
Near-Optimal Two-Pass Streaming Algorithm1

for Sampling Random Walks over Directed Graphs2

Lijie Chen @3

MIT4

Gillat Kol @5

Princeton University6

Dmitry Paramonov @7

Princeton University8

Raghuvansh R. Saxena @9

Princeton University10

Zhao Song @11

Institute for Advanced Study12

Huacheng Yu @13

Princeton University14

Abstract15

For a directed graph G with n vertices and a start vertex ustart, we wish to (approximately) sample16

an L-step random walk over G starting from ustart with minimum space using an algorithm that only17

makes few passes over the edges of the graph. This problem found many applications, for instance,18

in approximating the PageRank of a webpage. If only a single pass is allowed, the space complexity19

of this problem was shown to be Θ̃(n · L). Prior to our work, a better space complexity was only20

known with Õ(
√

L) passes.21

We essentially settle the space complexity of this random walk simulation problem for two-pass22

streaming algorithms, showing that it is Θ̃(n ·
√

L), by giving almost matching upper and lower23

bounds. Our lower bound argument extends to every constant number of passes p, and shows24

that any p-pass algorithm for this problem uses Ω̃(n · L1/p) space. In addition, we show a similar25

Θ̃(n ·
√

L) bound on the space complexity of any algorithm (with any number of passes) for the26

related problem of sampling an L-step random walk from every vertex in the graph.27

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear28

time algorithms29

Keywords and phrases streaming algorithms, random walk sampling30

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.4931

Category Track A: Algorithms, Complexity and Games32

Related Version A full version of this paper can be found in [11].33

Full Version: https://arxiv.org/abs/2102.1125134

Acknowledgements Lijie Chen is supported by an IBM Fellowship. Zhao Song is supported in part35

by Schmidt Foundation, Simons Foundation, NSF, DARPA/SRC, Google and Amazon AWS. We36

would like to thank Rajesh Jayaram for discussions on ℓ1 heavy hitters.37

1 Introduction38

1.1 Background and Motivation39

Graph streaming algorithms. Graph streaming algorithms have been the focus of extens-40

ive study over the last two decades, mainly due to the important practical motivation in41

© Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, Huacheng Yu;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 49; pp. 49:1–49:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijieche@mit.edu
mailto:gillat.kol@gmail.com
mailto:dp20@princeton.edu
mailto:rrsaxena@princeton.edu
mailto:zhaos@ias.edu
mailto:yuhch123@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2021.49
https://arxiv.org/abs/2102.11251
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

analyzing potentially huge structured data representing the relationships between a set of42

entities (e.g., the link graph between webpages and the friendship graph in a social network).43

In the graph streaming setting, an algorithm gets access to a sequence of graph edges given44

in an arbitrary order and it can read them one-by-one in the order in which they appear45

in the sequence. The goal here is to design algorithms solving important graph problems46

that only make one or few passes through the edge sequence, while using as little memory as47

possible.48

Much of the streaming literature was devoted to the study of one-pass algorithms and49

an Ω(n2) space lower bound for such algorithms was shown for many fundamental graph50

problems. A partial list includes: maximum matching and minimum vertex cover [15, 19], s-t51

reachability and topological sorting [7, 15, 22], shortest path and diameter [15, 16], maximum52

and (global or s-t) minimum cut [39], maximal independent set [3, 13], and dominating set53

[4, 14].54

Recently, the multi-pass streaming setting received quite a bit of attention. For some55

graph problems, allowing a few passes instead of a single pass can reduce the memory56

consumption of a streaming algorithm dramatically. In fact, even a single additional pass57

over the input can already greatly enhance the capability of the algorithms. For instance,58

minimum cut and s-t minimum cut in undirected graphs can be solved in two passes with59

only Õ(n) and O(n5/3) space, respectively [33] (as mentioned above, any one-pass algorithm60

for these problems must use Ω(n2) space). Additional multi-pass algorithms include an O(1)-61

pass algorithm for approximate matching [17, 19, 28, 29], an O(log log n)-pass algorithm62

for maximal independent set [3, 13, 18], and O(log n)-pass algorithms for approximate63

dominating set [4, 8, 21] and weighted minimum cut [30].64

Simulating random walks on graphs. Simulating random walks on graphs is a65

well-studied algorithmic problem with may applications in different areas of computer science,66

such as connectivity testing [32], clustering [1, 2, 10, 36], sampling [26], generating random67

spanning tree [35], and approximate counting [25]. Since most applications of random-walk68

simulation are concerned with huge networks that come from practice, it is of practical69

interest to design low-space graph streaming algorithms with few passes for this problem.70

In an influential paper by Das Sarma, Gollapudi and Panigrahy [34], an Õ(
√

L)-pass and71

Õ(n) space algorithm for simulating L-step random walks on directed graphs was established.72

(Streaming algorithms with almost linear space complexity, like this one, are often referred73

to as semi-streaming algorithms). Using this algorithm together with some additional ideas,74

[34] obtained space-efficient algorithms for estimating PageRank on graph streams. Recall75

that the PageRank of a webpage corresponds to the probability that a person that randomly76

clicks on web links arrives at this particular page1. However, scanning the sequence of edges77

Õ(
√

L) times may be time-inefficient in many realistic settings.78

In the one-pass streaming setting, a folklore algorithm with Õ(n · L) space complexity79

for simulating L-step random walks is known [34] (see Subsection 2.1 for a description of80

this algorithm), and it is proved to be optimal [27]. We mention that the work of [27]81

also considers random walks on undirected graphs, and shows that Θ̃(n ·
√

L) space is both82

necessary and sufficient for simulating L-step random walks on undirected graphs with n83

vertices in one pass.84

Both of these known algorithms for general directed graphs have their advantages and85

1 Given a web-graph G = (V, E) representing the webpages and links between them, the PageRank of
the vertices satisfy PageRank(u) =

∑
(v,u)∈E

PageRank(v)/d(v), simultaneously for all u, where d(·)
denotes the out-degree, [6].

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:3

disadvantage (either requiring many passes or more space). A natural question is whether86

one can interpolate between these two results and obtain an algorithm with pass complexity87

much smaller than
√

L, yet with a space complexity much smaller than n · L. Prior to our88

work, it was not even known if an o(
√

L)-pass streaming algorithm with n · L0.99 space is89

possible.90

1.2 Our Results91

We answer the above question in the affirmative by giving a two-pass streaming algorithm92

with Õ(n ·
√

L) space for sampling a random walk of length L on a directed graph with93

n vertices. We complement this result by an almost matching Ω̃(n ·
√

L) lower bound on94

the space complexity of every two-pass streaming algorithm for this problem. In fact, our95

two-pass lower bound generalizes to an Ω̃(n ·L1/p) lower bound on the space consumption of96

any p-pass algorithm, for a constant p.97

1.2.1 Two-Pass Algorithm for Random Walk Sampling98

For a directed graph G = (V, E), a vertex ustart ∈ V and a non-negative integer L, we use99

RWG
L (ustart) to denote the distribution of L-step random walks (v0, . . . , vL) in G starting100

from v0 = ustart (see Subsection 3.2 for formal definitions). For a distribution D over a101

finite domain Ω, we say that a randomized algorithm samples from D if, over its internal102

randomness, it outputs an element ω ∈ Ω distributed according to D. We give a space-efficient103

streaming algorithm for (approximate) sampling from RWG
L (ustart) with small error:104

