THE EFFECT OF ADDING ENDPOINT MASSPOINTS ON
BOUNDS FOR ORTHOGONAL POLYNOMIALS

D. S. LUBINSKY

ABSTRACT. Let v be a positive measure supported on [—1, 1], with infinitely
many points in its support. Let {p, (v, )}, > be its sequence of orthonormal
polynomials. Suppose we add masspoints at +1, giving a new measure p =
v+ Mé1 + N6_1. How much larger can |pn (i, 0)| be than |p, (v,0)|?7 We
study this question for symmetric measures, and give more precise results for
ultraspherical weights. Under quite general conditions, such as v lying in the
Nevai class, it turns out that the growth is no more than 1+ o (1) as n — oo.
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1. RESULTS

Let i be a finite positive Borel measure on the real line with infinitely many
points in its support, and all finite moments

/tjd,u(t),j:071,2,... )
Then we may define orthonormal polynomials
P (1, ) = vy, () 2" + 075, (1) > 0,
n=0,1,2,... satisfying the orthonormality conditions
[ 2080 5 (1) i () = 1
The zeros of p, (1, x) are denoted by

T, () < Tp_1,n (1) < oo < Top (1) < @1 (1) -
The nth reproducing kernel for p is

K, (u,:c,t) = ipj (,u,a:) D (Ua t) _ Tn—1 (‘u) Pn (/u'ax)pn—l (,uvt) — Pn—1 (Ma l’) Pn-1 (:U"t) )

j=0 n z—t

The three term recurrence relation has the form

(@ = bn (1) Pn (1s @) = g (1) Prsr (B, @) + an (1) Pr—1 (1, ) ,
where Yoy
. (1)

A central problem in the theory of orthonormal polynomials is to establish
bounds on p,, (i, z), and there is an extensive literature. See for example [1], [3], [5],
[8], [12], [14]. In this paper, our goal is to assess how adding masspoints at +1 can
increase the size of the orthonormal polynomial at the origin. We take advantage of

Qn (M)
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the fact that a lot is known about the orthogonal polynomials for measures formed
by adding such masspoints. Differential equations and other identities have been
obtained, asymptotics as n — oo have been established, and Sobolev analogues
have been investigated. See [2], [4], [7], [10], [11] for some references.

Consider a fixed positive measure v supported on [—1,1] with infinitely many
points in its support, and that is symmetric about 0, so that v ([—b, —a]) = v ([a, b])
for all [a,b] C [-1,1]. Fix S > 0. We let M (v,S) denote the class of all measures

(1) p=v—+Ms + N

where M, N > 0and M + N < S. We let M (v) denote the class of all measures of
this form with M, N > 0 and no restriction on M + N.

We shall need some auxiliary parameters that depend only on n and v. For even
integers n, we set

Tn pn(Val) T p%(wl)
The second formula for 7, follows from the Christoffel-Darboux formula, and sym-
metry of v. Also let

(2) Ty = Tn-1 (v) Pt (v,1) K, (v,—1, 1).

U, = Kn(Vylal)*Kn(Va*l:l);
‘/n Kn (V7171)+Kn (Va_lal)'

(3)
We note that it follows from the recurrence relation that 0 < 7, < 1, while the

symmetry of v and Cauchy-Schwarz show that U, V,, > 0 (see (27) below).
We prove:

Theorem 1.1
Let v be a positive measure with support in [—1,1] and with infinitely many points

in its support. Assume also that v is symmetric, so that v ([=b, —a]) = v ([a, b]) for
all subintervals [a,b] of [—1,1]. Let n > 2 be even. Then

(1) sup (W)2:max{1, U }

pEM(v) \Pn (Va O) VnVn+1
Moreover,
2 2
pn (1,0) Uz
(5) up () -
pEM(v) \Pn (Vv 0) Vn‘/:n—i-l
iff
2p2 (v,1) _ 1—2r,
6 Ll .
(6) A
Remarks

(a) We have been unable to find a measure for which (6) fails, but nor have we been
able to prove that it is always true. It is true for all even Jacobi weights and large
enough n, as we shall see below.

