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Abstract—Hypothesis Selection is a fundamental dis-
tribution learning problem where given a comparator-
class Q = {q1, . . . , qn} of distributions, and a sampling
access to an unknown target distribution p, the goal is
to output a distribution q such that TV(p, q) is close to
opt, where opt = mini{TV(p, qi)} and TV(·, ·) denotes the
total-variation distance. Despite the fact that this problem
has been studied since the 19th century, its complexity
in terms of basic resources, such as number of samples
and approximation guarantees, remains unsettled (this is
discussed, e.g., in the charming book by Devroye and
Lugosi ‘00). This is in stark contrast with other (younger)
learning settings, such as PAC learning, for which these
complexities are well understood.

We derive an optimal 2-approximation learning strategy
for the Hypothesis Selection problem, outputting q such
that TV(p, q) ≤ 2 · opt+ ε, with a (nearly) optimal sample
complexity of Õ(logn/ε2). This is the first algorithm that
simultaneously achieves the best approximation factor
and sample complexity: previously, Bousquet, Kane, and
Moran (COLT ‘19) gave a learner achieving the optimal
2-approximation, but with an exponentially worse sample
complexity of Õ(

√
n/ε2.5), and Yatracos (Annals of Statis-

tics ‘85) gave a learner with optimal sample complexity of
O(logn/ε2) but with a sub-optimal approximation factor
of 3.

We mention that many works in the Density Estimation
(a.k.a., Distribution Learning) literature use Hypothesis
Selection as a black box subroutine. Our result therefore
implies an improvement on the approximation factors
obtained by these works, while keeping their sample
complexity intact. For example, our result improves the
approximation factor of the algorithm of Ashtiani, Ben-
David, Harvey, Liaw, and Mehrabian (JACM ’20) for
agnostic learning of mixtures of gaussians from 9 to 6,
while maintaining its nearly-tight sample complexity.

I. INTRODUCTION

Hypothesis selection is a fundamental task in statis-
tics, where a learner is getting a sample access to
an unknown distribution p on some, possibly infinite,
domain X , and wishes to output a distribution q that
is “close” to p. The problem was studied extensively
over the last century and found many applications, most
notably, in machine learning.

In this paper we study the hypothesis selection prob-
lem in the agnostic setting, where we assume a fixed

finite1 class Q of reference distributions which is known
to the learner, and which may or may not contain p2.
The goal of the learner is to output a distribution q that
is at least as close to p as any of the distributions in Q
in total variation distance (denoted here TV(·, ·)).

The statistical performance of a learner is measured
using two parameters, denoted α and m = m(n, ε, δ),
where α is the approximation factor of the algorithm
and m is its sample complexity. Specifically, we say that
a class of distributions Q = {q1, . . . , qn} is α-learnable
with sample complexity m(n, ε, δ) if there is a (possibly
randomized) learner such that for every ε, δ > 0 and
every target distribution p, upon receiving m(n, ε, δ)
random samples from p, the learner outputs a distribu-
tion q satisfying TV(p, q) ≤ α ·mini∈[n]{TV(p, qi)}+ε
with probability at least 1−δ. For the discussion below,
we think of δ as a small constant.

How good can a learner be? A-priori, it is not
even clear that every class Q is learnable with finite
sample complexity. Consider the following natural al-
gorithm for hypothesis selection: estimate TV(qi, p) for
every qi ∈ Q and output the qi that minimizes this
quantity. While this algorithm clearly works (and even
achieves an approximation factor of α = 1), estimating
TV(qi, p) for any qi requires Ω̃(|X |) samples from p
(see, e.g., [JHW18]). Thus, if the domain X is infinite
(say X = R), the sample complexity of this algorithm is
not even finite. However, perhaps surprisingly, despite
the impossibility of estimating the distance of p from
even one of the distributions qi, one can still find an
approximate minimizer of the distances (even when X
is infinite!).

What are the smallest α and m for which any given
class of distributions Q of size n is α-learnable with
sample complexity m? A seminal work by Yatracos
[Yat85] (also see [DL96], [DL97], [DL01]) shows that
any reference class Q of size n is 3-learnable with
sample complexity O(log n/ε2). For the case of n = 2,

1See discussion of the infinite case at the end of this section.
2The setting where p is assumed to be in Q is called the realizable

setting.



Mahalanabis and Stefankovic [MS08] improve the ap-
proximation factor, constructing a 2-learner. This was
extended by the recent work of Bousquet, Kane, and
Moran [BKM19] to give a 2-approximation for any
finite n, using a very different scheme. A matching
lower bound of 2 on the approximation factor follows
from the work of [CDSS14].

Although the work of [BKM19] obtains the optimal
approximation factor for the agnostic hypothesis selec-
tion problem, the sample complexity of their scheme
is Õ(

√
n/ε2.5), which is exponential in the sample

complexity of Yatracos’s algorithm3. Deriving optimal
learners with efficient sample complexity is left as the
main open problem in their work. In this paper, we give
a novel 2-learner with (near) optimal sample complexity,
getting the best of both worlds.

Density Estimation: Hypothesis selection, and, in
particular, Yatracos’s algorithm, found applications be-
yond learning finite classes. Specifically, it is used as
a basic subroutine in density estimation tasks where
the goal is to learn an infinite class of distributions, in
the realizable or agnostic setting4. A popular method,
where the reference class Q may be infinite, is the cover
method (a.k.a. the skeleton method). In this method,
one “covers” the class Q by a finite α-cover; that is, a
subclass Q′ ⊆ Q of distributions such that for every
q ∈ Q there exists q′ ∈ Q′ with TV(q, q′) ≤ α.
Often times it is the case that even if Q is infinite, a
finite ε-net Q′ exists, and Yatracos’s agnostic learning
algorithm can be applied on Q′ (see [DL01], [Dia16]
and references within for many such examples).

