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ABSTRACT 
We explore how different elements of student persistence on 
computer programming problems may be related to learning 
outcomes and inform us about which elements may distinguish 
between productive and unproductive persistence. We collected 
data from an introductory computer science course at a large 
midwestern university in the U.S. hosted on an open-source, 
problem-driven learning system. We defined a set of features 
quantifying various aspect of persistence during problem solving 
and used a predictive modeling approach to predict student scores 
on subsequent and related quiz questions. We focused on careful 
feature engineering and model interpretation to shed light on the 
intricacies of both productive and unproductive persistence. 
Feature importance was analyzed using SHapley Additive 
exPlanations (SHAP) values. We found that the most impactful 
features were persisting until solving the problem, rapid guessing, 
and taking a break, while those with the strongest correlation 
between their values and their impact on prediction were the 
number of submissions, total time, and (again) taking a break. This 
suggests that the former are important features for accurate 
prediction, while the latter are indicative of the differences between 
productive persistence and wheel spinning in a computer science 
context. 
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1. INTRODUCTION 
Research on student modeling has identified various behaviors and 
patterns related to learning outcomes and student success. One 
construct has both a history of research outside of Educational Data 
Mining (EDM) and is receiving renewed attention in the EDM 
community. Known by the diverse names of grit [8], perseverance 
[25], academic tenacity [9], and persistence, studies have focused 
on measuring the trait, identifying when students are exhibiting it, 
and quantifying its effects on various aspects of student learning. 
More traditional efforts on this front have focused on measuring 
persistence using questionnaires and testing its effect based on 

grades and test scores [8, 17, 41]. Efforts to identify persistence in 
log data of game-based learning systems [7, 27, 34] or intelligent 
tutoring systems (ITS) [15] have shown great promise. Many of 
these efforts have specifically focused on improving persistence 
detectors for on-the-fly student feedback systems or interventions. 

One aspect of persistence that has gained interest in the EDM 
community in particular is the distinction between productive and 
unproductive persistence. Persistence is typically characterized by 
a determination to stick with a problem for long durations despite 
facing obstacles, and it has often been portrayed as a positive trait. 
However, researchers have come to question this simplistic stance, 
noting that there seem to be two related but opposing sides to 
persistence. On one hand, persistence may produce productive 
results when it leads to consistent, long-term effort [8] or when 
students relish the opportunity to overcome challenges [9]. On the 
other hand, students who are "stuck" may be better off going back 
to learning more about the subject rather than continuing to spend 
time working on a problem they don't yet fully understand [3]. In 
such cases, the student’s persistence might be characterized as 
unproductive. 

Given the opposing academic outlook of this dichotomy, 
understanding what differentiates productive from unproductive 
persistence is of critical importance. The latter has been termed 
wheel spinning in the literature and has been defined as "a student 
who spends too much time struggling to learn a topic without 
achieving mastery" [3]. Recent research has specifically focused on 
creating and improving automatic detectors of wheel spinning in 
ITSs [11, 15, 24, 39, 42] and game-based learning systems [27]. 

In the context of computer science education, [23] have suggested 
that fostering grit can lead to higher retention among CS students. 
Other research has identified a weak correlation between grit and 
measures of academic success [17, 25, 41], especially when 
focusing on one of the two main components of grit—perseverance 
of effort—which most closely aligns with definitions of persistence 
[35]. 

In this paper, we add to the existing literature by exploring how 
different elements of persistence on computer programming 
problems may contribute to learning outcomes. We defined a set of 
features quantifying various aspects of persistence during problem 
solving and used predictive modeling approaches to predict student 
scores on subsequent and related quiz questions. We focus on 
careful feature engineering and model interpretation to shed light 
on the intricacies of both productive and unproductive persistence. 
By investigating these constructs within a computer science course, 
our study also aims to better understand their application in this 
context. Copyright © 2021 for this paper by its authors. Use permitted under 
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2. RELATED WORK 
2.1 Modeling Productive Persistence vs. 
Wheel Spinning 
The EDM community’s interest in persistence was sparked by [3], 
who found that students who struggle to master a skill within a 
certain timeframe are unlikely to do so at all. Besides identifying 
wheel spinning and describing how it differs from productive 
persistence, the same study found a clear correlation between wheel 
spinning and other negative behaviors such as gaming the system 
and disengagement. 
Subsequent studies have devised variations in criteria for 
differentiating between productive persistence and wheel spinning 
[42], with many models defining mastery based on the number of 
correct submissions in a row and others relying heavily on the 
stability of Bayesian knowledge tracing (BKT) student model 
predictions [16]. Despite differences in operationalization, 
however, predictive machine learning models have been found to 
serve as successful wheel-spinning detectors. Some of the 
algorithms that have been used include linear regression [3], 
logistic regression [11, 42], decision trees [15, 27, 39], random 
forest [27, 42], and neural networks [24]. Most of these studies 
calculated productive persistence or wheel spinning labels based 
solely on the data gathered rather than relying on human observers 
or coders. Two notable exceptions are [24, 27]. 
The goal of the most recent studies has been to identify wheel 
spinning in ITSs as early as possible. [42] compared different 
criteria and feature sets and have shown that it is possible to make 
predictions with acceptable accuracy as early as step four of a 
problem. They were also surprised to find that a logistic regression 
model trained on only one feature (“correct response percentage”) 
resulted in prediction performance that was close to their best 
models. Relying on hint requests, submission correctness, and time 
per skill, [39] concluded that models can detect students who will 
wheel spin after only three questions. 
The studies mentioned thus far have focused almost exclusively on 
ITSs, which are most commonly used to teach math. Detecting and 
studying persistence on computer programming problems requires 
first understanding how data from these tasks has been analyzed in 
past studies. 

