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Abstract

This paper considers fair probabilistic binary classification where the outputs of primary
interest are predicted probabilities, commonly referred to as scores. We formulate the
problem of transforming scores to satisfy fairness constraints that are linear in conditional
means of scores while minimizing a cross-entropy objective. The formulation can be applied
directly to post-process classifier outputs and we also explore a pre-processing extension,
thus allowing maximum freedom in selecting a classification algorithm. We derive a closed-
form expression for the optimal transformed scores and a convex optimization problem for
the transformation parameters. In the population limit, the transformed score function
is the fairness-constrained minimizer of cross-entropy with respect to the true conditional
probability of the outcome. In the finite sample setting, we propose a method called
FairScoreTransformer to approach this solution using a combination of standard probabilis-
tic classifiers and ADMM. We provide several consistency and finite-sample guarantees
for FairScoreTransformer, relating to the transformation parameters and transformed score
function that it obtains. Comprehensive experiments comparing to 10 existing methods
show that FairScoreTransformer has advantages for score-based metrics such as Brier score
and AUC while remaining competitive for binary label-based metrics such as accuracy.

Keywords: algorithmic fairness, machine learning fairness, probabilistic classification,
post-processing

1. Introduction

Recent years have seen a surge of interest in the problem of fair classification, which is
concerned with disparities in classification output or performance when conditioned on
protected attributes such as race, gender, or ethnicity. Many measures of fairness have
been introduced (Pedreschi et al., 2012; Dwork et al., 2012; Kamiran et al., 2013; Hardt
et al., 2016; Zafar et al., 2017a; Chouldechova, 2017; Kleinberg et al., 2017; Kilbertus et al.,
2017; Kusner et al., 2017; Zafar et al., 2017b; Nabi and Shpitser, 2018; Kearns et al.,
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2018; Heidari et al., 2018; Chiappa, 2019) and fairness-enhancing interventions have been
proposed to mitigate these disparities (Friedler et al., 2019). Roughly categorized, these
interventions either (i) change data used to train a classifier (pre-processing) (Kamiran and
Calders, 2012; Hajian and Domingo-Ferrer, 2013; Zemel et al., 2013; Feldman et al., 2015;
Calmon et al., 2017), (ii) change a classifier’s output (post-processing) (Kamiran et al.,
2012; Fish et al., 2016; Hardt et al., 2016; Pleiss et al., 2017; Woodworth et al., 2017), or
(iii) directly change a classification model to ensure fairness (in-processing) (Calders and
Verwer, 2010; Kamishima et al., 2012; Zafar et al., 2017a,c; Dwork et al., 2018; Agarwal
et al., 2018; Krasanakis et al., 2018; Donini et al., 2018; Celis et al., 2019).

This paper di↵ers from many of the above works in placing more emphasis on probabilis-
tic classification, in which the outputs of interest are predicted probabilities of belonging to
one of the classes as opposed to binary predictions. The predicted probabilities are often
referred to as scores. They are desirable because they indicate confidences in predictions
(when well-calibrated) and provide more information for decision-making. For example, in
a loan approval scenario, a score of 0.7 may indicate that a loan applicant is predicted to
have a 70% chance of repaying the loan on time, given their credit history features.

Our objective is to produce probabilistic scores satisfying fairness criteria. These scores
can be useful in a number of decision-making scenarios. In health risk assessment for ex-
ample, the scores represent risks of developing a condition or requiring medical intervention
(e.g., stroke, Lip et al., 2010, ICU admission, Zhao et al., 2020) and are the final output
of interest. In other applications, the scores are an intermediate output that is passed to a
subsequent decision-making stage. However, this subsequent stage may not be fully known
or defined, may take additional inputs, and/or may be performed by a di↵erent party. An
important example is where the decision-maker is a human (e.g., a hiring manager) who,
in addition to considering a score (e.g., predicted probability of succeeding in a new job),
may have to weigh other information (e.g., reports from human interviewers), and whose
fairness and other decision-making properties cannot be well-controlled. In this case, it may
be desirable to enforce fairness in the scores given to the human decision-maker (perhaps
in addition to measures that encourage the decision-maker to be more fair). Even in the
straightforward case where the scores are thresholded to produce a binary decision, exact
knowledge of protected attributes may be lacking to use existing post-processing methods
for fairness (Kamiran et al., 2012; Hardt et al., 2016; Pleiss et al., 2017; Yang et al., 2020).
Moreover, our experimental results in Section 6 suggest that thresholding fairer scores can
be competitive with fairness methods that directly target binary outputs.

