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Abstract

We consider the problem of allocating a set of divisible goods to N agents in an online manner,
aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between
fairness and efficiency. The goods arrive in a sequence of T periods and the value of each agent for a good
is adversarially chosen when the good arrives. We first observe that no online algorithm can achieve a
competitive ratio better than the trivial O(N), unless it is given additional information about the agents’
values.

Then, in line with the emerging area of “algorithms with predictions”, we consider a setting where
for each agent, the online algorithm is only given a prediction of her monopolist utility, i.e., her utility if
all goods were given to her alone (corresponding to the sum of her values over the T periods). Our main
result is an online algorithm whose competitive ratio is parameterized by the multiplicative errors in these
predictions. The algorithm achieves a competitive ratio of O(logN) and O(log T ) if the predictions are
perfectly accurate. Moreover, the competitive ratio degrades smoothly with the errors in the predictions,
and is surprisingly robust: the logarithmic competitive ratio holds even if the predictions are very
inaccurate.

We complement this positive result by showing that our bounds are essentially tight: no online
algorithm, even if provided with perfectly accurate predictions, can achieve a competitive ratio of
O(log1−ϵ N) or O(log1−ϵ T ) for any constant ϵ > 0.

1 Introduction

We study an online resource allocation problem where each day some divisible resource becomes available,
and we need to design an online algorithm that distributes it among a set of N agents, aiming to reach an
outcome that combines fairness and efficiency. At the start of each day t, every agent i informs the algorithm
about their value vi,t for that day’s resource, and the algorithm irrevocably decides how to split this resource,
without knowing the agents’ future values. If agent i is allocated a fraction xi,t of the resource, then her
utility increases by xi,tvi,t, and after all the resources have been allocated, the total utility of an agent i is
ui(x) =

∑
t vi,txi,t.

If one were only concerned about efficiency, a common objective to maximize is the utilitarian social
welfare – that is, the sum of the agents’ utilities,

∑
i ui(x). This is easy to maximize even in an online

setting: allocate the entire resource to the agent i with the highest value vi,t on each day t. However, it is
easy to see that this approach can “starve” many of the agents by never allocating anything to them, which
is unacceptable in many settings of interest.

As an example, consider a setting where the processing time of a shared computing cluster needs to be
divided among the employees of a firm or university. Each user may have a high value for gaining access
to the cluster on some days (e.g., due to a conference deadline), and be willing to pass up on her access on
other days. Although it makes sense to prioritize the users who need the resource the most each day, every
user deserves some access to this shared resource. For another example that has received some attention,
consider a food bank that allocates food each day to soup kitchens and other local charities (see e.g. [28]).
The number of people coming to each distribution facility varies from day to day, affecting each facility’s
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demand for food, but, apart from efficiency, the food bank also wants to ensure some measure of equitability
in its allocation.

Motivated by the need for fairness considerations when allocating these resources, we turn to the
literature on fair division. An extreme measure of fairness from this literature is the egalitarian social
welfare, or maximin welfare (MW), which is equal to the minimum utility over all agents, mini{ui(x)}. This
objective interprets fairness as making sure that the least satisfied agent is as happy as possible. However,
maximizing this objective can lead to highly inefficient outcomes by allocating resources to agents that
are hard to satisfy instead of agents that can really benefit from them; moreover, the allocation is highly
sensitive to perturbations in valuations. Although we briefly address this objective, the focus of this paper is
on the Nash social welfare (NSW), a much less extreme objective that is known to provide a natural balance
between fairness and efficiency. The NSW objective is equal to the geometric mean of the agents’ utilities,∏

i ui(x)
1/N ; it was initially proposed about 70 years ago [26, 20], and has recently received a great deal of

attention. Apart from a balance between fairness and efficiency, it is also known to satisfy other desirable
properties, including scale-independence, meaning that the scale of the agents’ valuations does not affect the
NSW maximizing solution [25].

Unfortunately, in contrast to utilitarian social welfare which is easy to optimize in the online setting, the
problem becomes much more challenging when fairness considerations are introduced. Although computing
an allocation that maximizes the NSW (or the MW) objective is computationally tractable problem in an
offline setting [27, Chapter 5], we prove that even sublinear competitive ratios are impossible to achieve
online. To get some intuition for this, note that achieving fairness may require allocating resources to
agents other than the one with the highest value for them. To decide if and when this should happen,
offline algorithms use agents’ valuations for all the resources, whereas online algorithms have only historical
information and cannot foresee which agents will be hard to satisfy in the future. In line with the exciting
emerging literature on “algorithms with predictions” (e.g., see [24]), our goal in this paper is to overcome this
overly pessimistic impossibility result by analyzing the performance of online algorithms that are augmented
with predictions.

1.1 Our Results We first observe that, in the absence of any predictions regarding the agents’ values,
no online algorithm aiming to maximize the Nash social welfare can achieve a competitive ratio better than
O(min{N,T}), where N is the number of agents and T is the total number of days (or resources). However,
this pessimistic result heavily depends on the (often very unrealistic) assumption that the algorithm has no
information regarding agents’ values.

To overcome analogous impossibility results, recent work on algorithms with predictions or learning-
augmented algorithms instead assumes that the algorithms are equipped with some side-information, e.g.,
learned from historical data. Following this approach, our main result is an online algorithm, the Set-
Aside Greedy Algorithm, which is augmented with a prediction Ṽi of each agent i’s total monopolist value
Vi =

∑
t vi,t, i.e., her utility if she was allocated all the items. Note that this is a fairly mild amount

of side-information – only one number per agent. Nevertheless, Set-Aside Greedy achieves an exponential
improvement over the O(min{N,T}) hardness result, achieving a competitive ratio of O(log(min{N,T}))
if the predictions are perfect. Moreover, the competitive ratio of Set-Aside Greedy is good even with very
poor predictions. Specifically, suppose each agent i overestimates her true total value by at most a factor

ci, or underestimates it by at most a factor di, i.e., Ṽi ∈
[

1
di
Vi, ciVi

]
. The main result of this paper is the

following theorem, which parameterizes the competitive ratio of Set-Aside Greedy as a function of ci and di.

Theorem 1.1. The Set-Aside Greedy algorithm achieves competitive ratio

γNSW ≤
(

N∏
i=1

ci

) 1
N

min

{
log(2N) +

1

N

N∑
i=1

log(di), log(2T ) + log(max
i

{di})
}
.

The competitive ratio is very robust: O(log(min{N,T})) holds as long as
(∏N

i=1 ci

) 1
N

= O(1) and

1
N

∑N
i=1 log(di) = O(log(min{N,T})) (e.g., it holds if all the agents are underestimated by a factor min{N,T}

or a 1/ log(N) fraction of the agents’ values are overestimated by a factor N)
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The algorithm works by dividing each resource in two halves and allocating each half via a different
approach: the first half is split equally between agents and the second half is allocated in a greedy manner
aiming to myopically maximize the NSW. However, this combination of the two approaches would fail, were
it not for a crucial adjustment to the agent utilities used in the greedy portion of the algorithm. In particular,
on each day t, instead of using the actual utility that each agent has accrued up to that day, the greedy
algorithm uses a “predicted utility”, which for each agent on day t corresponds to the actual utility she has
accrued from the greedy allocation up to that day, plus a 1/(2N) fraction of her predicted total utility Ṽi.
Crucially, though the agent has not yet accrued this additional utility, she is guaranteed to eventually receive
some fraction of it (based on the quality of the prediction) from her promised share of the first half of the
resources.