2.2 Using Action Logs to Study Programming 
Behaviors 
There is growing interest in leveraging data analytic methods to 
study students’ action logs produced during programming activities 
[13], including to better understand the students’ programming 
processes, behaviors and strategies. Log data have been used to 
generate visualizations of student behaviors that can be manually 
inspected to better understand their programming approach [5, 10], 
explore how students progress through homework assignments [6, 
30], understand the learning pathways of novice programmers [4] 
and analyze problem-solving behavior in a debugging game [20].  
Generally, two broad categories of features have been used: 1) 
frequencies of behaviors and 2) similarity/distance between 
programs. The first category provides aggregated information 
related to the quantity of actions performed by the student. This 
includes the number of blocks used in a Scratch program [10], how 
often a program was compiled and how many characters it included 
[5], the number of actions and logic primitives used [4], and the 
number of lines added, deleted, and modified [6]. [20] leveraged 
expert judgments to identify meaningful behaviors, such as massive 
deletion and replacing loops with repetitive code. 

Studies have also developed features to evaluate how similar or 
different two computer programs are. [30] used a combination of 
the differences in bag of words, abstract syntax tree (AST) edits and 
similarity in calls to the application programing interface (API) to 
identify similar program states. [6], in addition to using this same 
method, considered the frequency of changes in a student’s 
program and the magnitude of those changes. 
As our goal was to focus on behaviors related to how students 
approach solving a problem, rather than investigating the content 
of the submitted solution, we used an approach in line with the first 
category to investigate elements of student persistence in a series 
of computer programming problems. This allowed us to focus 
specifically on the productive and unproductive behaviors of 
persistent students. 

3. METHODS 
3.1 Data Collection and Label Generation 
We collected data from an introductory computer science course at 
a large midwestern university in the U.S. hosted on PrairieLearn, 
an open-source, web-based problem-driven learning system [40]. 
Throughout the semester, 733 students used PrairieLearn to submit 
almost-daily programming homework problems, take weekly 
quizzes, and complete cumulative exams. In addition, students 
were free to practice past problems and questions as much as they 
desired. As our work aims to investigate the relationship between 
persistence during homework and subsequent assessment, we 
filtered the data to focus on attempts submitted towards solving a 
homework problem or a quiz question. After removing practice 
submissions and other non-credit assignments, our resulting data 
set consisted of 290,703 individual homework problem attempts 
and 313,097 quiz question attempts. 

All homework assignments were programming problems with 
checkstyle, compiler, and problem-specific tests that students’ code 
had to pass to receive full credit. Students had one day to 
successfully complete each homework problem. They were 
allowed to submit solution attempts as often as required until they 
successfully passed all the tests. After each submission, the system 
ran tests to check the correctness of the solution and provided 
feedback indicating mistakes. First, the system tested whether the 
solution had any checkstyle and compiler errors. If such error 
existed, the system showed feedback about these errors and 
stopped. If there were no checkstyle or compiler errors, the system 
further used several problem-specific tests to examine whether the 
solution fulfilled the requirement. For example, given some random 
input, would the solution generate the correct output? If not, the 
system would return feedback about the problem-specific test error. 
Otherwise, the solution was regarded as correct. 

We aggregated our dataset at the student-problem level using a 
series of features specifically related to persistence. While 
persistence can be studied at various grain sizes, we chose this level 
due to our interest in how students tackle difficulties within a 
particular programming problem. Similarly, we only kept instances 
that demonstrated struggling, as defined in section 3.2.1, since 
these were the cases that could elicit persistence from students. 