We make several contributions to the subject of fair probabilistic classification. In
Section 2, we propose an optimization formulation for transforming scores to satisfy fairness
constraints while minimizing a cross-entropy objective. The formulation accommodates any
fairness criteria that can be expressed as linear inequalities involving conditional means of
scores, including variants of statistical parity (SP) (Pedreschi et al., 2012) and equalized
odds (EO) (Hardt et al., 2016; Zafar et al., 2017a).

In Section 3, we study solutions to the optimization problem of fair score transforma-
tion that we have formulated. Given an input score function r(x), we derive a closed-form
expression for the optimal transformed scores r

0(x) and a convex dual optimization prob-
lem for the Lagrange multipliers that parametrize the transformation. In the population
limit, the optimal input score function (i.e., the unconstrained optimum) is the conditional
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distribution pY |X of the outcome Y given features X. In this case, the transformed scores
minimize cross-entropy with respect to pY |X while satisfying the fairness constraints.

In Section 4, we consider the finite sample setting and propose a method called
FairScoreTransformer (FST) to approximate the optimal solution found in Section 3. FST
takes a practical “plug-in” approach, using standard probabilistic classifiers (e.g., logistic
regression) to approximate pY |X and estimating other probabilities as needed. In partic-
ular, if protected attributes are not known at test time, FST can instead use estimates of
them based on the available features. We find that the dual problem is well-suited to the
alternating direction method of multipliers (ADMM) and describe an ADMM algorithm
to solve it. The closed-form expression for the transformed scores and the low dimension
of the dual problem (a small multiple of the number of protected groups) make FST
computationally lightweight.

FST lends itself naturally to post-processing, with scores as input and fairer scores
as output. To increase flexibility, we also explore a pre-processing extension of FST in
which the output scores are used to re-weight the training data. The re-weighted data
can then be published as an output in its own right, allowing others to train fairer models
using standard algorithms that do not explicitly account for fairness. We envision therefore
that FST will be particularly beneficial in situations that make post- and pre-processing
attractive, as also articulated by e.g., Hajian and Domingo-Ferrer (2013); Calmon et al.
(2017); Agarwal et al. (2018); Madras et al. (2018); Salimi et al. (2019): a) when it is not
possible or desirable to modify an existing classifier (only post-processing is possible); b)
when freedom is desired to select the most suitable classifier for an application, whether it
maximizes performance or has some other desired property such as interpretability (post-
and pre-processing apply); and c) when standard training algorithms are used without
the additional complexity of fairness constraints or regularizers (post- and pre-processing
again). In-processing meta-algorithms (Agarwal et al., 2018; Celis et al., 2019) can also
support situation b) but not a) or c), while standard in-processing does not support any of
a)–c). As discussed in Section 1.1 and summarized in Table 3, FST is considerably more
flexible than existing post- and pre-processing methods in handling more cases.

The conference version (Wei et al., 2020) of this work focused on formulating and solving
the optimization problem (Sections 2 and 3) and translating the solution into a practical
procedure (Section 4). This has left a gap however between the solution in the ideal pop-
ulation setting (r(x) = pY |X(1 | x)) and the approximate result of the FST procedure.
In this extended version, we address this gap by providing consistency and finite-sample
guarantees. In Section 5, under suitable assumptions on the convergence of the estimated
score function r̂(x) and other estimated probabilities, we prove that:

1. Optimal solutions to the empirical version of the dual problem solved by FST become
asymptotically optimal for the population version of the dual problem. For finite
sample sizes, the optimality gap is bounded with high probability (Theorem 6).

2. The plug-in solution for the transformed scores asymptotically satisfies the population
fairness constraints (i.e., fairness consistency). For finite sample sizes, the degree of
infeasibility is bounded with high probability (Theorem 4).