(b) Interestingly enough, the supremum in (4) is not attained. It occurs as M =
N — oo. However, we note that for a large class of measures, it decays to 1 as
n — oo:
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Corollary 1.2
Assume in addition to the hypotheses of Theorem 1.1, that v lies in the Nevai class,
so that the recurrence coefficients satisfy

1
(7) lim a, (v) = -.
n—oo 2
Then
2
8 lim su M =1.
(8) p
n=00 \ peM(v) \Pn (V7 O)
Remarks

(i) Note that since v is symmetric about 0, by, (v) = 0 for all n.
(ii) The only property that we use of the Nevai class is subexponential growth at 1 :

lim p, (v,1)* /K, (v,1,1) = 0.
Next, we consider the case where we maximize over the class M (v,S). For a
given S > 0, and given n, let
S+ S%U, /2
S2U,V,/4+ SK, (v,1,1)+1°

In the course of our proofs, we shall show that Xg is an increasing function of
S > 0, and its limit as S — oo coincides with the left-hand side of (6). We prove:

(9) Xs :pi (V’ 1)

Theorem 1.3

Let v be a positive measure with support in [—1,1] and with infinitely many points
in its support. Assume also that v is symmetric, so that v ([-b,—al]) = v ([a,b]) for
all subintervals [a,b] of [—1,1]. Let n > 2 be even and S > 0 and let M (v,S)
denote the class of measures defined above.

(a) There exists u* = v+ M*01 + N*0_1 € M (v, S) satisfying

(10) Ipn (17, 0)] = max {|p, (11,0)| : p € M (v,S)}.
(b) If Xs < 1‘3”", then M* = N* =0, p* = v, and
(11) lpn (1%, 0) = |pn (v, 0)].

(c) If Xg > %, then M* = N* = %, w :V—i—%(d_l—i—él), and

(Bt

(52U2/4+ SU, +1)°

= 1.
(52U Vo /4 1 5Ky (1,1,1) + 1) (S2Un Va2 + SKpd LD+ 1)
(12)
(d) If Xg = 1;%”, then there are two extremal measures, namely p* = v, and

p*=v+ 5 (0_1+61), and (11) holds.

(e) In all cases,
(pn (u,0)>2 B (1+7.Xs)?
max | ——<) =max{l,——"" 5.
pEM(@,8) \ pn (¥,0) 1+ Xs
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Thus the extremal measure is always symmetric. It is also unique, except when
Xg = % For even Jacobi weights (or equivalently ultraspherical weights), we
obtain more explicit results:

Theorem 1.4
Let o > —1 and

(13) V()= (1-%)" e (-1,1).

For even m > 2, the inequality (5) holds, and

(1,0 )
sup
pEM(v) (pn (V O)

(a) 2(a+1) {14 2221

1+ atl 4 ol 2(2a+1)
s+ o (o 1 )
2(a+1
= 1+(72)+O(n*3).
(n+a)

(14)

Thus for all @ > —1, the supremum exceeds 1 for large enough n, but decays to
1 with rate O (n*2) as n — oo. For fixed S, we prove:

Theorem 1.5

Let v,n be as in Theorem 1.4 andlet S > 0. Let p* = v+M*61+N*6_1 € M (v, 5)
be an extremal measure satisfying (10).

(a) Suppose —1 < a < —35. Then there exists ng (a) such that for n > ng (),
o > % Moreover, for n > ng(a) and for all S > 0, M* = N* =
pr=v+2(0-1+61).
(b) Suppose o > —1. Then there exists ng (o) such that for n > ng(a), r, < %
Then for m > ng(a) and S > 0 so small that Xg < 1T§T” M* = N* = O

and p* = v. For n > ng(a) and Xg = 17,2”, we may take p* =

v,
ﬂ*—V+ (6_1+01). For n > no(a) and Xg > 1r22r" M* = N*z%and

pr=v+3(0-1+61).
(¢) Suppose o =
I/+ % (5_1 + 51)

Observe that if a > — 1 , the extremal measure is u* = v for small enough S, but
once S increases beyond a certain threshold, p* = v + 5 S(6_1 4 61). It is possible
to give a more explicit form to the expression for the sup in (10) for ultraspherical
weights, but it is messy and so omitted.