Quizzes were conducted weekly as part of regular class activity to 
assess learning and consisted of both multiple-choice questions and 
programming tasks. Quizzes were made available at the end of the 
week and were designed to provide early assessment related to the 
content of the homework problems assigned earlier that week. We 
aligned the content of each homework problem to corresponding 
multiple-choice quiz questions to directly investigate the 



relationship between persistence in specific homework problems 
and outcome on related assessment questions. Once we had these 
alignments, we calculated for each student-problem instance the 
total number of points obtained on the relevant quiz questions and 
the maximum possible points. Using these values, we then 
calculated the point percentage as the indicator of learning. Only 
quiz questions that students attempted were considered for these 
calculations. After these changes and calculations, our aggregated 
dataset consisted of 7,673 instances of student-problem pairs, 
submitted by a total of 710 students. 

The resulting distribution of the score outcome variable had a 
strong negative skew, with most instances accumulated at higher 
scores, as shown in Figure 1. This is because students often 
managed to obtain a perfect score on their aligned quiz questions. 
Students were typically given two chances to select the right 
answer, the second time for half credit. 

 
Figure 1. Distribution of score values 

3.2 Feature Engineering 
Given our goal to study how specific behaviors might be related to 
persistence, our feature engineering efforts focused on developing 
features based on an underlying rationale about their relationship to 
productive or unproductive persistence. Following the Carnegie 
Foundation for the Advancement of Teaching’s definition of 
productive persistence—“tenacity plus the use of good strategies” 
[18]—we sought to identify good learning strategies and habits 
based on the available data. Other features were based on more 
generalized applications of the aspects of unproductive persistence 
that have been identified in the wheel-spinning literature. This 
process resulted in a total of 12 base features. We also standardized 
most of these at the problem level (by subtracting the problem’s 
mean and dividing by the problem’s standard deviation) to create 
an additional 10 features. The rest of this section describes each 
feature and our rationale behind it. 

3.2.1 Struggling threshold features 
Whether the student went beyond a problem’s corresponding time 
or attempt threshold. 
We defined students as struggling if they worked on a programming 
problem for a long time or if they submitted a high number of 
solutions to a problem. We considered that students could only 
show persistence in the context of problems for which they 
struggled. 
This operationalization of struggling depends on identifying both a 
time and attempt threshold, each specifically calculated for that 
homework problem. Thus, once we calculated the thresholds for 
each problem, we created two binary struggling threshold features: 
beyond time threshold and beyond attempt threshold. We only kept 
instances of students that satisfied at least one of these two criteria. 
We also created two numerical features that measured a student’s 
deviation from each of these thresholds. Because the thresholds 
were already calculated at the problem level, standardizing these 

deviation features would result in perfectly collinear features, so we 
did not standardize them. 
For the time threshold, we used the minimum value between the 
75th quantile of students’ total time on each problem and 15 
minutes. We combined the 75th quantile and 15 minutes to 
determine the time threshold based on several reasons. First, given 
that the course is only an introductory CS course, it is reasonable 
that one fourth of students struggled with difficult programming 
problems. Second, the proportion of students who struggled with 
unchallenging problems would be smaller. Using an absolute 
threshold would be better for these cases. Third, we used 15 
minutes as the absolute threshold because 57.56% of problems had 
a 75th quantile of total time smaller than 15 minutes. It seems 
reasonable to regard close to half of problems as unchallenging. 
Given that the number of attempts is an important indicator of 
persistence, many attempts on a problem might also be indicative 
of struggling, even when the total time spent on the problem falls 
under the time threshold. Analogous to deciding the time threshold, 
we used the minimum value between the 75% quantile of the 
number of attempts on a problem and 9 attempts to determine the 
attempt threshold. If the 75th quantile of the number of attempts on 
a problem was smaller than 9 attempts, the later became the attempt 
threshold. We used 9 attempts as the absolute threshold because 
56.06% of problems had a 75th quantile of the number of attempts 
no more than 9 attempts. This number was close to 57.56%, the 
proportion of problems with a 75th quantile of total time smaller 
than 15 minutes. 

3.2.2 Solved 
Whether the student successfully solved the programming problem 
before the deadline.  
This is directly related to wheel spinning as defined by [11]: 
"problem solving without making progress towards mastery." 
While PrairieLearn is not suited for measuring mastery the way 
[11] did with the Cognitive Algebra Tutor and ASSISTments ITSs 
(three consecutive, correct responses within a specific skill), 
persistence while struggling that does not lead to an eventual 
correct solution can be considered a form of wheel spinning or 
unproductive persistence. Based on this, we hypothesized that 
solving a challenging problem (productive persistence) would lead 
to a higher quiz-question score than not solving the problem (wheel 
spinning). 