Our second main result shows that the Set-Aside Greedy algorithm is essentially optimal, by proving
that no online algorithm, even if it knows the exact Vi values for every i, can achieve a competitive ratio of
O(log1−ϵ N) or O(log1−ϵ T ) for any constant ϵ > 0 (see Theorem 5.2). This construction is quite involved
so, in order to provide some intuition, we first prove an analogous result for the maximin welfare objective.
Specifically, we show that no online algorithm can achieve a competitive ratio better than O(

√
N) for the

maximin objective, even if it is equipped with perfect predictions Ṽi = Vi (see Theorem 5.1). Although this
objective is quite different than the Nash social welfare, the technique we use for this result resembles the
(much more demanding) one used for the Nash social welfare, and the proof also provides some intuition
regarding the types of obstacles that arise when introducing fairness considerations in online resource
allocation.

Technical Highlights. The use of predicted utilities plays a central role in our algorithm. From an
algorithmic standpoint, it avoids a “cold start” problem that the myopic greedy approach suffers from. For
example, suppose there are agents whose accrued utility so far is low (or zero). In this case, a myopic greedy
approach would overcompensate by allocating large portions of the resources to them, even if their values
for these resources are low. In Theorem 3.2, we make this intuition precise by showing an instance for which
myopic greedy gets a competitive ratio of Ω(N).

In contrast, Set-Aside Greedy circumvents this issue by first predicting a minimum utility of Ṽi/(2N) for
each agent i (using the first half of each resource), and then allocating the second half in a greedy manner

accounting for the Ṽi/(2N) future utility predicted for each agent i. This provides a novel way for an online
algorithm to use a prediction and could be of independent interest within the literature on algorithms with
predictions when dealing with multiagent resource allocation problems.

Apart from their conceptual significance, our use of predictions in competitive analysis may also be of
independent interest. At a high level, we leverage the Eisenberg-Gale program for optimal NSW allocations
to construct a dual certificate to bound the optimality gap of an arbitrary allocation. While our approach
is in the spirit of regret analysis in online learning, it introduces several new ideas to deal with the NSW
objective using predictions, which may prove of use in other settings.

Paper Structure. We formalize our setting in Section 2, and in Section 3 provide some intuition regarding
the algorithmic challenges that arise when introducing fairness into online settings. Section 4 contains the
main positive result of the paper: the Set-Aside Greedy algorithm, that achieves a competitive ratio of
O(logN) and O(log T ) for online NSW maximization. Section 5 complements this with hardness results,
showing that even with perfect knowledge of all agents’ monopolist values, no online algorithm can achieve
a competitive ratio of better than O(

√
N) for MW (Section 5.1), and O(log1−ϵ N) or O(log1−ϵ T ) for any

ϵ > 0 for NSW (Section 5.2); the former highlights the lack of robustness of MW, while the latter matches
our positive result for NSW.

1.2 Related Work The online algorithm that we propose in this paper is a contribution to the exciting
emerging literature that moves beyond worst-case analysis by focusing on algorithms with predictions
or learning-augmented algorithms (e.g., see the book chapter by Mitzenmacher and Vassilvitskii [24]).
In contrast to the overly pessimistic model of worst-case analysis, this line of work instead assumes
that algorithms are enhanced with some exogenously provided prediction regarding some of the relevant
parameters of the problem. The quality of the algorithm is then evaluated based on the quality of the
prediction, measuring how the competitive ratio deteriorates as a function of the error in the prediction.
Our work contributes to this literature by proposing a natural type of parameter to predict in multiagent
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resource allocation problems, as well as a novel way to leverage this prediction in an algorithm to achieve
an exponential improvement in the competitive ratio.

Our work builds on a long literature on using primal-dual style algorithms for online resource allocation.
One relevant example is the work of Devanur and Jain [13], which considers allocating items to agents in
an online setting to maximize a generic objective F (x) =

∑
i M(

∑
t xitvit), where M is a non-decreasing

concave function. While the offline Nash social welfare maximizer can be computed by picking F (x) =∑
i log(

∑
t xitvit) (the so-called Eisenberg-Gale program), the multiplicative approximation guarantees

achieved via this approach do not translate to meaningful guarantees with respect to the geometric mean.
This is closer in spirit to the work of Azar et al. [3], who consider the same problem, but with the objective
of balancing the fraction of their total utility that each agent gets in hindsight. Compared to our bounds,
the guarantees they obtain depend on the conditioning of the valuations (specifically, on the ratio of the
maximum value of an agent to the minimum nonzero value). Hence, their bound on the competitive ratio can
be arbitrarily large as this ratio goes to infinity. These works emphasize how critical our use of predictions
is in getting strong guarantees for online NSW maximization.

The main obstacles that we face in this paper are more closely related to the obstacles that commonly
appear in the growing literature on online fair division. Specifically, defining and achieving fairness often
requires a more holistic view of the instance at hand, which is exactly what online algorithms lack. For
example, a common barrier in this work is the algorithm’s inability to distinguish between agents that will
be easy to satisfy later on, and those that will be hard to satisfy. Gkatzelis et al. [18] study the extent to
which online algorithms can maximize the utilitarian social welfare, while satisfying envy-freeness. They
make the simplifying assumption that the sum of every agent’s valuations are normalized to 1, i.e., that
Vi = 1 for all i. This is a significantly more stringent assumption than the one that we make in this paper,
where Vi can take any value and we require only a rough estimate to achieve our bounds. However, even
with this assumption, they show that the best possible approximation for instances with n agents is O(

√
n),

so they focus on designing mechanisms for instances with just two agents.
Benade et al. [6] consider a setting similar to ours, but the items being allocated in their case are

indivisible, i.e., can be allocated only to a single agent (so they use randomness). Their goal is to minimize
the amount of envy among the agents, and they show that the best way to minimize the expected maximum
envy (up to sub-logarithmic factors) is to totally disregard the agent valuations and allocate each item
uniformly at random among the agents, leading to a bound of Õ(

√
T/N). Zeng and Psomas [30] revisit this

setting and study the extent to which approximate envy-freeness can be combined with approximate Pareto
efficiency. They consider a spectrum of increasingly powerful adversary models and they show that even
for a non-adaptive adversary (which is weaker than the adaptive adversary model we consider in this work)
there is no algorithm that can guarantee the aforementioned approximate envy while Pareto dominating the
random allocation algorithm. They define an outcome to be α Pareto-efficient if improving every agent’s
utility by a factor α is infeasible, and they show that it is impossible to combine the envy bound with a 1/N
approximation of Pareto efficiency, which is a trivial approximation that the random allocation algorithm
satisfies. Note that our competitive ratio guarantees in this paper directly translate into approximate Pareto
efficiency bounds. Specifically a competitive ratio of α for the the Nash social welfare directly implies an α
approximation of Pareto efficiency.

Bogomolnaia et al. [7] also consider the sequential allocation of divisible resources, and they impose a
normalization on the agent valuations similar to the one in [18]. The main differences are that they enforce
envy-freeness as a constraint, and instead aim to maximize social welfare, and, more importantly, that they
assume the valuation vectors of the agents are drawn from a distribution. Using this assumption, they
weaken the fairness envy-freeness constraint to be satisfied only in expectation. He et al. [19] also study a
similar setting, but allow the reallocation of some of the previously allocated items, and show that envy-
freeness up to one item can be achieved using O(T ) re-allocations. Other works consider the question of
online fair division with random agent valuations, e.g. Sinclair et al. [29] look at envy-freeness and efficiency
with respect to the hindsight optimal solution, while Kurokawa et al. [21] study the maxmin share in such
a setting. Another line of work on dynamic fair division, which is not very closely related to our work,
considers settings where it is the agents, instead of the items, that arrive (and possibly depart) online, e.g.,
[15, 14, 23].

