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Abstract

In design, fabrication, and control problems, we are often faced with the task of
synthesis, in which we must generate an object or configuration that satisfies a set
of constraints while maximizing one or more objective functions. The synthesis
problem is typically characterized by a physical process in which many different
realizations may achieve the goal. This many-to-one map presents challenges
to the supervised learning of feed-forward synthesis, as the set of viable designs
may have a complex structure. In addition, the non-differentiable nature of many
physical simulations prevents efficient direct optimization. We address both of
these problems with a two-stage neural network architecture that we may consider
to be an autoencoder. We first learn the decoder: a differentiable surrogate that
approximates the many-to-one physical realization process. We then learn the
encoder, which maps from goal to design, while using the fixed decoder to evaluate
the quality of the realization. We evaluate the approach on two case studies:
extruder path planning in additive manufacturing and constrained soft robot inverse
kinematics. We compare our approach to direct optimization of the design using
the learned surrogate, and to supervised learning of the synthesis problem. We
find that our approach produces higher quality solutions than supervised learning,
while being competitive in quality with direct optimization, at a greatly reduced
computational cost.

1 Introduction

One of the ambitions of artificial intelligence is to automate problems in design, fabrication, and
control that demand efficient and accurate interfaces between machine learning algorithms and
physical systems. Whether it is optimizing the topology of a mechanical structure or identifying
the feasible paths for a manufacturing robot, we can often view these problems through the lens
of synthesis. In a synthesis task, we seek configurations of a physical system that achieve certain
desiderata while satisfying given constraints; i.e., we must optimize a physically-realizable design.

In this work, design refers to the parametric space over which we have control and in which, e.g., we
optimize. A realization is the object that arises when the design is instantiated, while goal refers to
its desired properties. For example, in fabrication, the design might be a set of assembly steps, the
realization would be the resulting object, while the goal could be to match target dimensions while
maximizing strength. Synthesis, then, refers to finding a design whose realization achieves the goal.

Synthesis problems are challenging for several reasons. The physical realization process may be
costly and time-consuming, making evaluation of many designs difficult. Moreover, the realization
process—or even a simulation of it—is generally not differentiable, rendering efficient gradient-based
methods inapplicable. Finally, there may be a many-to-one map from the parametric space of feasible
and equally-desirable designs to realizations; i.e., there may be multiple ways to achieve the goal.

Surrogate modeling is widely used to address the first two challenges, though it can still be expensive
because of the need for optimization, sampling, or search algorithms to find a feasible design. More
seriously, the third challenge—lack of uniqueness—creates difficulties for naive supervised learning
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Figure 1: (a) For a fixed and large-enough starting speed, there exist exactly two angles such that the ball will
hit the target, where the mean of these two angles is 7w/4. (b) Some 3D printers utilize fibers to reinforce the
thermoplastic print. (c) For such printers, fiber is laid out along an extruder path but deforms into a smoothed
version due to the fiber’s high stiffness and low stretch. Our goal is to generate extruder paths that compensate
for the smoothing, but multiple extruder paths can result in the same target shape, such as a square. (d) In soft
robot inverse kinematics, we control the stretch ratios of both the left- and right-hand sides of a snake-like robot.
Our goal is to reach the target while avoiding an obstacle but, as is illustrated, the solution is not unique — two
different designs are shown.

approaches to synthesis. Specifically, consider generating many design/realization pairs, evaluating
the constraints and objectives on the realizations, and attempting to learn a supervised map from goal
back to design. When multiple designs lead to the same realization, or multiple realizations achieve
the same goal, the supervised learner is penalized for producing designs that are valid but happen to
not be the ones used to generate the data. Moreover, this approach may learn to produce an “average”
design that is actually incorrect. Figure[Th shows a cartoon example: if the goal is to throw a ball to
reach some target distance, there are two possible launch angles (designs) resulting in landing points
(realizations) at the correct spot. Performing least-squares regression from distance to angle on the
full set of distance/angle pairs, however, learns an average angle that does not satisfy the goal.

To address these challenges, we propose to use a two-stage neural network architecture that resembles
an autoencoder. One stage (the decoder) acts as a differentiable surrogate capturing the many-to-one
physical realization process. The other stage (the encoder) maps from a goal back to a design but,
critically, it is trained end-to-end with a loss in the space of realizations that flows back through
the decoder. Thus the encoder—our central object of interest for synthesis—is not constrained
to match a specific design in a training dataset, but instead is tasked with finding any design that
meets the desiderata of the realized output. The result is a neural network that performs amortized
synthesis: it is trained once, and at run time produces a design that is approximately optimal, using
only a feed-forward architecture. Note that our method is not an autoencoder, as the design is not a
lower-dimensional representation of the goal, and the encoder and the decoder are trained in separate
stages.

Our method places a number of requirements on the synthesis problem. First, to train the surrogate,
we need data pairs of designs and realizations. Commonly, this would require us to generate designs,
in which a substantial amount of designs are viable, and simulate them on a simulator. Second, given
our current setting, the physical realization process needs to be deterministic. Third, to train the
encoder, the synthesis problem should have a clear objective function, or at least we can quantify the
objective. Finally, given our current feed-forward setting, we consider synthesis problems that need
only one valid design, although we may further extend our method by using a generative encoder.

In this work, we demonstrate this two-stage approach on a pair of specific design tasks. The first
case study is extruder path planning for a class of 3D printers (the Markforged Mark Two) that can
reinforce polymer layers with discrete fibers (Figure [Tp). Since the fibers are stiff, their shape is
deformed after extrusion (Figure [Tk, top row), and our task is to find an extruder path that results
in a given fiber shape. As shown in Figure [Tk, this problem has the many-to-one nature described
above: for a small error tolerance on fiber path, there exist infinitely many extruder paths, which
may even look very different. The second case study is constrained soft robot inverse kinematics.
In this work, we use a simulation of a snake-like soft robot as in Xue et al. [97]], in which we can
control the stretch ratios of each individual segment on both sides of the robot. The robot has to reach



a target while avoiding an obstacle, and the locations of both are input goals. As before, there may be
multiple solutions for a given goal (i.e., locations of target and obstacle), as shown in Figure 1d.