While the minimal possible size of such a cover Q′

is often exponential in the natural parameters of
the class Q5, because Yatracos’s algorithm has poly-
logarithmic sample complexity, the obtained density es-
timation algorithm has a polynomial sample complexity.
Since many density estimation results follow the cover
method, or other related methods6 that use Yatracos’s
algorithm as a black box, our algorithm can imply an

3We note that [BKM19] also provide poly(log|X |, logn, ε−1)
sample complexity bounds, which can be better than their general
Õ(

√
n/ε2.5) bound for finite domains X .

4In fact, learning infinite classes was a part of Yatracos’s original
motivation.

5One easy example of an exponential cover is when Q is the set
of all convex combinations of k fixed distributions p1, . . . , pk , i.e.,
Q = {

∑
i∈[k] βipi :

∑
i∈[k] βi = 1, βi ≥ 0}. The set Q =

{
∑

i∈[k]
ri
ℓ

· pi : ri ∈ N ∪ {0}, ℓ = ⌈ k
α
⌉,

∑
i∈[k]

ri
ℓ

= 1} is
a cover of Q of exponential size (in k). Sub-exponential covers are
not possible in this case. See Chapter 7.4 in [DL01] for this example,
and the rest of Chapter 7 for more such examples.

6Another such method is the recent sample compression method
by [ABDH+20], used to obtain improved density algorithms for the
mixtures of Gaussians problem.

improvement for all of these results. (We mention a
couple of such examples below, in Section I-D).

We note that in the realizable setting for density
estimation, where the distribution p we wish to learn is
in the infinite class Q of distributions we are considering
(that is, opt = 0), one can typically get a better
approximation factor by taking a finer cover (smaller α).
By taking an α-cover of Q, the above method results
in a distribution q with TV(p, q) ≤ α + 3opt = α.
However, in the agnostic setting, even if we take a very
small α, the resulting TV(p, q) may not be small as it is
dominated by 3opt. By using the result of this paper in
lieu of Yatracos’s learning algorithm, this distance can
be made 2opt.

A. Our Results

We design a 2-learner for the agnostic hypothesis
selection problem with sample complexity whose de-
pendence on both n and ε is (near) optimal.

Theorem 1. Let Q be a finite class of
distributions and let n = |Q|. Then, Q is 2-
learnable with sample complexity7 m(n, ε, δ) =
Õ
(
(log n ·min(log n, log(1/δ)) + log(1/δ))/ε2

)
. In

particular, for constant δ > 0,

m(n, ε, δ) = Õ

(
log n

ε2

)
.

Our learner in Theorem 1 is deterministic, and, as
in the case for [BKM19], it only makes statistical
queries. That is, our learner can be implemented in
the restricted model where instead of getting random
samples from p, the learner has access to an oracle that
on a query (f, ε) answers by a value in Ex∼p[f(x)]± ε
(or, equivalently, on a query (F, ε), where F is a
set, answers by p(F )± ε). Furthermore, our algorithm
consists of only Õ(log n/ε2) such rounds of queries,
whereas the algorithm [BKM19] consists of O(n/ε)
such rounds.

B. Our Technique

1) The Cutting-With-Margin Game: To prove The-
orem 1, we reduce the hypothesis selection problem
to solving a geometric game we call the “cutting-with-
margin” game. This game is between a player and an
adversary and it is played over a convex body H ⊆ ∆n

known to both parties, where ∆n denotes the simplex
of n-dimensional probability vectors8. In every round of

7We use the standard notation that f(n) = Õ(h(n1, . . . , nt))
if there exists k ∈ N such that f(n1, . . . , nt) =
O(h(n1, . . . , nt) log

k(h(n1, . . . , nt))).
8I.e., ∆n :=

{
h ∈ Rn :

∑
i∈[n] hi = 1, (∀i) : hi ≥ 0

}
.
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the game, the player selects a point h ∈ H and adversary
updates the set H to a new convex set by “cutting out” a
part of H that contains the ℓ1 ball of radius ε around h.
The game ends when the set H is empty.

We first show that any strategy for the player which
ensures that the game ends in at most r rounds implies
a 2-learner for the hypothesis selection problem with
sample complexity Õ(r log n/ε2) (this is because the
implementation of each round requires n statistical
queries that should be approximated to within O(ε)).
We then give an information-theoretic argument show-
ing that the game is solvable in r = Õ

(
log(n)/ε2

)
rounds, implying a hypothesis selection algorithm with
Õ
(
log2(n)/ε4

)
samples. Our player’s strategy views

each point h ∈ H ⊆ ∆n as a distribution and takes
the point h ∈ H that maximizes the entropy function.

Even though the cutting-with-margin game serves as
a technical tool in this work, this simple game may also
be of independent interest, and it is natural to study it
for different norms (other than the ℓ1 norm considered
in this paper). In a sense, this game is a dual perspective
on the geometric approach taken by [BKM19] (see
Section II). Nevertheless, it is the move to this dual
perspective that allowed us to use the above maximum-
entropy-based strategy. While entropy-based strategies
are widely used in online optimization (see Section I-D),
we find the fact that such a strategy is helpful for
making progress in this abstract statistical problem of
hypothesis selection, to be curious. We hope that this
connection will inspire more collaboration between the
optimization and the statistical learning communities.