This paper is organized as follows: In Section 2, we present a basic identity. In
Section 3, we first prove Theorem 1.3 and then Theorem 1.1 and Corollary 1.2. In
Section 4, we first prove Theorem 1.4 and then Theorem 1.5.

In the sequel C,C1,Cy,... denote constants independent of n,z,t. The same
symbol does not necessarily denote the same constant in different occurences.

Thenrn:%. For n > 2, M* = N* = and p* =

|

_1
5-
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2. THE BASIC IDENTITY

Throughout this section, v satisfies the hypotheses of Theorem 1.1. Recall that
Tn, Un, Vn, and Xg are defined by (2), (3) and (9). Our analysis is based on the
identity in Lemma 2.2 below. We do not claim that it is new, as identities of this
type are commonly used in analyzing measures with added masspoints, but derive
it in a form that we can apply it:

Theorem 2.1
Let n > 2 be even. Let M,N >0 and
w=v+ Mo +N§_q.

Let
2MNU, + M+ N
MNU,V, +(M+ N)K, (v,1,1)+1

(15) z=x(M,N)=7p2(v,1)

(a) Then
2
Pn (1,0) ()= (14 roz)?
D (v,0) ' 1+z
(b) If 7 < %, the function g is a strictly decreasing function of x € (0, I_TA) and
is a strictly increasing function of x € (1;&, 00).
(c) If T, > %, the function g is a strictly increasing function of xz € (0,00).

(d) g () > 1 iff

1-2r,
(16) x>

2
n

while g (x) =1 zﬁx:% or x =0.
We begin the proof with

Lemma 2.2

(a) Let
(17) s 1) = ) = 22005, 029

1+ MK, (v,1,1) -MK, (v,1,-1) |
(18) A—[ CNK, (1,1, -1) 1+NK@@JJ)}
and
(19) d= MNU,V, + (M + N)K, (v,1,1) + 1.
(a) Then

_’Yn(ﬂ’) pn(l/a]-) _NKn(V;:%_l) r 1

(20) pn(u,y)—%(y) {pn(v,y)Jr y [ CMEy (ry.1) } A{l}}.
(b)
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Proof
(a) Using orthogonality, we see that

Tt (y) = / K ()7 (00 (1)

[ K () () 0 (1)

7MKTL (Vvya l)pn (:u“v 1) - NKTL (Vaya 71)pn (/L, 71) .

(22)

Taking y = —1 and y = 1, and gathering the terms involving p,, (u, 1), gives the
matrix equation

1+ NK, (v,-1,-1) MK, (v,—1,1) Po(,=1) | _ v (8) [ pa(v,—1)
[ NK, (v,1,-1) 1+ MK, (v,1,1) H P (11, 1) } %(y){ pn (v,1) }

The determinant d of the matrix can be put into the form in (19), if we take account
of the definition (3) of Uy, V;,. Solving the matrix equation and using the symmetry
of v gives

[Pn(ﬂ,—l) } _ Tl { 1+ MK, (v,1,1) —MK,(v,1,-1) } {Pn(%l) }
Pn (1, 1) ¥, W)d | —NK,(v,1,-1) 14+ NK, (v,1,1) pn (v, 1)
A Al
- omengli]
(23)

From (22) and this last identity,

-2 ) ]

Then (20) follows from the definition of m,_1.