For both case studies, we compare to two baseline algorithms. In direct-learning, a neural
network for the synthesis problem (i.e., from goal to design) is trained in a supervised manner on a
set of designs. Since this effectively averages designs in the training dataset, as argued above, our
method outperforms it significantly. The second baseline is direct-optimization, which uses a
gradient-based method (BFGS) to optimize for each new design separately, given access to the trained
differentiable surrogate for the realization process (decoder). Our method is competitive with this
rough “performance upper bound” while using dramatically lower computational resources.

2 Related work

Machine learning applications in synthesis problems. In synthesis tasks, the aim is to find a
design solution such that its realization achieves one or more given goals. Usually, the solution is non-
unique, and only one is needed. In molecule discovery, one would like to find a molecule which has
some desired properties (e.g., minimal side effects, efficacy, metabolic stability, growth inhibition) [20,
46, 71, 41, 83]. See Vamathevan et al. [90], Chen et al. [16] for surveys on machine/deep learning
in drug discovery. Challenges of molecule discovery include discrete design space [32, 76] and
limited data [47] due to difficulty in simulation. In materials synthesis, researchers seek materials
with specific properties. See Bhuvaneswari et al. [7] for a review. Similarly, to obtain enough
training data, researchers have put efforts into parsing and learning from scientific literature in
natural language [52, 45]. In 3D shape generation, one wants to find a 3D shape that has some
desired properties: properties like 2.5D sketches [95] that can be easily calculated and properties
like functionality [34] that need to be human-labeled. In topology optimization, researchers aim to
maximize the system’s performance by optimizing the material layout given boundary conditions,
constraints, external loads, etc [80, 5, 93]. Machine learning has been used to infer properties [75],
find representations of designs [48, 99], and directly generate designs [55]. In program synthesis,
the goal is to find programs that realize given intentions (e.g., generating 3D shapes, answering
visual questions) [35, 88, 98], where machine learning has been used to generate programs and
execute programs. In this work, we propose an approach to learn a feed-forward neural network
that can directly and efficiently produce a feasible solution to a synthesis problem that satisfies the
requirements mentioned above.

Surrogate/oracle-based synthesis. Surrogate/oracle-based synthesis uses an auxiliary model—
a surrogate (or sometimes called oracle)—that can evaluate qualities of a design without time-
consuming laboratory experiments, while still being reasonably accurate [58, 9]. Surrogate models
can be physics-based or approximation-based [57] (i.e., empirical), and there are different model-
ing techniques for approximation-based surrogates, including polynomial regression, radial basis
functions, Gaussian processes, and neural networks [58, 39]. Bhosekar and Ierapetritou [6] pro-
vide a review of surrogate-based methods, and see Koziel and Leifsson [56] for a general review
of surrogate models in engineering. There are two major approaches: optimization and sampling.
The most common approach is surrogate-based optimization; see Forrester and Keane [29] for a
survey. Some application examples include: optimizing the parameters of a CPU simulator [72];
solving partial differential equations in service of PDE-constrained optimization [97]; and optimizing
stochastic non-differentiable simulators [79]. Researchers have also developed methods to deal with
the challenge that inputs can be out-of-distribution for the oracle [27, 30, 89]. On the other hand,
sampling-based methods have several advantages: the design space can be discrete and can generate
multiple designs [9, 10, 24]. Researchers have successfully applied sampling methods to problems in
chemistry [32] and biology [36, 51, 73]. In this work, we use surrogate-based optimization as one of
our baseline algorithms, and our proposed method uses a surrogate during training to optimize for a
feed-forward network for the design problem.

Differentiable surrogate of losses in machine learning. Since some loss functions in machine
learning are not differentiable (e.g., IoU for rotated bounding boxes, 0-1 loss in classification),
researchers have proposed to learn surrogates for them. Grabocka et al. [33] provided a formulation
of surrogate loss learning and compared several learning mechanisms on some commonly used
non-differentiable loss functions. Liu et al. [62] proposed a general pipeline to learn surrogate
losses. Bao et al. [2], Hanneke et al. [40] provided theoretical analyses of surrogates for 0-1 loss in
classification. Patel et al. [70], Nagendar et al. [64], Yuan et al. [100] explored the use of surrogate
losses in various real-world tasks, including medical image classification, semantic segmentation,



and text detection and recognition. In this work, due to the non-uniqueness of design solutions, we
further extend this idea from loss functions to more complex, physical realization processes.

Robot motion planning. Robot motion planning [59] can also be viewed as a form of synthesis,
and there are different types of approaches to it. One popular strategy is optimization. For exam-
ple, researchers have used evolutionary algorithms (EA) [60, 12, 42], including variants of genetic
algorithms (GA) [18, 17, 87, 11, 50, 53, 28] and covariance matrix adaptation evolution strategy
(CMA-ES) [37]. Another example is constrained optimization [94, 85, 21, 23], which includes exten-
sions like sequential quadratic programming (SQP) [15, 37] and the DIRECT algorithm [91]. Other
examples of optimization applied to robot motion planning include reinforcement learning [81, 25]
and teaching-learning-based optimization [82]. Another popular class of methods is sampling, in-
cluding simulated annealing (SA) [4, 69, 101], probabilistic roadmaps (PRM) [49], rapidly exploring
random trees (RRT) [14, 4, 13], etc. Finally, search methods, e.g., A* search [38], have been used to
solve motion planning problems. These works usually model the robot’s physics directly without
using a surrogate model and solve the design using methods including optimization, sampling, and
search, which can be time-consuming. Our method amortizes the cost of inference, and can be used
to solve planning problems with more complex physics that cannot be directly modeled. In our first
case study, we plan for a trajectory of the extruder, and our design space is not the speeds of the
motors but rather the coordinates of points along the trajectory. In the second case study, rather than
solving a dynamic planning problem, we solve a static planning task on a soft robot, with the stretch
ratios of all the controllable segments of the robot as the design space.