2) Achieving Optimal Sample Complexity: Our so-
lution for the cutting-with-margin game yields a hy-
pothesis selection algorithm with sample complexity
polynomial in log n/ε, but still sub-optimal. While
reducing the sample complexity of this algorithm and
achieving a near optimal complexity of Õ(log n/ε2)
requires quite a bit of effort (in fact, it is the main
technical contribution of this paper), we believe that it
makes our algorithm more applicable (in the sense that it
can replace Yatracos’s algorithm, without compromising
the sample complexity).

To this end, at a very high level, we consider a
“dynamic” cutting-with-margin game that allows the
cutting of ℓ1 balls of different diameters, and we give a
“win-win”-style strategy, where in rounds where we use
more samples the diameter of the ball we cut is larger
(see Section II-D). Thus, the player either makes a lot
of progress towards the goal or uses few samples.

A detailed overview of our techniques can be found
in Section II.

Adaptive data analysis: As explained in Section II,
the (“primal”) geometric approach of [BKM19] results
in a hypothesis selection algorithm that makes O(n2/ε)
statistical queries, where each should be approximated
to within O(ε). Had all these queries been submitted
together, the standard combination of Chernoff and
union bound would imply a logarithmic sample com-
plexity. However, their algorithm submits these queries
adaptively, in O(n/ε) rounds, where in each round n
queries are submitted. Thus, naively, each of the rounds
will require Õ(log n/ε2) fresh samples for the total
sample complexity of Õ(n/ε3). Their improved stated
sample complexity of Õ(

√
n/ε2.5) is made possible by

importing clever tools from Adaptive Data Analysis.
Given the above, a natural question is whether similar

“off-the-shelf” Adaptive Data Analysis tools can be
used to convert the hypothesis selection algorithm ob-
tained in Section I-B1 from our solution of the cutting-
with-margin game, to a sample optimal one. (Recall that
this protocol consists of Õ(log n/ε2) rounds and makes
n statistical queries in each round). Unfortunately, we
were unable to apply these tools to get a significant
quantitative improvements, as these tools are mostly
geared toward cases where there are many rounds of
adaptivity, while in our algorithm, the number of rounds
Õ(log n/ε2) is much smaller than the number of queries
n made in every round (see, e.g., [DFH+15]). Instead,
as described above, we use a more direct solution and
tune the number of samples we use for each query
adaptively, by monitoring (and verifying) the progress
of the algorithm.

It will be interesting to explore whether our technique
can be extended to more general protocols in adaptive
data analysis.

C. Additional Discussion of The Model

In this work, we give an improper algorithm for the
finite agnostic hypothesis selection problem under the
total variation distance. We next explain the modeling
choices we have made:

The finite agnostic setting: We consider the finite
agnostic setting; clearly, an algorithm in this setting
applies in the realizable setting as well. In addition,
as discussed above, hypothesis selection in the finite
agnostic setting is often used as a building block in the
infinite (agnostic and realizable) settings (i.e., in density
estimation).

Total variation distance: The total variation dis-
tance is used by numerous prior works in the field, and
is a natural choice for our study for several reasons:
firstly, solving the hypothesis selection problem for the
total variation distance (which corresponds to the ℓ1
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norm) implies solving the corresponding problem for
any ℓp norm, for p ∈ [1,∞], as ∥x− y∥p ≤ ∥x− y∥1.
Another reason is that for many other metrics, the
sample complexity of a hypothesis selection problem
can depend on structural properties of the reference
class Q, which is undesirable for formulating problem-
independent theorems like Theorem 1. For a more elab-
orate discussion of the advantages in working with total
variation, see Chapter 6.5 in [DL01], and Section 3.1
in [ABDH+20].

We believe that our technique can be extended to
derive hypothesis selection algorithms for other distance
measures that satisfy (at least some approximate) ver-
sion of the triangle inequality9 (e.g., Hellinger distance
and other metric spaces).

Proper vs. improper: A basic classification of ma-
chine learning problems distinguishes between proper
and improper learning. In the proper case the algorithm
always outputs a distribution q ∈ Q, whereas in the
improper case it may output an arbitrary distribution.
Improperness has been shown to be beneficial in many
settings (see, e.g., [SF12], [DS14]), including the ag-
nostic hypothesis selection setting: while Yatracos’s 3-
approximation algorithm is proper, [BKM19] prove that
the factor 3 cannot be improved by any proper algo-
rithm (with any sample complexity)10. For this reason,
their and our 2-approximation algorithms are inherently
improper. For many applications (e.g., applications to
density estimation discussed above), improper hypoth-
esis selection algorithms suffice.

Computational complexity: Although our approach
is algorithmic, our focus is not on computational effi-
ciency. While the sample complexity of our algorithm
is only logarithmic in the number of distributions n
(and is independent of the domain size |X |), in the
general case, its running time scales polynomially with
both n and |X |, as is the case for other sample-efficient
hypothesis selection algorithms. Clearly, the dependence
on n cannot be sub-linear (each qi needs to be accessed,
unless some structure on Q is assumed). As for the
dependence on |X |, our algorithm assumes oracle access
to operations on X , such as checking membership in
sets of the form F = {x ∈ X : q1(x) > q2(x)}11, and

9See Section II-A for our usage of the triangle inequality.
10We mention that for the case n = 2, a proper 2-approximation

algorithm for the agnostic hypothesis selection problem was given by
[MS08].

11These are the, so called, “Yatracos sets” and Yatracos’s algorithm
also assumes membership oracle to them.

several other (somewhat involved) operations12 that can
only be implemented efficiently for restricted classes Q.
We mention that the situation is similar for many density
estimation problems: the existence of polynomial time
algorithms is unknown even for specific natural classes,
such as mixtures of gaussians (see [ABDH+20] for
further discussion).