3.2.3 Number of submissions  
The count of how many times the student submitted an attempted 
solution for the problem.  
This is a typical measure used in the persistence literature [15, 39, 
42]. Since submissions on PrairieLearn typically end when a 
student successfully solves a problem, this feature is a count of the 
number of failed attempts + 1. In essence, this is one way of 
measuring the level of persistence demonstrated. We reasoned that 
more unsuccessful attempts would indicate more wheel spinning, 
resulting in lower quiz scores. 

3.2.4 Total time on problem 
The total amount of time (in seconds) spent solving the problem. 
As with the number of submissions, the time that students spend on 
a challenging problem might indicate the amount of persistence 
being demonstrated. We again reasoned that more time (and thus 
more wheel spinning) may be predictive of more struggling and 
lower scores on the quiz questions. 



Our platform only allowed us to measure the time between 
submissions, so we had no way of knowing with certainty how 
much time was spent working on a problem. If the time difference 
between a student’s two consecutive submissions was beyond 15 
minutes, we regarded this student as being away from this problem 
during that interval (see the feature taking a break below for the 
choice of 15 minutes as a threshold). In these cases, we replaced 
this time difference with the student’s mean time difference 
between other consecutive submissions on this problem so that we 
could estimate the student’s total time on the problem more 
accurately. 

3.2.5 Taking a break 
Whether the student spent time away from the problem after 
passing one of the struggling thresholds. 
We defined taking a break as a struggling student being away from 
the problem at least once. When the time between two consecutive 
submissions on the same problem went beyond 15 minutes, we 
regarded the student as away from the task. As discussed above, 15 
minutes might be sufficient for solving unchallenging problems if 
students did not struggle. Moreover, 81.57% of pairs of consecutive 
submissions had a time difference less than 15 minutes. This 
proportion only increased slightly to 83.77% when increasing this 
threshold from 15 minutes to 1 hour. Thus, it is reasonable to use 
15 minutes as the threshold for being away from the problem. Note 
that if a student attempted other homework problems between two 
consecutive submissions on the same problem, we regarded this 
student as interleaving rather than taking a break. 
Our rationale for measuring break taking is based on the idea that a 
wheel-spinning state may be overcome by time away from task. 
Some of the cognitive benefits of breaks have been documented [1, 
19, 26, 36] and seem to be especially impactful for intensive and 
prolonged tasks. The term wheel spinning itself was coined in 
reference to the imagery of a car spinning its wheels but not going 
anywhere, suggesting that the indiscriminate tactic of subsequent 
attempts may not always be productive. In their article defining this 
new construct, [3] suggest devising ways to break up fruitless 
attempts at solving problems. Our feature tries to capture students 
who independently choose to break up their homework in this way. 

3.2.6 Interleaving 
Whether the student switches to a different problem for a time and 
then comes back to continue attempting the original problem. 
Interleaved practice, as opposed to blocked practice, refers to a 
learning technique that mixes up the order of topics, lessons, or 
problems presented. Studies have shown that this practice usually 
improves learning outcomes [32, 38], though—to the best of our 
knowledge—this has not been explored in a CS context. For the 
purposes of our study, we measured interleaving as a student 
attempting a problem without solving it, attempting a different 
problem, and then returning to continue working on the original 
problem. We reasoned that such a practice could potentially serve 
to break up the monotony and potential frustration associated with 
wheel spinning and thereby lead to better learning. We considered 
this an alternative to taking a break and did not double count such 
instances in the features.  

3.2.7 Rapid guessing 
Whether the student submitted at least three quick submissions in a 
row. 
Quick, consequent submissions may indicate guessing or uncritical 
attempts to fix problems without much reflection. This behavior has 
been associated with students trying to game the system [2, 28] and 

with wheel spinning [3]. Given the nature of programming tasks as 
opposed to attempts in an ITS, we defined a quick submission as a 
gap between attempts of less than 15 seconds. If a student’s 
submission stream to a problem contains three or more consecutive 
quick submissions, we labeled this student as performing rapid 
guessing on the problem. We hypothesized that rapid guessing 
would be associated with a lower score on related quiz questions. 

3.2.8 Time interval between consecutive submissions 
The student’s mean and standard deviation of time intervals 
between consecutive attempts on the problem. 
Shorter time between submissions may indicate more unproductive 
attempts to push through to an answer without stopping to 
think/work carefully or take breaks [39]. This is also similar to the 
common practice of cramming, as opposed to the more effective 
practice of spaced repetition. [15] found both the mean and standard 
deviation of time differences to be about equally as predictive of 
wheel spinning. We nevertheless chose to include both features in 
our initial model to test this claim. We did not count cases of break 
taking (intervals longer than 15 minutes) towards these features. 
Because of its association with wheel spinning, we hypothesized 
that we would find a positive correlation between these features and 
score. 