▶ Theorem 1 (Two-pass algorithm). There exists a streaming algorithm Atwo-pass that given105

an n-vertex directed graph G = (V, E), a starting vertex ustart ∈ V , a non-negative integer L106

indicating the number of steps to be taken, and an error parameter δ ∈ (0, 1/n), satisfies the107

following conditions:108

1. Atwo-pass uses at most Õ(n ·
√

L · log δ−1) space2 and makes two passes over the input109

graph G.110

2. Atwo-pass samples from some distribution D over V L+1 satisfying ∥D−RWG
L (ustart)∥TV ≤ δ.111

Our algorithm can also be generalized to the turnstile model, paying a poly log n factor112

in the space usage. See Subsection 4.4.113

Observe that our algorithm Atwo-pass allows for a considerable saving in space compared114

to the folklore single-pass algorithm (Õ(n ·
√

L) vs Õ(n · L)) and considerable saving in the115

number of passes compared to [34] (2 vs Õ(
√

L)), at least if we allow some small error δ.116

We mention that Atwo-pass can also be used to sample a random path from every vertex3
117

of G with the same storage cost of Õ(n ·
√

L · log δ−1) and two passes4. This is because118

Atwo-pass satisfies the useful property of obliviousness to the starting vertex ustart, meaning119

that it scans the input graph before the start vertex is revealed. More formally, we say that120

an algorithm A is oblivious to the starting vertex if it first runs a preprocessing algorithm121

P and then a sampling algorithm S; the algorithm P reads the input graph stream without122

knowing the starting vertex ustart (if A is a p-pass streaming algorithm, P makes p passes123

2 The Õ hides logarithmic factors in n. We may assume without loss of generality that L ≤ n2, as
otherwise n ·

√
L > n2 and that algorithm can store the entire input graph.

3 Note, however, that the random walks from different vertices in the graph may be correlated.
4 We count towards the space complexity only the space on the work tape used by the algorithm and do

not count space on the output tape (otherwise an Ω(n · L) lower bound is trivial).

ICALP 2021

49:4 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

over the input graph stream), and outputs a string; S takes both the string outputted by P124

and a starting vertex ustart as an input, and outputs a walk on the input graph G.125

1.2.2 Lower Bounds126

We prove the following lower bound:127

▶ Theorem 2 (Multi-pass lower bound). Fix a constant β ∈ (0, 1] and an integer p ≥ 1. Let128

n ≥ 1 be a sufficiently large integer and let L = ⌈nβ⌉. Any randomized p-pass streaming129

algorithm that, given an n-vertex directed graph G = (V, E) and a starting vertex ustart ∈ V ,130

samples from a distribution D such that ∥D−RWG
L (ustart)∥TV ≤ 1− 1

log10 n
requires Ω̃(n ·L1/p)131

space.132

We remark that the theorem above shows that no low-space algorithms can achieve133

sampling error 1− 1/poly log(n), which is quite strong as usual applications of simulating134

random walks would require at least a small constant sampling error. Plugging in p = 2135

in Theorem 2, implies that our two-pass algorithm from Theorem 1 is essentially optimal.136

Also, with p = 1, the theorem reproduces the one-pass lower bound by [27]. In addition,137

Theorem 2 rules out the possibility of a semi-streaming algorithm with any constant number138

of passes.139

Recall from Subsubsection 1.2.1, that our two-pass algorithm Atwo-pass utilizes Õ(n ·
√

L)140

space and is oblivious to the starting vertex. Interestingly, we are able to show that any141

oblivious algorithm for random walk sampling (with any number of passes) requires Ω̃(n ·
√

L)142

space. Thus, any algorithm for random walk sampling with significantly less space than ours,143

has to be inherently different and have its storage depend on the starting vertex. Our lower144

bound for oblivious algorithms also implies that Atwo-pass gives an almost optimal algorithm145

for sampling a pass from every start vertex, even if any number of passes are allowed.146

▶ Theorem 3 (Lower bound for oblivious algorithms). Let n ≥ 1 be a sufficiently large integer147

and let L denote an integer satisfying that L ∈ [log40 n, n]. Any randomized algorithm that is148

oblivious to the start vertex and given an n-vertex directed graph G = (V, E) and a starting149

vertex ustart ∈ V , samples from a distribution D such that ∥D − RWG
L (ustart)∥TV ≤ 1− 1

log10 n
150

requires Ω̃(n ·
√

L) space5.151

1.3 Discussions and Open Problems152

Better space complexity with more passes? Our results leave open a couple of interesting153

directions for future work. The most significant open question is to understand the streaming154

space complexity of sampling random walks with more than two passes. In particular,155

Theorem 2 implies that a three-pass streaming algorithm has space complexity at least156

Ω̃(n · L1/3). Can one get Õ(n · L1/3) space with three passes, or at least O(n · L1/2−ε) space,157

for some constant ε > 0? Note that, as explained in Subsubsection 1.2.2, such an algorithm158

must utilize its knowledge of the starting vertex when it reads the graph stream.159

Theorem 2 does not rule out semi-streaming Õ(n) space algorithms even when p is a160

moderately growing function of n and L. In [34], it is shown that such an Õ(n) space algorithm161

exists with p = Õ(
√

L) passes. Does a semi-streaming algorithm with, say, poly log(L) passes162

exist?163

5 In fact, we show that Theorem 3 holds even if the preprocessing algorithm P and the sampling algorithm
S are allowed to use an arbitrarily large amount of memory, as long as P passes a string of length at
most (roughly) n ·

√
L to S.

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:5

Undirected graphs? It would also be interesting to see what is the best two-pass streaming164

algorithm for simulating random walks on undirected graphs. Specifically, is it possible to165

combine our algorithm with the algorithm from [27] to obtain an improvement over the166

optimal Õ(n ·
√

L) space complexity of a one-pass streaming algorithm for this problem?167

Only outputting the end vertex? Finally, our lower bounds only apply to the case where168

the algorithms need to output an entire random path (v0, . . . , vL). If instead only the last169

vertex vL in the random walk is required, can one design better two-pass algorithms or prove170

a non-trivial lower bound?171

2 Techniques172

2.1 The Two-Pass Algorithm173

We next overview our two-pass algorithm from Theorem 1, that simulates random walks174

with only Õ(n ·
√

L) space.175

The folklore one-pass algorithm. Before discussing our algorithm, it would be instructive176

to review the folklore Õ(n ·L)-space one-pass algorithm for simulating L-step random walks in177

a directed graph G = (V, E) (for simplicity, we will always assume L ≤ n in the discussions).178

The algorithm is quite simple:179

1. For every vertex v ∈ V , sample L of its outgoing neighbors with replacement and store180

them in a list Lsave
v of length L (that is, for each j ∈ [L], the j-th element of Lsave

v is an181

independent uniformly random outgoing vertex of v). This can be done in a single pass182

over input graph stream using reservoir sampling [37].183

2. Given a starting vertex ustart ∈ V , our random walk starts from ustart and repeats the184

following for L steps: suppose we are currently at vertex v and it is the k-th time we visit185

this vertex, then we go from v to the k-th vertex in the list Lsave
v .186

It is not hard to see that the above algorithm works: whenever we visit a vertex v ∈ V ,187

the next element in the list Lsave
v will always be a uniformly random outgoing neighbor of v,188

conditioned on the walk we have produced so far; and we will never run out of the available189

neighbors of v as |Lsave
v | = L.190

A naive attempt and the obstacles. Since we are aiming at only using Õ(n ·
√

L) space,191

a naive attempt to improve the above algorithm is to just sample and store τ = O(
√

