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Abstract

This paper identifies a structural property of data distributions that enables deep
neural networks to learn hierarchically. We define the “staircase” property for
functions over the Boolean hypercube, which posits that high-order Fourier coeffi-
cients are reachable from lower-order Fourier coefficients along increasing chains.
We prove that functions satisfying this property can be learned in polynomial
time using layerwise stochastic coordinate descent on regular neural networks –
a class of network architectures and initializations that have homogeneity prop-
erties. Our analysis shows that for such staircase functions and neural networks,
the gradient-based algorithm learns high-level features by greedily combining
lower-level features along the depth of the network. We further back our theoretical
results with experiments showing that staircase functions are learnable by more
standard ResNet architectures with stochastic gradient descent. Both the theoretical
and experimental results support the fact that the staircase property has a role
to play in understanding the capabilities of gradient-based learning on regular
networks, in contrast to general polynomial-size networks that can emulate any
Statistical Query or PAC algorithm, as recently shown.

1 Introduction

It has been observed empirically that neural networks can learn hierarchically. For example, a
‘car’ may be detected by first understanding simpler concepts like ‘door’, ’wheel’, and so forth in
intermediate layers, which are then combined in deeper layers (c.f. [1, 2]). However, on the theoretical
side, the mechanisms by which such hierarchical learning occurs are not yet fully understood. In this
paper we are motivated by the following question:

Can we identify naturally structured and interpretable classes of hierarchical functions, and
show how regular1DNNs are able to learn them?

This is a refinement of the generic objective of trying to understand DNNs: We identify several
key desiderata for any theoretical result in this direction. (1) Natural structure: We aim to capture
naturally occurring data of interest, so the structural assumption must make conceptual sense. (2)
Interpretability: If we hope to clearly interpret the inner workings of neural networks, understanding
both how they classify and also how they learn, then we need a model for data that is interpretable to

1The notion of regularity is specified in Definition 2.1; this means network architectures and initializations
that have homogeneity properties within layers, in contrast to the emulation architectures in [3, 4].
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begin with. Interpretation of the representations occurring within a neural network is most clearly
expressed with respect to structural properties of the data. Finally, (3) Regularity of the network: The
network architecture and initialization should be symmetric in a sense defined later on. This prevents
using carefully-crafted architectures and initializations to emulate general learning algorithms [3, 4].
We view this type of restriction as being partway towards considering practical neural networks that
learn in a blackbox fashion. The results in this paper aim to satisfy all three high-level objectives.
The relation with prior work is discussed in Section 1.1.

This paper proposes a new structurally-defined class of hierarchical functions and proves guarantees
for learning by regular neural networks. In order to describe this structure, we first recall that any
function f : {+1,−1}n → R can be decomposed in the Fourier-Walsh basis as

f(x) =
∑
S⊆[n]

f̂(S)χS(x), where f̂(S) := 〈f, χS〉, χS(x) :=
∏
i∈S

xi (1)

and the inner product between two functions is 〈f, g〉 = Ef(X)g(X) for X ∼ Unif({+1,−1}n).
This decomposition expresses f(x) as a sum of components, each of which is a monomial χS(x),
weighted by the Fourier coefficient f̂(S). Our definition of hierarchical structure is motivated by
an observation regarding two closely related functions, “high-degree monomials” and “staircase
functions”, the latter of which can be learned efficiently and the former of which cannot.

Monomials with no hierarchical structure The class of monomials of any degree k where k ≤
n/2 (i.e., the class {χS}S⊆[n],|S|=k) is efficiently learnable by Statistical Query (SQ) algorithms if
and only if k is constant [5, 6], and the same holds for noisy Gradient Descent (GD) on neural nets
with polynomially-many parameters [5], and for noisy Stochastic Gradient Descent (SGD) where
the batch-size is sufficiently large compared to the gradients’ precision [3, 4]. This was also noted
in [7] which shows that gradients carry little information to reconstruct χS for large |S|, and hence
gradient-based training is expected to fail. Thus, we can think of a component χS as simple and
easily learnable if the degree |S| is small and complex and harder to learn if the degree |S| is large.