3.3 Machine Learning and Interpretation 
To test the importance of our various features, we created a random 
forest model using a shuffled 70/30 validation/testing split grouped 
by student with 5,396 and 2,277 instances respectively. We 
conducted 500 iterations of Bayesian hyperparameter optimization 
on the validation set using 10-fold cross validation grouped by 
student. This hyperparameter tuning was set to optimize the R2 
score. 
We originally tested a wide array of models, including various 
linear, tree-based, and ensemble algorithms, and we further tuned 
some of the most promising ones. We found that variations of 
gradient boosting models performed best. However, we chose to 
focus on random forest for our feature interpretation for two 
reasons: (1) the performance gained by using the best models over 
random forest was negligible, and (2) random forest models have 
been shown to be useful for predictions related to persistence in 
other EDM research [27, 42]. 
Once we had constructed our final model, we re-trained it on the 
entire dataset in preparation for feature interpretation. For the task 
of interpreting feature importance, we analyzed SHapley Additive 
exPlanations (SHAP) values. SHAP is a game-theoretic approach 
that calculates the effect that each value in the feature matrix has 
on that instance’s prediction, relative to the mean prediction [22]. 
That is, we can output a matrix with the same dimensions as the 
features data set, each value serving as an explanation of that 
feature’s effect on the prediction made for that particular instance. 
These SHAP values are in the same unit as the target label—
percentage score in our case—further lending themselves for 
interpretation. Though SHAP values are very resource-intensive to 
fully and accurately calculate, the nature of tree-based models 
makes it possible to optimize the process significantly [21]. 
It is important to note that the mean of the SHAP values for any 
feature will always be zero. This is because SHAP values are 
calculated as the difference of each feature-instance from the mean 
predicted score. However, by finding the mean absolute value of 
the SHAP values for each feature, we can identify which features 
have the strongest broad, average impact on prediction. 



While mean Gini impurity has been used to interpret features in the 
persistence literature [42], and permutation feature importance is 
commonly used as well, numerous studies have identified potential 
issues with these approaches that can lead to misleading 
interpretations [12]. This is especially true when using highly 
correlated features [37], which is the case with our data. 
Furthermore, SHAP allows for investigation into the interplay 
between features beyond what these other methods can do. 
We conducted all our work using open-source Python packages 
built on top of Scikit-learn [29]. We tested and tuned a variety of 
models using PyCaret [31], performed Bayesian optimization [14] 
with scikit-optimize [33], and investigated feature importance 
using SHAP [22]. 

4. RESULTS AND DISCUSSION 
4.1 Model Results and Preliminary Analysis 
Our tuned random forest model attained an average cross-validated 
R2 of 0.133 and an average RMSE of 0.129 on the validation set. 
On the held-out testing set, the resulting R2 was 0.145 and the 
RMSE was 0.130. Our persistence features accounted for roughly 
14% of the variation in related quiz scores. 

A preliminary analysis of our model uncovered certain important 
patterns. For one, our least impactful features were all binary 
measures—such as whether interleaving, rapid guessing, or break-
taking were observed—whereas our top features were the 
standardized measures of those binary features. Figure 2 shows the 
entire set of feature rankings based on mean absolute SHAP values. 

 
Figure 2. Preliminary model feature rankings 

A detailed exploration of these features revealed what appears to be 
an opposing impact between some binary features and their 
standardized counterparts. For example, the feature solved has a 
negative correlation between its values and its SHAP values 
(r = -0.217, p < 0.0001), whereas its standardized version, 
solved_std, has a positive correlation (r = 0.33, p < 0.0001). 
Measuring this correlation between feature and SHAP values 
allows us to better understand how the model is using the feature. 
Higher correlation, and thus a stronger linear relationship, suggests 
a more straight-forward interpretation for the feature’s role in the 
model. While the impact of solved is very small in the overall model 
(ranked 17th, mean absolute SHAP = 0.00003), solved_std is our 
top feature in terms of overall impact on the predicted score (mean 
absolute SHAP = 0.02129). We found this same inverted 

relationship between many other impactful standardized features 
and their original, binary, far less impactful counterparts. 

Because we standardized features at the problem level, the 
correlation between each unstandardized and corresponding 
standardized feature is never quite perfect, but some do come close. 
Random forest models typically do not suffer from collinear 
features the way more traditional statistical regression methods do. 
This is largely because of the way features are randomly sampled 
for each tree. Even when both collinear features are part of the 
feature subset, a decision tree will typically ignore one in favor of 
the other. We suspect that much of our model’s preference for the 
standardized features over unstandardized ones is the added 
problem-level information they contain, which could be interpreted 
as information regarding the difficulty of the problem.  