L)192

outgoing neighbors instead of L neighbors, and simulate the walk starting from ustart in the193

same way. The issue here is that, during the simulation of an L-step walk, whenever one194

visits a vertex v more than τ times, one would run out of available vertices in the list Lsave
v ,195

and the algorithm can no longer produce a legit random walk. For a simple example, imagine196

we have a star-like graph where n− 1 vertices are connected to a center vertex via two-way197

edges. An L-step random walk starting at the center would require at least Ω(L) samples198

from the center’s neighbors, and our naive algorithm completely breaks.199

Our approach: heavy and light vertices. Observe, however, that in the above example of200

a star-like graph, we are only at risk of not storing enough random neighbors of the center201

node, as an L-step random walk would only visit the other non-center vertices a very small202

number of times. Thus, the algorithm may simply record all edges from the center with only203

O(n) space. This observation inspires the following approach for a two-pass algorithm:204

ICALP 2021

49:6 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

1. In the first pass, we identify all the vertices that are likely to be visited many times by a205

random walk (starting from some vertex). We call such vertices heavy, while all other206

vertices are called light.207

2. In the second pass, we record all outgoing neighbors of all heavy vertices, as well as O(τ)208

random outgoing neighbors with replacement of each of the light vertices.209

Observe that the obtained algorithm is indeed oblivious to the starting vertex: the two210

passes described above do not use the starting vertex. Still, given the set of outgoing211

neighbors stored by the second pass, we are able to sample a random walk from any start212

vertex.213

First pass: how do we detect heavy vertices? The above approach requires that we detect,214

in a single pass, all vertices v that with a decent probability (say, 1/poly(n)), are visited215

more than O(τ) times by an L-step random walk. To this end, we observe that if a random216

walk visits a vertex v more than τ times, this random walk must follow more than τ − 1217

self-circles around v in L steps. This, in turn, implies that a random walk that starts from v218

is likely to return to v in roughly L/τ = O(
√

L) steps.219

The above discussion suggests the following definition of heavy vertices: a vertex v220

is heavy, if a random walk starting from v is likely (say, with probability at least 1/3)221

to revisit v in O(
√

L) steps. Indeed, this property is much easier to detect: we can run222

O(log n) independent copies of the folklore one-pass streaming algorithms to sample O(log n)223

O(
√

L)-step random walks starting from v, and count how many of them return to v at some224

step.225

Second pass: can we afford to store the neighbors? In Lemma 18, we show that for a226

light vertex v, an L-step random walk starting at any vertex visits v O(
√

L) times with227

high probability. Therefore, in the second pass, we can safely record only O(
√

L) outgoing228

neighbors for all light vertices. Still, we have to record all the outgoing neighbors for heavy229

vertices.230

The crux of our analysis is a structural result about directed graphs, showing that the231

total outgoing degree of all heavy vertices is bounded by O(n ·
√

L), and therefore we can232

simply store all of their outgoing neighbors. This is proved in Lemma 10, which may also be233

of independent interest.234

Intuition behind the structure lemma. Finally, we discuss the insights behind the above235

structure lemma for directed graphs. We will use dout(v) to denote the number of outgoing236

neighbors of v. For concreteness, we now say a vertex v is heavy if a random walk starting237

from v revisits v in
√

L steps with probability at least 1/3.238

Let Vheavy ⊆ V be the set of heavy vertices and let v ∈ Vheavy. By a simple calculation,239

one can see that for at least a 1/6 fraction of outgoing neighbors u of v, a random walk240

starting from u visits v in
√

L steps with probability at least 1/6. The key insight is to241

consider the number of pairs (u, v) ∈ V 2 such that a random walk starting from u visits v in242 √
L steps with probability at least 1/6. We will use S to denote this set.243

By the previous discussions, we can see that for each heavy vertex v, it adds at least 1/6244

dout(v) pairs to the set S. Hence, we have245

|S| ≥ 1
6 ·

∑
v∈Vheavy

dout(v). (1)246

247

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:7

On the other hand, it is not hard to see that for each vertex v, there are at most O(
√

L)248

many pairs of the form (v, u) ∈ S, since a
√

L-step walk can visit only
√

L vertices. So249

we also have250

|S| ≤ O(n
√

L). (2)251
252

Putting the above (Equation 1 and Equation 2) together, we get the desired bound253 ∑
v∈Vheavy

dout(v) ≤ O(n
√

L).254

255

2.2 Lower Bound for p-Pass Algorithms256

We now describe the ideas behind the proof of Theorem 2, our Ω̃(n ·L1/p) space lower bound257

for p-pass randomized streaming algorithms for sampling random walks. We mention that258

many of the tools developed for proving space lower bounds are not directly applicable when259

one wishes to lower bound the space complexity of a sampling task and are more suitable for260

proving lower bounds on the space required to compute a function or a search problem6.261

From sampling to function computation. Our way around this is to first prove a reduction262

from streaming algorithms that sample a random walk from ustart to streaming algorithms263

that compute the (p + 1)-neighborhood of the vertex ustart. This is done by considering a264

graph where a random walk returns to the vertex ustart every p + 2 steps. If p is a constant,265

then a random walk of length L on such a graph can be seen as L/(p + 2) = O(L) copies of266

a random walk of length p + 2. Observe that if the (p + 1)-neighborhood of the vertex ustart267

has (almost) L vertices (and the probability of visiting each vertex is more or less uniform),268

then a random walk of length L is likely to visit all the vertices in the neighborhood and269

an algorithm that samples a random walk also outputs the entire neighborhood with high270

probability.271

A lower bound for computing the (p + 1)-neighborhood via pointer-chasing. Having272

reduced sampling a random walk to outputting the (p + 1)-neighborhood, we now need273

to prove that a space efficient p-pass streaming algorithms cannot output the (p + 1)-274

neighborhood of ustart, if this neighborhood has roughly L vertices. This is reminiscent of275

the “pointer-chasing” lower bounds found in the literature.276

Pointer-chasing results are typically concerned with a graph with p + 1 layers of vertices277

(p layers of edges) and show that given a vertex in the first layer, finding a vertex that278

is reachable from it in the last layer cannot be done with less than p passes, unless the279

memory is huge. Classical pointer-chasing lower bounds (e.g., [31]), consider graphs where280

the out-degree of each vertex is 1, thus the start vertex reaches a unique vertex in the last281

layer. Unfortunately, this type of pointer-chasing instances are very sparse and a streaming282

algorithm can simply remember the entire graph in one pass using Õ(n) memory.283

Since we wish to have roughly L vertices in a (p+1)-neighborhood of ustart, the out-degree284

of each vertex should be roughly Ω(L
1

p+1) (assuming uniform degrees). Pointer-chasing lower285

bounds for this type of dense graphs were also proved (e.g., [20] and [16]), showing that286

p-pass algorithms essentially need to store an entire layer of edges, which is Ω(n · L
1

p+1) in287

6 One such tool that cannot be used directly for our purpose is the very useful Yao’s minimax principle [38]
that allows proving randomized communication lower bounds by proving the corresponding distributional
(deterministic) communication lower bounds.