Staircase functions with hierarchical structure Now, instead of a single monomial, consider the
following staircase function (and its orbit class induced by permutations of the inputs), which is a
sum of monomials of increasing degree:

Sk(x) = x1 + x1x2 + x1x2x3 + x1x2x3x4 + · · ·+ χ1:k . (2)

Here Sk(x) has a hierarchical structure, where x1 builds up to x1x2, which builds up to x1x2x3,
and so on until the degree-k monomial χ1:k. Our experiments in Fig. 2 show a dramatic difference
between learning a single monomial χ1:k and learning the staircase function Sk. Even with n = 30
and k = 10, the same network with 5 ReLU ResNet layers and the same hyperparameters can easily
learn Sk to a vanishing error (Fig. 2b) whereas, as expected, it cannot learn χ1:k even up to any
non-trivial error since χ1:k is a high-degree monomial (Fig. 2a).

An explanation for this phenomenon is that the neural network learns the staircase function Sk(x) by
first learning a degree-1 approximation that picks up the feature x1, and then uses this to more readily
learn a degree-2 approximation that picks up the feature x1x2, and so on, progressively incrementing
the degree of the approximation and ‘climbing the staircase’ up to the large degrees. We refer to
Fig. 1a for an illustration. This is indeed the learning mechanism, as we can see once we plot the
Fourier coefficients of the network output against training iteration. Indeed, in Fig. 2c we see that
the network trained to learn χ1:10 cannot learn any Fourier coefficient relevant to χ1:10 whereas in
Fig. 2d it is clear that the network trained to learn S10 learns the relevant Fourier coefficients in order
of increasing complexity and eventually reaches the χ1:10 coefficient.

Main results We shed light on this phenomenon, proving that certain regular networks efficiently
learn the staircase function Sk(x), and, more generally, functions satisfying this structural property:
Definition 1.1 (Staircase property). For any M > 1, a function g : {−1, 1}n → R satisfies the
[1/M,M ]-staircase property over the unbiased binary hypercube if:

• for all S ⊂ [n], if ĝ(S) 6= 0 then |ĝ(S)| ∈ [1/M,M ].

• for all S ⊂ [n], if ĝ(S) 6= 0 and |S| ≥ 2, there is S′ ⊂ S such that |S \ S′| = 1 and
ĝ(S′) 6= 0.

Furthermore, g is said to be an s-sparse polynomial if |{S : ĝ(S) 6= 0}| ≤ s.
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(a) An illustration of hierarchical learning where suc-
cessive layers build upon the features from previous
layers.

(b) An illustration of the proposed architecture. The
solid blue and grey arrows represent sparse random
connections

Figure 1: Hierarchical learning method and proposed architecture.

(a) Loss Evolution for Learning Parity (b) Loss Evolution for Learning S10

(c) Fourier Coefficients for Parity (d) Fourier Coefficients for S10

Figure 2: Comparison between training χ1:10 and S10 with n = 30 on the same 5-layer ReLU ResNet
of width 40. Training is SGD with constant step size on the square loss. Here f̂1:i denotes the Fourier
coefficient 〈χ1:i, f〉 corresponding to the network output f .

The parameters M and s appear naturally since a PAC-learning algorithm for s-sparse polynomials
satisfying the [1/M,M ]-staircase property must use a number of samples that depends polynomially
on M and s. Our theoretical result is informally summarized as follows, and we remark that the proof
shows that the neural network progressively learns approximations of higher degree:

Theorem 1.2 (Informal statement of Theorem 2.2). Let g : {−1, 1}n → R be an unknown s-sparse
polynomial satisfying the [1/M,M ]-staircase property. Given access to random samples from
{(x, g(x))}x∼{−1,1}n , there is a regular neural network architecture that approximately learns g in
poly(n, s,M) time and samples when trained with layerwise stochastic coordinate descent.

Even though we only consider hierarchical functions over the Boolean hypercube {−1, 1}n in our
theoretical result, we believe that the techniques used in this work can be extended to other function
spaces of interest, exploiting the orthonormality of the corresponding Fourier basis functions. For
this reason we give a fairly general definition of hierarchical functions in Section 3 that goes beyond
the Boolean hypercube, as well as beyond the strict notion of increasing chains. This more general
class of functions is of further interest because it includes as special cases well-studied classes such
as biased sparse parities and decision trees in a smoothed complexity setting (see Section 3.1).
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1.1 Related Work

Statistical query emulation results For the general class of polynomial-size neural network ar-
chitectures with any choice of initialization, it is known that SGD on a sufficiently small batch-size
can learn2 any function class (including functions satisfying the staircase property) that is efficiently
learnable from samples [3], while GD can learn any function class that is efficiently learnable from
statistical queries (SQ) [4]. However, these results rely on highly non-regular architectures and initial-
izations, with different parts of the nets responsible for different tasks that emulate the computations
of general learning algorithms. In particular, it is not known how to obtain the emulation results of [4]
for “regular” architectures and initializations as defined in Definition 2.1. In contrast, our architecture
in Theorem 2.2 is a regular neural network in this sense, and our analysis further illustrates how
features are built greedily over depth rather than by emulating a given algorithm.

