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—— Abstract

For a directed graph G with n vertices and a start vertex ustart, we wish to (approximately) sample
an L-step random walk over G starting from ustars with minimum space using an algorithm that only
makes few passes over the edges of the graph. This problem found many applications, for instance,
in approximating the PageRank of a webpage. If only a single pass is allowed, the space complexity
of this problem was shown to be g)(n - L). Prior to our work, a better space complexity was only
known with O(v/L) passes.

We essentially settle the space complexity of this random walk simulation problem for two-pass
streaming algorithms, showing that it is (:)(n -+/L), by giving almost matching upper and lower
bounds. Our lower bound argument extends to every constant number of passes p, and shows
that any p-pass algorithm for this problem uses ﬁ(n LY/ ) space. In addition, we show a similar
é(n -v/L) bound on the space complexity of any algorithm (with any number of passes) for the
related problem of sampling an L-step random walk from every vertex in the graph.
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1 Introduction

1.1 Background and Motivation

Graph streaming algorithms. Graph streaming algorithms have been the focus of extens-
ive study over the last two decades, mainly due to the important practical motivation in
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analyzing potentially huge structured data representing the relationships between a set of
entities (e.g., the link graph between webpages and the friendship graph in a social network).
In the graph streaming setting, an algorithm gets access to a sequence of graph edges given
in an arbitrary order and it can read them one-by-one in the order in which they appear
in the sequence. The goal here is to design algorithms solving important graph problems
that only make one or few passes through the edge sequence, while using as little memory as
possible.

Much of the streaming literature was devoted to the study of one-pass algorithms and
an Q(n?) space lower bound for such algorithms was shown for many fundamental graph
problems. A partial list includes: maximum matching and minimum vertex cover [15, 19], s-¢
reachability and topological sorting [7, 15, 22], shortest path and diameter [15, 16], maximum
and (global or s-t) minimum cut [39], maximal independent set [3, 13], and dominating set
[4, 14].

Recently, the multi-pass streaming setting received quite a bit of attention. For some
graph problems, allowing a few passes instead of a single pass can reduce the memory
consumption of a streaming algorithm dramatically. In fact, even a single additional pass
over the input can already greatly enhance the capability of the algorithms. For instance,
minimum cut and s-t minimum cut in undirected graphs can be solved in two passes with
only 5(71) and O(n°/3) space, respectively [33] (as mentioned above, any one-pass algorithm
for these problems must use Q(n?) space). Additional multi-pass algorithms include an O(1)-
pass algorithm for approximate matching [17, 19, 28, 29], an O(loglogn)-pass algorithm
for maximal independent set [3, 13, 18], and O(logn)-pass algorithms for approximate
dominating set [4, 8, 21] and weighted minimum cut [30].

Simulating random walks on graphs. Simulating random walks on graphs is a
well-studied algorithmic problem with may applications in different areas of computer science,
such as connectivity testing [32], clustering [1, 2, 10, 36], sampling [26], generating random
spanning tree [35], and approximate counting [25]. Since most applications of random-walk
simulation are concerned with huge networks that come from practice, it is of practical
interest to design low-space graph streaming algorithms with few passes for this problem.

In an influential paper by Das Sarma, Gollapudi and Panigrahy [34], an 6(\FL)—pass and
a(n) space algorithm for simulating L-step random walks on directed graphs was established.
(Streaming algorithms with almost linear space complexity, like this one, are often referred
to as semi-streaming algorithms). Using this algorithm together with some additional ideas,
[34] obtained space-efficient algorithms for estimating PageRank on graph streams. Recall
that the PageRank of a webpage corresponds to the probability that a person that randomly
clicks on web links arrives at this particular page'. However, scanning the sequence of edges
6(@) times may be time-inefficient in many realistic settings.

In the one-pass streaming setting, a folklore algorithm with 5(71 - L) space complexity
for simulating L-step random walks is known [34] (see Subsection 2.1 for a description of
this algorithm), and it is proved to be optimal [27]. We mention that the work of [27]
also considers random walks on undirected graphs, and shows that é(n . \/Z) space is both
necessary and sufficient for simulating L-step random walks on undirected graphs with n
vertices in one pass.

Both of these known algorithms for general directed graphs have their advantages and

L Given a web-graph G = (V, E) representing the webpages and links between them, the PageRank of
the vertices satisfy PageRank(u) = Z(U’u)eE PageRank(v)/d(v), simultaneously for all u, where d(-)
denotes the out-degree, [6].
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disadvantage (either requiring many passes or more space). A natural question is whether
one can interpolate between these two results and obtain an algorithm with pass complexity
much smaller than /L, yet with a space complexity much smaller than n - L. Prior to our
work, it was not even known if an o(\@)—pass streaming algorithm with n - L%% space is
possible.

1.2 Our Results

We answer the above question in the affirmative by giving a two-pass streaming algorithm
with 5(71 . \/f) space for sampling a random walk of length L on a directed graph with
n vertices. We complement this result by an almost matching Q(n . \/f) lower bound on
the space complexity of every two-pass streaming algorithm for this problem. In fact, our
two-pass lower bound generalizes to an Q(n LY P) lower bound on the space consumption of
any p-pass algorithm, for a constant p.