ICALP 2021

49:8 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

V1 V2 V3 Vp+2

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Figure 1 A depiction of our hard instance for p-pass streaming algorithms. Some edges omitted.

our case. However, this still does not give us the Ω(n · L
1
p) lower bound we aspire for (and288

which is tight, at least for two passes).289

Towards a tight lower bound: combining dense and sparse. To get a better lower bound,290

we construct a hard instance that is a combination of the two above mentioned types of291

pointer-chasing instances, the dense and the sparse. Specifically, for a p-pass lower bound,292

we construct a layered graph with p + 2 layers of vertices V1, . . . , Vp+2, where the first layer293

has only one vertex ustart and all the other layers are of equal size (see Figure 1). To ensure294

that vertex ustart is reached every p + 2 steps, we connect all vertices in the last layer to ustart.295

Every vertex in layers V2, . . . , Vp+1 connects to a random set of roughly L
1
p vertices in the296

next layer. Using Guruswami and Onak style arguments ([20]), it can be shown that when297

the edges are presented to the algorithm from right to left, finding a vertex in layer Vp+2298

that is reachable form a given vertex in V2 with a (p− 1)-pass algorithm requires Ω(n · L
1
p)299

space. We “squeeze out” an extra pass in the algorithm by connecting the start vertex ustart300

in V1 to a single random vertex in V2. Note that with this construction, it is indeed the301

case that a (p + 1)-neighborhood of ustart consists of only roughly L vertices, but still, the302

out-degrees of vertices in V2, . . . , Vd+1 are roughly L
1
p instead of only L

1
p+1 .303

2.3 Lower bounds for Oblivious Algorithms304

Finally, we discuss the intuitions behind the proof of Theorem 3, showing that any algorithm305

that is oblivious to the starting vertex must use Ω̃(n ·
√

L) space space. Our proof is based306

on a reduction from a multi-output generalization of the well-studied INDEX problem for307

one-way communication protocols, denoted by INDEXm,ℓ. In INDEXm,ℓ, Alice gets ℓ strings308

X1, . . . , Xℓ ∈ {0, 1}m and Bob gets an index i ∈ [ℓ]. Alice sends a message to Bob and then309

Bob is required to output the string Xi. (Note that when m = 1 it becomes the original310

INDEX problem).311

It is not hard to show that any one-way communication protocol solving INDEXm,ℓ with312

non-trivial probability (say, 1/poly log(m)) requires Alice to send at least Ω̃(mℓ) bits to Bob313

(see the full version of this paper [11] for details).314

Our key observation here is that if there is a starting vertex oblivious algorithm A = (P,S)315

with S space for approximate simulation of an L = Õ(m)-step random walk on a graph with316

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:9

n = O(
√

m · ℓ) vertices, then it implies a one-way communication protocol for INDEXm,ℓ317

with communication complexity S and a decent success probability. Recall the lower bound318

for INDEXm,ℓ, we immediately have S = Ω̃(mℓ) = Ω̃(n
√

L).319

In more detail, given an m-bit string X, we will build an O(
√

m)-vertex graph H(X) by320

encoding all bits of X as existence/non-existence of edges in H (this is possible since there321

are more than m potential edges in H). We also add some artificial edges to H to make sure322

it is strongly connected. Our construction will make sure that an L = Õ(m) steps random323

walk in H will reveal all edges in H with high probability, which in turn reveals all bits of X324

(see the proof of Theorem 3 in the full version of this paper for more details).325

Now the reduction can be implemented as follows: given ℓ strings X1, . . . , Xℓ ∈ {0, 1}m,326

Alice constructs a graph G =
⊔ℓ

i=1 H(Xi), as the joint union of ℓ graphs. Note that G has327

n = O(
√

m · ℓ) vertices. Alice then runs the preprocessing algorithm P on G to obtain a328

string M , and sends it to Bob. Given an index i ∈ [ℓ], Bob simply runs S with M together329

with a suitable starting vertex inside the H(Xi) component of G. By previous discussions,330

this reveals the string Xi with high probability and proves the correctness of this reduction.331

Hence, the space complexity of A must be Ω̃(mℓ) = Ω̃(n
√

L).332

Organization of this paper333

In Section 3 we introduce the necessary preliminaries for this paper. In Section 4 we present334

our nearly optimal two-pass streaming algorithm for simulating random walks and prove335

Theorem 1. See the full version of this paper [11] for the proof of Theorem 2 and Theorem 3.336

3 Preliminaries337

3.1 Notation338

Let n ∈ N. We use [n] to denote the set {1, . . . , n}. We often use sans-serif letters (e.g., X)339

to denote random variables, and calligraphic font letters (e.g., X) to denote distributions.340

For two random variables X and Y, and for Y ∈ supp(Y), we use (X|Y = Y) to denote X341

conditioned on Y = Y . For two lists a and b, we use a ◦ b to denote their concatenation.342

For two distributions D1 and D2 on set X and Y respectively, we use D1 ⊗D2 to denote343

their product distribution over X ×Y , and ∥D1−D2∥TV to denote the total variation distance344

between them.345

3.2 Graphs346

In this paper we will always consider directed graphs without multi-edges. A directed G is a347

pair (V, E), where V is the vertex set and E ⊆ V × V is the set of all edges.348

For a vertex u in a graph G = (V, E), we let NG
out(u) := {v : (u, v) ∈ E} and NG

in (u) :=349

{v : (v, u) ∈ E}. We also use dG
out(u) and dG

in(u) to denote its out and in degrees (i.e.,350

|NG
out(u)| and |NG

in (u)|). For an edge (u, v) ∈ E, we say v is the out-neighbor of u and u is351

the in-neighbor of v.352

Random walks on directed graphs. For a vertex u in a graph G = (V, E) and an non-353

negative integer L, an L-step random walk (v0, v1, . . . , vL) starting at u is generated as354

follows: set v0 = u, for each i ∈ [L], we draw vi uniformly random from NG
out(u). We say355

that v0 = u is the 0-th vertex on the walk, and vi is the i-th vertex for each i ∈ [L]. We use356

RWG
L (u) to denote the distribution of an L-step random walk starting from u in G.357

ICALP 2021

49:10 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

We use visitG
[a,b](u, v) to denote the probability of a b-step random walk starting from u358

visits v between the a-th vertex and b-th vertex on the walk.359

We often omit the superscript G when the graph G is clear from the context.360

Starting vertex oblivious algorithms. Now we formally define a starting vertex oblivious361

streaming algorithm for simulating random walks.362

▶ Definition 4. We say a p-pass S-space streaming algorithm A for simulating random walks363

is starting vertex oblivious, if A can be decomposed into a preprocessing subroutine P and a364

sampling subroutine S, such that:365

1. (Starting vertex oblivious preprocessing phase) P makes p passes over the input366

graph stream, using at most S words of space. After that, P outputs at most S words,367

denoted as M .368

2. (Sampling phase) S takes both the starting vertex ustart and M as input, and outputs a369

desired walk starting from ustart, using at most S words of space.370

3.3 Useful Concentration Bounds on Random Variables371

The following standard concentration bounds will be useful for us.372

▶ Lemma 5 (Multiplicative Chernoff bound, [12]). Suppose X1, · · · , Xn are independent373

random variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the374

sum’s expected value. Then,375

Pr (X ≥ (1 + δ)µ) ≤ e− δ2µ
2+δ , ∀0 ≤ δ,376

Pr (X ≤ (1− δ)µ) ≤ e− δ2µ
2 , ∀0 ≤ δ ≤ 1.377

378

In particular, we have that:379

Pr (X ≥ (1 + δ)µ) ≤ e− δµ
3 ·min(δ,1), ∀0 ≤ δ,380

Pr (|X − µ| ≥ δµ) ≤ 2 · e− δ2µ
3 , ∀0 ≤ δ ≤ 1.381

382

We also need the following Azuma-Hoeffding inequality.383

▶ Lemma 6 (Azuma-Hoeffding inequality, [5, 23]). Let Z0, . . . , Zn be random variables satisfy-384

ing (1) E[|Zi|] <∞ for every i ∈ {0, . . . , n} and E[Zi|Z0, . . . , Zi−1] ≤ Zi−1 for every i ∈ [n]385