Path planning in 3D printing. Path planning is one of the most important problems in 3D printing,
and people plan for different objectives: minimizing printing time, avoiding collision, faster planning,
etc. Shembekar et al. [78] proposed a planning algorithm to build complex shapes with multiple
curvatures and can avoid collisions. Ganganath et al. [31] minimized the printing time by modeling
the task as a traveling salesman problem. Xiao et al. [96] speeded up path planning algorithms by
introducing efficient topology reconstruction algorithms. Stragiotti [84] provided an optimization-
based algorithm that minimizes compliance of a printed part. Asif [1] introduced a planning algorithm
for continuous fiber and can generate a continuous deposition path. See Huang et al. [43] for a review
of existing work in 3D printing path design. In this work, instead of the aforementioned objectives,
we plan an extruder path to compensate for the deformation caused by the printing process. We
demonstrate increased run-time efficiency by amortizing the cost of physical simulation of the printing
process, learning a feed-forward network to output the extruder path.

3 Method

We formalize synthesis as a constrained optimization problem, denoting the set of allowed designs
as © and the set of possible realizations as /. There is a physical process that maps from design to
realization that we denote as U : © — U/. Our goal may be a function of both the realization and
the design, as designs may differ in, e.g., ease of manufacturing. Moreover, it may be appropriate
to specify a parametric family of goals to accommodate related tasks, e.g., different target locations
in inverse kinematics. The user expresses a (g-indexed) family of design goals via a cost function
denoted Lg : © x U — R. The problem of interest is to optimize the cost function with respect to
the design:

gneirelﬁg(&u) st. U@)=u. (D)
We can view this problem as a generalization of PDE-constrained optimization problems, where
we have allowed for broader types of realizations than PDE solutions. Revisiting the challenges of
synthesis problems articulated earlier, U may be expensive, non-differentiable, and non-injective,
and £4 may not a have a unique minimum.

Recalling the toy problem of Figure 1a: 6 is the angle at which the ball is thrown, U (0) = w is where it
lands, the goal g is a desired distance, i.e., a target realization, and a (design-independent) cost function
might be the squared difference between the desired and actual realizations: L4 (6,u) = ||g — ul|?.

Since the realization © = U(@) is unique for a specific design 6, we propose using a two-stage
approach, which can be viewed as an autoencoder. We first learn a differentiable surrogate (de-
coder) U(-) for the physical realization process from 6 to u, and then learn an encoder ¢(-) from
goal g to design 6, evaluating the design quality with the trained decoder. To build a dataset, we
have to randomly sample designs and calculate realizations and goals from them, since the physical
realization process U (-) is known, and the reverse direction (i.e., goal to design) is difficult as dis-
cussed before and is what we are trying to learn. Thus we first sample D designs 64, --- ,0p and



build our dataset as D == {(61,u1,91), -+, (0p,up,gp)}, where u; := U(0;) and g; is the goal
calculated from the realization w;. The calculation of the goal g; summarizes properties that we care
about in u;, and this process depends on the synthesis problem itself and how the cost function £. (-, -)

is designed. We split D into Dirain, Dyal, and Diest. We then train our surrogate U( -) such that
U(6) — ull?], )

U*() = arg Ipln E(07u,~)NDtrain [
U()

so that U*(-) serves as a differentiable surrogate of the physical realization function U(-). We then
use the trained decoder U*(+) to train an encoder ¢(-):

¢"() = argminE(. g, [Lg (6(9), U (#(9)))]- (3)

Note that although our method resembles an autoencoder, it is not an autoencoder, since we learn
the decoder first and then the encoder rather than jointly. Besides, the design space is usually not
a lower-dimensional representation of the goal space, and the cost function is usually not simply
reconstruction loss.

4 Empirical evaluation approach

In this work, we use our method to solve two real problems as case studies: a task of optimizing the
extruder path in additive manufacturing, and a task of actuating a soft robot in an inverse kinematics
setting. While the details of the two differ, we evaluate them in the same way. In each case, we
compare our algorithm with two baselines—direct-learning and direct-optimization—and
evaluate our method in terms of relative quality and run time.

direct-learning: One natural baseline is to directly learn a model from the goal g to the design 6.
Thus we introduce the direct-learning model ¢ (+):

da() = argminEp g)~p.., (116 — ¢()II* + Rar(6(g))]- )

Note that, since there is no surrogate, we do not have access to the realization u. We thus have to
slightly adjust the cost function into a squared Euclidean distance part and a regularizer part Rq; (-)
(if there is one), the latter of which comes from the original cost function L.(-, ). We expect our
method to perform much better than direct-learning.

direct-optimization: Since our surrogate is a neural network and therefore differentiable, an-
other natural baseline is to directly optimize the design 6 with respect to the goal g by using a
gradient-based optimizer (e.g., BFGS), which provides us a rough performance “upper bound” on

our method: .
bdo(g) = arg min L4(0,U%(0)). (5)

Note that AmorFEA [97] is state-of-the-art method for PDE-constrained optimization, which uses the
same approach as the direct-optimization baseline. We expect our method to have performance
close to direct-optimization, while running orders of magnitude faster.

To evaluate our method and the baselines, we iterate over all g from Dx.st, and evaluate the quality
of each tuple (¢(g), U(¢(g)), g), where we use the physical realization function U|(-) rather than

the learned surrogate U= (). We run every experiment 3 times with random initialization of neural
networks. More details are provided in each case study and in the appendix.

S Case study: extruder path planning

3D printing (a.k.a. additive manufacturing) is the process of creating a 3D object from a 3D model
by successively adding layers of material. It has a wide variety of applications in areas including
aerospace, automotive, healthcare, and architecture [77]. Popular 3D printers use thermoplastic
polymers (PLA, ABS, nylon, etc.) as the printing material, but these have limited strength. To
address this issue, some recent printers support using strong fibers to reinforce the composite. In
this work, we explore a 3D printer (the Markforged Mark Two) capable of extruding discrete fibers
(fiberglass, kevlar, or carbon fiber) along a controllable path. However, since the fibers are stiff
and non-stretchable, the printed fiber path will be “smoothed” compared to the extruder path. As
shown in Figure 1lc, without path planning, the fiber path will be severely deformed. We seek to
find a general method that, given any desired fiber path, plans an extruder path to compensate for
the deformation caused by the printing process. To the best of our knowledge, there is no existing
automated method for this task, so it is worthwhile to tackle it using machine learning.
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Figure 2: The pipeline for our method and two baselines for extruder path planning. We first generate data by
building a simulator and calibrating it using a real printer, and we train the decoder and direct-1learning using
the synthetic dataset. We then train our method and build direct-optimization using the trained decoder.