While efficient algorithms (e.g., with poly log(|X |)
running-time) for all classes Q are unlikely in the
simple and abstract learning setting considered by this
work, this setting is particularly suited to capture ba-
sic information-theoretic resources, such as sample-
complexity and approximation guarantees, which are
not affected by the computational model. As discussed
above, the complexity of these resources is still poorly
understood, even for very basic problems.

D. Additional Related Work

In this work we give a novel approximation algo-
rithm for hypothesis selection of any (finite) class Q,
following the classical work of [Yat85], [DL96],
[DL97], [DL01] and the recent work of [BKM19],
discussed above. Over the last decade or so, hy-
pothesis selection received quite a bit of attention
by different theoretical communities and many as-
pects of this problem were studied, including computa-
tional efficiency, robustness, weaker access to hypothe-
ses, privacy and more (see, e.g., [MS08], [DDS15],
[DK14], [SOAJ14], [AJOS14], [CDSS14], [DKK+19],
[BKSW21], [AFJ+18], [BKSW21], [GKK+20]).

Hypothesis selection can also be viewed as a special
case of density estimation (also known as distribu-
tion learning), where one wishes to learn a (typically
infinite) class of densities from samples. In fact, as
mentioned above, many density estimation algorithms
use hypothesis selection algorithms as fundamental sub-
routines. Density estimation is a very basic unsuper-
vised learning problem studied since the late nine-
teenth century, starting with the pioneering work of
Pearson [Pea95]. Since, it was systematically studied
for many natural classes, such as mixtures of gaus-
sians (e.g., [KMV12], [DKS17], [DKS18], [KSS18],
[ABM18], [ABDH+20]), histograms (e.g., [Pea95],
[LN96], [DL04], [CDSS14], [DLS18]), and more. For
a fairly recent survey see [Dia16].

Our result yields improved approximation guarantees
in many of these works. For example, plugging it in
[ABDH+20], instead of Yatracos’s algorithm which is

12In the language of the overview presented in Section II, these
operations include finding a distribution q such that v(q) ≤ v,
and solving the optimization problem corresponding to finding the
discriminating sets Fi.
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used as a black box, improves the approximation factor
from 3 to 2 for learning gaussians, and from 9 to 6
for learning mixtures of gaussians, while keeping the
sample complexity near-optimal.

Optimization and online learning: A key com-
ponent in our derivation is the cutting-with-margin
game. This game is reminiscent of dynamical pro-
cesses which are studied in optimization and online
learning. In particular, our solution to this game is
based on a greedy approach of maximizing the entropy
and a potential-based analysis which brings to mind
standard KL-divergence-based analyses of mirror-decent
and multiplicative-weights update (see, e.g., [AW01],
[AHK12], [Bub15]). Moreover, the cutting-with-margin
game naturally generalizes to arbitrary norms ∥ · ∥ by
replacing the ℓ1 norm with ∥ · ∥ and the simplex ∆n by
the unit ball with respect to ∥ · ∥. One can extend our
upper bound to arbitrary norms, by replacing the KL-
divergence with an appropriate Bregman divergence13,
as is the case for some optimization problems.

These technical interrelations suggest the possibility
of a deeper connection between the cutting-with-margin
game and online optimization. Ideally, one could hope
to find a formal reduction by phrasing our game as
a convex regret minimization problem. We remark,
however, that, unlike regret minimization problems, our
game is not defined via a local regret function, but rather
defined using a very global cost function. We leave this
further exploration of the relations between our game
to the regret minimization framework for future work.

The ellipsoid method: Another known algorithm
that is of a particular syntactic similarity to our cutting-
with-margin game is the well-known ellipsoid method
for solving linear programs: in both settings a player
maintains a convex set in Rn (in our game it is, without
loss of generality, a polytope, and when running the
ellipsoid method it is an ellipsoid), and in each step
it selects a point within that set. If the selected point
is not a “solution”, the player receives a separating
hyperplane from an adversary or a hyperplane oracle,
which separates the selected point from the target set
of solutions. Then, the player moves to a “smaller”
convex body that lies, in its entirety, on one side of
the hyperplane.

We note that a crucial difference between the two is
that when running the ellipsoid method, the ellipsoids

13Using the Bregman divergence, we have some preliminary results
regarding the round complexity of our cutting-with-margin game in
other norms. These include a nearly tight bounds for the ℓp norm,
when p ∈ (1, 2] ∪ {∞}: if p ∈ (1, 2) then the player can solve the
corresponding game in r = Op(1/ε2) rounds, and if p = ∞ a then
the round complexity of the game is Θ(n log(1/ε)).

are getting rapidly smaller in terms of volume (and, for
example, the next ellipsoids need not be contained in
the former one), and it is this decrease in volume that
allows for a fast convergence. In contrast, as will be
discussed in Section II-C, shrinking the volume of our
convex body between rounds of the cutting-with-margin
game does not suffice for convergence (and therefore,
“centroid-based” methods do not apply).

II. PROOF OVERVIEW

In this section we overview the proofs and highlight
some of the more technical arguments. The complete
proof can be found in the full version of this paper.

Let Q = {q1, . . . , qn} be a (known) finite refer-
ence class of distributions and let p denote the target
distribution to which we have sample access. Denote
i⋆ = argmini{TV(p, qi)}. Our goal is to use as few
samples as possible from p in order to find q such that
TV(p, q) ≤ 2 · TV(p, qi⋆) + ε.