(i.e., {Zi} forms a supermartingale) and (2) for every i ∈ [n], |Zi − Zi−1| ≤ 1, then for all386

λ > 0, we have387

Pr[Zn − Z0 ≥ λ] ≤ exp(−λ2/2n).388

In particular, the following corollary will be useful for us.389

▶ Corollary 7 (Azuma-Hoeffding inequality for Boolean random variables, [5, 23]). Let X1, . . . , Xn390

be random variables satisfying Xi ∈ {0, 1} for each i ∈ [n]. Suppose that E[Xi|X1, . . . , Xi−1] ≤391

pi for all i. Then for any λ > 0,392

Pr
[

n∑
i=1

Xi ≥ λ +
∑
i=1

pi

]
≤ exp(−λ2/2n).393

Proof. For i ∈ {0, . . . , n}, let Zi =
∑i

j=1(Xj − pj). From the assumption one can see that394

all the Zi form a supermartingale and |Zi − Zi−1| ≤ 1, hence the corollary follows directly395

from Lemma 6. ◀396

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:11

4 Two-Pass Streaming Algorithms for Simulating Directed Random397

Walk398

In this section, we present our two-pass streaming algorithms for simulating random walks399

on directed graphs.400

4.1 Heavy and Light Vertices401

We first define the notion of heavy and light vertices.402

▶ Definition 8 (Heavy and light vertices). Given a directed graph G = (V, E) with n vertices403

and ℓ ∈ N.404

(Heavy vertices.) We say a vertex u is ℓ-heavy in G, if visit[1,ℓ](u, u) ≥ 1/3 (i.e., if a405

random walk starting from u will revisit u in at most ℓ steps with probability at least 1/3.)406

(Light vertices.) We say a vertex u is ℓ-light in G, if visit[1,ℓ](u, u) ≤ 2/3 (i.e., if a407

random walk starting from u will revisit u in at most ℓ steps with probability at most 2/3.)408

We also let V ℓ
heavy(G) and V ℓ

light(G) be the sets of ℓ-heavy and ℓ-light vertices in G. When409

G and ℓ are clear from the context, we simply refer to them as Vheavy and Vlight.410

▶ Remark 9. Note that if the revisiting probability is between [1/3, 2/3], then the vertex is411

considered to be both heavy and light.412

The following lemma is crucial for the analysis of our algorithm.413

▶ Lemma 10 (Upper bounds on the total out-degrees of heavy vertices). Given a directed414

graph G with n vertices and ℓ ∈ N, it holds that415 ∑
u∈V ℓ

heavy(G)

dout(u) ≤ O(n · ℓ).416

Proof. We define a set S of pairs of vertices as follows:417

S := {(u, v) ∈ V 2 : visit[0,ℓ](u, v) ≥ 1/6}.418

That is, a pair of vertices u and v belongs to S if and only if an ℓ-step random walk starting419

from u visits v with probability at least 1/6.420

For each fixed vertex u, we further define421

Su :=
{

v ∈ Nout(u) | visit[0,ℓ](v, u) ≥ 1/6
}

,422

and423

Hu :=
{

v ∈ V | visit[0,ℓ](u, v) ≥ 1/6
}

.424

The following claim will be useful for the proof.425

▷ Claim 11. The following two statements hold:426

1. For every u ∈ V , it holds that |Hu| ≤ O(ℓ).427

2. For every u ∈ Vheavy, it holds that |Su| ≥ 1/6 · dout(u).428

Proof. Fixing u ∈ V , the first item follows from the simple fact that429 ∑
v∈V

visit[0,ℓ](u, v) ≤ ℓ + 1.430

ICALP 2021

49:12 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

Now we move to the second item, and fix u ∈ Vheavy. For the sake of contradiction,431

suppose that |Su| < 1/6 · dout(u). We have432

visit[1,ℓ](u, u) = E
v∈Nout(u)

[visit[0,ℓ−1](v, u)]433

≤ E
v∈Nout(u)

[visit[0,ℓ](v, u)]434

< Pr
v∈Nout(u)

[v ∈ Su] · 1 + Pr
v∈Nout(u)

[v /∈ Su] · 1/6 < 1/6 + 1/6 < 1/3,435

436

a contradiction to the assumption that u is heavy. ◀437

Finally, note that by definition of Hu and Su we immediately have438

|S| =
∑
u∈V

|Hu| ≥
∑
u∈V

|Su|.439

By Claim 11, we have440 ∑
u∈Vheavy

dout(u) ≤ 6 ·
∑
u∈V

|Su| ≤ 6 ·
∑
u∈V

|Hu| ≤ O (n · ℓ) ,441

which completes the proof.442

◀443

4.2 A Simple One-Pass Algorithm for Simulating Random Walks444

We first describe a simple one-pass algorithm for simulating random walks, which will be used445

as a sub-routine in our two-pass algorithm. Moreover, this one-pass algorithm is starting446

vertex oblivious, which will be crucial for us later.447

Reservoir sampling in one pass. Before describing our one-pass subroutine, we need the448

following basic reservoir sampling algorithm.449

▶ Lemma 12 ([37]). Given input access to a stream of n items such that each item can be450

described by O(1) words, we can uniformly sample m of them without replacement using451

O(m) words of space.452

Using m independent reservoir samplers each with capacity 1, one can also sample m453

items from the stream with replacement in a space-efficient way.454

▶ Corollary 13. Given input access to a stream of n items such that each item can be455

described by O(1) words, we can uniformly sample m of them with replacement using O(m)456

words of space.457

Description of the one-pass algorithm. Now we describe our one-pass algorithm for sim-458

ulating random walks. Our algorithm Aone-pass is starting vertex oblivious, and can be459

described by a preprocessing subroutine Pone-pass and a sampling subroutine Sone-pass. Recall460

that as defined in Definition 4, Pone-pass takes a single pass over the input graph streaming461

without knowing the starting vertex ustart, and Sone-pass takes the output of Pone-pass together462

with ustart, and outputs a desired sample fo the random walk.463

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:13

Algorithm 1 Preprocessing phase of Aone-pass: Pone-pass(G, τ, Vfull)

Input: One pass streaming access to a directed graph G = (V, E). A parameter τ ∈ N. A
subset Vfull ⊆ V , and we also let Vsamp = V \ Vfull.