1.2.1 Two-Pass Algorithm for Random Walk Sampling

For a directed graph G = (V, E), a vertex usat € V' and a non-negative integer L, we use
RW(L;(ustart) to denote the distribution of L-step random walks (v, ...,vr) in G starting
from vy = ustarr (see Subsection 3.2 for formal definitions). For a distribution D over a
finite domain €2, we say that a randomized algorithm samples from D if, over its internal
randomness, it outputs an element w € 2 distributed according to D. We give a space-efficient
streaming algorithm for (approximate) sampling from RWg(usta,t) with small error:

» Theorem 1 (Two-pass algorithm). There exists a streaming algorithm Awwo-pass that given

an n-vertezx directed graph G = (V, E), a starting verter usiarr € V', a non-negative integer L

indicating the number of steps to be taken, and an error parameter § € (0,1/n), satisfies the

following conditions:

1. Avwo-pass uses at most 5(71 VL - log 5‘1) space’? and makes two passes over the input
graph G.

2. Aqwo-pass samples from some distribution D over VEFL satisfying ||D—RW§(ustm)||TV <.

Our algorithm can also be generalized to the turnstile model, paying a poly logn factor
in the space usage. See Subsection 4.4.

Observe that our algorithm Ao pass allows for a considerable saving in space compared
to the folklore single-pass algorithm (O(n - v/L) vs O(n - L)) and considerable saving in the
number of passes compared to [34] (2 vs O(VL)), at least if we allow some small error 6.

We mention that Awyo-pass can also be used to sample a random path from every vertex®
of G with the same storage cost of 5(n -vV/L -logé~') and two passes. This is because
Atwo-pass satisfies the useful property of obliviousness to the starting vertex Ustart, meaning
that it scans the input graph before the start vertex is revealed. More formally, we say that
an algorithm A is oblivious to the starting vertex if it first runs a preprocessing algorithm
P and then a sampling algorithm S; the algorithm P reads the input graph stream without
knowing the starting vertex usar (if A is a p-pass streaming algorithm, P makes p passes

2 The O hides logarithmic factors in n. We may assume without loss of generality that L < n2, as
otherwise n - vL > n? and that algorithm can store the entire input graph.

3 Note, however, that the random walks from different vertices in the graph may be correlated.

4 We count towards the space complexity only the space on the work tape used by the algorithm and do
not count space on the output tape (otherwise an Q(n - L) lower bound is trivial).
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over the input graph stream), and outputs a string; S takes both the string outputted by P
and a starting vertex ustart as an input, and outputs a walk on the input graph G.

1.2.2 Lower Bounds

We prove the following lower bound:

» Theorem 2 (Multi-pass lower bound). Fiz a constant 8 € (0,1] and an integer p > 1. Let
n > 1 be a sufficiently large integer and let L = [n”]. Any randomized p-pass streaming
algorithm that, given an n-vertex directed graph G = (V, E) and a starting vertex usgan €V,
samples from a distribution D such that |D—RW$ (ustart)||Tv < 1— requires Q(n- L'/P)
space.

1
log™@n

We remark that the theorem above shows that no low-space algorithms can achieve
sampling error 1 — 1/poly log(n), which is quite strong as usual applications of simulating
random walks would require at least a small constant sampling error. Plugging in p = 2
in Theorem 2, implies that our two-pass algorithm from Theorem 1 is essentially optimal.
Also, with p = 1, the theorem reproduces the one-pass lower bound by [27]. In addition,
Theorem 2 rules out the possibility of a semi-streaming algorithm with any constant number
of passes.

Recall from Subsubsection 1.2.1, that our two-pass algorithm Aye-pass utilizes 6(71 . \/Z)
space and is oblivious to the starting vertex. Interestingly, we are able to show that any
oblivious algorithm for random walk sampling (with any number of passes) requires Q(n - v/L)
space. Thus, any algorithm for random walk sampling with significantly less space than ours,
has to be inherently different and have its storage depend on the starting vertex. Our lower
bound for oblivious algorithms also implies that Awo-pass gives an almost optimal algorithm
for sampling a pass from every start vertex, even if any number of passes are allowed.

» Theorem 3 (Lower bound for oblivious algorithms). Let n > 1 be a sufficiently large integer
and let L denote an integer satisfying that L € [log*® n,n]. Any randomized algorithm that is
oblivious to the start vertex and given an n-vertex directed graph G = (V, E) and a starting
vertex ustar € V', samples from a distribution D such that |D — RWg(ustm)HTv <1-— 1

~ log™n
requires Q(n - /L) space”.

1.3 Discussions and Open Problems

Better space complexity with more passes? Our results leave open a couple of interesting
directions for future work. The most significant open question is to understand the streaming
space complexity of sampling random walks with more than two passes. In particular,
Theorem 2 implies that a three-pass streaming algorithm has space complexity at least
Q(n - L'/3). Can one get O(n - L'/3) space with three passes, or at least O(n - L/27¢) space,
for some constant € > 0?7 Note that, as explained in Subsubsection 1.2.2, such an algorithm
must utilize its knowledge of the starting vertex when it reads the graph stream.

Theorem 2 does not rule out semi-streaming 5(n) space algorithms even when p is a
moderately growing function of n and L. In [34], it is shown that such an O(n) space algorithm
exists with p = O(v/L) passes. Does a semi-streaming algorithm with, say, poly log(L) passes
exist?

5 In fact, we show that Theorem 3 holds even if the preprocessing algorithm P and the sampling algorithm
S are allowed to use an arbitrarily large amount of memory, as long as P passes a string of length at
most (roughly) n- V'L to S.
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Undirected graphs? It would also be interesting to see what is the best two-pass streaming
algorithm for simulating random walks on undirected graphs. Specifically, is it possible to
combine our algorithm with the algorithm from [27] to obtain an improvement over the
optimal 5(1@ . \E) space complexity of a one-pass streaming algorithm for this problem?

Only outputting the end vertex? Finally, our lower bounds only apply to the case where
the algorithms need to output an entire random path (v, ...,vr). If instead only the last
vertex vy, in the random walk is required, can one design better two-pass algorithms or prove
a non-trivial lower bound?

2  Techniques
2.1 The Two-Pass Algorithm

We next overview our two-pass algorithm from Theorem 1, that simulates random walks

with only O(n - v/L) space.