A. A Geometric Approach to Hypothesis Selection

Our starting point is the 2-approximation algorithm of
[BKM19]. In this subsection we describe our interpre-
tation of their technique (some of the claims we make
here are implicit in their paper).

The basic observation of [BKM19] is that it suffices
to find a distribution q which is (almost) at least as close
to each of the qi’s as p,

(∀i) : TV(q, qi) ≤ TV(p, qi) + ε. (1)

Finding such a q suffices, as by the triangle inequality,
TV(q, p) ≤ TV(q, qi) +TV(qi, p) ≤ 2TV(qi, p) + ε for
every i, and, in particular, for i⋆.

This suggests the following definitions: for a distri-
bution q, let v(q) ∈ [0, 1]n denote the vector of all
distances v(q) = (TV(q, qi))

n
i=1; a vector v ∈ [0, 1]n

is feasible if v ≥ v(q) for some distribution q (when
we write u ≥ w for u,w ∈ [0, 1]n we mean (∀i) :
ui ≥ wi). With this notation, our goal is to find v such
that
(i) v ≤ v(p) + ε · 1n, where 1n is the all-one vector,

and
(ii) v is feasible.
Once such a vector v is obtained, one can find a
distribution q satisfying v(q) ≤ v, and consequently
a 2-approximation for the target distribution p.

Let P ⊆ [0, 1]n denote the set of all feasible vectors
v and note that it is convex and upward-closed. The
approach of [BKM19] for finding a desired v proceeds
in rounds, where in round k we find a vector uk that is
closer to the feasible set, while maintaining the invariant
that uk ≤ v(p):

5



1) Let u0 = 0⃗ ∈ [0, 1]n be the all-zero vector. Note
that u0 ≤ v(p), so u0 satisfies the above Item (i),
but not Item (ii) (except in trivial cases).

2) For k = 0, 1, . . .

a) If uk + ε · 1n is feasible (that is, if
d∞(uk,P) ≤ ε, where d∞(·, ·) denotes ℓ∞
distance), then output a q such that v(q) ≤
uk + ε · 1n (≤ v(p) + ε · 1n).

b) Else, use samples from p to derive uk+1

such that uk ≤ uk+1 ≤ v(p), and uk+1 is
“closer” (in some measure, see below) to P .

Selecting the new point uk+1: The crux of this
approach is the update step in which uk+1 is computed
given uk. Since d∞(uk,P) > ε, there exists a uk+1

such that uk ≤ uk+1 ≤ v(p) and d1(uk+1, uk) ≥ ε
2

(for instance, since there exists a coordinate i ∈ [n]
such that uk + ε

2 · ei < v(p), where ei is the ith unit
vector). [BKM19] show how to find such a uk+1 with
few queries (discussed next), and they use this uk+1

as their next point. However, since ∥1n∥1 = n, their
strategy may require Ω(nε ) rounds.

1) Implementing the Strategy:
Violated tests: We next explain how [BKM19] find

the coordinate i of uk that they wish to update. To this
end, observe that whenever uk + ε · 1n is not feasible
there is a hyperplane separating the point uk + ε · 1n
from the set P of feasible vectors, witnessing the fact
that d∞(u,P) > ε. We call a normal h ∈ ∆n to such
a hyperplane a “violated test” (here ∆n denotes the
simplex of all probability vectors in Rn). For u ∈ [0, 1]n

and d > 0, we denote the set of all violated tests
witnessing the fact that u+ d · 1n is not feasible by

Hd(u) =
{
h ∈ ∆n : h · u+ d < min

v∈P
h · v

}
.

From a test h to an updated point uk+1: We next
informally state a central lemma proved by [BKM19],
showing how to convert any violated test h to a new
point uk+1 (for a precise statement, see Lemma 12 in
[BKM19] or the full version of this paper).

Lemma 2. Using n statistical queries (queries of the
form p(F ) for some set F ), any h ∈ Hε(uk) can be
converted to a point uk+1 satisfying:

1) uk ≤ uk+1 ≤ v(p).
2) uk+1 passes the test induced by h: h /∈

H ε
2
(uk+1). This also implies that h · (uk+1 −

uk) > ε
2 (as h ∈ Hε(uk) implies h · uk +

ε < minv∈P h · v and h /∈ H ε
2
(uk+1) implies

h · uk+1 +
ε
2 ≥ minv∈P h · v).

Observe that the uk+1 constructed by this lemma (for
any h) satisfies d1(uk+1, uk) ≥ ε

2 (due to Item 2, recall

that h ∈ ∆n), and therefore it can be used to implement
the strategy of [BKM19].

Proving the lemma: While the proof of Lemma 2 is
pretty short, it is tricky. For completeness, we will next
give some intuition for it by showing how to construct
uk+1 for a specific (easy to handle) h.

Assume that uk + ε · 1n is not feasible and that h =
( 12 ,

1
2 , 0, . . . , 0) ∈ Hε(uk). Denote F = F (q1, q2) =

{x : q1(x) ≥ q2(x)}. (Observe that this is the so-
called Yatracos set which is used in Yatracos’s 3-
approximation algorithm and satisfies TV(q1, q2) =
q1(F )− q2(F )). Use samples from p to get an estimate
p̂(F ) of p(F ) up to an ε

4 additive term. Set zi = |p̂(F )−
qi(F )| − ε

2 for i = 1, 2 and zi = 0 for i ≥ 3. Obtain
uk+1 from uk by setting (uk+1)i = max{(uk)i, zi}.