Finally, a line of recent work has focused on approximating the Nash social welfare objective in offline
settings. It has played a central role in the literature on the fair allocation of indivisible items, which has
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focused on the computational complexity of optimizing this objective. This problem is APX-hard [22], but
recent work has led to a sequence of non-trivial approximation algorithms (e.g., [10, 12, 1, 2, 16, 4, 17]).
Also, a very influential paper by Caragiannis et al. [9] showed that maximizing the NSW objective when
allocating indivisible items leads to approximate envy-freeness, which provided additional motivation for
studying this objective. Beyond the literature on indivisible items, approximations of this objective have
also been studied in strategic settings, where the values of the agents are private information. In this case,
research has focused on the design of truthful mechanisms that approximate the NSW [11] or the analysis
of non-truthful mechanisms with respect to their price of anarchy with respect to the NSW [8]. In contrast
to this work, in this paper we assume that the agent valuations are public and focus on the complications
introduced by the online nature of the problem.

2 Setting

A set of N agents compete for items over T rounds, with a single divisible item arriving in each round. Each
agent i has per-unit value vi,t ≥ 0 for the item in round t. Let Vi =

∑T
t=1 vi,t denote the sum of agent

i’s values over all the rounds. We denote by xi,t ≥ 0 as the fraction of the item allocated to the agent i
on round t, with

∑
i xi,t = 1 for each round t. Under the overall allocation x = {xi,t}i∈[N ], t∈[T ], the total

utility of agent i is given by ui(x) =
∑T

t=1 vi,txi,t. While the valuations vi,t can be arbitrary, we assume

that for each agent, we are given a prediction Ṽi of Vi. For each i, we have Ṽi ∈
[

1
di
Vi, ciVi

]
, where ci ≥ 1

and di ≥ 1 denote the multiplicative factors by which the prediction Ṽi may overestimate or underestimate,
respectively, the value of Vi.

In each round t, an online algorithm is a mapping from history of previous rounds, the agents’ values
on the current round {vi,t}i∈[N ], and predicted total values Ṽi to an allocation xt = {xi,t}i∈[N ] to be made
on this round. Since we assume the items are divisible and the utilities of agents are linear, we can without
loss of generality focus on deterministic algorithms.

We evaluate the quality of the final allocation x of an online algorithm using two widely studied
objectives: the maxmin welfare and the Nash social welfare. Under allocation x, the maxmin welfare
(MW) corresponds to the minimum utility across all agents under x, while the Nash social welfare (NSW)
is defined as the geometric mean of the agents’ utilities. Formally, we have:

MW(x) = min
i
{ui(x)} , NSW(x) =

(∏
i

ui(x)

)1/N

The performance of our algorithms is measured in terms of their competitive ratio with respect to
each of these objectives. Let x̂(v) denote the allocation that the algorithm outputs on an instance
v := {vi,t}i∈[N ], t∈[T ], and let xMW(v) and xNSW(v) denote the optimal allocation for instance v with
respect to the maxmin and Nash social welfare objectives respectively. Then the competitive ratio of this
algorithm with respect to the two objectives is defined as

γMW = max
v

MW(xMW(v))

MW(x̂(v))
, γNSW = max

v

NSW(xNSW(v))

NSW(x̂(v))
.

3 Warm-Up: Naive Attempts at Online NSW Maximization

Before presenting our Set-Aside Greedy algorithm and the guarantees for its competitive ratio, we briefly
provide some insights regarding the difficulties that arise when trying to maximize NSW in an online setting.
We do so by exhibiting some examples of natural, simple algorithms that fail to achieve better than a
polynomial competitive ratio for NSW. For simplicity, the examples in this section assume access to perfect
predictions, and that Vi = 1 for all i.

Arguably the simplest algorithm for allocating items in a balanced fashion is the uniform allocation,
which sets xi,t = 1/N for all i ∈ [N ] and t ∈ [T ]; this results in final utilities ui(x) = Vi/N . Note that

this policy does need access to predicted monopolist utilities Ṽi. However, the resulting competitive ratio
is Ω(N): for example, if T = N and vi,t = 1{i=t} ∀ i, t, then the optimal algorithm gives each agent a final
utility of 1.

An alternative to uniform allocation is proportional allocation, which in a setting where all agents have
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equal predicted monopolist utilities (i.e., Ṽi = 1) sets xi,t = vi,t/
∑

j vj,t for all i ∈ [N ] and t ∈ [T ], resulting

in utility profile ui(x) =
∑

t∈[T ](v
2
i,t/
∑

j vj,t). Assuming perfect predictions and symmetric agents (i.e.,

Ṽi = Vi = 1 ∀ i), this enjoys the following guarantee:

Proposition 3.1. (Proved in Section 7.2) If Ṽi = Vi = 1 for all i, the utility profile under proportional
allocation (weakly) Pareto dominates the utilities under uniform allocation.

More generally, in Section 7.2, we show that given (perfect) predictions Ṽi = Vi for all i, the normalized

proportional allocation rule xi,t =
vi,t/Ṽi∑
j vj,t/Ṽj

Pareto dominates the utilities under uniform allocation.

Nevertheless, even when all Vi = 1 and with perfect predictions Ṽi = Vi = 1 for all i, proportional allocation
fails to get a competitive ratio better than O(

√
N):

Example. (Proportional allocation fails to achieve high NSW) Consider an instance with T = N rounds
and Vi = 1 for all i, where in each round t, the ‘corresponding’ agent i = t has a value of vi,t = 1/

√
N , and

every other agent has a value of vi,t = (1− 1/
√
N)/(N − 1). Since

∑
i vi,t = 1 for all t, under proportional

allocation agent i gets ui(x) =
∑

t v
2
i,t =

1
N

(
1 +

√
N−1√
N+1

)
≤ 2

N ; this is also the Nash social welfare since all

the agents receive the same utility. On the other hand, setting xi,t = 1{i=t} results in ui(x) = 1/
√
N (and

hence also the NSW), which gives a competitive ratio of
√
N/2.

Finally, another natural approach is an online greedy algorithm, which for each round t, chooses
allocations {xi,t}i∈[N ] to maximize the Nash social welfare at the end of that round. Interestingly, this
turns out to perform as poorly as uniform allocation.

Proposition 3.2. (Proved in Section 7.3) Myopic greedy has Ω(N) competitive ratio.

The intuition behind this is that by giving higher priority to agents whose current utility is low, myopic
greedy can end up allocating items to agents with very small values in the current round, while ignoring
agents with substantially larger values.

4 Set-Aside Greedy Algorithm for Online NSW Maximization

We now present our main positive result: the Set-Aside Greedy algorithm. The competitive ratio of the
algorithm is given in Theorem 1.1. We begin with an informal description of the algorithm. Set-Aside
Greedy divides every item in half, and uses a different strategy for allocating each half:
• The set-aside half is distributed uniformly among the agents, so in each round every agent receives a 1

2N
fraction of the whole item – we will also refer to this as the promised share of each agent. This ensures
that at completion, the utility of agent i is at least Vi

2N .
• The greedy half is allocated so as to maximize the NSW at the end of each round, while incorporating a
prediction of the utility that each agent will receive from their promised share. Since the algorithm has

access to a prediction Ṽi of the monopolist utility Vi for each agent i, a natural proxy is to use Ṽi

2N as the
prediction of the utility that agent i will receive from the promised share.