1: For each vertex v ∈ Vfull, we record all its out-neighbors in the list Lsave
v . (That is, Vfull

stands for the set of vertices that we keep all its edges.)
2: For each vertex v ∈ Vsamp, using Corollary 13, we sample τ of its out-neighbors uniformly

at random with replacement in the list Lsave
v . (That is, Vsamp stands for the set of vertices

that we sample some of its edges.)
3: For a big enough constant c2 > 1, whenever the number of out-neighbors stored exceeds

c2 · τ · n, the algorithm stops recording them. If this happens, we say the algorithm
operates incorrectly and otherwise we say it operates correctly.

Output: A collection of lists L⃗save = {Lsave
v }v∈V .

Algorithm 2 Sampling phase of Aone-pass: Sone-pass(V, ustart, L, Vfull, L⃗save = {Lsave
v }v∈V)

Input: A starting vertex ustart. The path length L ∈ N. A subset Vfull ⊆ V , and we also let
Vsamp = V \ Vfull.

1: Let v0 = ustart. For each v ∈ V , we set kv = 1.
2: for i := 1→ L do
3: if vi−1 ∈ Vfull then
4: vi is set to be a uniformly random element from Lsave

vi−1

5: else if kvi−1 > |Lsave
vi−1
| then

6: return failure
7: else
8: vi ← (Lsave

vi−1
)kvi−1

.
9: kvi−1 ← kvi−1 + 1.

10: end if
11: end for
Output: The walk (v0, v1, . . . , vL).

Analysis of the one-pass algorithm. Now we analyze the correctness of our one-pass464

algorithm. We first observe its space complexity can be easily bounded.465

▶ Observation 14 (Space complexity of Aone-pass). Given a directed graph G = (V, E) with466

n vertices. For every τ ∈ N and subset Vfull ⊆ V , Pone-pass(G, τ, Vfull) always takes at most467

O(τ · n) words of space.468

Next we bound the statistical distance between its output distribution and the correct469

distribution of the random walk by the following lemma.470

▶ Lemma 15 (Correctness of Aone-pass). Given a directed graph G = (V, E) with n vertices. For471

every integers τ, L ∈ N and subset Vfull ⊆ V such that τ ·(n−|Vfull|)+
∑

v∈Vfull
dout(v) ≤ c2 ·τ ·n,472

let L⃗save be random variable of the output of Pone-pass(G, τ, Vfull). For every ustart ∈ V , the473

output distribution of Sone-pass(V, ustart, L, Vfull, L⃗save) has statistical distance β to RWG
L (ustart),474

where β is the probability that Sone-pass(V, ustart, L, Vfull, L⃗save) outputs failure.475

Proof. Conclude from τ · (n − |Vfull|) +
∑

v∈Vfull
dout(v) ≤ c2 · τ · n that Pone-pass(G, τ, Vfull)476

always operates correctly.477

ICALP 2021

49:14 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

To bound the statistical distance between the distribution of Sone-pass(V, ustart, L, Vfull, L⃗save)478

and RWG
L (ustart). We construct another random variable (L⃗save)′, in which for every vertex u,479

we sample another L out-neighbors of u uniformly at random with replacement, and add480

them to the end of the list Lsave
v in L⃗save.481

Note that Sone-pass(V, ustart, L, Vfull, (L⃗save)′) never outputs failure, and distributes ex-482

actly the same as RWG
L (ustart). On the other hand, Sone-pass(V, ustart, L, Vfull, (L⃗save)′) and483

Sone-pass(V, ustart, L, Vfull, L⃗save) are the same as long as Sone-pass(V, ustart, L, Vfull, L⃗save) does not484

output failure, which completes the proof. ◀485

The following corollary follows immediately from the lemma above. (Note that this486

special case exactly corresponds to the folklore one-pass streaming algorithm for simulating487

random walks.)488

▶ Corollary 16. Given a directed graph G = (V, E) with n vertices and an integer L ∈ N. Let489

L⃗save be random variable of the output of Pone-pass(G, L, ∅). For every ustart ∈ V , the output490

distribution of Sone-pass(V, ustart, L, ∅, L⃗save) distributes identically as RWG
L (ustart).491

4.3 Two-Pass Streaming Algorithm for Simulating Random Walks492

Description of the two-pass algorithm. Now we are ready to describe our two pass al-493

gorithm Atwo-pass, which is also starting vertex oblivious, and can be described by the following494

two sub-routines Ptwo-pass and Stwo-pass.495

Algorithm 3 Preprocessing phase of Atwo-pass: Ptwo-pass(G, L, δ)

Input: A directed graph G = (V, E) with n vertices. An integer L ∈ N. A failure parameter
δ ∈ (0, 1/n). We also let ℓ =

√
L, and γ = c1 · log δ−1 where c1 ≥ 1 is a sufficiently large

constant to be specified later.
1: First pass: estimation of heavy and light vertices.

1. Run γ independent instances of Pone-pass(G, ℓ, ∅) and let (Lsave)(1), . . . , (Lsave)(γ) be the
corresponding collections of lists.

2. For each vertex u ∈ V , by running Sone-pass(V, u, ℓ, ∅, (Lsave)(j)) for each j ∈ [γ], we
take γ independent samples from RWG

ℓ . Let wu be the fraction of these random walks
that revisit u in ℓ steps.

3. Let Ṽheavy be the set of vertices with wu ≥ 0.5, and Ṽlight be the set of vertices with
wu < 0.5.

2: Second Pass: heavy-light edge recording
1. Let Vfull = Ṽheavy.
2. Run Pone-pass(G, γ · ℓ, Vfull) to obtain a collection of lists L⃗save.

Output: The set Vfull and the collection of lists L⃗save.

Algorithm 4 Sampling phase of Atwo-pass: Stwo-pass(V, ustart, L, Vfull, L⃗save = {Lsave
v }v∈V)

Input: A starting vertex ustart. The path length L ∈ N. A subset Vfull ⊆ V , and a collection
of lists L⃗save.

Output: Simulate Sone-pass(V, ustart, L, Vfull, L⃗save) and return its output.

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:15

Analysis of the algorithm. We first show that with high probability, Ṽlight and Ṽheavy are496

subsets of Vlight and Vheavy respectively.497

▶ Lemma 17. Given a directed graph G = (V, E) with n vertices, L ∈ N and δ ∈ (0, 1/n), let-498

ting ℓ =
√

L, with probability at least 1−δ/2 over the internal randomness of Ptwo-pass(G, L, δ),499

it holds that Ṽlight ⊆ Vlight and Ṽheavy ⊆ Vheavy.500

Proof. Setting c1 in Algorithm 3 to be a large enough constant and applying Corollary 16 and501

the Chernoff bound, with probability at least 1− n · δ3 ≥ 1− δ/2, |wu − visit[1,ℓ](u, u)| ≤ 0.1502

for every u ∈ V . The lemma then follows from the definition of heavy and light vertices. ◀503

Next, we show that with high probability, a random walk does not visit a light vertex too504

many times.505

▶ Lemma 18. Given a directed graph G = (V, E) with n vertices, L ∈ N and δ ∈ (0, 1/n),506

letting ℓ =
√

L and γ = c1 · log δ−1, where c1 > 1 is the sufficiently large constant, for every507

vertex ustart ∈ V and vertex v ∈ V ℓ
light(G), an L-step random walk starting from ustart visits v508

more than γ · ℓ times with probability at most δ/2n.509

Proof. Suppose we have an infinite random walk W starting from ustart in G. Letting τ = γℓ,510

the goal here is to bound the probability that during the first L steps, W visits v more than511