The folklore one-pass algorithm. Before discussing our algorithm, it would be instructive
to review the folklore O (n- L)-space one-pass algorithm for simulating L-step random walks in
a directed graph G = (V, E) (for simplicity, we will always assume L < n in the discussions).
The algorithm is quite simple:

1. For every vertex v € V, sample L of its outgoing neighbors with replacement and store
them in a list L3¥® of length L (that is, for each j € [L], the j-th element of L3¢ is an
independent uniformly random outgoing vertex of v). This can be done in a single pass
over input graph stream using reservoir sampling [37].

2. Given a starting vertex usiat € V, our random walk starts from wuga: and repeats the
following for L steps: suppose we are currently at vertex v and it is the k-th time we visit
this vertex, then we go from v to the k-th vertex in the list L.

It is not hard to see that the above algorithm works: whenever we visit a vertex v € V,
the next element in the list L$?¥¢ will always be a uniformly random outgoing neighbor of v,
conditioned on the walk we have produced so far; and we will never run out of the available
neighbors of v as |L$v¢| = L.

A naive attempt and the obstacles. Since we are aiming at only using 5(n -V/L) space,
a naive attempt to improve the above algorithm is to just sample and store 7 = O(v/L)
outgoing neighbors instead of L neighbors, and simulate the walk starting from uga. in the
same way. The issue here is that, during the simulation of an L-step walk, whenever one
visits a vertex v more than 7 times, one would run out of available vertices in the list L3¢,
and the algorithm can no longer produce a legit random walk. For a simple example, imagine
we have a star-like graph where n — 1 vertices are connected to a center vertex via two-way
edges. An L-step random walk starting at the center would require at least (L) samples
from the center’s neighbors, and our naive algorithm completely breaks.

Our approach: heavy and light vertices. Observe, however, that in the above example of
a star-like graph, we are only at risk of not storing enough random neighbors of the center
node, as an L-step random walk would only visit the other non-center vertices a very small
number of times. Thus, the algorithm may simply record all edges from the center with only
O(n) space. This observation inspires the following approach for a two-pass algorithm:
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1. In the first pass, we identify all the vertices that are likely to be visited many times by a
random walk (starting from some vertex). We call such vertices heavy, while all other
vertices are called light.

2. In the second pass, we record all outgoing neighbors of all heavy vertices, as well as O(T)
random outgoing neighbors with replacement of each of the light vertices.

Observe that the obtained algorithm is indeed oblivious to the starting vertez: the two
passes described above do not use the starting vertex. Still, given the set of outgoing
neighbors stored by the second pass, we are able to sample a random walk from any start
vertex.

First pass: how do we detect heavy vertices? The above approach requires that we detect,
in a single pass, all vertices v that with a decent probability (say, 1/poly(n)), are visited
more than O(7) times by an L-step random walk. To this end, we observe that if a random
walk visits a vertex v more than 7 times, this random walk must follow more than 7 — 1
self-circles around v in L steps. This, in turn, implies that a random walk that starts from v
is likely to return to v in roughly L/7 = O(v/L) steps.

The above discussion suggests the following definition of heavy vertices: a vertex v
is heavy, if a random walk starting from v is likely (say, with probability at least 1/3)
to revisit v in O(\E) steps. Indeed, this property is much easier to detect: we can run
O(logn) independent copies of the folklore one-pass streaming algorithms to sample O(logn)
O(\/E)-step random walks starting from v, and count how many of them return to v at some
step.

Second pass: can we afford to store the neighbors? In Lemma 18, we show that for a
light vertex v, an L-step random walk starting at any vertex visits v O(v/L) times with
high probability. Therefore, in the second pass, we can safely record only O(v/L) outgoing
neighbors for all light vertices. Still, we have to record all the outgoing neighbors for heavy
vertices.

The crux of our analysis is a structural result about directed graphs, showing that the
total outgoing degree of all heavy vertices is bounded by O(n - \/f), and therefore we can
simply store all of their outgoing neighbors. This is proved in Lemma 10, which may also be
of independent interest.

Intuition behind the structure lemma. Finally, we discuss the insights behind the above
structure lemma for directed graphs. We will use dout(v) to denote the number of outgoing
neighbors of v. For concreteness, we now say a vertex v is heavy if a random walk starting
from v revisits v in v/L steps with probability at least 1/3.

Let Vheawy € V be the set of heavy vertices and let v € Vheawy. By a simple calculation,
one can see that for at least a 1/6 fraction of outgoing neighbors u of v, a random walk
starting from wu visits v in /L steps with probability at least 1 /6. The key insight is to
consider the number of pairs (u,v) € V2 such that a random walk starting from u visits v in
V'L steps with probability at least 1 /6. We will use S to denote this set.

By the previous discussions, we can see that for each heavy vertex v, it adds at least 1/6
dout(v) pairs to the set S. Hence, we have

8122 Y doulv). (1)

ve Vheavy

| =
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On the other hand, it is not hard to see that for each vertex v, there are at most O(v/L)
many pairs of the form (v,u) € S, since a v/L-step walk can visit only v/L vertices. So
we also have

8] < O(nV'L). (2)
Putting the above (Equation 1 and Equation 2) together, we get the desired bound

3" dow(v) < O(VI).

ve ‘/heavy

2.2 Lower Bound for p-Pass Algorithms

We now describe the ideas behind the proof of Theorem 2, our ﬁ(n -LV/P ) space lower bound
for p-pass randomized streaming algorithms for sampling random walks. We mention that
many of the tools developed for proving space lower bounds are not directly applicable when
one wishes to lower bound the space complexity of a sampling task and are more suitable for
proving lower bounds on the space required to compute a function or a search problem5.