Consider also the orbit class under permutations of the inputs of the “truncated staircase function”,
Sj→k(x) =

∑k
i=j χi:k(x), for 1 ≤ j ≤ k ≤ n. Note that this class is efficiently SQ-learnable when

k = n, since the monomial χ1:n is always present and one can recursively check which sub-monomial
is present or not by checking at most nmonomials at each step. However, we conjecture that Sj→n(x)
is not learnable by regular networks trained with gradient descent if min(n− j, j) = ω(1). Therefore
such truncated staircases provide a candidate for separating gradient-based learning on regular
networks versus general, non-regular networks that allow for emulating any SQ algorithm [4].

Hierarchical models of data Explicitly adding hierarchical structures into machine learning algo-
rithms such as hierarchical Bayesian modeling and hierarchical linear modeling has proved successful
in various machine learning tasks beyond deep learning [8–11]. For image data, [12, 13] propose
hierarchical generative models of images and use them to motivate deep convolutional architectures,
although these works do not prove that deep learning learns these generative models. [14] similarly
proposes a ‘deep rendering model’ which hierarchically models levels of abstraction present in data,
but does not prove learnability. [15] gives a training algorithm for deep convolutional networks that
provably learns a deep generative model of images. The paper [16] proposes a generative model of
data motivated by evolutionary processes, and proves in a formal sense that “deep” algorithms can
learn these models, whereas shallow algorithms cannot. In contrast to our work, the “deep” algorithms
considered by [16] are not descent algorithms on regular deep neural network architectures. In [17] it
is shown that during training of two-layer ReLU networks with SGD, the lower frequency components
of the target function are learned first. Unfortunately, their results have an exponential dependence on
the degree. In our work, we leverage depth and the hierarchical Boolean function structure to ensure
that higher-level Fourier coefficients are learned efficiently. Finally, [18], studies learning Boolean
circuits of depth O(log n) via neural networks under product distributions using layer-wise gradient
descent. While [18] requires the architecture to match the Boolean circuit being learned, in contrast,
our architecture is regular and independent of the function learned.

Power of depth Several works have studied how representation power depends on depth. [19]
shows that deep networks can represent a class of compositionally-created functions more efficiently
than shallow networks. [20] shows that certain smooth radial functions can be easily represented by
three-layer networks but need exponentially-many neurons to be represented by a two-layer network.
Based on an analysis of learning fractal distributions related to the Cantor set, [21] conjectures that
if shallow networks are poorly represent a target function, then a deep network cannot be trained
efficiently using gradient based methods. [22] presents a depth separation result by showing that deep
networks can produce highly oscillatory functions by building on the oscillations layer by layer. [23]
uses this phenomenon to show a sharp representation theorem for arbitrary-depth ReLU networks.

Other theoretical works have proved depth separation theorems for training. [24] prove that a two-
hidden-layer neural network where the first hidden layer is kept random and only the second layer
is trained, provably outperforms a just one hidden layer network. In [25, 26] it is proved that deep
networks trained end-to-end with SGD and quadratic activation functions can efficiently learn a
non-trivial concept class hierarchically, whereas kernel methods and lower-depth networks provably
fail to do so. The class of functions studied by [25, 26] are those representable as the sum of neurons
in a teacher network that is well-conditioned, has quadratic activations and has a depth of at most
log log n, where n is the number of inputs. This function class is expressive but incomparable to
the hierarchical function class studied in our work (e.g., we can learn polynomials up to degree n,

2These reductions are for polynomial-time algorithms and for polynomial precisions on the gradients.
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whereas [26] is limited to degree log(n)). Furthermore, our function class has the advantage of being
naturally interpretable, with complex features (the high-order monomials) being built in a transparent
way from simple features (the low-order monomials). In [27–29], gradient dynamics are explored
for the simplified case of deep linear networks, where an ‘incremental learning’ phenomenon is
observed in which the singular values are learned sequentially, one after the other. This phenomenon
is reminiscent of the incremental learning of the Fourier coefficients of the Boolean function in our
setting (Fig. 2). For real world data sets, [30] empirically shows that in many data sets of interest,
simple neural networks trained with SGD first fit a linear classifier to the data and then progressively
improve the approximation, similar in spirit to the theoretical results in this paper.