The resulting uk+1 satisfies Item 1, as since |p(F )−
qi(F )| ≤ TV(p, qi) = (v(p))i it follows that zi ≤
(v(p))i. It also satisfies Item 2, as

h · uk+1 +
ε
2 = 1

2 ((uk+1)1 + (uk+1)2) +
ε
2 (2)

≥ 1
2 (z1 + z2) +

ε
2

≥ 1
2 (|p̂(F )− q1(F )|+ |p̂(F )− q2(F )|)

≥ 1
2 |q1(F )− q2(F )|

= 1
2TV(q1, q2) = min

v∈P
h · v,

where the last equality is because for every v = v(q) ∈
P it holds that h · v = 1

2 (v1 + v2) = 1
2 (TV(q, q1) +

TV(q, q2)) ≥ 1
2TV(q1, q2) and for v = v(q1) ∈ P it

holds that h · v = 1
2TV(q1, q2).

Query/sample complexity: For a general h, the
proof of the lemma is more involved and crucially relays
on the Minmax theorem. The point uk+1 is computed
as (uk+1)i = max{(uk)i, zi}, where for every i ∈ [n],
zi is of the form zi = |p̂(Fi) − qi(Fi)| − ε

2 , for some
set Fi and where p̂(Fi) is an approximation of p(Fi) to
within an additive error of c ·ε for some constant c < 1.

Computing uk+1 requires n statistical queries (the
values of p(Fi) for all i’s), where each needs to be
approximated to within an additive error of c · ε. While
approximating each query separately requires Θ(1/ε2)
samples, by a standard combination of Chernoff and
union bound, all n queries can be approximated using
O(log n/ε2) samples.

B. The Cutting-With-Margin Game: A Dual Perspective
Recall that we wish to find a rule for updating uk to

a uk+1 satisfying uk < uk+1 < v(p) that will allow us
to reach a feasible point after the minimum number of
steps. We wish to define a measure of progress to help
us choose our next uk+1. As discussed above, [BKM19]
use the ℓ1 norm as their measure of progress, but this
results in a slow convergence to a feasible point.
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To find a better progress measure, we revisit
Lemma 2, specifically Item 2 that shows that by up-
dating uk using the test h ∈ Hε(uk), it is not only
that h /∈ Hε(uk+1), but also h /∈ H ε

2
(uk+1). We

interpret this as implying that the set of violated tests
can shrink substantially between rounds. This suggests
a new approach: instead of measuring progress by
comparing the locations of uk and uk+1, we can take a
“dual” view and compare the sizes of the sets Hε(uk)
and Hε(uk+1) of violated tests that we still need to
rule out (recall that if this set is empty, we have found
a feasible point). We note that this “dual” view is lossy
(and is not a dual in the standard sense) as the mapping
uk → Hε(uk) may not be one-to-one.

The cutting-with-margin game: Consider a se-
quence 0⃗ = u0 ≤ u1 ≤ . . . ≤ um in which the
point uk+1 was produced from uk by selecting some
hk ∈ Hε(uk) and applying Lemma 2, and where um is
feasible. Denote Hk = Hε(uk). It can be shown that Hk

is convex for every k, and that H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃
Hm = ∅ (Hm = ∅ as um is feasible). Furthermore, we
are able to prove that Hk+1 is disjoint from an ℓ1 ball
of radius Ω(ε) around hk. Intuitively, this is because
hk /∈ H ε

2
(uk+1) (Lemma 2, Item 2) implies that the

generated uk+1 not only passes the test induced by hk,
but also passes all “similar” tests.

The above discussion gives rise to the cutting-with-
margin game discussed in the introduction (see Sec-
tion I-B1). Recall that this is a game between a player
and an adversary, and it is played over a convex
body H ⊆ ∆n known to both the player and the
adversary. Let H0 = H; in every round k = 0, 1, . . .
of the game, the player selects a point hk ∈ Hk and the
adversary picks Hk+1 ⊆ Hk to be any convex set which
is disjoint from the ℓ1 ball of radius ε around hk. The
game ends when the set Hk is empty. See illustration in
Figure 1. Of course, the task is now to find a strategy
that solves this game with minimum number of rounds.
Note that, in the language of this game, the strategy of
[BKM19] selects an arbitrary hk ∈ Hε(uk) in round k.
We will next show a strategy for selecting hk that will
allow for a faster convergence.

C. Warm-up: poly(log n/ε2) Sample Complexity

So far, we reduced the hypothesis selection prob-
lem to solving the cutting-with-margin game. We next
outline a solution for the cutting-with-margin game
in Õ(log n/ε2) rounds. Since the implementation of
each round requires O(log n/ε2) samples (see Sec-
tion II-A1), this implies an algorithm for hypothesis
selection with Õ(log2 n/ε4) sample complexity.

First observe that an equivalent way of presenting
the cutting-with-margin game lets the adversary pick in
each round a halfspace Hk which is disjoint from the ℓ1
ball of radius ε around hk, and the game continues with
Hk+1 = Hk ∩Hk. This presentation is reminiscent of
Grunbaum’s inequality [Grü60], which guarantees that
if the player picks the centroid (which is a standard
way of defining the “center” of a body) of Hk then
vol(Hk+1) ≤ (1 − e−1) · vol(Hk), where vol(·) is the
standard (Lebesgue) volume. While the centroid is an
intuitive choice for our player, a counter strategy by the
adversary will pick bodies that have small volumes but
large diameters. Indeed, note that as long as the diameter
of the body is greater than ε, the adversary can force at
least one additional round. This shows that the volume
is too crude of a measure for our game. Ideally, we
would have wanted to use a different “centroid” that
satisfies an analogous property with respect to the di-
ameter (say, diameter(Hk+1) ≤ 99

100 · diameter(Hk)).
Unfortunately, no such object exists.