(b) We obtain equations for J= E‘: ; in two ways:

/1 Ty (y) dv (y)

[ a2 (2) (20

= 1-Mp, (11,1)* = Np, (u,—1)* - (

Tn (V)
Also, from (22),

| 11 72_ (y) do (y)

/ (“NEy (.5, 1) pu (s —1) — MKy (v,5,1) po (12 1)) do (3)

-1

= N2p$z (M? 71) Kn (l/a 71, 71) + MQP% (,LL, 1) Kﬂ (Va 17 1) + 2Man (:U" 71)pn (:U'a 1) Kn (Vv 717 1) .
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2
Then using the last two equations and solving for 1 — ( ’Y"(“)) ,

T (V)
()
! (%(V))
= p2(u,—1){N+N°K, (v,~1,-1)} +p2 (1, 1) {M + M’K,, (v,1,1)}

- [ T S ][ e 1|

s N AR b
Using (23) gives
NG R
2 2
At (e [ [ w][h]

Proof of Theorem 2.1(a)
Setting y = 0 in (20), squaring and multiplying by the factor {} in (21) gives

pi(u,O){leri(dy’l)“rAT[ﬁ ]}

_ {Pn (v,0) + (ZZ’D [ _—]LKIZH%?EL_E)) }TA{ } ” '

and (21) follows.H

(24)

Here from the Christoffel-Darboux formula and as p,—1 (v,0) = 0, while p,,_1 (v, —1) =
—Pn-1 (V7 1)a
Tn—1

Tn

so using Christoffel-Darboux again,

pn (v, 1) K, (v,0,£1) = p, (v,0) K,, (v,—1,1).

Thus (24) becomes
(o) P2 3] o [0 ]}

K, (v,0,£1) = —

(V) Pn (V7 0) Pn—-1 (Va 1)
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Here from (18) and (19), followed by (15),
p% (V7 1) 1 g AT N
d 1 M
N+ M+2MNU,

2
— 1 —
) NG M MK, L)1 "

Also, from (2),

Ky (v, ~1,1) = =221 (W) p, (v, 1) sy (v,1) = —rp? (v, 1)

n

(26)
0 (25) becomes

pn(l/,o)> {1+z}={1+rx}".

Proof of Theorem 2.1 (b), (c), (d)
A calculation shows that

g(@) =raz+ (2rn —r3) +

SO

g (x)=r, 17(1+7$)2

Thus ¢’ (z) is an increasing function of x € [0,00), with limit 72 > 0 as  — oo.
Also

1
g’(m):0<:>1+m:j:<1—)
lr'fL
soas > 0, and r, > 0,
1-2r,
g'(m)zO@xzir.
Tn

Then if r, < %, it follows that g (x) decreases in (0, %) and increases in

(%, oo). If r, > 1, it follows that g () increases in [0, 00). Finally
g(x) > lel+2ret+rie®>14a
1-—2r,

2 )
rn

< T >

as x > 0. AlSOg(m):liﬁxzoorx:%..
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3. PROOF OF THEOREMS 1.1 AND 1.3
Recall that © = = (M, N) is given by (15). We begin with

Lemma 3.1
(a) For M,N >0,

Ox ox

— >0; == >0.

or ~ VU oN ~
(b) The mazimum of © = x (M, N) in the triangular region T = {(M,N) : 0 < M,N and M + N < S}
occurs when and only when

M=N=_.
2

(¢) Moreover, the mazimum is
S2U, /2 + S
S2U,V,/4+ SK,, (v,1,1) + 1

JJZXS:pi(Z/,l)

(@ 2
. 2 v,1

Proof ‘

(a) Note that from Cauchy-Schwarz, and as p; (v, —1) = (=1) p; (v, 1),
n—1

|Kn (v, -1, 1) = ij (Vvl)pj(yv_l)

=0
n—1

< Z |pj (V’ 1)pj (V7 _1)|
=0

IN

VK, v,1,1)K, (v,—1,-1) = K, (v,1,1)
so that
(27) Upn,Vy, > 0.
Next, using V,, — 2K, (v,1,1) = =U,, and from (15),

2o (MNU,V, + (M + N)K, (1,1,1) +1)° (;}E)
= (2NU, +1)(MNU,V,, + (M + N)K,, (v,1,1) +1) — 2MNU,, + M + N) (NU,V,, + K,, (v, 1,1))
= MNU, {(2NU, + 1)V, = 2(NU,V,, + K,, (v,1,1))}

+(M + N){(1+2NU,) K,, (v,1,1) — (NU,V,, + K,, (v,1,1))} + 2NU,, + 1

= MNU,{V, —2K, (v,1,1)} + (M + N){NU, (2K, (v,1,1) = V,,)} + 2NU,, + 1
= MNU,{-U,}+ (M +N){NU2} +2NU, +1
= (NU,+1)*>0.