Note that the allocation rule for the greedy half here is different from the myopic greedy algorithm discussed
in Section 3; in myopic greedy, the allocation in round t is made so as to maximize the NSW at the end of
the round, while in Set-Aside Greedy the greedy rule incorporates the prediction that each agent will also

receive a Ṽi

2N utility from the set-aside half. This circumvents the issues suffered by myopic greedy discussed
in Section 3. Also, note that Set-Aside Greedy does not need to know the value of T .

To define the algorithm formally, we first introduce some additional notation. For each i ∈ [N ] and
t ∈ [T ], let yi,t and zi,t be the semi-allocations to agent i in round t from the first and second halves of the
item, respectively, so xi,t = yi,t + zi,t, and

∑
i yi,t =

∑
i zi,t = 1/2 for all t ∈ [T ].

Definition 4.1. (Predicted Utility under Promised Share) Given round t ∈ [T ], current allocation
zt = {zi,t}i∈[N ], and historical semi-allocations zt′ = {zi,t′}i∈[N ] ∀ t′ < t, the predicted utility under promised
share of agent i is defined as:

ũi,t(z1, z2, . . . , zt−1, zt) =
Ṽi

2N
+ zi,tvi,t +

t−1∑
t′=1

zit′vit′ .
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The name of this quantity comes from the following observation: Suppose half the item is distributed
uniformly as a promised share (that is, yi,t =

1
2N ). Then, under any allocation rule {zi,t} for the other half,

ũi,t is a prediction of the final utility of agent i, incorporating the knowledge that they will receive a 1
2N

fraction of the item in each round. For brevity, throughout the paper we abuse notation and use “predicted
utility” in place of “predicted utility under promised share”. Though predicted utilities depend on all the
previous semi-allocations, for notational simplicity we henceforth use the shorthand ũi,t(zt), dropping the
dependence on previous allocations.

Algorithm 1 presents the full details of the Set-Aside Greedy algorithm. We henceforth use x̂, ẑ, ŷ
exclusively to denote the allocations and semi-allocations produced by this particular algorithm. Half the
item is allocated uniformly (ŷi,t = 1/2N), and the other semi-allocation ẑt is chosen to maximize the Nash
social welfare with respect to the predicted utilities ũi,t(zt). Note that the semi-allocation ẑt is written in
terms of the equivalent Eisenberg-Gale convex program : maxzt

∑
i log(ũi,t(zt)). While this can be solved in

polynomial time via any standard convex optimization solver, in Section 7.4 we present a simpler and more
efficient way of performing this step, which leads to an overall running time of O(TN).

Algorithm 1: Set-Aside Greedy algorithm

Input: A prediction Ṽi of Vi for all i.
1: for all t = 1 to T do
2: Set-aside semi-allocation: for each agent i set ŷi,t = 1/(2N).
3: Greedy semi-allocation: compute ẑt = argmaxzt {

∑
i log(ũi,t(zt))} s.t.

∑
i zi,t ≤ 1

2 , zi,t ≥ 0.

{Note that ũi,t depends on Ṽi.}
4: Allocate x̂i,t = ŷi,t + ẑi,t.
5: end for

We are now ready to state the main result. Recall from Section 2 that ci, di ≥ 1 are defined to capture

the multiplicative error in the predicted total values: Ṽi ∈
[

1
di
Vi, ciVi

]
, for all i.

Theorem 4.1. The Set-Aside Greedy algorithm achieves competitive ratio

γNSW ≤
(

N∏
i=1

ci

) 1
N

min

{
log(2N) +

1

N

N∑
i=1

log(di), log(2T ) + log(max
i

{di})
}
.

The rest of the section is devoted to proving the result above. We start by describing a duality-based
approach for constructing an upper bound on the competitive ratio of a given allocation. We then leverage
this technique to prove the theorem.

4.1 A Duality-Based Upper Bound for the Competitive Ratio In proving the main result of this
section, we first construct a dual certificate that tracks the quality of the NSW of the allocation over the
execution of the algorithm. As a consequence of this certificate, we get that the Set-Aside Greedy algorithm
can be alternately interpreted as greedily minimizing the sum of predicted prices, which serve as lower bounds
on the dual solution. Informally, the following lemma states that for any allocation, one can construct a
vector of “prices”, one for each round, such that the average price bounds the competitive ratio of the
allocation.

Lemma 4.1. We are given values v, NSW maximizing allocation x∗, and allocation x̃. Then for any ‘price’
vector {pt}t∈[T ] ∈ RT

+ such that pt ≥ vi,t

ciui(x̃)
for every agent i ∈ [N ] and t ∈ [T ], we have

NSW(x∗)

NSW(x̃)
≤
(

n∏
i=1

ci

) 1
N ∑T

t=1 pt
N

.

Proof. Consider the value profile v and the allocation x̃, and let p be a vector of prices that satisfies the
constraints in the statement of the lemma. We can now write p as a solution to a linear program (P ), with
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corresponding dual program (D):

(P ) min
p∈RT

+

T∑
t=1

pt

s.t. pt ≥
vi,t

ciui(x̃)
∀ i ∈ [N ], t ∈ [T ]

(D) max
x∈RNT

+

N∑
i=1

ui(x)

ciui(x̃)

s.t.
N∑
i=1

xi,t ≤ 1 ∀ t ∈ [T ]

Here we define ui(x) =
∑T

t=1 xi,tvi,t. We stress that only x (and not x̃) is a variable in the dual program.
By LP duality, any feasible solution p for the primal program (P ) gives an upper bound for the value of the
dual program (D). Substituting x = x∗, the optimal NSW solution, we get

1

N

N∑
i=1

ui(x
∗)

ciui(x̃)
≤
∑

t pt
N

.

Finally, via the AM-GM inequality, we have

1

N

N∑
i=1

ui(x
∗)

ciui(x̃)
≥
[

N∏
i=1

ui(x
∗)

ciui(x̃)

]1/N
=

(
n∏

i=1

1

ci

) 1
N

NSW(x∗)

NSW(x̃)
.

Given this lemma, it is useful to re-interpret the Set-Aside Greedy algorithm in terms of dual prices. Suppose,
in light of the lemma above, one wants to achieve a good competitive ratio by choosing an allocation x̃ that
minimizes prices pt. The problem is, the right side of the inequality pt ≥ vi,t

ciui(x̃)
, namely total utility ui(x̃),

depends on future values and allocations, which are unavailable to an online algorithm.
A natural fix to this problem is to construct a lower bound for ciui(x̃), and a corresponding upper bound

for the feasible price pt. This is exactly what the previously defined predicted utility ũi,t(zi,t) does. This is
because in any allocation x̃, as long as we commit to allocating half of the item uniformly (i.e. yi,t =

1
2N ),

we have the following bound:

ũi,t(zi,t) =
Ṽi

2N
+ zi,tvi,t +

t−1∑
t′=1

zit′vit′ ≤
ciVi

2N
+

T∑
t=1

zi,tvi,t ≤ ciui(x̃).

Let us call the corresponding upper bound for the price, p̃t(zt) = maxi
vi,t

ũi,t(zi,t)
, the predicted price. Since

it does not depend on future rounds, one can alternatively choose semi-allocations zt in order to minimize
the predicted price p̃t(zt) on this round. In fact, doing so leads to exactly the same allocation as Set-Aside
Greedy, as we show with the following lemma.