Neural Tangent Kernel and random features A sequence of papers have studied convergence
of overparametrized (or Neural Tangent Kernel regime) neural networks to the global minimizer of
empirical loss when trained via gradient descent. In this regime, they show that neural networks
behave like kernel methods and give training and/or generalization guarantees. Because of the
reduction to kernels, these results are essentially non-hierarchical. [31, 32] in fact show that deep
networks in the NTK regime behave no better than shallow networks. We refer to [26] for a review of
the literature related to NTK and shallow learning. Finally, we mention the related works [33–35]
which consider learning low-degree (degree q) polynomials over Rn, without a hierarchical structure
assumption. They require nΩ(q) neurons to learn such functions, which is super-polynomial once
q � 1. The results hold in the random features regime, known to be weaker than NTK.

1.2 Organization

In Section 2, we give the problem setup, network architecture and the training algorithm, and also
state our rigorous guarantee that this training algorithm learns functions satisfying the staircase
property. In Section 3 we discuss possible extensions, defining hierarchical functions satisfying the
staircase property in a greater level of generality from Definition 1.1. We refer to ?? for additional
experiments which validate our theory and conjectures for both the simplest definition of the staircase
property in Definition 1.1 and the generalizations in Section 3.2.

2 Regular networks provably learn hierarchical Boolean functions

We state our main theoretical result, which proves that a regular neural network trained with a descent
algorithm learns hierarchical Boolean functions in polynomial time.

2.1 Architecture

Our network architecture has neuron set V and edge set E, and is defined as follows (see also Fig. 1b).
The neuron set is V = Vin t V1 t . . . VL. Here Vin = {vin,0, vin,1, . . . , vin,n} is a set of n+ 1 inputs,
and each intermediate layer consists of |Vi| = W neurons. Furthermore, the edge set E is a sparse,
random subset of all possible directed edges:

• each (v0, vi) ∈ Vin × Vi is in the edge set E independently with probability p1, and
• each (vi, vi+1) ∈ Vi × Vi+1 for i ∈ [L − 1] is in the edge set E independently with

probability p2.

For each edge e ∈ E, let there be a weight parameter ae ∈ R. And for each neuron v ∈ V \ Vin,
let there be a bias parameter bv ∈ R. The parameters of the network are therefore a ∈ RE and
b ∈ RV \Vin . For simplicity of notation, we concatenate these two vectors into one vector of parameters

w = [a b] ∈ RE ⊕ RV \Vin .

For each i ∈ [n], the ith input, vin,i ∈ Vin, computes xi, and the 0th input, vin,0, computes a constant:
fvin,i

(x;w) = xi, and fvin,0
(x;w) = 1.

Given a neuron v ∈ V \ Vin, the function computed at that neuron is a quadratic function of a linear
combination of neurons with edges to v, (i.e., the activation function is quadratic). And the output of
the neural network is the sum of the values of the neurons at the intermediate layers:

fv(x;w) =

 ∑
e=(u,v)∈E

aefu(x;w)

2

+ bv, and f(x;w) =
∑

v∈V \Vin

fv(x;w).

5



Our architecture satisfies the following regularity condition:
Definition 2.1 (Regular network architecture and initialization). An architecture is regular if for any
1 ≤ i ≤ j ≤ L, for any distinct pair of potential edges (vi, vj), (v

′
i, v
′
j) ∈ Vi × Vj , the events that

these edges are inE are i.i.d.; the same holds for any distinct pair of potential edges (u, vj), (u
′, v′j) ∈

Vin × Vj; the same holds for any distinct pair of potential edges (u, vout), (u
′, vout) ∈ Vj × vout

(where vout is the output vertex). Furthermore, the initialization is regular if it is i.i.d. over the set of
present edges and each weight has a symmetric distribution.

In our case the weight initialization is i.i.d. and symmetric since we choose it to be identically zero
everywhere, which works since we escape saddle points by perturbing during training. On the other
hand in our experiments the initialization is an isotropic Gaussian, which also satisfies Definition 2.1.

2.2 Loss function

Let the loss function be the mean-squared-error between the output f of the network and a function
g : {−1, 1}n → R that we wish to learn. Namely, for any x ∈ {−1, 1}n, a ∈ RE and b ∈ RV \Vin ,
define the point-wise loss and population loss functions respectively, where w = [a, b]:

`(x;w) =
1

2
(f(x;w)− g(x))2; `(w) = Ex∼{−1,1}n`(x;w) . (3)

We will train the neural network parameters to minimize an L2-regularized version of the loss
function. Let λ1, λ2 > 0 be regularization parameters, and define the point-wise regularized loss
`R(x;w) = `(x;w) +R(w) and the population regularized loss `R(w) = `(w) +R(w), where

R(w) =
1

2

∑
e=(u,v)∈E
u∈Vin

λ1a
2
e +

1

2

∑
e=(u,v)∈E
u6∈Vin

λ2a
2
e.