Thus
oz 5 (NU,, +1)?

onp P )T

Then as U, >0, 2& > 0 and similarly 2% > 0.

(b) Since g—f/[ > 0, g—lf/ > 0 for all M, N > 0, so there are no critical points within
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the interior of the triangle. Moreover, it then follows that the maximum cannot
occur on the axes M =0 or N = 0, so occurs when M + N = §. Then on this line
segment,
) 2M(S—-M)U,+ S

M(S—- MUV, +SK, (v,1,1)+1

T = pi(u,l

_ pi(u,l){2+ SV, — 25K, (v,1,1) — 2 }
v, M (S — M)U,Vy, + SK, (v,1,1) + 1

_ pp(v1) {2_ SU, +2 }
v, M (S — M)U,V,, + SK,, (v,1,1) + 1

(28)

Here we have used the definition of U,,V,. Since S > 0 is fixed and U,,V,, > 0,
this last expression is an increasing function of M (S — M) and in turn that is max-
imized over M € [0, S] when and only when M = 5.

(c) This follows by substituting M = N = % into the first line in (28).

(d) This is immediate from (c). B

Proof of Theorem 1.3(a)
We can choose sequences {M,,} and {N,,} of nonnegative numbers with 0 <
My, + Np, < S and if
My =V + M7n51 + N77L6—17

then

i pp (p1, 0)] = sup {[pn (1, 0)] : € M (v, S)}.
By passing to a subsequence, and relabeling, we can assume that {u,,} converges
weakly to p* while M,, — M* and N,, — N* so that p* = v + M*§; + N*5_1.
Then for each fixed j > 0,

lim [ t/dp,, (t) = / tdp* (t).

m—00

It follows from the determinantal representation of orthonormal polynomials [9, p.
57], [16, p. 23] that

pa (1. 0) = 1 [py (1. 0)] = sup {[py (1.0)] : p € M (1.5}
|
Proof of Theorem 1.3(b)
We’re assuming that Xg < % Of course this is possible only if r,, < %7 since

Xg>0. Let 0 < M,N and Mn—i—N <Sand py=v+ Mdéy + No_1. By Theorem
2.1, if v =z (M, N), we have

o (,0)\* _ (1472’
pn (v,0) 1+z
Here by Lemma 3.1, 0 <z < Xg < 1%?27’”, so Theorem 2.1(d) shows that

Pn (V)

=g(z).
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2
unless z = 0. It follows that the maximum possible value of (%) for p €
M (v, S) occurs if M =N =0. R

Proof of Theorem 1.3(c)
We're assuming that Xg > 1=2"=. By Theorem 2.1, if z = 2 (M, N), we have

P (12,0) 2 B (1+Tn$)2 B
<pn(u,0)> T 14z =9()

is maximal when z is large as possible under the restrictions 0 < M, N and M+ N <
S. By Lemma 3.1, this occurs iff M = N = g, and then x = Xg. Here from (2)
and (9),

1+ SU,/2
S2U,V,/4+ SK,, (v,1,1) + 1

rnXs =—-SK, (v,—1,1)

SO
1+ r,Xs
S2 (U Vi —2U K, (v,—1,1)) /4+ S (K, (v,1,1) — K,, (v, —1,1)) + 1
- S2U,V, /4 + SK, (v,1,1) + 1
S2U2 /44 SU, +1
T S2U V. 4+ 5K, (1, 1,1) + 1
while
1+ Xg
S2U,, [Vi + 202 (v, )] JA+ S [K, (v,1,1) 4+ p2 (v, 1)] + 1
- S2U Vi, /4 + SK, (v,1,1) + 1
S2UpVis1/4+ SKpi1 (v,1,1) + 1
T TS,V /A+ SK, (v, 1,1) + 1
Then