5.1 Cost function

Following the notation in Section we denote the target fiber path as g € R™*?: a path is represented
as a series of n points, and n varies from path to path (at the scale of hundreds in our experiments).
We denote the extruder path (the design) as @ € R™*? and its realization fiber path as u € R"*2.
Our cost function L. (-, -) is defined as:

Ly(0,u) = |lg —ul3 + X R(B), (6)

where ) is a hyper-parameter and R (-) is a smoothing regularizer that calculates the sum of squared
empirical second-order derivatives of the extruder path:

n—1 2

0,11 —0; 0, —0;,_; [|60ir1 — Os]|2 + ||0: — 9¢—1||2>>
R(O) = E _ , 7
© <<||9i+1—9i||2 ||0i_0i—1||2>/< 2 @

=2
where 0; € R? is the i-th row of 6.

5.2 Evaluation metric

The most intuitive way to evaluate the quality of extruder path @ is to measure the distance between g,
the desired fiber path, and w, the fiber path we get by printing 6. Note that it is likely the model
under-estimates or over-estimates the deformation of fiber introduced by printing, so both cases can
happen when we print with path 8: we run out of fiber before we finish 6, or there is still some
fiber remaining in the nozzle after we finish 6 (the total length of fiber is fixed given a desired fiber
path g). In other words, the g;’s and u;’s might not be synchronized. Thus, directly measuring the
distance between g; and u; does not necessarily reflect the difference between desired fiber path
and the fiber path we get. Therefore, to better measure the distance between g and u during testing,
we use Chamfer distance [26], which was first proposed by Barrow et al. [3] as an image matching
technique, later developed as a commonly used (semi)metric to measure the difference between two
sets, and has been shown to have a higher correlation with human judgment compared to intersection
over union and earth mover’s distance [86]:

1

1 — 1 —
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5.3 Implementation

The pipeline is shown in Figure 2] To generate the dataset for calibrating the decoder, we first use
elliptical slice sampling [63]] (New BSD License) to sample random extruder paths from a Gaussian
process. We then use a physical simulator built using Bullet [22]] (zlib License), calibrated to a real
printer, to predict the realization (fiber path) for each extruder path. We generate 10,000 paths, split
into 90% training, 5% validation, and 5% testing. For decoder, encoder, and direct-learning,
we use an MLP with 5 hidden layers and ReLU as the activation function. The MLP takes 61
points as input and produces 1 point as output, and is applied in a “sliding window” fashion over
the entire path (details in appendix). We train every model with a learning rate of 1 x 10~ for 10
epochs using PyTorch [68] and Adam optimizer [[54)]. For direct-optimization, we use the BEGS
implementation in SciPy [92]. More implementation details are included in the appendix.



Table 1: Path-planning evaluation of the average Chamfer distance on the test set evaluated in simulation

Regularizer weight 0.1 0.3 0.6 1.0 1.5
direct-learning  0.031440.0008 0.031940.0016 0.0502+0.0072 0.100740.0292 0.1457+0.0216
Ours 0.0180+0.0004 0.015740.0003 0.0164+0.0004 0.0158-:0.0002 0.0156+-0.0002
direct-optimization 0.015540.0002
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Figure 3: Path-planning evaluation of direct-learning vs. ours on the test set evaluated in simulation. We
also visualize the Chamfer distance for each point on both the simulated fiber path and the desired fiber path.

5.4 Experiments

Fiber path quality evaluated in simulation. To
quantitatively evaluate the effectiveness of our ap-
proach, the most straightforward way is to run its
prediction on the simulator and see how close the
simulated fiber path is to the input fiber path. We
compare the performance of our approach (encoder), direct-learning 7.96x10~*
direct-learning, and direct-optimization on Ours 7.96x10~*
the test set of 500 paths, for different values of thereg-  direct-optimization 1.17x10*
ularization parameter A\. We report the average Cham-
fer distance (§ @) with the standard error among 3 runs in Tablem Note that direct-optimization
runs very slowly, so we instead tune its regularizer weight on the first 40 test samples, select the
best regularizer weight, and report its performance on the whole test set using the selected regular-
izer weight (more details in the appendix). The results demonstrate that our method significantly
outperforms direct-learning, and the performance is comparable to direct-optimization.

Table 2: Path-planning evaluation of the average
running time on the first 50 samples in the test set

Avg. time (s)

As a qualitative evaluation, Figure[3|shows the predictions of both direct-learning and our method
on samples from the test set. We select the run with minimum average Chamfer distance over the test
set for both direct-learning and our method, respectively. The results indicate that our method is
better than direct-learning on handling details in the fiber path. We also visualize the Chamfer
distance from each individual point on one path to the other, and observe that the distances for our
method are generally lower than for direct-learning.

Running time comparison. To train needed neural networks, direct-optimization takes
roughly 10 minutes, direct-learning takes roughly 1 hour, and our method takes roughly 5
days. Note that training costs are amortized, since we only need to train once. We then evaluate
the inference time of the three algorithms on a server with two Intel(R) Xeon(R) E5-2699 v3 CPUs
running at 2.30GHz. Since small neural networks generally run faster on the CPU, we run all of the
tests solely on CPU. We run every algorithm on the first 50 paths in the test set and report the average
inference time in Table As we can see, both ours and direct-learning achieve a running time
below 1 millisecond, while direct-optimization runs orders of magnitude slower.

Fiber path quality evaluated on a real printer. Lastly, we test our extruder path solutions on a
real Markforged Mark Two 3D printer. We set the desired fiber path to a star, and print the star itself
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Figure 4: Path-planning evaluation of “without planning” vs. direct-learning vs. ours on Markforged Mark
Two, with a star as the desired fiber. For “without planning”, we have the same extruder path for the 2 runs; for
direct-learning and ours, the 2 runs are predictions from neural networks trained with different initializations.