The approach we take for designing our player stems
from the observation that if the player could always
pick a point hk ∈ ∆n that is close to the uniform
distribution h⋆ = ( 1n , . . . ,

1
n ), then the game would

have been solved in a few rounds. It is the easiest to
see why when using the “primal” point of view from
Section II-A: indeed, assume uk+ε·1n is separated from
P by a hyperplane perpendicular to h⋆ = ( 1n , . . . ,

1
n ).

Then, since uk+1 ≥ uk lies on the other side of that
hyperplane, it follows that |uk+1−uk|1 ≥ εn. So, when
updating from uk to uk+1, the ℓ1 norm increases by at
least εn (recall from Section II-A that in the [BKM19]
strategy the ℓ1 norm increases by only Ω(ε) in each
round). Thus, since in [0, 1]n the ℓ1 norm is bounded
by n, the total number of such steps is at most O(1/ε).
Of course, this strategy is impossible, as if h1 = h⋆ then
a ball of radius ε is disjoint from Hk, for all k > 1.

Entropy as a progress measure: Inspired by the
above intuition, our approach will be to set hk ∈ Hk

to be as “close” to h⋆ as possible. Indeed, we select
hk ∈ Hk that maximizes the entropy function (here
we view the point hk ∈ ∆n as a distribution). This
corresponds to measuring the distance from the uniform
distribution h⋆ using KL-divergence. The reason that the
entropy function gives an efficient solution for our game
boils down to that it is (i) strongly convex w.r.t ℓ1 (as is
evident by Pinsker’s Inequality), (ii) bounded by log(n)
over the simplex. Roughly speaking, strong convexity
means that in every step the entropy drops by Ω(ε2).
This, combined with the fact that the entropy is bounded
by log(n), implies our Õ(log(n)/ε2) solution for the
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hk

Hk

Hk+1

𝜺

Figure 1. An illustration of the cutting-with-margin game: in
each step k the player picks a point h ∈ Hk and announces it
to the adversary. The adversary then replies with Hk+1 ⊆ Hk

which is convex and disjoint from an ℓ1 ball of radius ε around
hk. The players’ goal is to empty the set as fast as possible
(i.e., to reach Hk = ∅), and the adversary’s goal is to delay
the player.

cutting-with-margin game14.
As discussed in the introduction, entropy and KL-

divergence based strategies are often used in the context
of optimization and regret minimization, basically for
similar reasons (convexity and boundedness). However,
our game is not defined by a cost function measuring
the cost of each round separately, but rather, our “cost
function” is the length of the game.

D. Near-Optimal Sample Complexity

In Section II-C, we gave a hypothesis selection
algorithm with Õ(log2 n/ε4) samples, by solving the
dual game. While this algorithm uses exponentially
less samples than the one by [BKM19], it still sub-
optimal. We next show how to obtain an algorithm with
a near-optimal sample complexity of Õ(log n/ε2), by
first improving the dependence on n to Õ(log n) (less
involved), and then improving the dependence on ε to
O(1/ε2) (one of the main technical contributions of this
paper). Since the sample complexity of our resulting
algorithm (almost) matches Yatracos’s, it can replace
Yatracos’s algorithm in density estimation algorithms
to obtain a better approximation factor, while keeping
the same low sample complexity.

14Given that, it is natural to look for a strongly convex function
over the simplex that is bounded by ≪ log(n). However, no such
function exists.

1) Optimal Dependence on n: We revisit the basic
observation from Section II-A that finding a distribution
q satisfying (∀i) : TV(q, qi) ≤ TV(p, qi)+ ε suffices in
order to get a 2-approximation for hypothesis selection
(see Equation (1)). We observe that it also suffices to
find q that only satisfies TV(q, qi⋆) ≤ TV(p, qi⋆) + ε
(recall that i⋆ minimizes TV(p, qi)) for exactly the
same reason: TV(q, p) ≤ TV(q, qi⋆) + TV(qi⋆ , p) ≤
2TV(qi⋆ , p) + ε. Thus, it suffices for our algorithm to
maintain the invariant (uk)i⋆ ≤ (v(p))i⋆ , instead of
uk ≤ v(p). This suggests that we can relax Item 1
in Lemma 2 and only require (uk+1)i⋆ ≤ (v(p))i⋆ (in
addition to uk ≤ uk+1).

Due to the above, had we known i⋆, we would only
shoot for a good approximation (to within c · ε) of
(uk+1)i⋆ , which means that Lemma 2 can use only
O(1/ε2) samples (to get a good approximation of
p(Fi⋆)). But, we don’t know the identity of i⋆. The
crucial observation here is that this does not matter. We
can use the same O(1/ε2) samples to evaluate each
of the n statistical queries corresponding to each of
the coordinates of uk+1. Of course, since we are using
too few samples, some of these coordinates will not be
well approximated. However, it is likely that each one
by itself will, and, in particular, this will be the case
for (uk+1)i⋆ . In other words, since we only care about
(uk+1)i⋆ , we no longer have to pay for a costly union
bound over all n coordinates. (We also show that Item 2
in Lemma 2 still holds under this approximation using
an averaging argument).

2) Optimal Dependence on ε: Recall that in each
step of the cutting-with-margin game, the player picks
a point hk ∈ Hk, and the adversary sets Hk+1 ⊆ Hk

by cutting away an ℓ1 ball of radius ε around hk.
The algorithm we have so far uses Ω(log n/ε4) sam-
ples from p: every round uses Θ(1/ε2) samples and
maxh∈Hε(uk){H(h)} drops by Ω(ε2) (recall that, to
begin with, the entropy is at most log n and we want it
to drop to 0).