Lemma 4.2. For the allocation ẑt chosen by Set-Aside Greedy in round t, for any agent i with allocation
ẑi,t > 0, we have

vi,t

ũi,t(ẑi,t)
= maxi′

vi′,t
ũi′,t(ẑi,t)

= p̃t(ẑi,t).

Proof. Fix the round t of the algorithm’s execution, and the values vi,t. Note that by definition, the predicted
utility of agent i at the beginning of round t (before any items are allocated), is ũi,t(0). We prove the lemma
by reducing step t of the online allocation to a static Fisher market and showing that the statement of the
lemma is equivalent to the KKT conditions for this market.

Consider the following Fisher market: there are N agents and M = N + 1 items. Item i is only valued
by agent i at vFisheri,i = ũi,t(0) (i.e. their predicted utility at the beginning of round t); agents i′ ̸= i have

zero value for item i, that is, vFisheri′,i = 0. Agents value the last item at vFisheri,M = vi,t/2. Consider a static
allocation x of items to agents, where xi,j ∈ [0, 1] is the fraction of item j that is allocated to agent i. Then,
the utility of agent i under x is xi,iũi,t(0) +

xi,Mvi,t

2 .
Consider the problem of maximizing Nash social welfare in this Fisher market. Clearly, it is optimal to

allocate items 1 to N to the only agent who wants it (xi,i = 1), and thus it only remains to determine the
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values of (xi,M : i ∈ [N ]). Setting xi,i = 1 for all i ∈ [N ], the values of xi,M that maximize Nash social
welfare are the solution to the following convex optimization problem:

max
∑
i

log
(
ũi,t(0) +

xi,Mvi,t
2

)
subject to

∑
i

xi,M ≤ 1, and xi,M ≥ 0 for all i ∈ [N ].

Changing variables zi =
xi,M

2 leads to the optimization problem identical to the one in Set-Aside Greedy.
This implies the equivalence between the online solution ẑt and the optimal solution x∗ for the constructed
Fisher market: ẑi,t = x∗

i,M/2. On the other hand, KKT conditions for this static Fisher market give ([27,
Chapter 5]):

x∗
i,M ̸= 0 ⇒ vi,t

ũi,t(0) +
vi,tx∗

i,M

2

= max
i′

vi′,t

ũi′,t(0) +
vi′,tx

∗
i′,M

2

Now, substituting ẑi,t =
x∗
i,M

2 yields the statement of the lemma.

4.2 Bounding the Competitive Ratio of Set-Aside Greedy Consider the allocations ẑ made under
Set-Aside Greedy, and the corresponding predicted prices p̃t(ẑt) = maxi

vi,t

ũi,t(ẑt)
. These prices satisfy

the condition of Lemma 4.1, since we have from the definition of the predicted prices that, for all i,
p̃t(ẑt) = maxi′

vi′,t
ũi′,t(ẑt)

≥ vi,t

ciui(x̂)
. To complete the proof of Theorem 1.1, we need to argue that

∑T
t=1 p̃t(ẑt)

is small.

Lemma 4.3. Under Set-Aside Greedy, in every round t we have

p̃t(ẑt) ≤ 2

N∑
i=1

[ln (ũi,t(ẑt))− ln (ũi,t(0))] .

Proof. We have

1

2
p̃t(ẑt) =

N∑
i=1

ẑi,tp̃t(ẑt) (since
∑
i

ẑi,t =
1

2
for all t)

=
N∑
i=1

ẑi,t ·
vi,t

ũi,t(ẑt)
(by Lemma 4.2)

=
N∑
i=1

ũi,t(ẑt)− ũi,t(0)

ũi,t(ẑt)
(by definition of ũi,t)

=
N∑
i=1

(
1− ũi,t(0)

ũi,t(ẑt)

)

≤
N∑
i=1

− ln

(
ũi,t(0)

ũi,t(ẑt)

)
(using the inequality 1 − x ≤ − lnx)

=
N∑
i=1

[ln (ũi,t(ẑt))− ln (ũi,t(0))] .

Theorem 1.1 is now a simple corollary of this bound.

Lemma 4.4. For the allocation ẑ made by Set-Aside Greedy, the following holds:∑T
t=1 p̃t(ẑt)

N
≤ min

{
log(2N) +

1

N

N∑
i=1

log(di), log(2T ) + log(max
i

{di})
}
.
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Proof. Using Lemma 4.3, we get

T∑
t=1

p̃t ≤
N∑
i=1

T∑
t=1

(log(ũi,t(ẑt))− log(ũi,t(0)))

=
N∑
i=1

(log(ũi,T (ẑT ))− log(ũi,1(0)))

=
N∑
i=1

(
log(ũi,T (ẑT )))− log

Ṽi

2N

)

= N log(2N) +
N∑
i=1

log

(
ũi,T (ẑT )

Ṽi

)
.

Observe that

ũi,T (ẑT ) =
Ṽi

2N
+

T∑
t=1

vitẑit ≤
Ṽi

2N
+

(
T∑

t=1

vit

)
max

t
ẑit =

Ṽi

2N
+

1

2
Vi ≤

Ṽi

2N
+

1

2
diṼi.

Hence,
ũi,T (ẑT )

Ṽi

≤ 1

2N
+

di
2

≤ di.

This gives
∑T

t=1 p̃t ≤ N log(2N) +
∑N

i=1 log(di), which proves the first part of the claimed bound.
On the other hand, for d = maxi{di}, we have the bound

N∑
i=1

log

(
ũi,T (ẑT )

Ṽi

)
= N log

( N∏
i=1

ũi,T (ẑT )

Ṽi

) 1
N


≤ N log

(
1

N

N∑
i=1

ũi,T (ẑT )

Ṽi

)

= N log

(
1

N

N∑
i=1

1

Ṽi

(
Ṽi

2N
+

T∑
t=1

vitẑit

))

= N log

(
1

2N
+

1

N

T∑
t=1

N∑
i=1

vitẑit

Ṽi

)

≤ N log

(
1

2N
+

1

N

T∑
t=1

1

2
max

i

{
vit

Ṽi

})

≤ N log

(
1

2N
+

Td

2N

)
≤ N log

(
Td

N

)
This gives

∑T
t=1 p̃t ≤ N log(2N) +N log

(
Td
N

)
= N log(2Td).

Proof. (of Theorem 1.1) The theorem follows directly from Lemma 4.1 and Lemma 4.4, as the predicted
prices p̃t(ẑt) satisfy the inequalities in the statement of Lemma 4.1.

5 Lower Bounds

In this section, we complement our positive result by showing that the guarantee achieved by the Set-
Aside Greedy algorithm is tight up to sub-logarithmic factors. To build some intuition into the hardness of
maximizing NSW, we first show that for a closely related problem of MW maximization, no algorithm can
have competitive ratio of O(

√
N).
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V =



1/2 1/2 1/2 · · · · · ·
· · 1/2 · · · · · ·
· 1/2 · · · · · · ·
· · · 1/2 1/2 1/2 · · ·
· · · · 1/2 · · · ·
· · · · · 1/2 · · ·
· · · · · · 1/2 1/2 1/2
· · · · · · · · 1/2
· · · · · · 1/2 · ·

1/2 · · 1/2 · · · 1/2 ·


Figure 1: Lower bound construction for maxmin welfare from Theorem 5.1 with N = 9 and T = 10. Each row is
a round and each column is an agent. Values of 0 are indicated with ‘ ·’, and the special agent in each group of 3 is
highlighted in bold red.

