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ABSTRACT
Floating offshore wind turbines hold great potential for future
solutions to the growing demand for renewable energy
production. Thereafter, the prediction of the offshore wind power
generation became critical in locating and designing wind farms
and turbines. The purpose of this research is to improve the
prediction of the offshore wind power generation by the
prediction of local wind speed using a Deep Learning technique.
In this paper, the future local wind speed is predicted based on
the historical weather data collected from National Oceanic and
Atmospheric Administration. Then, the prediction of the wind
power generation is performed using the traditional methods
using the future wind speed data predicted using Deep Learning.
The network layers are designed using both Long Short-Term
Memory (LSTM) and Bi-directional LSTM (BLSTM), known to
be effective on capturing long-term time-dependency. The
selected networks are fine-tuned, trained using a part of the
weather data, and tested using the other part of the data. To
evaluate the performance of the networks, a parameter study has
been performed to find the relationships among: length of the
training data, prediction accuracy, and length of the future
prediction that is reliable given desired prediction accuracy and
the training size.

Keywords: Offshore Wind Energy, Energy, Neural Network,
Long-Short-Term Memory

1. INTRODUCTION

Most of current offshore wind turbines (OWT) installed
up to date are bottom-mounted substructures. This fixed type
offshore wind turbines are installed in shallow water less than 25
m depth. In opposition, a massive utilization of wind resource
potential in U.S and many other countries has been suggested by
installing the OWT in deeper water (Jonkman, 2009; Musial &
Ram, 2010). Floating offshore wind turbines (FOWT) are

considered as one of the most promising alternatives of current
OWT by its greater wind energy potential. The FOWT installed
in deeper water can be exposed to stronger and steadier wind
fields which helps efficient wind energy generation. Moreover,
wind farms in deeper waters are in general less sensitive to space
availability, noise restriction, visual pollution, and regulatory
problems. However, the inevitable presence of inherent
uncertainties in the system inhibits accurate prediction of system
design. The multi-faceted uncertainties in FOWT system have
contributed to increases the cost of FOWT. As a part of the
efforts to minimizing the uncertainties involved in the FOWT
system, the paper is focusing on the reliable prediction of the
wind energy, which may be critical on locating and siting the
wind farms. Seemingly-minor reduction of an uncertainty may
contribute to the large amount of the total cost saving. There have
been a few research published in the prediction of wind speed
using traditional Machine Learning (non-deep-learning), such as
Support Vector Machine (SVM), while Deep Learning (DL)
technique has hardly been used (Mohandes et al., 2004; Salcedo-
Sanz et al., 2011, Zhou et al., 2011, Salcedo-Sanz et al., 2014).
By using the future predictability of Deep Learning technique, it
is probable to apply this method to build accurate wind models
that helps with deciding the optimized locations with less
uncertainties compared to previously proposed models.

On the other hand, a recent report (Grossman et al., 2013;
Figure 1) shows that there is a rapid growing gap between the
amount of data collected and the amount of analyses/usages of
the information in science and engineering application. The
motivation of this study is to find more effective methods to
analyze the cumulated data and knowledges. The propose study
in this paper presents a method using Deep Learning (DL)
techniques for the wind power prediction.

The paper presents the framework of wind power prediction
using a DL technique. The wind speed prediction is performed
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using Long Short-Term Memory (LSTM) neural networks. The
framework includes design of the network, training and
prediction of the wind speed using the trained networks, and
calculation of the predicted wind power. The wind energy
generation is presented in terms of the wind power density in this
paper, which is the wind energy generation per blade sweep area
in order to provide the generalized quantities instead of a specific
wind turbine.
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FIGURE 1. DATA-ANALYSIS GAP IN SCIENCE AND
ENGINEERING APPLICATION (GROSSMAN ET AL.,
2013)

2. LSTM Neural Network

In this paper, the wind speed prediction is performed using
deep layered networks of LSTM and Bidirectional LSTM.
LSTM neural network is one of Recurrent Neural Network
(RNN), which is well-known to capture long-term dependencies
and model sequential data. The bi-directional LSTM, which
operates both forward and backward process of LSTM, enables
the capture of the past and future contexts. Deep bi-directional
LSTM is stacked LSTM of multiple layers as elaborated in later
this section. In this research, we tested several alternative layers
using (1) basic LSTM and multiple layers of LSTM, (2) bi-
directional LSTM (BiLSTM) and multiple layers of BiLSTM,
and (3) Multiple layers of both LSTM and BiLSTM.

