) from one specific buoy that gathered 

information for an extended amount of time. The coordinates of 

this buoy where 54.97, -9.04, which is roughly 16 miles off the 

coast of the island of Arranmore of Ireland. The wind data time 

range that was used was from May 2009 to May 2019, 

encompassing 10 full years of wind information and was 

measured from around 100 meters from sea level. 

For the prediction of the wind speed, several alternative 

LSTM and bi-LSTM layers are designed as shown in Figure 4. 

After studies of various alternative layers, it is found that the 

benefit of layering multiple network is not significant. Therefore, 

the analysis is performed with a single LSTM. To train the 

designed networks, the series of observations 𝒙 =
[𝑥1, 𝑥 , 𝑥 , 𝑥4, … 𝑥𝑛]  representing the wind speed data over 10 

years in every hour interval are used. The set is separated by 𝒙 =
[𝒙𝑻𝑹, 𝒙𝑻𝑺  ], where 𝒙𝑻𝑹,  represents training data and 𝒙𝑻𝑺 

represents the data used to test the performance of the model.  

The input training set is 𝒙𝑻𝑹 =
[𝑥 𝑅−1, 𝑥 𝑅− , 𝑥 𝑅− , … 𝑥 𝑅−𝑛−1]  and the output training set is 

represented by 𝒚𝑻𝑹 = [ 𝑥 𝑅− , 𝑥 𝑅− , 𝑥 𝑅−4, … 𝑥 𝑅−𝑛] .   The 

analyses performed in only hourly level. However, the future 

analyses are further expendable in terms of daily and yearly 

level.  

Once the models are trained using the sets of data, the 

trained model is tested for its prediction in two different 

strategies, P-A & P-B: P-A predicts 𝒚𝑻𝑺,𝑨  by the inputs of, 

𝒙𝑻𝑺,𝑨 = [𝑥 𝑆−1, 𝑥 𝑆− , 𝑥 𝑆− , … 𝑥 𝑆−𝑛−1]  with continuous 

training while testing and P-B predicts 𝒚𝑻𝑺,𝑩  the inputs, 

𝒙𝑻𝑺,𝑩 = [𝑥 𝑆−1, 𝑦 𝑆,𝐴−1, 𝑦 𝑆,𝐴− , … 𝑦 𝑆,𝐴−𝑛] . For the parameter 

study, for each strategies, the analyses were performed for the 

training size 3600 hrs (150 days or approximately 5 month) to 

8640 hrs (360 days, approximately 12 month) with the 

increments of every 10 days. The prediction period was 

performed with varying ranges from 216 hrs (9 days) to 720 hrs 

(30 days or 1 month) with the increments of 72 hrs (3 days).  

4. Results: Predicted Wind Speed 

In this section, the results of the wind speed at the buoy 

location are presented and analyzed. For the parameter study, 

total of 352 analyses are performed for both P-A & P-B 

prediction strategies (22 increments of training length×8 

increments of prediction length × 2 strategies = 352). Parameter 

studies are presented for given size of the training data (NT) in 

order to achieve the accuracy, measured in Root Mean Sqaure 

Error (RMSE). The length of the prediction, NP.was added as the 

third parameter to observe the reliable prediction length given 

required prediction accuracy. The analyses are performed in 

hourly prediction level. Future analyses are planned for daily and 

yearly prediction levels  

Figure 5 and Figure 6 show sample analyses of the hourly 

wind speeds (m/s). Both are the results for the same test length 

of 504 hrs (21 days), while Figure 5 shows the results using 3600 

hrs (5 month) of training length and Figure 6 shows those using 

1440 hrs (2 month) of training length.  The prediction strategy 

P-A is to train while testing. The two predictions show different 

performances in the begging of the prediction. The smaller 

training size (Figure 6) shows larger errors in the rage of 

prediction during the first 24 hrs period, while it gradually 

converged to the observation curve. Similar trend is shown in the 

larger-training-sized model Figure 5, which is very minor 

compare to model with smaller training size (Figure 6).  Overall 

errors are ranged similar.  The P-A predictions show 

convergence after 24 hrs of prediction. 