From sampling to function computation. Our way around this is to first prove a reduction
from streaming algorithms that sample a random walk from ustat to streaming algorithms
that compute the (p 4+ 1)-neighborhood of the vertex usiarc. This is done by considering a
graph where a random walk returns to the vertex usart every p + 2 steps. If p is a constant,
then a random walk of length L on such a graph can be seen as L/(p + 2) = O(L) copies of
a random walk of length p 4+ 2. Observe that if the (p + 1)-neighborhood of the vertex usiart
has (almost) L vertices (and the probability of visiting each vertex is more or less uniform),
then a random walk of length L is likely to visit all the vertices in the neighborhood and
an algorithm that samples a random walk also outputs the entire neighborhood with high
probability.

A lower bound for computing the (p + 1)-neighborhood via pointer-chasing. Having
reduced sampling a random walk to outputting the (p + 1)-neighborhood, we now need
to prove that a space efficient p-pass streaming algorithms cannot output the (p + 1)-
neighborhood of ugat, if this neighborhood has roughly L vertices. This is reminiscent of
the “pointer-chasing” lower bounds found in the literature.

Pointer-chasing results are typically concerned with a graph with p + 1 layers of vertices
(p layers of edges) and show that given a vertex in the first layer, finding a vertex that
is reachable from it in the last layer cannot be done with less than p passes, unless the
memory is huge. Classical pointer-chasing lower bounds (e.g., [31]), consider graphs where
the out-degree of each vertex is 1, thus the start vertex reaches a unique vertex in the last
layer. Unfortunately, this type of pointer-chasing instances are very sparse and a streaming
algorithm can simply remember the entire graph in one pass using O(n) memory.

Since we wish to have roughly L vertices in a (p+ 1)-neighborhood of ugtart, the out-degree
of each vertex should be roughly Q(Lﬁ) (assuming uniform degrees). Pointer-chasing lower
bounds for this type of dense graphs were also proved (e.g., [20] and [16]), showing that
p-pass algorithms essentially need to store an entire layer of edges, which is Q(n - L7+7) in

5 One such tool that cannot be used directly for our purpose is the very useful Yao’s minimaz principle [38]
that allows proving randomized communication lower bounds by proving the corresponding distributional
(deterministic) communication lower bounds.
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Figure 1 A depiction of our hard instance for p-pass streaming algorithms. Some edges omitted.

our case. However, this still does not give us the Q(n - L%) lower bound we aspire for (and
which is tight, at least for two passes).

Towards a tight lower bound: combining dense and sparse. To get a better lower bound,
we construct a hard instance that is a combination of the two above mentioned types of
pointer-chasing instances, the dense and the sparse. Specifically, for a p-pass lower bound,
we construct a layered graph with p + 2 layers of vertices Vi, ..., V42, where the first layer
has only one vertex usar and all the other layers are of equal size (see Figure 1). To ensure

that vertex ugar is reached every p + 2 steps, we connect all vertices in the last layer to ustart-

Every vertex in layers V5, ..., V,41 connects to a random set of roughly L# vertices in the
next layer. Using Guruswami and Onak style arguments ([20]), it can be shown that when
the edges are presented to the algorithm from right to left, finding a vertex in layer V4o
that is reachable form a given vertex in V, with a (p — 1)-pass algorithm requires Q(n - L%)
space. We “squeeze out” an extra pass in the algorithm by connecting the start vertex ustart
in V; to a single random vertex in V5. Note that with this construction, it is indeed the
case that a (p + 1)-neighborhood of ugt consists oflonly roughly L vertlices, but still, the
out-degrees of vertices in Vs, ..., Vg1 are roughly L? instead of only L7+T.

2.3 Lower bounds for Oblivious Algorithms

Finally, we discuss the intuitions behind the proof of Theorem 3, showing that any algorithm
that is oblivious to the starting vertex must use ﬁ(n . \E) space space. Our proof is based
on a reduction from a multi-output generalization of the well-studied INDEX problem for
one-way communication protocols, denoted by INDEX,, ;. In INDEX,, ¢, Alice gets ¢ strings
X1,...,X¢ € {0,1}™ and Bob gets an index ¢ € [¢]. Alice sends a message to Bob and then
Bob is required to output the string X;. (Note that when m = 1 it becomes the original
INDEX problem).

It is not hard to show that any one-way communication protocol solving INDEX,, , with
non-trivial probability (say, 1/poly log(m)) requires Alice to send at least Q(mf) bits to Bob
(see the full version of this paper [11] for details).

Our key observation here is that if there is a starting vertex oblivious algorithm A = (P, S)
with S space for approximate simulation of an L = O(m)-step random walk on a graph with
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n = O(y/m - £) vertices, then it implies a one-way communication protocol for INDEX,,
with communication complexity S and a decent success probability. Recall the lower bound
for INDEX,, ¢, we immediately have S = Q(mf) = Q(nv/L).

In more detail, given an m-bit string X, we will build an O(y/m)-vertex graph H(X) by
encoding all bits of X as existence/non-existence of edges in H (this is possible since there
are more than m potential edges in H). We also add some artificial edges to H to make sure
it is strongly connected. Our construction will make sure that an L = 5(m) steps random
walk in H will reveal all edges in H with high probability, which in turn reveals all bits of X
(see the proof of Theorem 3 in the full version of this paper for more details).

Now the reduction can be implemented as follows: given ¢ strings X1, ..., X, € {0,1}™,
Alice constructs a graph G = [_|f:1 H(X;), as the joint union of ¢ graphs. Note that G has
n = O(y/m - £) vertices. Alice then runs the preprocessing algorithm P on G to obtain a
string M, and sends it to Bob. Given an index i € [¢], Bob simply runs S with M together
with a suitable starting vertex inside the H(X;) component of G. By previous discussions,
this reveals the string X; with high probability and proves the correctness of this reduction.
Hence, the space complexity of A must be Q(mf) = Q(nv/L).