However, while the predictive power of a random forest is not 
affected by collinear features, model interpretability suffers, as we 
found through our preliminary analysis. Given our goal of better 
understanding the different aspects of persistence and their 
relationships, we decided to remove the original non-standardized 
features. We also removed time_threshold_deviation and 
attempt_threshold_deviation, which were very highly correlated 
with total_time_std and num_submissions_std respectively. We 
then re-trained and re-tested our model.  

After removing these features, we found that our model’s average 
cross-validated R2 on the validation set increased slightly, from 
0.133 to 0.134, while RMSE remained constant. On the held-out 
testing set, its R2 also increased, from 0.145 to 0.147, while RMSE 
remained constant. We then re-trained our model on the entire 
dataset in preparation for our in-depth feature analysis. 

4.2 Feature Importance and Interpretation 
4.2.1 Feature rankings 
Our analysis using SHAP values found that the solved_std and 
rapid_guessing_std features had the biggest effect, accounting for 
an average impact of 0.0215 and 0.0172 on the predicted score 
respectively. The third most important feature, taking_break_std, 
had an average impact less than half as strong at 0.0076. Together, 
these three features account for 75% of all features’ total impact on 
the predicted score. Figure 3 shows the feature rankings based on 
mean absolute SHAP values, while Table 1 allows for comparison 
with other methods such as Gini-impurity-based importance and 
permutation importance. Rankings based on these three different 
approaches yielded almost identical results with only minor 
variations, strengthening the reliability of our findings. 

 
Figure 3. Final model feature rankings 



Besides ranking the features by impact on the predicted score, 
SHAP values allow us to explore the nature of that impact more 
deeply, as well as the interactions between features. Figure 4 is a 
beeswarm plot of SHAP values by feature with color indicating the 
value of each individual instance. 

 
Figure 4. SHAP beeswarm plot 

To further aid our interpretation, we also explored which features 
had the highest absolute correlation between their values and their 
corresponding SHAP values. In essence, this correlation is a 
measure of just how linear each feature’s effect is on the predicted 
score. We calculated Pearson’s r for all features (see Table 1) and 
found that all p values were below 0.0001, except for sd_time_diff. 
Throughout this analysis, we point out when a feature’s correlation 
is indicative of a linear relationship. 

4.2.2 Solved 
We can see (Figure 4) that the bulk of solved_std is composed of 
high values (red color), indicating that most students managed to 
solve most homework problems. The long positive skew suggests 
that small, positive variations in this feature could potentially push 
the predicted quiz score up by about 0.1. The few lower values in 
this feature (blue color) are found on the left side of the plot, 
suggesting that not solving the problem tended to pull the predicted 
score down. Indeed, we found a moderate positive linear 
relationship between solved_std and its SHAP values (r = 0.34), 
further confirming our initial analysis. 

This confirms our hypothesis. It suggests that solving a challenging 
problem (productive persistence) may be related to a better 
understanding of the underlying concepts, whereas not solving the 
problem (wheel spinning) suggests a lack of understanding. 

4.2.3 Rapid guessing 
Our models’ second most impactful feature, rapid_guessing_std, is 
in many ways the opposite. Most students did not engage in rapid 
guessing. Those who did, particularly on homework problems 
where few others did—identified by high rapid_guessing_std, or 
red color in the beeswarm plot (Figure 4)—were more generally 
affected negatively in their predicted score based on this feature. 
This effect can more clearly be seen when plotting the SHAP values 
for the feature against the values of the feature itself (Figure 5). 
This view allows us to get a better sense of how most instances with 
a higher rapid_guessing_std value impact the predicted score 
negatively. This aligns with our hypothesis: rapid guessing, with its 
potential implications of wheel spinning [3] and gaming the system 
[2, 28], is indicative of lower learning outcomes. 

 
Figure 5. Correlation between rapid_guessing_std and its 

SHAP values, with solved_std as color 
By adding the values of our top impactful feature, solved_std, as 
the color of the plot illustrated in Figure 5, we can also see an 
interesting interaction between the two features. It appears that the 
impact of the high rapid_guessing_std values is at least partly 
dependent on solved_std—instances where the student failed to 
solve the problem (in blue) were less negatively impacted by 
rapid_guessing_std (as indicated by their mostly positive SHAP 