The principal differentiator of LSTMs that a few additional
gates are used at each time step to control the passing of
information along the sequences which can capture long-term
dependencies in higher accuracy detailed in the following
equations and Figure 2. The input gate it, the recurrent gate
called “forget gate” f*, and the output gate of, and a memory
cell, ct, are represented as follows (Gers et al. 1999 & Zhao etl
al., 2017):

it = c(Wixt + VIRt=! + bY),
ff=ocW/x* +V ht=1 + b)),
ot = c(W°xt + V°ht™t + b°),

ct=ft O c'+i* © tanh(Wext + VRt~ + b°),

ht = ot O tanh(c?).

where W e Rk | VveR¥>? peR?Y are the model
parameters, k associated with W is dimensionality of hidden

vectors, and (O represents an element-wise product. Figure 2
(a) shows the basic structures of LSTM regression.

The bi-directional LSTM uses both forward and backward
processed information as shown in Figure 2 (b), which can be
represented as follows:

—i>t=a(Wl 7t+v17{t—1+31),

?t=o(ﬁ}f ¥t+7fﬁ>t—l+—b>f),
—o>t=a(w—>/o }>t+voﬁ>t—1+z>o),
?t=7t ©) ?t_“-_i)t Otanh(wc ¥t+7c7{t—1+3c),
Zt=3t Otanh(?t).
<17t=0 iA—/l(;t+<—l<’—lt+l+<El),
(j_’t:a(lll(_/f §t+<l7f<’;t+1+<5 ),
;tza(h—/o ;t+<l70<ﬁt+1+<50),
(L_'t:(j_’t © <Et+1+<thOtanh(v<T/c ;t+<l70<’—lt+1+<l;c),
<’—lt=<o—tOtanh(<Et).
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Figure 3 shows the deep LSTM layers, which is stacked bi-
directional LSTMs. The hidden output of one LSTM layer is
propagated through time as in a single i-directional LSTM, and
at the same time, the output of the one LSTM layer is used as the
input data to the next bi-directional LSTM. Every hidden layer
receives an input sequence which includes the output sequences
of both forward and backward layers from the previous layer.
Figure 4 shows sample configurations of layering the LSTM and
BiLSTM networks during the full analyses using MATLAB.
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FIGURE 4. ALTERNATIVE LAYERS OF LSTM AND BI-
DIRECITONAL LSTM

3. Wind Speed Predicted by LSTM layers

The data used for the example analysis of this research was
collected from the National Oceanic and Atmospheric
Administration (NOAA) from one specific buoy that gathered
information for an extended amount of time. The coordinates of
this buoy where 54.97, -9.04, which is roughly 16 miles off the
coast of the island of Arranmore of Ireland. The wind data time
range that was used was from May 2009 to May 2019,
encompassing 10 full years of wind information and was
measured from around 100 meters from sea level.

For the prediction of the wind speed, several alternative
LSTM and bi-LSTM layers are designed as shown in Figure 4.
After studies of various alternative layers, it is found that the
benefit of layering multiple network is not significant. Therefore,
the analysis is performed with a single LSTM. To train the
designed networks, the series of observations x =
[x1, X5, X3, X4, ... X,] representing the wind speed data over 10
years in every hour interval are used. The set is separated by x =
[X7R, Xrs 1, where xrg, represents training data and xypg
represents the data used to test the performance of the model.

The input training set is XTp =
[X7R-1)XTR—2) XTR—3, - XTR—n—1] and the output training set is
represented by Yrr = [ Xrr—2, X7R-3) XTR—4» - XTR—7] -  The

analyses performed in only hourly level. However, the future
analyses are further expendable in terms of daily and yearly
level.

Once the models are trained using the sets of data, the
trained model is tested for its prediction in two different
strategies, P-A & P-B: P-A predicts yrg, by the inputs of,

Xrsa = [Xps—1,X75-2, X753, - X75-n—1]  With  continuous
training while testing and P-B predicts yrgp the inputs,
XrsB = [Xrs-1,Yrsa-1,Y1s,a-2 - Yrs,a-n] - For the parameter
study, for each strategies, the analyses were performed for the
training size 3600 hrs (150 days or approximately 5 month) to
8640 hrs (360 days, approximately 12 month) with the
increments of every 10 days. The prediction period was
performed with varying ranges from 216 hrs (9 days) to 720 hrs
(30 days or 1 month) with the increments of 72 hrs (3 days).