Organization of this paper

In Section 3 we introduce the necessary preliminaries for this paper. In Section 4 we present
our nearly optimal two-pass streaming algorithm for simulating random walks and prove
Theorem 1. See the full version of this paper [11] for the proof of Theorem 2 and Theorem 3.

3 Preliminaries

3.1 Notation

Let n € N. We use [n] to denote the set {1,...,n}. We often use sans-serif letters (e.g., X)
to denote random variables, and calligraphic font letters (e.g., X') to denote distributions.
For two random variables X and Y, and for Y € supp(Y), we use (X|Y =Y) to denote X
conditioned on Y =Y. For two lists a and b, we use a o b to denote their concatenation.

For two distributions D; and Ds on set X and ) respectively, we use D; ® D5 to denote
their product distribution over X’ x ), and ||D; — D2 ||Tv to denote the total variation distance
between them.

3.2 Graphs

In this paper we will always consider directed graphs without multi-edges. A directed G is a
pair (V, E), where V is the vertex set and E C V x V is the set of all edges.

For a vertex u in a graph G = (V, E), we let NG, (u) == {v : (u,v) € E} and N&(u) ==
{v : (v,u) € E}. We also use dS,(u) and d$(u) to denote its out and in degrees (i.e.,
INS (u)] and |[NG (u)]). For an edge (u,v) € E, we say v is the out-neighbor of u and u is

the in-neighbor of v.

Random walks on directed graphs. For a vertex u in a graph G = (V, E) and an non-
negative integer L, an L-step random walk (vg,v1,...,vr) starting at u is generated as
follows: set vy = u, for each i € [L], we draw v; uniformly random from NG, (u). We say
that vyg = u is the 0-th vertex on the walk, and v; is the i-th vertex for each i € [L]. We use
RW¢ (1) to denote the distribution of an L-step random walk starting from u in G.
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We use visitﬁ_’b} (u,v) to denote the probability of a b-step random walk starting from u
visits v between the a-th vertex and b-th vertex on the walk.
We often omit the superscript G when the graph G is clear from the context.

Starting vertex oblivious algorithms. Now we formally define a starting vertex oblivious
streaming algorithm for simulating random walks.

» Definition 4. We say a p-pass S-space streaming algorithm A for simulating random walks
is starting verter oblivious, if A can be decomposed into a preprocessing subroutine P and a
sampling subroutine S, such that:

1. (Starting vertex oblivious preprocessing phase) P makes p passes over the input
graph stream, using at most S words of space. After that, P outputs at most S words,
denoted as M.

2. (Sampling phase) S takes both the starting vertex usgare and M as input, and outputs a
desired walk starting from ustare, using at most S words of space.

3.3 Useful Concentration Bounds on Random Variables
The following standard concentration bounds will be useful for us.

» Lemma 5 (Multiplicative Chernoff bound, [12]). Suppose Xi,---, X, are independent
random variables taking values in [0,1]. Let X denote their sum and let ;1 = E[X] denote the
sum’s expected value. Then,

I

Pr(X > (14 0)u) <e 2%, V0 < 6,
52;L
PrX<(1-dpu <e 2, VO <6 <I.

In particular, we have that:

Pr(X > (1+0)p) < e #min(@1) V0 < 6,
52
Pr(\X—,u|25,u)§2-e_dTu, V0 <o < 1.

We also need the following Azuma-Hoeffding inequality.
» Lemma 6 (Azuma-Hoeffding inequality, [5, 23]). Let Zy, ..., Z, be random variables satisfy-
ing (1) E[|Z;]] < oo for every i € {0,...,n} and E[Z;|Zy, ..., Zi—1] < Z;i_1 for every i € [n]
(i.e., {Z;} forms a supermartingale) and (2) for every i € [n], |Z; — Z;—1| < 1, then for all
A >0, we have

Pr[Z, — Zy > N < exp(—\?/2n).

In particular, the following corollary will be useful for us.

» Corollary 7 (Azuma-Hoeffding inequality for Boolean random variables, [5, 23]). Let X1,..., X,
be random variables satisfying X; € {0,1} for eachi € [n]. Suppose that B[ X;| X1, ..., X;-1] <
p; for alli. Then for any X\ > 0,

Pr [Z Xi> A+ Zm] < exp(f)\Q/Qn).
i=1 i=1

Proof. For i € {0,...,n}, let Z; = Z;:I(Xj — p;). From the assumption one can see that
all the Z; form a supermartingale and |Z; — Z;_1| < 1, hence the corollary follows directly
from Lemma 6. |
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4 Two-Pass Streaming Algorithms for Simulating Directed Random
Walk

In this section, we present our two-pass streaming algorithms for simulating random walks
on directed graphs.

4.1 Heavy and Light Vertices
We first define the notion of heavy and light vertices.

» Definition 8 (Heavy and light vertices). Given a directed graph G = (V, E) with n vertices
and ¢ € N.
(Heavy vertices.) We say a vertex u is (-heavy in G, if visity g (u,u) > 1/3 (i.c., if a
random walk starting from w will revisit u in at most £ steps with probability at least 1/3.)
(Light vertices.) We say a vertex u is {-light in G, if visity ¢ (u,u) < 2/3 (i.e., if a
random walk starting from u will revisit u in at most £ steps with probability at most 2/3.)

We also let Vil (G) and Vi, (G) be the sets of (-heavy and L-light vertices in G. When
G and ¢ are clear from the context, we simply refer to them as Vheavy and Viighe.