Theorem 5.1. No online algorithm can achieve a competitive ratio better than O(
√
N) with respect to the

maxmin welfare, even assuming symmetric agents and perfect predictions (i.e., Ṽi = Vi = 1 ∀ i), and that all
vi,t ∈

{
0, 1

2

}
.

This shows that MW is a problematic objective in online fair allocation as it does not admit a good
competitive ratio even with perfect predictions. Moreover, the proof of this result provides insight into the
more complex lower bound construction for online NSW maximization.

Theorem 5.2. No online algorithm can achieve a competitive ratio of O(log1−ϵ N) or O(log1−ϵ T ) for a
constant ϵ > 0 with respect to the Nash social welfare, even if it knows that Vi = 1 for all i.

Both these results are based on hard instances which are similar in spirit: First, at some time t the
algorithm is confronted by agents with identical values; next, in later rounds, some of these agents are able
to obtain large values without competition (i.e., there are rounds when only one agent has a non-zero value),
while other agents clash over a single item, and are thus unable to get much value from future rounds. Note
that in both cases, the online algorithm has perfect predictions of the monopolist utilities Vi, and moreover,
ex post the agents are symmetric (in that they all have Vi = 1). The hardness arises instead from the fact
that an online algorithm is unable to predict which agents will clash in future.

5.1 Hardness of Approximating Online Maxmin Welfare We first give the lower bound construction
for Theorem 5.1, which, as we mentioned, exposes the main idea in the lower bound construction for NSW
in Section 5.2: when facing identical agents in earlier rounds, an online algorithm can do no better than
treat them symmetrically; however, some of these agents may later have high value in rounds with low
competition, while others may only care for items that are highly competed for, making them harder to
satisfy. An algorithm with access to future valuations can prioritize the latter agents in earlier rounds, which
no online algorithm can hope to achieve. Adapting this for NSW, however, is much more complicated.

Proof. (of Theorem 5.1) We construct a family of instances where N is the square of an integer, and T = N+1.
The instance with N = 9 is depicted in Fig. 1. Agents are grouped into

√
N groups, each of size

√
N , with

one special agent chosen uniformly at random in each group. The T rounds are grouped in
√
N epochs

of
√
N rounds each, plus one final round. In each epoch i, only agents in the corresponding group i have

non-zero values. In the first round of epoch i, the
√
N agents in corresponding group i have value 1

2 ; in the

subsequent
√
N − 1 rounds, each agent in the group except for the special agent resolves, i.e., has value 1

2

while all other agents have value 0. In the very last round (that is, the T th round), the
√
N special agents

all arrive simultaneously with value 1
2 .

By symmetry, an online algorithm can do no better than allocating uniformly among the agents with
nonzero value in each round: This gives a utility of 1

2
√
N

+ 1
2 for every non-special agent, and 1√

N
for every

special agent. On the other hand, consider an algorithm that allocates the entire item to the special agent
in the first round of each epoch, and allocates uniformly among the agents with nonzero value in each other

round: This algorithm gets utility at least 1
2 for all agents, which immediately gives a

√
N
2 lower bound
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t Era of Banishment
1 w11 w11 0 0 0 0 0 0
2 0 w21 w21 0 0 0 0 0

Month 1

3 0 0 0 0 w11 w11 0 0
4 0 0 0 0 0 w21 w21 0

Month 2
Year 1

5 0 0 w12 w12 0 0 0 0
6 0 0 0 w22 0 0 w22 0

Month 1 Year 2

Era of Plenty
7 0 0 0 0 0 0 1− w21 − w22 0
8 0 0 0 0 0 0 0 1

Era of Collapse
9 1− w11 1− w11 − w21 1− w21 − w12 1− w12 − w22 1− w11 1− w11 − w21 0 0

1

Figure 2: Competitive-ratio lower bound for NSW : illustrating the hard instance from Theorem 5.2. Values in cells are the

values of the agents on different rounds, orange represents the agent being banished, and green being clear.

for the competitive ratio of any online algorithm. In more detail, one can compute that the optimal offline
algorithm allocates 1+ 1

N − 1√
N

of the first item in each epoch to the special agent, resulting in a final utility

of 1
2 + 1

2N for all agents. Hence, the competitive ratio of any algorithm is bounded below by

γMW ≥
1
2 + 1

2N
1√
N

=

√
N

2
+

1

2
√
N

.

5.2 Hardness of Online NSW Maximization We first give a description of the lower bound instance
used in proving Theorem 5.2.

Let N be large enough such that M = log(1−ϵ) N is an integer (indeed, throughout the proof we assume
that for large enough N and rational ϵ, all our parameters are integers). Also, let L be an integer constant
to be chosen later on. For each pair of integers m, ℓ such that 1 ≤ m ≤ M and 1 ≤ ℓ ≤ L, we let
wm,ℓ = 1

log(L−ℓ+1)(M−m+1) N
. Note that for any constant L, we have wm,ℓ = Ω(1/N) and wm,ℓ = o(1/M).

Also, for any fixed ℓ we have wm,ℓ

wm+1,ℓ = 1
logN = o(1/M).

To make our description more readable, we split up rounds in our instance into a hierarchy of repeating
cycles. In more detail, our instance is made up of three eras : the Era of Banishment, the Era of Plenty,
and the Era of Collapse. The Era of Banishment is further subdivided into years, with a year comprising of
months. The structure of the instance is illustrated in Fig. 2.

Era of Banishment. This era lasts N(1 − 1/2L) rounds. It consists of L years (indexed by ℓ ∈ [L]),
with year ℓ lasting N/2ℓ rounds. Each year consists of months (indexed by m ∈ [M ]), where each month
lasting M rounds. (Note that different years contain different number of months. Namely, year ℓ contains
N

2ℓM
months.) In each year of the Era of Banishment, agents are split into “banished” and “cleared”, by

banishing M agents and clearing M agents per month. Once banished, an agent never has non-zero valuation
again until very last round (the Era of Collapse). The cleared agents lose their status at the end of the year
(and can become cleared or banished in the next year).

In the first round of month m of year ℓ, there are M agents who are neither banished nor cleared who
have value w1,l (everyone else has value 0). After the algorithm A makes an allocation xt, we find an agent
for whom xi,t ≤ 1/M (such agent always exists by pigeonhole principle) and this agent becomes banished.

On round z ∈ [2,M ] of this month there are M −1 agents from previous round plus one new agent (who
isn’t banished and hasn’t been cleared this year) with values wzℓ (remaining agents, including the banished
ones, have value 0). After the allocation is made, we repeat the banishing procedure described above. By
the end of the month, we have banished M agents, and we declare all agents who had non-zero value this
month but weren’t banished (there are M − 1 such agents) to be cleared. To make the accounting easier,
we additionally clear 1 more agent who hasn’t been cleared or banished before in this year (thus equalizing
number of banished and cleared agents in this month). Also note that all agents can have non-zero value
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during only one month in a year, since during this month they have to become either banished or cleared.
The number of months in the year is N

2ℓM
, as after this many months every agent is either banished or

cleared. At the end of the year, the cleared agents lose their status (but banished agents remain such), and
the next year begins.

Thus, every year of this era we banish half the agents that were not banished, and by the end of the era
(which lasts L years) we banish N(1− 1/2L) agents.

We also note that very little value is seen by the agents during this Era (compared to their total
allowed value of

∑
t vi,t = 1). Since during the Era of Banishment each agent participates in at most

one month a year, the total value seen by an agent during the era of Banishment can be bound by∑
m,ℓ w

m,ℓ ≤ MLwM,L = L log1−ϵ N
logN = o(1) (since the number of years L is a constant).