P (1:0) ) _ (14710 Xs)?
pn (1,0) 1+7r,Xs

(S2U2/4 + SU, + 1)
(S2U,V, /4 + SK, (v,1,1) + 1) (S2U, Vg1 /4 + SKpy1 (v,1,1) + 1)
By Theorem 2.1(d), and as Xg > =3, this exceeds 1. B

Proof of Theorem 1.3(d)
Here as Xg = %, we have g(X;) = 1 = ¢(0), and for any other value of

x=ux(M,N) we have gz)y<1. 1

Proof of Theorem 1.3(e)
It follows from Theorem 2.1 and Lemma 3.1, that for a given S > 0,

uEM(v,S) \Pn (v, O) 1+ Xg
and moreover the sup is attained. Indeed if Xg < 1;22”‘, the maximum is 1, while

if Xg > =22 the maximum is achieved when M = N = g If Xg = =22 the

2
Th Tn
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maximum is achieved when M = N = and M=N=0 1

Proof of Theorem 1.1
From Lemma 3.1, Theorem 1.3(e) and (12),

n (11,0)\?
sup (p ( ))
HEM(v) pn(yvo)

2

lm  sup (Muo))
S—00 ue M(v,5) \Pn (,0)
= max< 1 <UV2L/4)

" (Un Vi /4) U Vg /4
U2 .

VnVn+1

Finally, the above considerations show that we can drop the 1 in the max, that is

2 2
pEM(v) \Pn (Vv 0) ‘/n‘/:n—i-l

= max{l,

(recall Lemma 3.1(d))

2p2 (v,1) _xo s 1-2r,

We have been unable to resolve if (29) is always true. Here is an equivalent form:

Lemma 3.2

The inequality (29) is equivalent for even n to
_Kn (Va_lvl) > Kn (V7171)
Kﬂ+1 (valal) Kn+1 (V7171).

Proof
From the second identity in (2),
1—-2r, p2 (v,1) 9
= LA, 2K, (v,1,-1) +p; (v,1)],
= ey 2K 1) 5] 0 )]

so (29) is equivalent to

2p2 (Vvl) p2 (1/71) 2
-7 > —r 7 _(p:(v,1)+2K, (v,—1,1
Va Kn(u,—l 1)° (P (v,2) ( )

2K, (v, — ) > (K, (v,1,1)+ K, (v,—1,1)) (pi (v, 1) + 2K, (v,—1,1))

=
& 0> (K (u,1,1)+ K, (v,~1,1))p2 (v,1) + 2K, (v,1,1) K, (v,—1,1)
& 0> (K, (1, 1,1) 492 (1, 1)) K, (v, =1, 1) + (K, (v, =1,1) + % (v, 1)) K, (v, 1,1)
< 0> Kpp (v, ) K, (v,—1,1) 4+ Kpy1 (v, —-1,1) K, (v,1,1)
-K, (v,-1,1) K, (v,1,1)
=4 >

Kn+1 (V7 _17 1) KTL-’rl (V 1)
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Here we are using K, (v,—1,1) <0< K41 (v,—1,1). B

Proof of Corollary 1.2
By the Christoffel-Darboux formula, and symmetry of v,

Yo v,1)pn_1(v,1
Ky (v, —1,1)| /K (v,1,1) = . 1 [Pn ( Kifzill)( )l

n

Here as the support of v is [—1,1], szl <29, p. 41, Lemma 7.2] while as v lies
in the Nevai class, we have subexponential growth [13, Thm. 2.1, p. 218]:
lim pn (v,1)% /K (v,1,1) = 0.

n—oo

See also [6], [15]. It follows that

lim Un =1=1 Va
n—oo Kp, (v,1,1) n—oo K, (v,1,1)
and also
lim —" =1
n=o0 Vntl
Thus

and Theorem 1.1 gives the result. B

4. PROOF OF THEOREMS 1.4 AND 1.5

Let us first recall the values of some orthogonal polynomial quantities for the
ultraspherical weight (or even Jacobi weight)

V)= (1), te(-1,1).