» Remark 9. Note that if the revisiting probability is between [1/3,2/3], then the vertex is
considered to be both heavy and light.

The following lemma is crucial for the analysis of our algorithm.

» Lemma 10 (Upper bounds on the total out-degrees of heavy vertices). Given a directed
graph G with n vertices and ¢ € N, it holds that

Z dout(u) < O(TL . €)

ueVt (GQ)

heavy

Proof. We define a set S of pairs of vertices as follows:
S == {(u,v) € V? : visit|g ¢ (u, v) > 1/6}.

That is, a pair of vertices u and v belongs to S if and only if an ¢-step random walk starting
from w visits v with probability at least 1/6.
For each fixed vertex u, we further define

S, = {11 € Nout(u) | visitg ¢ (v, u) > 1/6}7
and
Hy = {v eV |visitp ¢ (u,v) > 1/6}.
The following claim will be useful for the proof.

> Claim 11. The following two statements hold:
1. For every u € V, it holds that |H,| < O(¢).
2. For every u € Vieavy, it holds that |S,| > 1/6 - dout(u).

Proof. Fixing u € V, the first item follows from the simple fact that

Z ViSit[()’g] (u, U) </l+1.
veV
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Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

Now we move to the second item, and fix u € Vheawy. For the sake of contradiction,
suppose that |S,| < 1/6 - dout(u). We have

visit(y g (u, u) = veNIOEm(u)[visit[M_l] (v, u)]
< veNIEt(u) [Visito,¢ (v, u)]
< Ue}&:(u)[v €81+ ve}\g’oi(u)[v ¢S,)-1/6<1/6+1/6 <1/3,
a contradiction to the assumption that u is heavy. |

Finally, note that by definition of H, and S, we immediately have

|S| = Z |Hu‘ > Z |Su|

ueV ueV

By Claim 11, we have

Z dout(u)§62|‘§u|§6Z‘Hu|§0(n£)a

UE Vheavy ueV uevV

which completes the proof.

4.2 A Simple One-Pass Algorithm for Simulating Random Walks

We first describe a simple one-pass algorithm for simulating random walks, which will be used
as a sub-routine in our two-pass algorithm. Moreover, this one-pass algorithm is starting
vertex oblivious, which will be crucial for us later.

Reservoir sampling in one pass. Before describing our one-pass subroutine, we need the
following basic reservoir sampling algorithm.

» Lemma 12 ([37]). Given input access to a stream of n items such that each item can be
described by O(1) words, we can uniformly sample m of them without replacement using
O(m) words of space.

Using m independent reservoir samplers each with capacity 1, one can also sample m
items from the stream with replacement in a space-efficient way.

» Corollary 13. Given input access to a stream of n items such that each item can be
described by O(1) words, we can uniformly sample m of them with replacement using O(m)
words of space.

Description of the one-pass algorithm. Now we describe our one-pass algorithm for sim-
ulating random walks. Our algorithm Agnepass is starting vertex oblivious, and can be
described by a preprocessing subroutine Pgne pass and a sampling subroutine Sgne-pass. Recall
that as defined in Definition 4, Ponepass takes a single pass over the input graph streaming
without knowing the starting vertex ustart, and Sone-pass takes the output of Ponepass together
with ustart, and outputs a desired sample fo the random walk.
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Algorithm 1 Preprocessing phase of Aone-pass: Pone-pass(G, T, Vsull)

Input: One pass streaming access to a directed graph G = (V, E). A parameter 7 € N. A
subset Vi C V, and we also let Veamp = V' \ Viunl.

1: For each vertex v € Vg, we record all its out-neighbors in the list L$2v¢. (That is, Vi
stands for the set of vertices that we keep all its edges.)

2: For each vertex v € Vgamp, using Corollary 13, we sample 7 of its out-neighbors uniformly
at random with replacement in the list L3V, (That is, Viamp stands for the set of vertices
that we sample some of its edges.)

3: For a big enough constant co > 1, whenever the number of out-neighbors stored exceeds
¢y - T - n, the algorithm stops recording them. If this happens, we say the algorithm
operates incorrectly and otherwise we say it operates correctly.

Output: A collection of lists [save — {L3ve} ey -

Algorithm 2 Sampling phase of Aone-pass: Sone-pass(V; Ustart, L, Viull, L€ = {L3}vev)

Input: A starting vertex ugare. The path length L € N. A subset Vi C V, and we also let
Veamp = V' \ Vauil.
1: Let vg = Ustart. For each v € V', we set k, = 1.
2: for 1:=1— L do
3: if v;_1 € V4 then

4: v; is set to be a uniformly random element from L33
5: else if k,,_, > [L;¥¢ | then

6: return failure

7 else

8: vi < (L3 ko, -

9: ky, < ky,_, +1.

10: end if

11: end for

Output: The walk (vg,v1,...,vp).

Analysis of the one-pass algorithm. Now we analyze the correctness of our one-pass
algorithm. We first observe its space complexity can be easily bounded.

» Observation 14 (Space complexity of Agnepass). Given a directed graph G = (V, E) with
n vertices. For every T € N and subset Vit C V', Pone-pass(G, T, V) always takes at most
O(7 - n) words of space.

Next we bound the statistical distance between its output distribution and the correct
distribution of the random walk by the following lemma.

» Lemma 15 (Correctness of Agne-pass). Given a directed graph G = (V, E) with n vertices. For
every integers T, L € N and subset Viy C V such that T'(n—|‘/}u|||)+zvewu” dout (V) < co-Tom,
let L5 be random variable of the output of Pone-pass(G, T, Viun). For every ustan € V, the
output distribution of Sone-pass(V; Ustarts Ls Viulls Esa"e) has statistical distance 3 to RWg(ustart),
where B is the probability that Sone-pass(V; Ustart, L, Viull, Esave) outputs failure.