(without planning) as well as solutions from both direct-learning and our method. We select
regularizer weights based on Table 1, i.e., 0.1 for direct-learning, 1.5 for our method, and we
show two of the trained models. The results are visualized in Figure 4, confirming that our method
successfully improves the quality of the printed fiber.

6 Case study: constrained soft robot inverse kinematics

Partial differential equations (PDEs) are a powerful tool for describing complex relationships between
variables and have been used widely in areas including physics, engineering, and finance. In PDE-
constrained optimization [8], the goal is to optimize a cost function such that the constraints can
be written as PDEs, i.e., the solutions are consistent with the relationships specified by the PDE.
In the context of synthesis problems, we can consider the boundary conditions of the PDE as the
design, and the solution of the PDE as the realization. Similar to other synthesis problems, different
boundary conditions can result in the same PDE solution, and the cost function may not have a unique
minimum. In the above situations, we propose to apply our method. We test our method on a specific
PDE-constrained optimization problem—constrained soft robot inverse kinematics, which serves as a
representative use case of our method in this large category of problems.

Soft robots made of elastic materials, have received significant recent attention because of their
reduced potential harm when working with humans [74]. Researchers have explored a variety of
applications, including surgical assistance [19], bio-mimicry [61], and human-robot interaction [67].
In this case study, as in Xue et al. [97], we use a snake-like soft robot with a fixed bottom, in which
we can control the stretch ratios on both sides of the robot. As shown in Figure 1d, the objective is for
the midpoint at the top of the robot to reach a target, while making sure that the robot does not collide
with a fixed-size circular obstacle. The relationship between the robot’s shape and the stretch ratios
can be written as a PDE, and as shown in Figure 1d, there are different solutions to achieve the goal.

6.1 Cost Function

We adopt the soft robot from Xue et al. [97], which has an original height of 10 and an original
width of 0.5, with its bottom is fixed. The goal vector g is in R2%2 where g1 € R? indicates the
target location and g» € R? indicates the obstacle location. We denote the radius of the obstacle as
r, which we set to 0.9. The design (control) vector 6 is in R™ with n = 40, with 6; € R indicating
the stretch ratio of the i-th segment (e.g., #; = 0.95 indicates the i-th segment is contracted by 5%).
The physical realization vector w is in R™*?2 with m = 103, where u; € R? indicates the location
of the i-th vertex on the soft robot’s mesh. The location of the top midpoint is denoted as u¢, € R2.
Implicitly, the relationship between 8 and u obeys a PDE that governs the deformation of the robot,
as detailed in Xue et al. [97].

The cost function L. (-, -) is defined as
1
Lg(0,u) = 3 lg1 — w5+ A1 - B(w, g2) + Ao - R(B). ©)

The first term ||g; — wy||3 is the squared Euclidean distance between the top midpoint of the robot
and the target. The second term, weighted by a hyper-parameter Ay (which we fix at 0.5), enforces



Table 3: Soft-robot evaluation of the number of successful cases (over 1,000) on test set

Regularizer weight 0.03 0.05 0.07 0.09
direct-learning  907.7£3.1 918.3£3.4 910.7£3.4 912.3+3.8
Ours 986.3+0.5 975.0+£3.9 981.7+5.0 984.7+4.5

direct-optimization 997.0£0.5 998.0+£0.0 998.3+0.7 997.740.5

Table 4: Soft-robot evaluation of the average distance to the target on successful cases on test set

Regularizer weight 0.03 0.05 0.07 0.09
direct-learning  0.2171£0.0016 0.2200+0.0028 0.2236+0.0006 0.217940.0036
Ours 0.0657+£0.0093 0.0464+0.0018 0.0599+0.0097 0.0691-0.0224

direct-optimization 0.0233+0.0003 0.0240+0.0004 0.024140.0004 0.0242+40.0003

the constraint via a barrier function [65, 66] for the obstacle B(u, g2):
1 & 2
B s = — Ar — i ,0 s 10
(u,g2) m;(maX(rJr r = llu; — g2|12,0)) (10)
where Ar is a hyper-parameter (which we fix at 0.1). A positive Ar provides a penalty as well
as nonzero gradients when the robot gets close to the obstacle. The last term contains another
hyper-parameter Ao, varied in our experiments, weighting a smooth regularization term R (@), with

1 Ois1—0;  0;—0;1\°
0) = — 11
RO)=-—7 2 ( 5 ) )
1<i<n,i#n/2,
i#n/24+1
where 6; fori = 1,2,--- ,n/2 corresponds to stretch ratios on the left-hand side of the robot, and 6;
for i =n/2+1,--- ,n corresponds to stretch ratios on the right-hand side of the robot. This

regularizer prevents unphysical deformations with strong discontinuities.
6.2 Evaluation metric

Since there are two objectives— “reach” and “avoid”—in this task, we have two evaluation metrics.
The first metric is the number of cases that successfully avoid the obstacle (i.e., have all vertex
positions outside the obstacle circle). The second metric is the average Euclidean distance of the
robot’s top midpoint to the target for successful cases.

6.3 Implementation

Using the finite element method [44] and the code from Xue et al. [97] (MIT license), we randomly
generate 40,000 data samples, and split them into 90% training, 7.5% validation, 2.5% testing. For
encoder, decoder, and direct-learning, we use an MLP with 3 hidden layers and ReLU activation.
We train every model for 200 epochs with a learning rate of 1 x 10~2 using PyTorch [68] and Adam
optimizer [54]. For direct-optimization, we use the BFGS implementation in SciPy [92]. More
implementation details are included in the appendix.

6.4 Experiments

Design quality evaluation. We experiment with different regularizer weights Ay for our method
and the two baselines. During training, we randomly sample the location of the obstacle, and we
ensure the robot never collides with the obstacle for direct-1learning, since it does not have access
to the realization vector and thus its loss function cannot contain the barrier function term for the
obstacle (more details about direct-learning are in the appendix). For a fair comparison, during
testing, we set the random seed to O such that for the same test sample, the obstacle will appear at
the same location for all algorithms. The number of cases in which the robot successfully avoids the
obstacle, with standard error for 3 runs, is shown in Table 3. The average Euclidean distance to the
target for successful cases, with its standard error, is shown in Table 4. As the numbers show, our
method is competitive to direct-optimization, and performs much better than direct-learning.
Samples from the test set are shown in Figure 5 (for both algorithms, we select the best run with a
regularizer weight of 0.5). We can see that our method collides less frequently while reaching the
target more accurately than direct-learning.