Era of Plenty. This era begins at t = N(1− 1/2L)+ 1 and lasts N/2L rounds. At every round there is

a single non-banished agent with the remainder of their value vi,t = 1−∑N(1−1/2L)
t′=1 vi,t′ = 1− o(1) (see the

paragraph above for the justification of the last equality). All other agents have zero value on this round).
Era of Collapse. This era consists of just one round, t = T = N + 1. At this round, all banished

agents have the remainder of their value vi,t = 1−∑N
t′=1 vi,t′ = 1− o(1).

Given the above instance, we are now ready to prove our hardness result.

Proof. (of Theorem 5.2) Assume that there exists an online algorithm A that achieves an competitive ratio
of log1−ϵ T or log1−ϵ N for some constant ϵ ≥ 0. We prove that this leads to a contradiction by showing that
A would fail to satisfy these guarantees for the instance described above.

We first provide a lower bound for the optimal Nash social welfare in this instance. During the Era of
Banishment we can give the item to the agent who is about to become banished, during the Era of Plenty
we give the item to the only agent with non-zero value, during the Era of Collapse we split the item equally
between the agents.

In this case, utility of banished agents u∗
i can be lower bounded with the value wij on the round when

they got banished, and utility of non-banished agents is 1− o(1), because
∑

m≤M,ℓ≤L wm,ℓ = o(1) according

to our definition of wm,ℓ above.
We now compute utilities under the allocation made by the online algorithm. Every banished agent

got 1/M fraction of the item on the round that they got banished, and their values on previous rounds is

negligible vi,t′ = o(vi,t/M), since wm−1,ℓ

wm,ℓ = o(1/M).
Finally, we argue that the last round does not affect the utilities of banished agents much. Intuitively,

this is because there is only one item and O(N) banished agents who have approximately equal value for it.
We provide a more careful argument below.

We upper bound optimal utilities on the last round by assuming banished agents got 1/M of the item
on which they got banished (by construction, maximum possible amount), and assuming that the algorithm
makes optimal NSW allocation on the last round.
The optimal NSW solution, when choosing between agents with equal values, allocates the marginal fraction
of the item to the agent with lowest utility. Note that, on the last round, there are N/2M agents with value
w11 (the smallest value of wlm). Thus, if the item is distributed between them, each agent gets the utility

of 2M
N = 2 log1−ϵ

N = o(w11/M), thus not improving their utility by even a constant factor ( and so it will
distribute the entire item between the agents with w11) .

Thus, overall, utility of banished agents can be upper-bounded by ui ≤ u∗
i

M + o(
u∗
i

M ). We bound utility of
non-banished agents with ui ≤ 1.

Now we can bound the competitive ratio achieved by the online algorithm as follows:

NSW(x)

NSW(x∗)
≤
[
ui

u∗
i

]1/N
≤
[(

1

M

)N(1−1/2L)(
1

1− o(1)

)N/2L
]1/N

≈
(

1

M

)1−1/2L

= log1−ϵ′ N.

Finally, we pick the constant L (and appropriately large N) to make sure ϵ′ ≤ δ.

6 Discussion

We conclude with a brief discussion regarding our model and possible extensions of our results.
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Allocating multiple items per round It is worth noting that all our results readily generalize to a setting
where multiple items can arrive on a single round. The reduction is to split a single round with multiple
items into multiple “imaginary” rounds with a single item in each. Under this reduction, our approximation
guarantees stay intact, with number of rounds T replaced by the total number of items.

Allocating indivisible items using randomness Also, note that even if the items are actually indivisible,
i.e., each item can be allocated to at most one agent, then both our upper bounds and our lower bounds
extend to this setting as well by considering randomized algorithms. In this case, we can evaluate the agents’
expected utility based on the probability that they receive each item, and linearity of expectations reduces
this setting to the one studied in this paper.

Other objectives In this paper we focus on the Nash social welfare objective. A natural question is
whether the our results can be extended to other objective functions. Recently, Barman et al. [5] have
obtained algorithms for the family of p-mean welfare objectives for p ∈ (−∞, 1] (for which p = 0 corresponds

to Nash social welfare), under the assumption of normalized valuations (i.e.
∑T

t=1 vit = 1 for all i). It is
interesting to ask whether their results can be extended to incorporate predictions.

7 Additional Proofs and Counterexamples

7.1 No Additional Information about Agents’ Values Here we show that if the online algorithm is
given no information about the agents’ values, then there is no hope for a non-trivial competitive ratio for
the NSW in an online setting. It is easy to see that splitting every item equally gives a 1/N approximation
of NSW. We now prove the following result.

Theorem 7.1. In the absence of any additional information regarding the agents’ values, there is no online
algorithm that achieves a e

N + δ or e
T + δ competitive ratio with respect to the NSW for a constant δ > 0.

Proof. We assume an arbitrary online allocation algorithm M is employed and construct an instance on
which it fails to provide a e

N + δ approximation to NSW.
There are T = N rounds in the instance. At t = 1 all agents have the value of vi,t = 1. We then pick

an agent for whom xi,t ≤ 1/N (who exists by pigeonhole principle) and that ensure this agent would never
have non-zero values for the rest of the instance (we would refer to such agents as frozen).

At any round t we will have non-frozen agent to have values vi,t =
1
ϵt ( we will pick a sufficiently small

ϵ < 1 later on), and freeze the agent whose allocation is xi,t ≤ 1/(N − t).
NSW of the optimal allocation x∗ can be lower bounded by, on round t, allocating all of to the agent

who is about to get frozen, this yields ui(x
∗) ≥ 1/ϵi−1 (we rename indices in the order of being frozen).

On the other hand, by construction the algorithm M achieves ui ≤ ui(x
∗)

i + O(ϵui(x
∗)

i ). This yields a

lower bound for the NSW approximation ratio NSW(x)
NSW(x∗) ≤ ( 1

N ! +O(ϵ))1/N ≈ e
N +O(ϵ1/N ).

Clearly, choosing a sufficiently small ϵ would yield the needed lower bound for any δ > 0.

7.2 Proportional allocation (Proof of Proposition 3.1) In Section 3 we mentioned that proportional
allocation Pareto-dominates uniform allocation in terms of agents’ utilities, if Vi = 1 for all i. We now show
this by proving a more general result for the normalized proportional allocation rule under perfect predictions
of monopolist utilities.

Theorem 7.2. Given perfect predictions Vi of monopolist utilities for each agent i, let x̃ be the allocations

made by the (normalized) proportional allocation rule x̃i,t =
vi,t/Vi∑
j vj,t/Vj

. Then for each agent i, we have

ui(x̃) ≥
Vi

N
.

Proof. Fix parameters T,N , predictions {Vj} and for any given agent i, consider any sequence of values vi,t
such that

∑
t vi,t = Vi. We prove the statement of the theorem by optimizing the values of all other agents

to make the utility of agent i as small as possible, and show that the minimum value is never less than Vi/N .

Notice that under the Proportional Sharing allocation rule, the allocation x̃i,t =
vi,t/Vi

vi,t/Vi+
∑

j ̸=i vj,t/Vj

of agent i does not depend on the particular values vj,t that other agents report, but rather, only their
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normalized sum
∑

j ̸=i vj,t/Vj ; moreover, under perfect predictions, we know that for every agent j we have∑
t vj,t/Vj = 1. Thus, in minimizing the utility of agent i, one can think of agents other than i as a single

super-agent who can report values v′t =
∑

j ̸=i vj,t/Vj that sum up to no more than N−1. Then, the problem
becomes one of choosing v′t as to minimize the utility of agent i, which is given by the following convex
program:

min
v′

∑
t

vi,t
vi,t/Vi

vi,t/Vi + v′t

s.t.
∑
t

v′t ≤ N − 1.