Proof. Conclude from 7 (n — [Viul) + >, cvs, dout(v) < co - 71 that Pone pass(G, 7, Vun)
always operates correctly.

49:13

ICALP 2021



49:14

478
479
480
481
482
483
484

485

486
487

488

489
490

491

492

493
494

495

Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

To bound the statistical distance between the distribution of Sone-pass(V; Ustarts Ly Vi, Esa"e)
and RWY (ugtart). We construct another random variable (L)', in which for every vertex u,
we sample another L out-neighbors of u uniformly at random with replacement, and add
them to the end of the list L3¢ in [save,

Note that Sone-pass(V, Ustart, L, Vaulls (Esave)’ ) never outputs failure, and distributes ex-
actly the same as RWf(ustart). On the other hand, Sone-pass(V: Ustarts Ls Vaulls (Esa"e)’) and
Sone-pass (V; Ustarts L, Vaull, Esave) are the same as long as Sone-pass(V; Ustart; L, Viull, Esa"e) does not
output failure, which completes the proof. |

The following corollary follows immediately from the lemma above. (Note that this
special case exactly corresponds to the folklore one-pass streaming algorithm for simulating
random walks.)

» Corollary 16. Given a directed graph G = (V, E) with n vertices and an integer L € N. Let
Ls2¥e be random variable of the output of Pone-pass(G, L, D). For every usaa € V., the output
distribution of Sone-pass(V; Ustart, L, 0, LV®) distributes identically as RW% (Ustart) -

4.3 Two-Pass Streaming Algorithm for Simulating Random Walks

Description of the two-pass algorithm. Now we are ready to describe our two pass al-
gorithm Agyo-pass, which is also starting vertex oblivious, and can be described by the following
two sub-routines Piwo-pass a1d Stwo-pass-

Algorithm 3 Preprocessing phase of Awo-pass: Prwo-pass(G, L, 0)

Input: A directed graph G = (V, E) with n vertices. An integer L € N. A failure parameter
5 €(0,1/n). We also let £ =+/L, and v = ¢; - log 6~ ' where ¢; > 1 is a sufficiently large
constant to be specified later.

1: First pass: estimation of heavy and light vertices.

1. Run v independent instances of Pone_pass(G, £, ) and let (Ls2v¢)(1) . (L52v¢)(") be the
corresponding collections of lists.

2. For each vertex w € V, by running Sone-pass(V, u, £, ), (L#2v¢)(7)) for each j € [v], we
take v independent samples from RW?. Let w, be the fraction of these random walks
that revisit u in £ steps.

3. Let ‘7hea\,y be the set of vertices with w, > 0.5, and ﬁ;ght be the set of vertices with
Wy < 0.5.

2: Second Pass: heavy-light edge recording

1. Let Vi = ‘7heavy- .
2. Run Ponepass(G, v - £, Viun) to obtain a collection of lists L*2"e.

Output: The set Vi and the collection of lists Lsave,

Algorithm 4 Sampling phase of Auwo-pass: Stwo-pass (V; Ustares Ly Vaut, L = {L5}pev)

Input: A starting vertex ustare- The path length L € N. A subset Vg C V, and a collection
of lists Lsae.

Output: Simulate Sone-pass(V, Ustart; Ly Vil Esa"e) and return its output.
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Analysis of the algorithm. We first show that with high probability, ‘N/“ght and ‘N/heavy are
subsets of Viight and Vheavy respectively.

» Lemma 17. Given a directed graph G = (V, E) with n vertices, L € N and § € (0,1/n), let-
ting ¢ = V'L, with probability at least 1—5/2 over the internal randomness of Puyo-pass(G, L, 9),
it holds that Vight € Viight and Vheavy C Vheavy-

Proof. Setting c¢; in Algorithm 3 to be a large enough constant and applying Corollary 16 and
the Chernoff bound, with probability at least 1 —n-6* > 1—6/2, |w, — visitpy ¢ (u, u)| < 0.1
for every w € V. The lemma then follows from the definition of heavy and light vertices. <«

Next, we show that with high probability, a random walk does not visit a light vertex too
many times.

» Lemma 18. Given a directed graph G = (V, E) with n vertices, L € N and § € (0,1/n),
letting ¢ = VL and v = ¢, -logd~*, where ¢, > 1 is the sufficiently large constant, for every
vertex Usiarr € V' and vertex v € nght(G), an L-step random walk starting from usgan visits v
more than ~y - £ times with probability at most §/2n.

Proof. Suppose we have an infinite random walk W starting from wugga in G. Letting 7 = ¢,
the goal here is to bound the probability that during the first L steps, W visits v more than
7 times. We denote this as the bad event Epag.

Let Z; be the random variable representing the step at which W visits v for the i-th time
(if W visits v less than 4 times in total, we let Z; = 00). Epaq is equivalent to that Z,; < L.

Z.41 < L further implies that for at least (7 — ¢) i € [7], Z;31 — Z; < { and Z; < co. In
the following we denote this event as £ and bounds its probability instead.

For each i € [7], let Y; be the random variable which takes value 1 if both Z; < co and
Z;11 — Z; < { hold, and 0 otherwise. Letting Y<; = (Y1,...,Y;_1), the following claim is
crucial for us.

> Claim 19. For every i € [r] and every possible assignments Y; € {0,1}*~!, we have

Proof. By the Markov property of the random walk, and noting that Y; is always 0 when
Z; = oo, we have.

E[YilYai = Yai] =Y Pr(Zi = j|Y<i = Yo - E[Yi Yo = Yo, Z; =
7=0
3=0

To further bound the quantity above, recall that the event Z; = j means that the random
walk W starting from wugian visits the light vertex v for the ¢-th time at W’s j-th step, and we
have

EYi|Z; = j] = Pr[Y; = 1{Z; = j] = Pr[Ziy1 < j +{|Z; = j].