Table 1. Feature impact measures (r is correlation between feature values and corresponding SHAP values) 

feature mean absolute SHAP Gini importance permutation importance r p 

solved_std 0.02149 0.26554 0.17083 0.340 < 0.0001 

rapid_guessing_std 0.01724 0.20987 0.17059 -0.076 < 0.0001 

taking_break_std 0.00758 0.10511 0.04310 -0.608 < 0.0001 

beyond_time_threshold_std 0.00373 0.07514 0.02790 -0.349 < 0.0001 

beyond_attempt_threshold_std 0.00369 0.07028 0.02760 -0.080 < 0.0001 

num_submissions_std 0.00326 0.07751 0.03082 -0.833 < 0.0001 

total_time_std 0.00257 0.07871 0.02550 -0.773 < 0.0001 

avg_time_diff_std 0.00099 0.05398 0.01558 -0.158 < 0.0001 

sd_time_diff_std 0.00098 0.06166 0.01856 0.008 > 0.5 

interleaving_std 0.00017 0.00219 0.00028 0.126 < 0.0001 
 



values). One explanation may be that students who rely on rapid 
guessing and manage to solve the problem may come away with 
more misguided confidence in their mastery of the material than 
those who fail to solve the problem and are thus less likely to 
consider reviewing before a quiz. However, this hypothesis was not 
investigated further. 

4.2.4 Taking a break 
Our model’s third most impactful feature, taking_break_std, has a 
very clear pattern that is easily observable in Figure 4. Lower 
feature values generally lead to a positive impact on predicted 
score, whereas taking a break is more likely to have a negative 
impact on score. We found a negative linear relationship between 
taking_break_std and its SHAP value (Figure 6), with Pearson’s r 
of -0.608. The distribution of SHAP values for this feature indicates 
a potential negative impact about three times as large as the positive 
one.  

 
Figure 6. Correlation between taking_break_std and its SHAP 

values 
This result is the opposite of what we hypothesized. Since taking 
breaks during a difficult task has been shown to improve cognition 
[36], we hypothesized that students who took a break while 
struggling would ultimately be more productive. We specifically 
marked a student as taking a break only if there was a large gap 
between submissions (15 minutes) after they had passed one of the 
two struggling thresholds. 

One possible explanation is that students who took a break did, in 
fact, perform better than they would have otherwise. Since our 
method does not directly test causation, our model may be using 
this feature as a proxy for students who struggled more than others. 
Another possibility is that this feature is not solely capturing 
intentional break-taking, but also interruptions to students’ work, 
which may serve as distractions—certainly not an ideal learning 
situation. We did not calculate how many times students took a 
break, only if there was at least one 15-minute gap between 
submissions when struggling. Finally, because homework 
problems were due at midnight on the day they became available, 
students may simply not have had sufficient time for effective break 
taking. Without additional information about learning context or 
calculating additional features, we have no way of knowing which 
of these explanations, if any, are the most likely. 

4.2.5 Struggling threshold features 
For beyond_time_threshold_std, we can see in Figure 4 that lower 
values generally lead to increases in the predicted score and vice 
versa. This is indicative of the underlying attribute this feature 
attempts to capture—going beyond the time threshold yields 
smaller (generally negative) SHAP values, whereas not going 
beyond the time threshold yields larger (generally positive) values, 
the exact value being heavily affected by how much other students 
crossed the threshold on the same problem. For students who take 
longer than the norm, this generally has a negative effect on their 
score. The relationship here is moderately linear with an r of -0.349. 

The fifth top feature that we identified, 
beyond_attempt_threshold_std, does not have such a clear pattern. 
The SHAP values seem to be widely spread irrespective of the 
feature’s values. The feature’s distribution is bimodal, as is the case 
with most of the features that standardize a binary variable, and we 
did find a small distinction in the SHAP values between the two 
modes (Figure 7). While the mean for each mode is essentially zero, 
higher instances of beyond_attempt_threshold_std, which 
correspond with student-problem instances that went beyond that 
problem’s attempt threshold, have a moderate negative correlation 
with their SHAP values (r = -0.409, p < 0.0001) and lower 
instances, on the other hand, have a positive correlation about 
equally as strong (r = 0.382, p < 0.0001). This suggests that the 
impact of this feature on predicted score is highly dependent on 
how much one’s status on the underlying binary variable 
(beyond_attempt_threshold) varies from the norm for that given 
homework problem.  

 
Figure 7. Correlation between beyond_attempt_threshold_std 

and its SHAP values (with annotations) 

4.2.6 Number of submissions 
We found that num_submissions_std, our model’s sixth top feature 
in terms of impact, has the strongest correlation between its feature 
values and SHAP values (r = -0.833). This fits with our hypothesis. 
The more attempts that students submit, the more likely they are to 
be struggling, and the less likely they are to perform well when 
tested on the same skills during their weekly quiz. 