For optimizing over v′t, the first-order conditions are as follows:

−
v2i,t/Vi

(vi,t/Vi + v′t)
2
+ λ = 0 ∀ t(7.1) ∑
t

v′t = N − 1(7.2)

To solve it, given any Lagrange multiplier λ, we substitute v′t =
vi,t

Vi

(√
Vi

λ − 1

)
, and then from the KKT

constraints we get: ∑
t

v′t =
∑
t

vi,t
Vi

(√
Vi

λ⋆
− 1

)
=

√
Vi

λ⋆
− 1 = N − 1

which gives λ⋆ = Vi/N
2 and v′⋆t =

vi,t

Vi
(N − 1). Substituting back in the objective, we see that under the

proportional allocation rule x̃, agent i gets utility at least
∑

t vi,t
vi,t/Vi

vi,t/Vi+vi,t(N−1)/Vi
= Vi

N , which is precisely

the utility under the uniform allocation rule.

7.3 Myopic Greedy Algorithm (Proof of Proposition 3.2) In this section, we show that a simple
greedy algorithm that chooses allocation {xi,t}i∈[N ] so as to maximize the NSW at the end of round t, has
Ω(N) competitive ratio.

As in the previous hardness results, we consider the simplest setting with perfect predictions of
monopolist utilities Vi, and also that Vi = 1 for every agent i. Let ui,t(xt) =

∑
t′=1 xi,t′vi,t′ be the utility of

agent i for all rounds up to t. The myopic greedy algorithm is formally defined as:

x̂t = argmax
xt

∑
i

log(ui,t(xt))

s.t.
∑
i

xi,t ≤ 1 , xi,t ≥ 0 ∀ i ∈ [N ]

Analogous to Lemma 4.2, the myopic greedy algorithm can be interpreted as a myopic price-minimizer.

Lemma 7.1. Consider allocation x̂t made by the myopic greedy algorithm in some round t. Then

x̂i,t ̸= 0 ⇒ vi,t
ui,t(x̂t)

= max
i′

vi′t
ũi′tx̂i,t

= p̂t

Now consider the following instance with T = N2: In rounds t ∈ [1, N ] agent i = 1 has value v1t = 1/N ;

agents other than 1 have values vi,t = 1/NN2−t+1, which although geometrically growing in t, is still
vanishingly small compared to the active agent. We refer to these as the ‘active’ rounds for agent 1.

After N rounds, agent 1 exhausts her total value. Now for rounds t ∈ [N + 1, 2N ], agent 2 is active,

with value v2t =
1
N −

∑
t′<t v2t′

N = 1
N − o( 1

N ), while agents i > 2 continue to have value vi,t = 1/N (N2−t+1).
This process repeats, with agent i active in rounds t ∈ [(i− 1)N +1, iN ]; thus at the end of N2 rounds, each
agent is for N rounds.
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To bound the competitive ratio of myopic greedy on this instance, first note that the optimal allocation
can be lower bounded by always giving the item to the active agent, which yields ui(x) ≥ 1 − o(1/N), and
thus the optimal NSW ≥ 1− o(1/N).

On the other hand, Lemma 7.1 implies that in round t, the myopic greedy algorithm allocates the item
to the agent who maximizes the ratio

vi,t

ui,t(xt)
. In round (i − 1)N + 1 when agent i is active for the first

time, we can upper bound their utility by assuming they obtain the whole item (and thus the value of
k/T −o(1/T )). On the following rounds the ratio

vi,t

ui,t(xt)
= 1−o(1) for the active agents, but

vi,t

ui,t(xt)
≥ N− i

for the other agents with non-zero value (the bound of N − i comes from allocating all of the items equally
between non-active agents with non-zero value). Thus the active agent is not allocated anything on any
rounds except for the first one.

Thus for the utilities of agents in the greedy solution can be bounded with ui(x̂) ≤ 1
N + o( 1

N ), which
implies an approximation factor A ≥ N , which is no better than just allocating all items equally between
the agents.

7.4 Computational Tractability of the Set-Aside Greedy Algorithm We now briefly note that
the Set-Aside Greedy algorithm is quite tractable from a computational standpoint. The most demanding
operation of this algorithm involves the computation of ẑi,t for each round t according to the following
program:

ẑt = argmax
zt

∑
log(ũi,t(zt))

s.t.
∑
i

zi,t ≤
1

2
, zi,t ≥ 0.

Although this is a convex program that can be solved in polynomial time, we can actually also provide
a fast alternative process for computing this allocation. Lemma 4.2 implies that the problem above is
equivalent to the problem of minimizing the current promised price:

ẑt = argmin
zt

pt(7.3)

s.t.
∑
i

zi,t ≤
1

2

zi,t ≥ 0

pt ≥
vi

ũi(zt)
(7.4)

We now provide an algorithm to solve this problem. The idea is to allocate the marginal fraction of
the item to the agents for whom the constraint (7.4) is binding, as there is no other way to decrease the
objective. We now demonstrate how to allocate the entire item this way N steps.

We initialize zi,t = 0 for every agent, and initialize the unallocated fraction of the item at B = 1/2. We
order the agents in decreasing order on their

vi,t

ũi,t(zi,t)
ratios using their promised utilities. Assuming that

the agents are re-indexed according to this order, agent 1 has the highest ratio and agent N has the lowest
ratio. For each agent i < N , we then compute the value δi which is the solution to the following equation:

vi,t
ũi,t(δi)

=
vi+1,t

ũi+1,t(0)
.

This value, δi captures how much allocation does agent i need to catch up to the next agent in terms of the
vi,t

ũi,t(δi)
ratio.

Starting with i = 1, we then execute the following steps. If iδi ≤ B, we allocate δi to agent i and all
agents before i: zj,t := zj,t + δi for j ≤ i, update the remaining allocation B := B − iδi and move on to the
next step i := i+ 1.

If iδi > B, we allocate the remaining item fraction B equally between the agent i and agents before i,
zj,t := zj,t +

B
i for j ≤ i (terminating the algorithm on this round).
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If the algorithm gets to i = N , we similarly allocate the remaining item fraction equally between everyone
zj,t := zj,t +

B
N for all j ∈ N .

Thus the number of operations on a single round is at most O(N), giving us O(TN) complexity for
making the allocations over all rounds.

We now briefly give an argument for correctness. First, as we mentioned before, it is always optimal
to allocate the marginal fraction of the item to the agent with the smallest

vi,t

ũi,t(zi,t)
ratio, where zi,t is the

allocation given to agent i so far. The second thing we need to note is that, when this ratio is tied between
several agents

vi,t
ũi,t(zi,t)

=
vj,t

ũj,t(zj,t)
,(7.5)

adding equal values ϵ to their allocation preserves the tie

vi,t
ũi,t(zi,t + ϵ)

=
vj,t

ũj,t(zj,t + ϵ)

To see that this is true, recall that ũi,t(zi,t + ϵ) = ui,t(zi,t) + vi,tϵ, and cancel out equal terms implied
by (7.5).

This implies that the algorithm always allocates the marginal fraction of the item to the agents
minimizing the

vi,t

ũi,t(zi,t)
ratio, and thus solves (7.3) exactly.
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