By the Markov property of the random walk W, Pr[Z;,1 < j + ¢|Z; = j] equals the
probability that a random walk starting from v revisits v in at most ¢ steps. By the definition
of light vertices, we can bound that by 2/3, which completes the proof.

<4
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Then by the Azuma-Hoeffding inequality (Corollary 7),
5’\}?[5bad] < 1\:/'\{[51}

iYi > (T_e)]

<exp(—Q(r—£-2/3-7)) <§/2n,

T

Il
sd

the last inequality follows from the fact that Q(7 — € —2/3-7) = Q(v), v = c¢1 - logd~! for a
sufficiently large constant ¢;, and § < 1/n. <

The correctness of the algorithm is finally completed by the following theorem.

» Theorem 20 (Formal version of Theorem 1). Given a directed graph G = (V, E) with n
vertices, L € N and § € (0,1/n). Let L5*¥¢ and Vg, be the two random variables of the output
Of Piwo-pass(G, L, 8). For every usaare € V, the following hold:

The output distribution of Stwo-pass(V, Ustart, L, Vur, Esave) has statistical distance at most
0 from RWg(ustm).

Both of Puwo-pass(G, L, §) and Sewo-pass(V,; Ustart, L, Vi, Esave) use at most O(n- VL-log 5
words of space.

Proof. Note that we can safely assume L < n?, since otherwise one can always use O(n?)
words to store all the edges in the graph. In this case, we have that L < n - V'L and the
space for restoring the L-step output walk can be ignored.

Let \7heavy = Vg and \~/|ight =V\ \~/hea\,y. Let Egood be the event that \~/|;ght C Viight and
\7heavy C Vheawy- By Lemma 17, we have that Pr[€goed] > 1 — /2.

Now we condition on the event Egooq. In this case, it follows from Lemma 10 that
Pone-pass(G, ¥ - £, \7heavy) operates correctly (by setting the constant ¢ in Algorithm 1 to be
sufficiently large).

By Lemma 18 and a union bound, the probability of Siwo-pass(V, ustart,L,\N/heaVy, Esa"e)
outputs failure is at most 6/2. By Lemma 15, it follows that the statistical distance between
the output distribution of Swo-pass(V, Ustart, L,\7heavy, Esave) and RWf(ustart) is at most /2.

The theorem follows by combing the above with the fact that Pr[€go0d] > 1 — J/2.

|

4.4 Two-pass Streaming in the Turnstile Model

Similar to the algorithm in [27], our algorithms can also be easily adapted to work for the
turnstile graph streaming model, where both insertions and deletions of edges are allowed.
Note that our two-pass algorithm Ao pass Only accesses the input graph stream via the
one-pass preprocessing subroutine Ponepass- Hence, it suffices to implement Pope-pass in the
turnstile model as well. There are two distinct tasks in Ponepass: (1) for light vertices, we
need to sample their outgoing neighbors with replacement and (2) for heavy vertices, we
need to record all their outgoing neighbors.

Uniformly sampling via ¢; sampler. For light vertices, uniformly sampling some out-
neighbors from each vertex without replacement can be implemented via the following ¢,
sampler in the turnstile model.
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» Lemma 21 (¢; sampler in the turnstile model [24]). Let n € N, failure probability § € (0,1/2)
and f € R™ be a vector defined by a streaming of updates to its coordinates of the form
fi+ fi+ A, where A € {—1,1}. There is a randomized algorithm which reads the stream,
and with probability at most § it outputs FAIL, otherwise it outputs an index i € [n] such
that:

_ Al
1f1x

where ¢ > 1 is some arbitrarily large constant.
The space complexity of this algorithm is bounded by O(log?(n) - log(1/8)) bits in the
random oracle model, and O(log?(n) - (loglogn)? - log(1/6)) bits otherwise.

Pr(i = j) +0(n™°), Vj € [n]

» Remark 22. To get error in the statistical distance also to be at most §, one can simply
set n to be larger than 1/§. And in that case the space complexity can be bounded by

O(log*(n/3)).

Recording all outgoing neighbors via /; heavy hitter. For heavy vertices, recording all
their outgoing neighbors can be implemented using the following ¢; heavy hitter in the
turnstile model. (Recall that we assumed our graphs is a simple graph without multiple
edges.)

» Lemma 23 (¢; heavy hitter in the turnstile model [9]). Letn,k € N, § € (0,0.1) and f € R"
be a vector defined by a streaming of updates to its coordinates of the form f; < fi+ A, where
A € {—1,1}. There is an algorithm which reads the stream and returns a subset L C [n]
such that i € L for every i € [n] such that |f;| > || fll1/k and i & L for every i € [n] such
that | fi| < || fll1/2k. The failure probability is at most §, and the space complexity is at most

O(k - log(n) - log(n/9)).

Algorithm in the turnstile model. Modifying Pone-pass With Lemma 21 and Lemma 23, we
can generalize our two-pass streaming algorithm to work in two-pass turnstile model.”

» Remark 24 (Two-pass algorithm in the turnstile model). There exists a streaming algorithm

Atymstile that given an n-vertex directed graph G = (V, E) via a stream of both edge insertions

and edge deletions, a starting vertex usat € V, a non-negative integer L indicating the

number of steps to be taken, and an error parameter 0 € (0,1/n), satisfies the following

conditions:

1. Aturnstile USes at most 6(71 VL - log 5’1) space and makes two passes over the input
graph G.

2. Atymstile samples from some distribution D over VL+1 satisfying ||D — RWg(ustart)HTv <.
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