The distinct regularization parameters λ1, λ2 > 0 for the weights of edges from the input and
previous-layer neurons, respectively, are for purely technical reasons and are explained in Section 2.5.

2.3 Training

We train the neural network to learn a function g : {−1, 1}n → R by running Algorithm 1. This algo-
rithm trains layer-wise from layer 1 to layerL. The ith layer is trained with stochastic block coordinate
descent, iterating through the neurons in Vi in an arbitrary fixed order, and training the parameters of
each neuron v ∈ Vi using the TRAINNEURON subroutine. Each call of TRAINNEURON runs stochas-
tic gradient descent to train the subset of neural network parameters wv = {ae}e=(u,v)∈E ∪ {bv}
directly associated with neuron v (i.e., the weights of the edges that go into v, and the bias of v),
keeping the other parameters w−v = {ae}e=(u′,v′)∈E s.t. v 6=v′ ∪ {bv′}v′∈V \({v}∪Vin) fixed.

Algorithm 1: TRAINNETWORKLAYERWISE

Input: Sample access to the distribution {(x, g(x))}x∼{−1,1}n . Hyperparameters
W,L, p1, p2, λ1, λ2, η, B, εstop, α, τ .

Output: Trained parameters of neural network after training layer-wise.

1 (V,E)← random network constructed as in Section 2.1.
2 w0 ← ~0, t← 0 // Initialize all weights and biases to zero.
3 for layer i = 1 to L do
4 for neuron v ∈ Vi do

// Train the neuron parameters, wv, fixing other parameters
5 wt+1 ← TRAINNEURON(v, wt;λ1, λ2, η, B, εstop, α, τ)
6 t← t+ 1
7 end
8 end
9 Return wt
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Algorithm 2: TRAINNEURON(v, w0;λ1, λ2, η, B, εstop, α, τ)

Input: Neuron v ∈ V \ Vin. Initial network parameters w0. Access to random samples (x, g(x))
for x ∼ {−1, 1}n. Hyperparameters λ1, λ2, η, B, εstop, α, τ .

Output: Parameters of network after the subset of parameters wv of neuron v is perturbed and
then trained with NEURONSGD, while all other parameters w−v remain fixed.

// To avoid saddle points, randomly perturb the neuron parameters
1 wperturbv ← w0

v + z, where z is a noise vector whose entries are i.i.d. in Unif([−η, η]).
2 wperturb ← [w0

−v, w
perturb
v ]

// Run stochastic gradient descent on neuron parameters, until
approximate stationarity

3 wSGD ← NEURONSGD(v, wperturb;λ1, λ2, B, εstop, α)

// Prune the neuron’s small weights
4 wround

v ← wSGDv , rounding to 0 every entry of magnitude less than τ
5 Return wround = [w0

−v, w
round
v ]

Algorithm 3: NEURONSGD(v, w0;λ1, λ2, η, B, εstop, α, τ)

Input: Neuron v ∈ V \ Vin. Initial network parameters w0. Access to random samples (x, g(x))
for x ∼ {−1, 1}n. Hyperparameters λ1, λ2, η, B, εstop, α, τ .

Output: Parameters of network after the subset of parameters wv corresponding to neuron v is
trained, all other parameters w−v remain fixed.

1 t← 0
2 while true do

// Approximate ∇wv
`R with minibatch size B

3 Draw i.i.d. data samples (xt,1, g(xt,1)), . . . , (xt,B , g(xt,B))

4 ξt ← 1
B

∑B
i=1∇wv`R(xt,i;w0

−v, w
t
v)

// Stop if we have reached an approximate stationary point
5 if ‖ξt‖ ≤ εstop then break out of the loop;

// Update wv in direction of the approximate gradient
6 wt+1

v ← wtv − αξt
7 t← t+ 1

8 Return [w0
−v, w

t
v]

2.4 Theoretical result

We prove that Algorithm 1 learns functions satisfying the staircase property in the sense of Defini-
tion 1.1. We defer the exact bounds on the parameters considered to ??.
Theorem 2.2. Let g : {−1, 1}n → R be an unknown s-sparse polynomial satisfying the [1/M,M ]-
staircase property for some given s,M > 1. Given an accuracy parameter ε > 0, a soundness
parameter 0 < δ < 1, and access to random samples from {(x, g(x))}x∼{−1,1}n , there is a setting
of hyperparameters for Algorithm 1 that is polynomially-bounded, i.e.,

1/ poly(n, s,M, 1/ε, 1/δ) ≤W,L, p1, p2, λ1, λ2, η, B, εstop, α, τ ≤ poly(n, s,M, 1/ε, 1/δ),

such that Algorithm 1 runs in poly(n, s,M, 1/ε, 1/δ) time and samples and with probability ≥ 1− δ
returns trained weights w satisfying the bound `(w) ≤ ε on the population loss.