Here a > —1 is fixed. Throughout this section, we drop the parameter v in p,, (v, z)
etc. The classical Jacobi polynomials P,(Lo"a) are normalized by [16, p. 58]

(30) P @ = ("),

n

The leading coefficient of Pl g [16, p. 63]

2n + 2«
2" .

Also, the orthonormal polynomial is given by [16, p. 68]

(31) Pn (7) = CnPT(La’a) (z),
where
1/2
(32) . 2n+20+ 1T (n+1)T'(n+2a +1)
" 22a+1 T(n+a+1)° ’
so that

53 pe = (")
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and

2 2
349 o= ez (2.

Furthermore, taking account that our reproducing kernel sums to n — 1 while that
in [16] adds to n, [16, p. 71, eqn. (4.5.3)]

I'(n+2a+1)

K 1) = 9—20-1 plotla)
(35) n ('7:7 ) I‘(a—i—l)I‘(n—i—a) n—1 (23)
so that
—oge1 T'(n+2a+1) [n+a
_ 2a—1

(a+ DT (n+ )
while using that plotla) (—x) = (—1)"_1 P,Saﬁaﬂ) (x),

n—1 _
F'n+2a+1) (n—-1+4+a«

IF'a+1)T(n+ )

The proofs of this section involve several straightforward calculations. We shall

exclude some of the line by line computations.

(37) K,(-1,1)= (_1)71,1 9—2a-1 01

Lemma 4.1
Let n > 2 be even.

(a)
ot (1) 1+ 20 1z
(38) o (1) = (1 — " +77n> s
where
B n (4o + 1) + 20 (200 + 1)
(39) =20t D) G e T ) (n 2a)n
(b)
) 1/2 1/2
1 1— 4o 1+ 2a
o= 5 <1+4(n+a)2_1> (1— - +77n)
1 14 2c -2
-2 (1 o +O( ))
(40)
(c)
() 1 _rfrn 2(1 —17;204) (1 10 (n—l))
(d)
@) X — 2p‘2,;§1) 1 —7327"”
(e)
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(f)

K, (-1,1) a+1
44 = .
(44) K, (1,1) n+a
Proof
(a) Firstly using (32),

1/2
Cno1 2n+2a—1 L'(n)T (n+2«) I'(n+a+1)
¢ \2n+20+1T(n+1)T (n+2a+1) T (n+a)

5 \ 1/2
[ 2n+2a—-1 (n+a)
 \2n+2a+1n(n+20)

so by (34), and a straightforward calculation,

Tn-1 20n—1 2n — 2 4 2« / 2n + 2«
Tn B Cn n—1 n

1/2

1—4a? /

1+72 .
d(n+a) -1

N =

(45)
Next, from (33),
Pn—1 (1)
pn (1)

e (",15°)

Cn(n+a)
2n+2a—1 n 1/2
2n+2a+1n+ 2«

14 2a /2
(1 - + nn) )
n

where

1 1 « « 4o

T = 72 {2n+20¢+1 "o T ht2a _n] T ent 201 1) (0t 20)
n(4a +1)+2a (2a +1)
(2n+2a+1)(n+2a)n’
again, by a straightforward calculation.
(b) From (45) and (38),
Yn—1Pn—1 (1)

Yo Pn(1)

1/2
1 — 40?2 / 14 2« 1/2
I+ 1- + 1y,
d(n+a)” -1 n

(1 1 ;120‘ +0 (n2)) :

= (2a+1)

Tn =

N = DN =

15
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(¢) This follows immediately from (b).
(d) Recall from Lemma 3.2 that

2p2 (v, 1 1-2
pn (V? ) — Xoo > rn
Vi r2
is equivalent to
-K,(-1,1) K, (1,1)

(46) Kot (C11) ~ Ky (L)