To reduce the sample complexity, we move away
from this “static” type of algorithms and design a
“dynamic” algorithm whose number of samples per
round may vary (but, will never exceed Ω(1/ε2)).
The important property of the new algorithm is that
if the algorithm samples more points from p, then
the adversary cuts away a larger ℓ1 ball around hk.
Specifically, if O(1) points are sampled then the radius
of the removed ball is ε, and if O(1/ε2) points are
samples then the radius removed ball will be Ω(1). We
will show that this coupling of the number of samples
used in a step with the amount of progress made in that
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step (instead of using the maximum number of samples
in every step and expecting the minimum progress)
enables a win-win analysis which implies the desired
saving in the sample complexity.

Bounding the radius of the removed ball: To ex-
plain how this idea is implemented, we need to dive into
the details of the algorithm. Recall that the algorithm
aims to find a point v such that vi⋆ ≤ TV(p, qi⋆) + ε,
and for which Hε(v) = ∅. Assume that the current
point uk satisfies d∞(uk,P) = d ≫ ε (which means
Hd(uk) = ∅) and that we aim at reducing the distance
to, say, 3d

4 . That is, we want to get to a point u such that
d∞(u,P) ≤ 3d

4 , or, equivalently, H 3d
4
(u) = ∅. Recall

from Section II-A that towards this, we pick a violated
test hk ∈ H 3d

4
(uk) which, by applying Lemma 2, yields

the new point uk+1 ∈ [0, 1]n. Of course, the lemma uses
samples from p to compute this uk+1. As we soon see,
in some cases it will be worthwhile for our algorithm to
only compute a crude approximation of this uk+1 using
fewer samples. Part of the difficulty is to decide on the
quality of this approximation without knowing uk+1.

Nevertheless, imagine for a moment that the algo-
rithm does know this uk+1 and uses it as its next
point. How much “progress” does this imply in the
cutting-with-margin game? That is, how much smaller
is H 3d

4
(uk+1) compared to H 3d

4
(uk)? Denote wk =

uk+1 − uk. We next show that H 3d
4
(uk+1) is disjoint

from an ℓ1 ball of radius

r =
d

8∥wk∥∞
(3)

around hk (we wish for r to be as large as possible).
Intuitively, if ∥wk∥∞ is small, it means that we have
made progress in many coordinates (though the progress
in each might be relatively small). Since we are getting
close to P in many directions, this should imply that
uk+1 passes many of the tests hk that were violated by
uk, and thus that H 3d

4
(uk+1) is much smaller.

More formally, let h ∈ H 3d
4
(uk+1), Equation (3)

follows from:

∥hk − h∥1 · ∥wk∥∞ ≥ (hk − h) · (uk+1 − uk) ≥ d
8 .

Here, the first inequality is due Hölder’s Inequality. The
second inequality is because hk ·(uk+1−uk) ≥ 3d

8 (due
to Lemma 2, Item 2) and because h · (uk+1 − uk) ≤ d

4

(since h ∈ H 3d
4
(uk+1) it holds that h · uk+1 + 3d

4 <

minv∈P h · v, while since h /∈ Hd(uk) = ∅ it holds that
h · uk + d ≥ minv∈P h · v).

Our “win-win” strategy: The take home message
from the above discussion is that:

If ∥wk∥∞ is small then H 3d
4
(uk+1) is small.

We next show that this relation leads us to a “win-win”
situation: if ∥wk∥∞ is large, it suffices to only crudely
approximate wk, and we save on samples. However, if
∥wk∥∞ is small, H 3d

4
(uk+1) is small and we made a

lot of progress towards ruling out all violated tests.
To see the relation between ∥wk∥∞ and the number

of samples required to approximate wk, first assume that
wk is uniform over a set of coordinates of size m (i.e.,
for every i ∈ [n], either (wk)i = 1/m or (wk)i = 0).
Now, if m is small than all non-zeros coordinates of wk

are large, and thus wk can be reasonably approximated
with few samples. (In fact, the number of samples scales
with (1/∥wk∥∞)2).

Slicing: Of course, wk may not be uniform on a
set. To deal with such wk’s, we partition wk to log(1/d)

many “slices” wk = w1
k+ . . .+w

log(1/d)
k such that each

wℓ
k is almost uniform over a set (specifically, for ℓ <

log(1/d), each of the coordinates of wℓ
k is either 0 or

in (2−ℓ, 2−(ℓ−1)]). We then try to identify a slice with a
significant contribution to hk ·wk =

∑
ℓ∈[log(1/d)] hk ·wℓ

k

(recall that hk · wk ≥ 3d
8 due to Lemma 2, Item 2).

However, since wk is not known to the algorithm,
we use samples to learn it “slice-by-slice”, starting by
approximating w1

k, the slice containing the largest values
and requiring the least number of samples to estimate,
and continuing to the slices that require more samples,
until reaching a “good” slice. We mention that this slice-
searching process is equivalent to playing the dual game
with different ε values.
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tograms. In Sébastien Bubeck, Vianney Perchet,
and Philippe Rigollet, editors, Proceedings of
the 31st Conference On Learning Theory, vol-
ume 75 of Proceedings of Machine Learning
Research, pages 819–842. PMLR, 06–09 Jul
2018.

[DS14] Amit Daniely and Shai Shalev-Shwartz. Opti-
mal learners for multiclass problems. In Maria-
Florina Balcan, Vitaly Feldman, and Csaba
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