2.5 Proof overview

We now briefly describe how Algorithm 1 learns, giving a high-level depiction of the training process
in the case that the target function is the staircase function S3(x) = x1 + x1x2 + x1x2x3. We
refer to Fig. 3 for an illustration of the training procedure, where grey neurons are ‘blank’ (i.e.,
have identically zero output) and the green neurons are ‘active’ (i.e., compute a non-zero function).
Initially all neurons are blank and the total output of the network is 0.
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Figure 3: An illustration of the training procedure for learning S3(x) = x1 + x1x2 + x1x2x3. The
grey neurons are ‘blank’ and the green neurons are ‘active’.

We set the random network topology connectivity hyperparameters p1 and p2 to be small, so that
the network is sparse. We can show that the following invariant is maintained throughout training:
any neuron has at most two active parents. Intuitively, this is because we can bound the number
of active neurons at any iteration during training by s + n + 1, so the number of neuron tuples
(u1, u2, u3, v) ∈ V 4 such that u1, u2, u3 are active and all have edges to v is in expectation bounded
by (s+ n+ 1)3(p1)3W � 1. Since any neuron during training has at most two active parents, we
may tractably analyze TRAINNEURON for training new neurons: in a key technical lemma, we show
that every active neuron v has exactly two active parents u and u′, and approximately computes a
monomial given by the product of the parents’ values, fv(x) ≈ χSv

≈ fu(x)fu′(x).

We cannot set p1 and p2 to be too small or else the network will not be connected enough to learn.
Thus, we must also set the connectivity parameters so that for any pair (u, u′) ∈ Vin × (V \ VL), the
neurons u and u′ share many children, and at least one of these children may learn the product if it is
useful. For this it is sufficient to take the expected number of shared children p1p2W � 1 very large.
We now present a run of the algorithm, breaking it up into “steps” for exposition.

Step 1: The algorithm iterates over neurons and trains them one by one using TRAINNEURON.
Most of the neurons trained are left blank: for example, if a neuron v has the two inputs x2 and 1, then
by our key technical lemma the neuron could either remain blank or learn the product of the inputs,
x2 = x2 · 1. But the mean-squared error cannot decrease by learning x2, since x2 is orthogonal
to the staircase function in the L2 sense (i.e., 〈S3(x), x2〉 = 0, because the staircase function does
not have x2 as a monomial), so the neuron v remains blank. Let t1 be the first iteration at which
the algorithm reaches a neuron n1 ∈ V1 that has x1 and 1 as inputs. When the network trains n1

using the sub-routine, we show that it learns to output x1 = x1 · 1, since that is the highest-correlated
function to S3(x) that n1 can output. Combined with the linear layer, the overall neural network
output becomes f(x;wt1) ≈ x1.

Step 2: The error function after Step 1 is E1(x) = S3(x)− f(x;wt1) ≈ x1x2 + x1x2x3. Again,
for many iterations the training procedure keeps neurons blank, until at iteration t2 it reaches a neuron
n2 with inputs x1 (due to neuron n1) and x2 (directly from the input). Similarly to Step 1, when
we train n2, we show that it learns to output x1x2, which is the function with highest correlation to
E1(x) which n2 can output. Thus, the neural network now learns to output f(x;wt2) ≈ x1 + x1x2,
so the error function has decreased to E2(x) = S3(x)− f(x;wt2) ≈ x1x2x3. The training proceeds
in this manner until all the monomials in S3(x) are learned by the network.