>k Target O Obstacle
Direct learning Ours Direct optimization

Sample 1

Sample 2

Figure 5: Soft-robot evaluation of direct-learning vs. ours vs. direct-optimization on examples from
the test set. The direct learning baseline both violates the constraints (Sample 1) and fails to reach the target
(Samples 1 and 2), while the run time of direct-optimization is 4000 times that of our method.

Running time. To train the neural networks, Table 5: Soft-robot evaluation of the average run-
direct-optimization takes roughly 2 hours, ning time on the test set

direct-learning takes roughly 4 hours, and our -
method takes roughly 4.5 hours. Note that train- Avg. time (s)
ing costs are amortized, since we only need to train
once. We then test all algorithms on a server with
two Intel(R) Xeon(R) E5-2699 v3 CPUs running at
2.30GHz. Everything runs solely on the CPU, max-
imizing efficiency for the small neural networks we
use. The results are shown in Table[5} showing that we successfully reduce the running time from
over 1 second to less than 1 millisecond. Note that the soft robot is relatively small (40 control
variables), and the time complexity of BFGS grows quadratically w.r.t. the number of parameters.
Therefore, for more complex soft robots or PDE-constrained optimization problems with a larger
number of variables, the running time advantage of our method can be of even greater importance.

direct-learning 3.12x107*
Ours 3.34x10~*
direct-optimization 1.33x10°

7 Discussion

In this work, we provided an amortized approach to synthesis problems in machine learning. To tackle
the non-differentiability of physical system realizations, the huge computational cost of realization
processes, and the non-uniqueness of the design solution, we designed a two-stage neural network
architecture, where we first learn the decoder, a surrogate that approximates the realization processes,
and then learn the encoder, which proposes a design for an input goal. We tested our approach on two
case studies on fiber extruder path planning and constrained soft robot inverse kinematics, where we
demonstrated that our method provides designs with much higher quality than supervised learning of
the design problem, while being competitive in quality to and orders of magnitude faster than direct
optimization of the design solution.

Although the experiments in both case studies show the effectiveness of our approach, we would like
to mention some limitations of our method. First, to effectively learn a differentiable surrogate for
the realization process, we need to be able to generate a substantial number of viable designs. We
also need a simulator to calculate physical realizations of them, and the realization process has to be
deterministic, although extensions might consider probability distributions over realizations. Also, to
train the encoder, we need the objective (“goal”) to be quantifiable. Our method provides the greatest
gains if the realization is computationally expensive and/or non-differentiable, or if our encoder can
exploit the non-uniqueness of designs to choose one good option where supervised learning would
have learned a poor ‘“average” solution. Additionally, due to the cost of neural network training,
amortization is only a good idea when we need to solve one design problem many times with different
goals, or we need fast inference. From a societal point of view, the primary negative consequence
is the potential for replacing human labor in design. We view the present approach, however, as
part of larger human-in-the-loop design processes in line with other software tools for modeling and
fabrication.
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A Details about extruder path planning
A.1 Methods

Ours. As we discussed before in Section 3, we train a decoder (surrogate) using Equation 2 and an
encoder using Equation 3, with the cost function defined in Equation 6. We take the trained encoder
¢*(+) as our final model in use.

direct-learning. As we discussed in Section 4, we train direct-learning using Equation 4,
with a regularizer as defined in Equation 7. Note that this is equivalent to training to minimize the
cost function L. (-, -) in Equation 6.

direct-optimization. As described in Section 4, we build direct-optimization as in Equa-
tion 5, with a trained surrogate of the physical realization process. Here, to enforce that points 6; are
evenly distributed along the extruder path, we use a slightly different cost function L. (-, -):

Edo,g(aa u) = ddo(ga u) + Ado - Rdo(9)7 (12)

where we have a distance function dgy, (-, -) and a smooth regularizer R4, (+). The smooth regularizer
Rdo(+) is derived from Equation 7 by requiring ||6;+1 — 6;||2 to be the same for all 4

n—1 2
1 0iv1—6; 6;—6;
Rao(0) = — - 13
w(0) = o ; ( 5 ) (13)
where Sy is the length of the extruder path 8; this intrinsically enforces points in 6 to be evenly
spaced. To measure the distance between g and u, we first map them into two functions f4(-) and
Fu(+), such that fg(s) € R? is the location if we walk a distance s along the path g (assuming the
path is piecewise linear), and similarly for fo(-). Then the distance function is defined as

ddo(gvu) ::/0 Hfg(x'sg)_.fu(x'su)H2dxa (14)

where Sy and S, denote the lengths of paths g and u, respectively.

A.2 Data generation

Random curve generation. To build the dataset, we first need to generate some random 2D curves,
which can be used as extruder paths later. The curves should be smooth and non-intersecting. For
each path, we take both the x and y to be Gaussian processes whose kernel function K (-, -) is

K(l‘,x’) = exp <_sm((m—x’)/2)> ’

212
with the two axes independent and I = 0.1. We use elliptical slice sampling [63] (New BSD License):
for each path, we start from 1,000 points on a unit circle, and sample 1,000 times. To avoid
intersections, we use a log-likelihood of —oo for a self-intersecting path, and a log-likelihood of O for
a non-intersecting path. We generate 10,000 paths using this approach.

15)

Simulator. Since it is time-consuming to print every extruder path we generate in the last step
on a real printer, we build a simulation system by using Bullet [22] to help us generate fiber paths.
The simulator is also used in our evaluation. We calibrate the simulator on two materials—carbon
fiber and Kevlar, respectively. To calibrate, we print paths shaped as sine functions with amplitudes
ranging from 3.0 cm to 6.5 cm on the Markforged Mark Two printer (Figure 6). We then measure the
amplitudes of the printed fiber paths, which will be lower than the amplitudes of the extruder paths
because of smoothing, and fit lines to actual amplitude vs. extruder amplitude (Figure 7a). After
that, we perform a grid search on the parameters of the simulator (such as stiffness and friction),
run simulations with the sine functions as extruder paths, and collect data pairs of extruder path
amplitudes and simulated fiber path amplitudes. We end up with calibrated simulators for carbon fiber
(Figure 7b) and Kevlar (Figure 7c), by selecting the set of parameters for each having the minimum
sum of squared distances between the fitted line from Figure 7a) and the collected simulation data
points. Finally, we run the tuned simulators on the generated extruder paths. Though we have
conducted experiments with both materials, due to space constraints, the experiments in the paper
use data generated from the carbon fiber simulator. We visualize some extruder paths and simulated
carbon fiber paths in Figure 8.