4.2.7 Time features 
We found that our three time-related features—not including 
beyond_time_threshold_std, which is of a very different nature 
since its non-standardized version is a binary feature—had some of 
the weakest predictive power in our model. total_time_std had a 



still moderate mean absolute SHAP at 0.00257 and a very strong 
correlation between its feature and SHAP values with r = -0.773. 
avg_time_diff_std and sd_time_diff_std, by comparison, had a 
much lower mean absolute SHAP (respectively 0.00099 and 
0.00098) and no correlation. 
The strong, negative correlation between total_time_std and its 
SHAP values mean that the model is interpreting longer time on a 
problem as being related to lower learning outcomes, or at the very 
least as a student struggling enough with a problem to lead to a 
lower score on the weekly quiz. This latter possibility is in line with 
our hypothesis and with what we found for 
beyond_time_threshold_std. Interestingly, this pattern is far more 
pronounced for instances that went beyond the time threshold (red 
points in Figure 8), whereas the relationship is seemingly reversed 
for cases where students did not go beyond the time threshold 
(blue/purple points in Figure 8).  

 
Figure 8. Correlation between total_time_std and its SHAP 

values, with beyond_time_threshold_std as color 
As for the two features that specifically look at time between 
submissions (avg_time_diff_std and sd_time_diff_std), their 
weakness both in predictive impact and correlation with SHAP 
values suggest at face value that this factor has little value at 
predicting learning success (or lack thereof) when students struggle 
with a problem. These features’ impact may also have been affected 
by the high correlation between them (r = 0.76). Similar 
information may have also been captured by a combination of 
beyond_time_threshold_std and beyond_attempt_threshold_std. 

4.2.8 Interleaving 
Finally, our model’s least impactful feature, interleaving_std, had 
by far the lowest mean absolute SHAP value (0.00017) and a low 
correlation between its features and its SHAP values (r = 0.126). 
We originally hypothesized that this feature would play a bigger 
role in predicting students’ scores, considering that the practice of 
interleaving when struggling is generally considered a good 
learning practice [32, 38]. However, its low impact in our model is 
likely because we had so few instances of interleaving—only nine 
out of 7,673 instances. Most of these nine did lead to an increase in 
predicted score, but without more examples of the practice, we are 
unable to make any sound conclusions regarding its role. 

4.3 Limitations 
Our study suffers from limitations primarily related to the aligned-
quiz-question scores we calculated for each student-problem 
instance. For one, the score distribution was heavily skewed due to 
the abundance of almost perfect quiz scores. Additionally, while 
the PrairieLearn platform allowed us to use the course’s quizzes 
without requiring students to take an additional posttest, the scores 

did not take into account students’ prior knowledge and skills. This 
made it difficult to measure the impact of students’ productive vs. 
unproductive persistence directly.  
These factors likely led to our model’s limited predictive 
performance (R2 = 0.147 on the held-out test set). While we believe 
that our final model’s performance was sufficient for our purposes 
of interpreting the relationship between elements of persistence and 
learning outcomes, it should be possible to create a more accurate 
model without severely sacrificing interpretability. 

5. CONCLUSION 
The most impactful features were those related to solving the 
problem, rapid guessing, and taking a break. Those with the most 
straightforward linear effect were the number of submissions, total 
time, and (again) taking a break. All three of the latter had a strong 
negative correlation between their feature values and their impact 
on prediction. In other words, more attempts, taking a longer time, 
and taking a break are all correlated with lower scores on related 
quiz questions. Solving the problem—our most impactful feature—
had a moderate positive correlation, highlighting the positive nature 
of the relationship between successfully completing homework 
problems and score on subsequent related quiz questions. 

This all suggests that solving the problem and rapid guessing are 
important features for accurate prediction, while the number of 
submissions and total time are indicative of the differences between 
productive persistence and wheel spinning in a computer science 
context. Taking a break fits into both of these categories. 

Perhaps most important, we were able to identify features that are 
directly related to learning strategies. Our findings suggest that 
students should avoid rapidly submitting subsequent programming 
attempts without actively trying to address problems in their code 
(rapid guessing). Taking a break may also be unproductive 
behavior, though this finding may be an artifact of the specific 
context in which students were able to submit homework in this 
course, as well as the particular way in which we calculated this 
feature. As for interleaving, its predictive strength in our model was 
low, but its effects nevertheless suggest that a future investigation 
should study whether it can be an effective practice when struggling 
on a problem. 

In order to address the limitations of our study, we suggest that 
future research focus on devising a more robust measure of learning 
that takes into account students’ individual starting points. 
Additionally, for the CS context of this study, a valid measure of 
programming proficiency that considers the problem-solving 
process would be superior to the quiz scores we used as proxy. 
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