Error Propagation and Regularization: A significant obstacle in analyzing layer-wise training
is that outputs of neurons are inherently noisy because of incomplete training, and the error may
grow exponentially along the depth of the network. In order to avoid this issue, we have two distinct
regularization parameters λ1, λ2 and connectivity parameters p1, p2 for edges from inputs versus
edges from neurons. In our proof of Theorem 2.2, we set λ1 � λ2 and p1 � p2, which ensures
that after training a neuron (say n2 above) the weight from the neuron n1 (which has regularization
parameter λ2) is much smaller than the weight directly from the input x2 (which has regularization
parameter λ1). Since the inputs are noise-free, this disallows exponential growth of errors along the
depth. We conjecture that if the network is trained end-to-end instead of layer-wise, then one can
avoid this technical difficulty and set λ1 = λ2 and p1 = p2, because of a backward feature correction
phenomenon [26] where the lower layers’ accuracy improves as higher levels are trained.
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3 General Hierarchical Structure

3.1 Extension to biased binary inputs and implications

We extend the main result of this paper to more general setting of functions over a space of i.i.d.
binary variables that have zero expectation but are not necessarily supported on {+1,−1}. For
instance, if {Xi}i∈[n] are i.i.d. and Boolean (on {+1,−1}) with E(Xi) = b for some b ∈ [−1, 1],
the centered variables X̃i = Xi − b are valued in {1 − b,−1 − b}. Over these centered variables,
the Fourier coefficients of a function are given (up to normalization) by f̂(S) = EX̃f(X̃)

∏
i∈S X̃i

for any S ⊂ [n]. Thus, the staircase property of Definition 1.1 generalizes clearly: the function
f : {1− b,−1− b}n → R satisfies the staircase property if for any S ⊂ [n] with |S| ≥ 2 such that
f̂(S) 6= 0, there is a subset S′ ⊂ S such that |S \ S′| = 1 and f̂(S′) 6= 0.

Showing a similar result to Theorem 2.2 for staircase functions on the variables X̃i with a quadratic
activation requires a slight modification of our argument since X̃2

i is no longer constant (and equal
to 1), so one cannot use the simple identity Z1Z2 = (Z1 + Z2)2/2 − 1 that holds for variables
valued in {+1,−1} to prove that a neuron learns the product of its inputs when trained. However,
adding skip connections from the previous layer with quadratic activation, along with the fact that
r1r2 = ((r1 + r2)2− r2

1 − r2
2)/2, one can hierarchically learn new features as products of previously-

learned features. Alternatively, one can change the activation so that each neuron maps a vector input
v to (a · v + b)2 + c · y.2, where a, b, c are trainable parameters, to learn products of general binary
variables. A similar proof to that of Theorem 2.2 is then expected to hold, implying that one can
learn staircase functions over i.i.d. random variables that are binary and centered (beyond {+1,−1}
specifically). We will now discuss two interesting examples that fall under this setting.

Biased sparse parities and kernel separation Consider the problem of learning sparse biased
parities, i.e., the class of monomials of degree log(n) with a {+1,−1}-valued input distribution that
is i.i.d. with EX1 = b = 1/2. It is shown in [36] that such a distribution class is not learnable by any
kernel method with poly-many features, while it is learnable by gradient-based learning on neural
networks of polynomial size. The result of [36] relies on an architecture that allows emulating an SQ
algorithm – far from a regular network as considered in this paper. However, sparse biased parities
are staircase functions over unbiased binary variables, with polynomially-many nonzero coefficients
since the degree is logarithmic. So an extension of Theorem 2.2 to arbitrary binary centered variables
would imply that regular networks can learn sparse biased parities, implying a separation between
kernel-based learning and gradient-based learning on regular networks.

Decision trees under smoothed complexity model Secondly, in a smoothed complexity setting,
where the input distribution is drawn from the biased binary hypercube, and the bias of each variable
is randomly chosen, the class of log(n)-depth decision trees satisfies the general staircase property.
This is because Lemma 3 in [37] implies that with high probability there is a poly(n/ε)-sparse
polynomial that ε-approximates the decision tree and satisfies the staircase property over the biased
binary hypercube. Thus, the extension of our result to the case of biased binary inputs would imply
that regular neural networks learn decision trees in the smoothed complexity model.3

3.2 Extension to more general L2 spaces

We now give an even more general version of the staircase property in Definition 1.1. Since neural
networks are efficient at representing affine transforms of the data and smooth low-dimensional
functions [35], we generalize the class of hierarchical functions over the space of continuous, real
valued functions [−R,R]n ⊆ Rn;R ∈ R+ ∪ {∞} without any reference to underlying measures but
with enough flexibility to add additional structures like measures and the corresponding L2 norms.
Set R ∈ R+ ∪ {∞} and consider any sequence of functionsH := {hk : R→ R}k∈N∪{0} such that
h0 is the constant function 1, and any affine transform A : Rn → Rn such that A(x) = Ax+ b for
A ∈ Rn×n; b ∈ Rn. We call a function f : [−R,R]d → R to be (H,A)-polynomial if there exists a
finite index set If ⊂ (N ∪ {0})n such that for some real numbers (αk)k∈If :

f(x) =
∑

k:=(k1,...,kn)∈If αk

∏n
i=1 hki(yi)