A.3 Mapping from a path to another

We have to design a neural network that can take in an input path (R™*?) and output another path
(R™*2), which can be used for encoder, decoder, and direct-learning. Both paths are sequences
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Amplitudes from 3.0 cm to 4.7 cm Amplitudes from 4.8 cm to 6.5 cm

Carbon fiber
Print 1

Carbon fiber
Print 2

Kevlar
Print 1

Figure 6: We print paths shaped as sine functions with amplitudes from 3.0 cm to 6.5 cm on the Markforged
Mark Two printer, using carbon fiber and Kevlar, respectively. We print everything twice.

— carbon-fiber
67— keviar
oy

—— carbon fiber
~—— kevlar
® sim

—— carbon fiber
—— keviar
® sim

Real fiber path amplitude

Simulated fiber path amplitude

Simulated fiber path amplitude

0

1 2 3 4 5 6 1 2 3 4 5 6 o 1 2 3 4 5 6
Real extruder path amplitude Extruder path amplitude in simulation Extruder path amplitude in simulation
a) lines fitted on real data b) simulator tuned for carbon fiber c¢) simulator tuned for Kevlar

Figure 7: (a) We print paths shaped as sine functions with different amplitudes, collect amplitudes of the printed
fiber paths, and fit lines through the data we collected. We experiment with two materials—carbon fiber and
Kevlar, and the identity line is also visualized. (b) and (c) We select two sets of simulator hyper-parameters with
their simulation results closest to the lines we get from the previous step for carbon fiber and Kevlar, respectively.

of n 2D coordinates. For the purpose of illustration, we use decoder as an example here. Now the
input is the extruder path 6, and the output is the resulting fiber path u. Remember 8; € R? is the
i-th row of 6. Due to the intrinsic equivariant property of the problem, one natural idea is to have a
neural network that takes in a certain number of points near 8; in 8 and outputs the corresponding
point in u (i.e., u;), and we iterate over every i, as a window sliding over 8. Note that we used the
same neural network for all ¢’s.

We thus use a multilayer perceptron (MLP), which takes 2m + 1 points (we set m = 30) and outputs
one point. We take 6; as the starting point and resample m points both forward and backward along
the path 6. To be specific, as in § we first map 6 into a function fg(-) such that fo(s) € R? is
the location if we start from 6, and walk a length of s on the path. We further set fo(s) == fg(0) for
s < 0and fg(s) := fo(Sp) for s > Sp, where Sy is the length of extruder path 8. We denote the
distance of walking from 6, to 6; as s;, i.e., fo(s;) = 6;. The input to the MLP is:

[f—mv.f—m-l—la"' 7f07"' 7.f’m]T7 (16)
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Figure 8: Samples from our dataset. We plot both the extruder paths and the simulated carbon fiber paths.

Table 6: The architecture of the MLP used in extruder path planning

Type Configurations
Fully connected ~ 4m+2 to 500
ReLU N/A
Fully connected 500 to 200
ReLU N/A

Fully connected 200 to 100
ReLU N/A

Fully connected 100 to 50
ReLU N/A

Fully connected 50 to 25
ReLU N/A

Fully connected 25t02

where
Ji = fo(si+1i-s0) — fo(si), )

and sp = 0.03 is the step size. Since the problem is intrinsically translation-equivariant, we normalize
every f; by subtracting fo(s;), as shown in the above equation.

A.4 Hyper-parameters and neural network training

The architecture of the MLP is shown in Table 6, and we implement it in PyTorch [68]. We coarsely
tuned the architecture, including the number of hidden layers (from 1 to 6) and the size of each hidden
layer. We noticed that the accuracy is not largely affected by the architecture, as long as there is at
least one hidden layer. We split the dataset into 90% training (9,000 paths), 5% validation (500 paths),
and 5% testing (500 paths), and we use the Adam optimizer [54] with a learning rate of 1x 1073
a learning rate exponential decay of 0.95 per epoch, and a batch size of 1 (path). We train every
model—the decoder, the encoder, and direct-learning—for 10 epochs. We use our internal cluster
with 7 servers with 14 Intel(R) Xeon(R) CPUs. For our method and direct-learning, we train them
with different regularizer weights A = 0.1, 0.3, 0.6, 1.0, and 1.5. For direct-optimization, we use
the BFGS implementation in SciPy [92], with a gradient tolerance of 1x10~7. Since its running time
is extremely long, we tune its regularizer weight on the first 40 test samples (Table 7) and select the
one with the best performance. To train the needed neural networks, it takes approximately 10 minutes
for direct-optimization, approximately 1 hour for direct-learning, and approximately 5 days
for our method. Note that we only need to train once so that the training costs are amortized.

B Details about constrained soft robot inverse kinematics

B.1 Robot setting

We adopt the snake-like soft robot that was used in Xue et al. [97]. The robot has an original height
of 10 and an original width of 0.5, and its bottom is fixed. We can control the stretch ratio of 40
segments (20 on the left-hand side and 20 on the right-hand side), as visualized in colors in Figure 9.
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Table 7: Path-planning evaluation of direct-optimization of the average Chamfer distance on the first 40
samples in the test set evaluated in simulation

Regularizer weight 0.0001 0.0003 0.0006 0.001
direct-optimization 0.0171 0.0161 0.0153 0.0167

Controllable segments of G Q Region that the obstacle
the soft robot is sampled from

Uncontrollable segments
of the soft robot

Fixed bottom

Figure 9: We visualize the soft robot with controllable segments in color, uncontrollable segments in black. The
red region shows where we sample the center of the obstacle—a sector region with an angle of 60°, inner and
outer radiuses of 4 and 5, respectively.