Now substitute in our values from (36) and (37):

(F(n+2a+1)) (n—1+a)

—-K, (71,1) I'(n+a) n—1
Kn _17 1 - T'(n+2a+2) n+a
1 ( ) ( T'(n+1+a) ) ( n )
_ _ 2041
N n+2a+1
(47)
Also
I(n+2a+1) n+ao
K, (1, 1) . ( l—‘n(nfa) ) (nfl)
K, 1.1 - T'(n+2a+2 14
nt1 (1,1) ( F((n—‘rl—‘,-a))) (Lt
n—+o n

n+2a+1n+oa+1
_ (o _etl N[ _atl
B n+2a+1 n+oa+l
1 1 (a+1)°
— 1-(a+1
(a+ )[n+2a+1+n+a+l]+(n+2a+1)(n+a+1)
C 2(at1) (a+1)a (a+1)
n+2a+1 m+a+l)(n+2a+1) (nm+2a+1)(n+a+1)
so recalling (46) and (47), we want to check when
20+ 1 2(a+1) (a+1)a B (a+1)?
n+2a+1 n+2a+1 (nm+a+l)(n+2a+1) @n+2a+1)(n+a+1)

which is equivalent to

0 < 14+ (a+Da (a+1)°
(n+a+1) (n+a+1l)
a+1
n+a+1
which is true for all even n > 2.
(e) From (33), (36), and then (32),

20, (1) _ 2{ea ("1}
K (1 ]_) 2—2a— I%CH-(I)

= 4(a+1) <1+2(nl+a)> %
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(f) From (36), (37),

(LD (M) n+tal

n—1

K,

Proof of Theorem 1.4
As shown in the previous lemma, we have the inequality (42) for n > 2. For such
n, we have from Theorem 1.1 that

(pn (11,0) ) _
sup |——= | = —"—.
peM(v) \Pn (V, 0) VnVnJrl
Here from (44),

U, = K,(1,1) {1 —

, {
v, = K”(l’l){HM}:K”(l’l){l_sii};
}

and from (43) and (44), and as p, (—1) = p, (1),

Vg1 = Kn(l,l){1+

K1) {1- 2 () (14 5 )

Kn(l,l){1+3a+1 +2(Oz—|—1)(2oz+1)
n+a n(n+ «)

Kn (_171) Qpi (1)
)

SO
1+ 234_; + 2(a:173(2;v+1)
K2 (1,1) oy i)
" _3 (L—H _ 2(a4D)?(a+1)
n+a n(n+a)2

VnVn+1

1
) 1+288
= K, (1,1) Joatl {aq _ 2(2a+1)} .
n+a | n+a n(n+ao)

Then by yet another calculation,
Ux
VnVn+1

1+2L+1+ (LH)Q

n+aoa n+aoa

a+1 at+l J a—1 2(2a+1)
1+2m+m{m— n(n-i—a)}

(5 )22(a+1){1+2i—j1}

n—+o

atl atl 2(2a+1) |
1+2050 + oy {a_l_T}

Proof of Theorem 1.5
(a) From Lemma 4.1(b), as & < —%, so r,, > 3 for n > ng (). Then 1=3"= < 0 for
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n > ng(a), so for all S >0, Xg >0 > % By Theorem 1.3(c), the extremal
measure has the form v + g (61 +0-1).

(b) From Lemma 4.1(b), as @ > —1, so r, < 3 for n > ng(a). From Lemma
4.1(d), Xoo > =2 while from (9), Xo = 0 < 1=3"=. Also we know Xg is an
increasing function of . By Theorem 1.3(b), (c), there is a threshold S* such that

for 0 < S < §*, the extremal measure is v, while for S > S*, the extremal measure
isv+ % (61 +6_1). For S = S*, where Xg- = 1;22’“", there are two extremal mea-

sures, namely v and v + % (61 +9-1).
(c) For a = —3%, (39) and (40) show that r, = 1, so Xg > 0= 1=3" for all S and
the extremal measure is v + % (01+d6_1)forall S>0. W
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