τ times. We denote this as the bad event Ebad.512

Let Zi be the random variable representing the step at which W visits v for the i-th time513

(if W visits v less than i times in total, we let Zi =∞). Ebad is equivalent to that Zτ+1 ≤ L.514

Zτ+1 ≤ L further implies that for at least (τ − ℓ) i ∈ [τ], Zi+1 − Zi ≤ ℓ and Zi <∞. In515

the following we denote this event as E1 and bounds its probability instead.516

For each i ∈ [τ], let Yi be the random variable which takes value 1 if both Zi <∞ and517

Zi+1 − Zi ≤ ℓ hold, and 0 otherwise. Letting Y<i = (Y1, . . . , Yi−1), the following claim is518

crucial for us.519

▷ Claim 19. For every i ∈ [τ] and every possible assignments Y<i ∈ {0, 1}i−1, we have520

E[Yi|Y<i = Y<i] ≤ 2/3.521

Proof. By the Markov property of the random walk, and noting that Yi is always 0 when522

Zi =∞, we have.523

E[Yi|Y<i = Y<i] =
∞∑

j=0
Pr[Zi = j|Y<i = Y<i] · E[Yi|Y<i = Y<i, Zi = j]524

=
∞∑

j=0
Pr[Zi = j|Y<i = Y<i] · E[Yi|Zi = j].525

526

To further bound the quantity above, recall that the event Zi = j means that the random527

walk W starting from ustart visits the light vertex v for the i-th time at W’s j-th step, and we528

have529

E[Yi|Zi = j] = Pr[Yi = 1|Zi = j] = Pr[Zi+1 ≤ j + ℓ|Zi = j].530

By the Markov property of the random walk W, Pr[Zi+1 ≤ j + ℓ|Zi = j] equals the531

probability that a random walk starting from v revisits v in at most ℓ steps. By the definition532

of light vertices, we can bound that by 2/3, which completes the proof.533

◀534

ICALP 2021

49:16 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

Then by the Azuma-Hoeffding inequality (Corollary 7),535

Pr
W

[Ebad] ≤ Pr
W

[E1]536

= Pr
W

[
τ∑

i=1
Yi ≥ (τ − ℓ)

]
537

≤ exp(−Ω(τ − ℓ− 2/3 · τ)) ≤ δ/2n,538
539

the last inequality follows from the fact that Ω(τ − ℓ− 2/3 · τ) = Ω(γ), γ = c1 · log δ−1 for a540

sufficiently large constant c1, and δ ≤ 1/n. ◀541

The correctness of the algorithm is finally completed by the following theorem.542

▶ Theorem 20 (Formal version of Theorem 1). Given a directed graph G = (V, E) with n543

vertices, L ∈ N and δ ∈ (0, 1/n). Let L⃗save and Vfull be the two random variables of the output544

of Ptwo-pass(G, L, δ). For every ustart ∈ V , the following hold:545

The output distribution of Stwo-pass(V, ustart, L, Vfull, L⃗save) has statistical distance at most546

δ from RWG
L (ustart).547

Both of Ptwo-pass(G, L, δ) and Stwo-pass(V, ustart, L, Vfull, L⃗save) use at most O(n ·
√

L · log δ−1)548

words of space.549

Proof. Note that we can safely assume L ≤ n2, since otherwise one can always use O(n2)550

words to store all the edges in the graph. In this case, we have that L ≤ n ·
√

L and the551

space for restoring the L-step output walk can be ignored.552

Let Ṽheavy = Vfull and Ṽlight = V \ Ṽheavy. Let Egood be the event that Ṽlight ⊆ Vlight and553

Ṽheavy ⊆ Vheavy. By Lemma 17, we have that Pr[Egood] ≥ 1− δ/2.554

Now we condition on the event Egood. In this case, it follows from Lemma 10 that555

Pone-pass(G, γ · ℓ, Ṽheavy) operates correctly (by setting the constant c2 in Algorithm 1 to be556

sufficiently large).557

By Lemma 18 and a union bound, the probability of Stwo-pass(V, ustart, L, Ṽheavy, L⃗save)558

outputs failure is at most δ/2. By Lemma 15, it follows that the statistical distance between559

the output distribution of Stwo-pass(V, ustart, L, Ṽheavy, L⃗save) and RWG
L (ustart) is at most δ/2.560

The theorem follows by combing the above with the fact that Pr[Egood] ≥ 1− δ/2.561

◀562

4.4 Two-pass Streaming in the Turnstile Model563

Similar to the algorithm in [27], our algorithms can also be easily adapted to work for the564

turnstile graph streaming model, where both insertions and deletions of edges are allowed.565

Note that our two-pass algorithm Atwo-pass only accesses the input graph stream via the566

one-pass preprocessing subroutine Pone-pass. Hence, it suffices to implement Pone-pass in the567

turnstile model as well. There are two distinct tasks in Pone-pass: (1) for light vertices, we568

need to sample their outgoing neighbors with replacement and (2) for heavy vertices, we569

need to record all their outgoing neighbors.570

Uniformly sampling via ℓ1 sampler. For light vertices, uniformly sampling some out-571

neighbors from each vertex without replacement can be implemented via the following ℓ1572

sampler in the turnstile model.573

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:17

▶ Lemma 21 (ℓ1 sampler in the turnstile model [24]). Let n ∈ N, failure probability δ ∈ (0, 1/2)574

and f ∈ Rn be a vector defined by a streaming of updates to its coordinates of the form575

fi ← fi + ∆, where ∆ ∈ {−1, 1}. There is a randomized algorithm which reads the stream,576

and with probability at most δ it outputs FAIL, otherwise it outputs an index i ∈ [n] such577

that:578

Pr(i = j) = |fj |
∥f∥1

+ O(n−c), ∀j ∈ [n]579

580

where c ≥ 1 is some arbitrarily large constant.581

The space complexity of this algorithm is bounded by O(log2(n) · log(1/δ)) bits in the582

random oracle model, and O(log2(n) · (log log n)2 · log(1/δ)) bits otherwise.583

▶ Remark 22. To get error in the statistical distance also to be at most δ, one can simply584

set n to be larger than 1/δ. And in that case the space complexity can be bounded by585

O(log4(n/δ)).586

Recording all outgoing neighbors via ℓ1 heavy hitter. For heavy vertices, recording all587

their outgoing neighbors can be implemented using the following ℓ1 heavy hitter in the588

turnstile model. (Recall that we assumed our graphs is a simple graph without multiple589

edges.)590

▶ Lemma 23 (ℓ1 heavy hitter in the turnstile model [9]). Let n, k ∈ N, δ ∈ (0, 0.1) and f ∈ Rn
591

be a vector defined by a streaming of updates to its coordinates of the form fi ← fi + ∆, where592

∆ ∈ {−1, 1}. There is an algorithm which reads the stream and returns a subset L ⊂ [n]593

such that i ∈ L for every i ∈ [n] such that |fi| ≥ ∥f∥1/k and i ̸∈ L for every i ∈ [n] such594

that |fi| ≤ ∥f∥1/2k. The failure probability is at most δ, and the space complexity is at most595

O(k · log(n) · log(n/δ)).596

Algorithm in the turnstile model. Modifying Pone-pass with Lemma 21 and Lemma 23, we597

can generalize our two-pass streaming algorithm to work in two-pass turnstile model.7598