The stretch ratios are restricted to be between 0.8 and 1.2. The physical realization of the robot
consists of the locations of its 103 vertexes, as shown in Figure

B.2 Methods

Ours. We follow Section 3] with the cost function defined as in Equation[9] and the obstacle location
is randomly sampled.

direct-learning. We follow SectionElwith Ra1(-) defined as in Equation Note that since
we do not have access to the physical realization u, we cannot have a barrier function term for
the obstacle. Thus, for direct-1learning, we still randomly sample the obstacle location, but we
guarantee during training, the obstacle does not collide with the robot in every specific training
sample.

direct-optimization. We follow Section[d]with the cost function defined as in Equation[9]and
the obstacle location randomly sampled. Note that this baseline is similar to the approach used
in Xue et al. [97]. The major difference is that we train the surrogate using supervised loss (as
shown in Equation[Z), and Xue et al. [97] trained their surrogate using a physically informed loss that
minimizes the total potential energy.

B.3 Data generation

We first randomly sample the design vector € with each dimension i.i.d. uniformly between 0.8 and
1.2. For each design vector 6, we solve the governing PDE with the finite element method [44]
to obtain the corresponding physical realization u of the robot. Note that the obstacle location is
randomly sampled during training and randomly sampled with a fixed random seed (we set to 0)
during testing. The center of the obstacle is uniformly sampled from a sector region, as shown
in Figure 9] with an angle of 60°, an inner radius of 4, and an outer radius of 5. We altogether
generate 40,000 data samples.
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Table 8: The architecture of the MLP used in constrained soft robot inverse kinematics

direct-learning Decoder Encoder
Type Configurations Type Configurations Type Configurations
Fully connected 4t0 128 Fully connected 40 to 128 Fully connected 410 128
ReLU N/A ReLU N/A ReLU N/A
Fully connected 128 t0 256  Fully connected 128 t0 256  Fully connected 128 to 256
ReLU N/A ReLU N/A ReLU N/A
Fully connected 256 to 128  Fully connected ~ 256 to 128  Fully connected = 256 to 128
ReLU N/A ReLU N/A ReLU N/A
Fully connected 128 to 40 Fully connected 128t0206  Fully connected 128 to 40
Sigmoid N/A / / Sigmoid N/A
Linear map 0.22x—1) / / Linear map 0.2Qx—1)
% Target (O Obstacle
Direct learning Ours Direct optimization
Failure 7
case 1
Failure
case 2

Figure 10: Failure cases of our method in test set on soft robot. In rare cases, our method might miss the target
by a short distance (Samples 1 and 2) or touch the obstacle (Sample 2).

B.4 Hyper-parameters and neural network training

We use MLP for all models (encoder, decoder, and direct-learning) with ReLLU as the activation
function and 3 hidden layers of sizes 128, 256, 128, respectively (Table |§]) We coarsely tuned the
architecture, including the number of hidden layers (from 1 to 4) and the size of each hidden layer.
Similarly, we noticed that the accuracy is not largely affected by the architecture, as long as there is
at least one hidden layer. Note that for the input and output of the neural network, we subtract 1 from
all stretch ratios such that they are always between -0.2 and 0.2, and we use displacement of each
vertex rather than its absolute location since displacement values are mostly centered around 0. In
addition, to ensure that the encoder and direct-learning always output stretch ratios (minus one)
between -0.2 and 0.2, we apply a sigmoid layer at the end of both the encoder and direct-learning,
and linearly map the sigmoid output to be between -0.2 and 0.2 (as in Table ). We use the same trick
in direct-optimization to ensure the stretch ratios never fall out of range.

We implement all neural networks in PyTorch [68]. We split the dataset into 90% training (36,000
samples), 7.5% validation (3,000 samples), and 2.5% testing (1,000 samples), and we use the Adam
optimizer [54]] with a learning rate of 1x 1073, a learning rate exponential decay of 0.98 per epoch,
and a batch size of 8. We train every model—the decoder, the encoder, and direct-learning—for
200 epochs. For our method and all baselines, we experiment with different regularizer weights
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Table 9: Ablation study: linear encoder vs. non-linear encoder for soft-robot evaluated on test set. All encoders
are trained on non-linear decoders with a regularizer weight of 0.05

#successful cases (over 1,000) Avg. distance to target on successful cases

Non-linear encoder 975.0+3.9 0.0464+0.0018
Linear encoder 710.7+24.8 0.1324+0.0276

% Target O Obstacle
Linear encoder Non-linear encoder (Ours)

Sample 1

Sample 2

Figure 11: Soft-robot evaluation of linear encoder vs. non-linear encoder (ours) on examples from the test set.
Linear encoder both violates the constraints (Sample 2) and misses the target (Samples 1 and 2).

A2 =0.03, 0.05, 0.07, and 0.09. For direct-optimization, we use the BFGS implementation in
SciPy [92]], with a gradient tolerance of 1 x10~7. We use our internal cluster with 7 servers with 14
Intel(R) Xeon(R) CPUs. To train the needed neural networks, it takes approximately 2 hours for
direct-optimization, approximately 4 hours for direct-learning, and approximately 4.5 hours
for our method. Note that since we only need to train once, the training costs are amortized.

B.5 Failure cases

Since our encoder and decoder are both neural networks, there might be some generalization errors.
We show two failure cases of our method in test set in Figure|10} The design proposed by our method
misses the target by a short distance in the first example, and both touches the obstacle and misses
the target by a short distance in the second example.

B.6 Ablation study: linear encoder

To demonstrate the non-linearity in our encoder is necessary, we train a linear encoder on the pre-
trained non-linear decoder, following exactly the same training procedure mentioned in §[B.4] We
show the number of cases the robot successfully avoids the obstacle and the average Euclidean
distance to the target for successful cases in Table[d] Linear encoder violates the obstacle constraints
approximately 11.6 times as much as the non-linear encoder, and the average Euclidean distance
for successful cases is approximately 2.9 times as much as the non-linear encoder. Two samples are
shown in Figure[TT] In both samples, the linear encoder misses the target by a short distance, and in
the second sample, the linear encoder violates the obstacle constraint.
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