4. Results: Predicted Wind Speed

In this section, the results of the wind speed at the buoy
location are presented and analyzed. For the parameter study,
total of 352 analyses are performed for both P-A & P-B
prediction strategies (22 increments of training lengthx8
increments of prediction length x 2 strategies = 352). Parameter
studies are presented for given size of the training data (Ny) in
order to achieve the accuracy, measured in Root Mean Sqaure
Error (RMSE). The length of the prediction, Np.was added as the
third parameter to observe the reliable prediction length given
required prediction accuracy. The analyses are performed in
hourly prediction level. Future analyses are planned for daily and
yearly prediction levels

Figure 5 and Figure 6 show sample analyses of the hourly
wind speeds (m/s). Both are the results for the same test length
of 504 hrs (21 days), while Figure 5 shows the results using 3600
hrs (5 month) of training length and Figure 6 shows those using
1440 hrs (2 month) of training length. The prediction strategy
P-A is to train while testing. The two predictions show different
performances in the begging of the prediction. The smaller
training size (Figure 6) shows larger errors in the rage of
prediction during the first 24 hrs period, while it gradually
converged to the observation curve. Similar trend is shown in the
larger-training-sized model Figure 5, which is very minor
compare to model with smaller training size (Figure 6). Overall
errors are ranged similar. The P-A predictions show
convergence after 24 hrs of prediction.

Figure 7 (P-A) and Figure 8(P-B) show the results from the
352 sets of daily wind speed (m/s) predictions. The P-A
prediction shows the errors decrease as the prediction period
increases. This is due to the network improvement while
predicting the futures. P-B prediction assumed there is no further
information given after the training is completed. Therefore, as
the prediction period increases, the errors (RMSE) increase
together. In addition, the errors (RMSE) decrease as the training
size increases.

5. Results: Predicted Wind Power Generations

The predicted wind power generation in this paper is
represented by the wind energy density, which is the energy
generation per a blade sweep area A in order to provide
generalize results rather than those for a specific wind turbine.
The wind energy density is calculated based on the DL- predicted
wind speed using traditional wind power calculation method
detailed in this section.
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Wind energy density, the energy generated per a blade
sweep area 4 is estimated based on the Weibull distribution of
wind speed, which is one of commonly used methods for wind
power calculation. The probability densify function and
cumulative distribution function are written as following:

k-1

k /V _Vik
rn=2c) e«
FOV)=1—-e@"

where £ is the shape parameter, c is the scale parameter, and V' is
wind speed. The shape parameter k can be calculated using
maximum likelihood method (Jiang et al. 2016). However, for
this research a simplified expression, which is derived from a
modified maximum likelihood method by Christofferson and
Gillett (1987), is used to avoid the complexity and the iterations
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of the calculation. The parameters & and ¢ are expressed as (Perez
et al., 2007):

P T N(N —1) 0
B ﬁ [N(Zévﬂ n2v;) — (), In VL)Z]

N 1/k
1
¢= (nZ V)

i=1

where N represents the number of the total observation, V is
wind speed at each data point. Based on the distribution, the wind
energy density and can be written as (Zhao et al., 2017):

E 1 ap (k + 3) T
a- 2P Tk

where E denote the wind energy generated by the wind turbine,
A denote a blade sweep area, p is fluid density, I' demotes
the Gamma function, and T is the time period or duration of the
measure expressed in hour.

Figure 9 shows sample prediction of the wind power density
calculation. Left of the figure shows the testing size 288 and the
right side of the figure shows the testing size of 504 hrs, using
the same size of the training data. Figure 10 shows displays the
different size of the training data with the same testing size of
720 hrs. The beginning of the prediction shows the only
differences. The results are obtained based on P-A prediction
data.
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6. CONCLUSION & FUTURE WORK

The paper presents a research-in progress to predict the wind
power generation at a potential wind farm location using Deep
Leaning techniques. Parameter study is presented by performing
352 sets of training and testing to find the relationships among
the size of the training data and the prediction error for the given
prediction length. Example analyses are presented with the
predicted wind speed and wind power generation at a selected
buoy location in hourly scale. Future research includes the
investigation on additional weather parameters training and
testing, improvement of the network layers, and incorporation of
the physics in DL to improve the prediction.
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