▶ Remark 24 (Two-pass algorithm in the turnstile model). There exists a streaming algorithm599

Aturnstile that given an n-vertex directed graph G = (V, E) via a stream of both edge insertions600

and edge deletions, a starting vertex ustart ∈ V , a non-negative integer L indicating the601

number of steps to be taken, and an error parameter δ ∈ (0, 1/n), satisfies the following602

conditions:603

1. Aturnstile uses at most Õ(n ·
√

L · log δ−1) space and makes two passes over the input604

graph G.605

2. Aturnstile samples from some distribution D over V L+1 satisfying ∥D−RWG
L (ustart)∥TV ≤ δ.606

References607

1 Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition a graph.608

Internet Mathematics, 4(1):35–64, 2007.609

2 Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceedings610

of the forty-first annual ACM symposium on Theory of computing, pages 235–244, 2009.611

7 In more details, for each light vertex u, we run τ independent copies of the ℓ1 sampler to obtain τ
samples from its outgoing neighbors with replacement. We also let k = c2 · τ · n and use the ℓ1 heavy
hitter to record all outgoing neighbors for all heavy vertices in Õ(n ·

√
L · log(1/δ)) space.

ICALP 2021

49:18 Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1) vertex612

coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms613

(SODA), pages 767–786. SIAM, 2019.614

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass streaming615

complexity of the set cover problem. In 48th Annual ACM SIGACT Symposium on Theory of616

Computing (STOC), pages 698–711. Association for Computing Machinery, 2016.617

5 Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical618

Journal, Second Series, 19(3):357–367, 1967.619

6 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.620

Computer networks and ISDN systems, 30(1-7):107–117, 1998.621

7 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering622

problems in directed graph streams. In Proceedings of the Fourteenth Annual ACM-SIAM623

Symposium on Discrete Algorithms (SODA), pages 1786–1802. SIAM, 2020.624

8 Amit Chakrabarti and Anthony Wirth. Incidence geometries and the pass complexity of625

semi-streaming set cover. In Proceedings of the twenty-seventh annual ACM-SIAM symposium626

on Discrete algorithms (SODA), pages 1365–1373. SIAM, 2016.627

9 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data628

streams. In International Colloquium on Automata, Languages, and Programming (ICALP),629

pages 693–703. Springer, 2002.630

10 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for631

clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of632

computing, pages 30–39, 2003.633

11 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song, and Huacheng634

Yu. Near-optimal two-pass streaming algorithm for sampling random walks over directed635

graphs. CoRR, abs/2102.11251, 2021. URL: https://arxiv.org/abs/2102.11251, arXiv:636

2102.11251.637

12 Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the638

sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.639

13 Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival640

streams. In 46th International Colloquium on Automata, Languages, and Programming641

(ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.642

14 Yuval Emek and Adi Rosén. Semi-streaming set cover. In International Colloquium on643

Automata, Languages, and Programming (ICALP), pages 453–464. Springer, 2014.644

15 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.645

On graph problems in a semi-streaming model. In International Colloquium on Automata,646

Languages, and Programming (ICALP), pages 531–543. Springer, 2004.647

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.648

Graph distances in the data-stream model. SIAM Journal on Computing, 38(5):1709–1727,649

2009.650

17 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings651

via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of652

Distributed Computing (PODC), pages 491–500, 2019.653

18 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Rubin-654

feld. Improved massively parallel computation algorithms for mis, matching, and vertex cover.655

In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC),656

pages 129–138, 2018.657

19 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming658

complexity of maximum bipartite matching. In Proceedings of the twenty-third annual ACM-659

SIAM symposium on Discrete Algorithms (SODA), pages 468–485. SIAM, 2012.660

20 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph661

processing. Algorithmica, 76(3):654–683, 2016.662

https://arxiv.org/abs/2102.11251
http://arxiv.org/abs/2102.11251
http://arxiv.org/abs/2102.11251
http://arxiv.org/abs/2102.11251

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, H. Yu 49:19

21 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight bounds for663

the streaming set cover problem. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI664

Symposium on Principles of Database Systems (PODS), pages 371–383, 2016.665

22 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on666

data streams. External memory algorithms, 50:107–118, 1998.667

23 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The668

Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.669

24 Rajesh Jayaram and David P. Woodruff. Perfect lp sampling in a data stream. In Mikkel670

Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS671

2018, Paris, France, October 7-9, 2018, pages 544–555. IEEE Computer Society, 2018.672

25 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM journal on computing,673

18(6):1149–1178, 1989.674

26 Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial675

structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.676

27 Ce Jin. Simulating random walks on graphs in the streaming model. In Avrim Blum, editor, 10th677

Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019,678

San Diego, California, USA, volume 124 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-679

Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ITCS.2019.46, doi:680

10.4230/LIPIcs.ITCS.2019.46.681

28 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings682

of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages683

1679–1697. SIAM, 2013.684

29 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-685

tion and Combinatorial Optimization. Algorithms and Techniques, pages 170–181. Springer,686

2005.687

30 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query,688

and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on689

Theory of Computing (STOC), pages 496–509, 2020.690

31 Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. In Proceedings691

of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,692

Louisiana, USA, pages 419–429. ACM, 1991.693

32 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,694

2008.695

33 Aviad Rubinstein, Tselil Schramm, and Seth Matthew Weinberg. Computing exact minimum696

cuts without knowing the graph. In 9th Innovations in Theoretical Computer Science (ITCS),697

page 39. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018.698

34 Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph699

streams. J. ACM, 58(3):13:1–13:19, 2011. URL: https://doi.org/10.1145/1970392.1970397,700

doi:10.1145/1970392.1970397.701

35 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation.702

In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC),703

pages 214–227, 2018.704

36 Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs705

and its application to nearly linear time graph partitioning. SIAM Journal on computing,706

42(1):1–26, 2013.707

37 Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,708

1985. URL: https://doi.org/10.1145/3147.3165, doi:10.1145/3147.3165.709

38 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.710

In 18th Annual Symposium on Foundations of Computer Science (FOCS), pages 222–227.711

IEEE Computer Society, 1977.712

39 Mariano Zelke. Intractability of min-and max-cut in streaming graphs. Information Processing713

Letters, 111(3):145–150, 2011.714

ICALP 2021

https://doi.org/10.4230/LIPIcs.ITCS.2019.46
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.46
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.46
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.46
https://doi.org/10.1145/1970392.1970397
http://dx.doi.org/10.1145/1970392.1970397
https://doi.org/10.1145/3147.3165
http://dx.doi.org/10.1145/3147.3165

	1 Introduction
	1.1 Background and Motivation
	1.2 Our Results
	1.2.1 Two-Pass Algorithm for Random Walk Sampling
	1.2.2 Lower Bounds

	1.3 Discussions and Open Problems

	2 Techniques
	2.1 The Two-Pass Algorithm
	2.2 Lower Bound for p-Pass Algorithms
	2.3 Lower bounds for Oblivious Algorithms

	3 Preliminaries
	3.1 Notation
	3.2 Graphs
	3.3 Useful Concentration Bounds on Random Variables

	4 Two-Pass Streaming Algorithms for Simulating Directed Random Walk
	4.1 Heavy and Light Vertices
	4.2 A Simple One-Pass Algorithm for Simulating Random Walks
	4.3 Two-Pass Streaming Algorithm for Simulating Random Walks
	4.4 Two-pass Streaming in the Turnstile Model