 Figure 7 (P-A) and Figure 8(P-B) show the results from the 

352 sets of daily wind speed (m/s) predictions. The P-A 

prediction shows the errors decrease as the prediction period 

increases. This is due to the network improvement while 

predicting the futures. P-B prediction assumed there is no further 

information given after the training is completed. Therefore, as 

the prediction period increases, the errors (RMSE) increase 

together. In addition, the errors (RMSE) decrease as the training 

size increases.  

5. Results: Predicted Wind Power Generations 

The predicted wind power generation in this paper is 

represented by the wind energy density, which is the energy 

generation per a blade sweep area A in order to provide 

generalize results rather than those for a specific wind turbine. 

The wind energy density is calculated based on the DL- predicted 

wind speed using traditional wind power calculation method 

detailed in this section. 
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FIGURE 5. SAMPLE RESULTS OF HOURLY 

PREDICTION: P-A, TRAINING 3600HRS, TESTING 504 

HRS 

 

 
FIGURE 6. SAMPLE RESULTS OF HOURLY 

PREDICTION: P-A, TRAINING 1400HRS, TESTING 504 

HRS 

  

FIGURE 7. PARAMETER STUDY: TRAINING SIZE, 

PREDICTION ERROR (RMSE), & PREDICTION LENGTH 

FOR P-A 

 

FIGURE 8. PARAMETER STUDY: TRAINING SIZE, 

PREDICTION ERROR (RMSE), & PREDICTION LENGTH 

FOR P-B 

Wind energy density, the energy generated per a blade 

sweep area A is estimated based on the Weibull distribution of 

wind speed, which is one of commonly used methods for wind 

power calculation. The probability densify function and 

cumulative distribution function are written as following: 

𝑓(𝑉) =
𝑘

𝑐
(
𝑉

𝑐
)
𝑘−1

𝑒−(
𝑉
𝑐
)𝑘

 

𝐹(𝑉) = 1 − 𝑒−(
𝑉
𝑐
)𝑘

 

where k is the shape parameter, c is the scale parameter, and V is 

wind speed.  The shape parameter k can be calculated using 

maximum likelihood method (Jiang et al. 2016). However, for 

this research a simplified expression, which is derived from a 

modified maximum likelihood method by Christofferson and 

Gillett (1987), is used to avoid the complexity and the iterations 
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of the calculation. The parameters k and c are expressed as (Perez 

et al., 2007):  

𝑘 =
𝜋

√6
[

𝑁(𝑁 − 1)

𝑁(∑ 𝑙𝑛 𝑉𝑖
𝑁
𝑖=1 ) − (∑ ln𝑉𝑖

𝑁
𝑖=1 ) 

]

0.5

 

𝑐 = (
1

𝑁
∑𝑉𝑖

𝑘

𝑁

𝑖=1

)

1/𝑘

 

where N represents the number of the total observation, V is 

wind speed at each data point. Based on the distribution, the wind 

energy density and can be written as (Zhao et al., 2017): 

𝐸

𝐴
=
1

2
𝜌𝑐 Γ (

𝑘 + 3

𝑘
)𝑇 

where 𝐸 denote the wind energy generated by the wind turbine, 

 𝐴 denote a blade sweep area, 𝜌 is fluid density, Γ demotes 

the Gamma function, and 𝑇 is the time period or duration of the 

measure expressed in hour.  

Figure 9 shows sample prediction of the wind power density 

calculation. Left of the figure shows the testing size 288 and the 

right side of the figure shows the testing size of 504 hrs, using 

the same size of the training data. Figure 10 shows displays the 

different size of the training data with the same testing size of 

720 hrs. The beginning of the prediction shows the only 

differences. The results are obtained based on P-A prediction 

data.  