3Such a conjecture was recently made by [38], which leaves as an open problem in Section 1.3 whether neural
networks can learn log(n)-juntas in a smoothed complexity setting, and implicitly poses the same problem about
the more general case of log(n)-depth decision trees.
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Where y := A(x). We also define Ord(k) := |{i : ki 6= 0}| and a partial order ‘�’ over (N ∪ {0})n
such that k′ � k iff k′i ∈ {0, ki} for every i ∈ [n]. For M ≥ 1, we will call a (H,A)-polynomial to
be (1/M,M) hierarchical if

1. 1/M ≤ |αk| ≤M for every k ∈ If .

2. For every k ∈ If such that Ord(k) ≥ 2, there exists k′ ∈ If such that Ord(k′) = Ord(k)−1
and k′ � k.

We now extend the definition to general continuous functions. Suppose dS is a pseudo-metric on
the space of bounded continuous functions Cb([−R,R]n;R). We call f ∈ Cb([−R,R]n;R) to be
(1/M,M,S) hierarchical if for every ε > 0, there exists a (1/M,M) hierarchical (H,A)-polynomial
fε such that: dS(f, fε) < ε. We note some examples below:

1. Let µ be the uniform measure over {−1, 1}n, dS be the L2 norm induced by µ,H = {1, x}
and A be identity mapping. We note that functions over the unbiased Boolean hypercube
satisfying the [1/M,M ]-staircase property in Definition 1.1 correspond to (1/M,M,L2(µ))
hierarchical functions as defined above.

2. In the case when µ is the biased product measure over {−1, 1}n, we can takeH = {1, x}
and A(x) = x− Ex. This recovers the definition in Section 3.1.

3. When µ is the isotropic Gaussian measure, we can take R = ∞, H to be the set of 1-D
Hermite polynomials and A to be the identity. In case µ = N (m,Σ), we instead take
A = Σ−1/2(x−m).

4. When R <∞ and S is the L2 norm with respect to the Lebesgue measure. C([−R,R]n;R),
we can take H = {exp(iπkxR ) : k ∈ Z} and A = I . This allows us to interpret (H,A)-
polynomial approximations as Fourier series approximations.

5. When R <∞ and S is the uniform norm (or sup norm) over C([−R,R]n;R), we can take
H = {1, x, x2, . . . , } and A = I . Since any continuous function can be approximated by a
polynomial, this presents a large class of functions of interest.

In items 1-4, we consider these specific function classes H in order to make (H,A) monomials
orthonormal under L2(µ). We leave it as a direction of future work to extend our theoretical learning
results in Theorem 2.2 to such function classes.

3.3 Composable chains

Finally, we discuss a distinct way to generalize the staircase property. One can relax the strict inclusion
property of Definition 1.1 with a single element removed, to more general notions of increasing
chains. For instance, if ĝ(S) 6= 0, one may require that there exists an S′ such that |S′| < |S| and
|S∆S′| = O(1), and we conjecture that regular networks will still learn sparse polynomials with
this structure. More generally, one may require that for any S such that ĝ(S) 6= 0, there exists
a constant number of Sj’s such that |Sj | < |S| and ĝ(Sj) 6= 0 for all j, and such that S can be
composed by {Sj} and the input features x1, . . . , xn, where in the Boolean setting the composition
rule corresponds to products. Finally, one could further generalize the results by changing the feature
space, i.e., using regular networks that take not just the standard inputs x1, . . . , xn, but also have
other choices of features φ1(xn), . . . , φp(x

n) as inputs, for p polynomial in n.

4 Limitations and societal impacts

For simplicity of the proofs, the architecture and training algorithm are not common in practice:
quadratic activations, a sparse connectivity graph, and layer-wise training [39–41] with stochastic
block coordinate descent. We also perturb the weights with noise in order to avoid saddle points [42],
and we prune the low-magnitude weights to simplify the analysis (although this may not deteriorate
performance much in practice [43]). We emphasize that these limitations are purely technical as they
make the analysis tractable, and we conjecture from our experiments that ReLU ResNets trained with
SGD efficiently learn functions satisfying the staircase property. This work does not deal directly with
real world data, so may not have direct societal impacts. However, it aims to rigorously understand
and interpret deep learning, which may aid us in preventing unfair behavior by AI.
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