 
FIGURE 9. WIND ENERGY DENSITY PREDICTION 

WITH TRAINING LENGTH OF 1440 HRS FOR 

PREDICTIONS OF 288 HRS (LEFT) & 504 HRS (RIGHT)  

 
FIGURE 10. WIND ENERGY DENSITY PREDICTION 

WITH TRAINIG SIZES OF 1440 HRS (LEFT) AND 6000 

(RIGHT) AND PREDICTION LENGTH OF 720 HRS. 

6. CONCLUSION & FUTURE WORK 

The paper presents a research-in progress to predict the wind 

power generation at a potential wind farm location using Deep 

Leaning techniques. Parameter study is presented by performing 

352 sets of training and testing to find the relationships among 

the size of the training data and the prediction error for the given 

prediction length. Example analyses are presented with the 

predicted wind speed and wind power generation at a selected 

buoy location in hourly scale. Future research includes the 

investigation on additional weather parameters training and 

testing, improvement of the network layers, and incorporation of 

the physics in DL to improve the prediction.  

 
ACKNOWLEDGEMENTS 

This material is based upon work supported by the National 

Science Foundation under Grant #1700406.  

 
REFERENCES 
Chang, T. J., Wu, Y. T., Hsu, H. Y., Chu, C. R., & Liao, C. M. 

(2003). Assessment of wind characteristics and wind 

turbine characteristics in Taiwan. Renewable 

energy, 28(6), 851-871. 

Christofferson, R. D., & Gillette, D. A. (1987). A simple 

estimator of the shape factor of the two-parameter 

Weibull distribution. Journal of climate and applied 

meteorology, 26(2), 323-325. 

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning 

to forget: Continual prediction with LSTM. 

Jiang, W., Xie, C., Zhuang, M., Shou, Y., & Tang, Y. (2016). 

Sensor data fusion with z-numbers and its application 

in fault diagnosis. Sensors, 16(9), 1509. 

Jonkman, J. M. (2009). Dynamics of offshore floating wind 

turbines—model development and verification.  

Mohandes, M. A., Halawani, T. O., Rehman, S., & Hussain, A. 

A. (2004). Support vector machines for wind speed 

prediction. Renewable energy, 29(6), 939-947. 

Musial,W. & Ram,B. (2010), Large-Scale Offshore Wind 

Powerin the United States-Assessment of Opportunities 

and Barriers. Technical Report. NREL/TP-500-40745. 

Pérez, I. A., Sánchez, M. L., & García, M. Á. (2007). Weibull 

wind speed distribution: Numerical considerations and 

use with sodar data. Journal of Geophysical Research: 

Atmospheres, 112(D20). 

Salcedo-Sanz, S., Ortiz-Garcı, E. G., Pérez-Bellido, Á. M., 

Portilla-Figueras, A., & Prieto, L. (2011). Short term 

wind speed prediction based on evolutionary support 

vector regression algorithms. Expert Systems with 

Applications, 38(4), 4052-4057. 

Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., Blanco-

Aguilera, A., & García-Herrera, R. (2014). Feature 

selection in wind speed prediction systems based on a 

hybrid coral reefs optimization–Extreme learning 

machine approach. Energy Conversion and 

Management, 87, 10-18. 



 6 © 2019 by ASME 

United States Department of Energy. (2015). Wind Vision: A 

New Era for Wind Power in the United 

States. Executive summary March 2015. Report nr 

DOE/GO-102015–4557, 50 pp. 

Zhao, R., Yan, R., Wang, J., & Mao, K. (2017). Learning to 

monitor machine health with convolutional bi-

directional LSTM networks. Sensors, 17(2), 273. 

Zhou, J., Shi, J., & Li, G. (2011). Fine tuning support vector 

machines for short-term wind speed 

forecasting. Energy Conversion and 

Management, 52(4), 1990-1998. 