3. The plug-in solution asymptotically minimizes cross-entropy with respect to pY |X
subject to the fairness constraints (Theorem 5).
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We have accordingly refined the presentation in Sections 3 and 4, for example clearly dis-
tinguishing between the empirical and population dual problems and explicitly defining the
plug-in primal solution. Of note, we have clarified that the characterization of the optimal
solution in Section 3 applies to any input score function r̂(x), not just r(x) = pY |X(1 | x).

We have conducted comprehensive experiments, reported in Section 6 and Appendix C,
comparing FST to 10 existing methods, a number that compares favorably to recent meta-
studies (Friedler et al., 2019). On score-based metrics such as Brier score and AUC, FST
achieves better fairness-utility trade-o↵s and hence is indeed advantageous when scores are
of interest. At the same time, it remains competitive on binary label-based metrics such as
accuracy.

In summary, FairScoreTransformer enables fairness-enhancing post-processing that

• is principled, optimal in the population limit, and comes with consistency and finite-
sample guarantees (Sections 2, 3, and 5),

• is computationally lightweight (Section 4),

• performs favorably compared to the state-of-the-art and can handle lack of protected
attributes at test time (Section 6 and Appendix C).

The organization of the paper is recapitulated below: Section 2 formulates the opti-
mization problem of transforming scores to satisfy fairness constraints. Section 3 speci-
fies the optimal solution to the problem in terms of a closed-form transformation and a
dual optimization problem. Section 4 describes the FairScoreTransformer procedure that
approximates the optimal solution given a finite sample. Section 5 provides theoretical
results for the FairScoreTransformer solution. Section 6 discusses empirical evaluation of
FairScoreTransformer and comparisons to existing methods. Section 7 concludes the paper.

1.1 Related Work

Existing post-processing methods for fairness include those from Kamiran et al. (2012);
Fish et al. (2016); Hardt et al. (2016); Pleiss et al. (2017); Jiang et al. (2019); Chzhen et al.
(2019); Yang et al. (2020); limitations of post-processing are studied by Woodworth et al.
(2017). While these methods take predicted scores as input, most (Kamiran et al., 2012;
Fish et al., 2016; Hardt et al., 2016; Chzhen et al., 2019) are designed to produce only binary
output and not scores. The method of Pleiss et al. (2017) maintains calibrated probability
estimates, which is a requirement that we do not enforce herein. Furthermore, Kamiran
et al. (2012); Fish et al. (2016); Hardt et al. (2016); Pleiss et al. (2017); Yang et al. (2020)
all assume exact knowledge of the protected attribute. Kamiran et al. (2012); Fish et al.
(2016); Jiang et al. (2019) address only SP (Kamiran et al. (2012) as originally proposed),
Hardt et al. (2016); Pleiss et al. (2017) address disparities in error rates, and Chzhen et al.
(2019) address only equal opportunity. Our approach does not have these limitations. It
produces scores as well as binary outputs, can handle estimated protected attributes, and
accommodates a wider range of fairness criteria.

Pre-processing methods range from reweighing, resampling, and relabeling training data
(Kamiran and Calders, 2012), to performing probability transformations on features (Feld-
man et al., 2015), to modifying both labels and features through optimization (Calmon et al.,
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2017) or labels and protected attributes using classification rules (Hajian and Domingo-
Ferrer, 2013). The above methods only address SP or the related notion of disparate
impact (Feldman et al., 2015). Learning representations that are invariant to protected
attributes (Zemel et al., 2013; Louizos et al., 2016; Edwards and Storkey, 2016; Xie et al.,
2017; Xu et al., 2018) can also be seen as pre-processing, and recent adversarial approaches
(Beutel et al., 2017; Zhang et al., 2018; Madras et al., 2018) permit control of EO as well as
SP. Representation learning however does not preserve the original data domain and its se-
mantics, while adversarial algorithms can produce unstable results and be computationally
challenging.

Several works by Agarwal et al. (2018); Celis et al. (2019); Menon and Williamson
(2018); Corbett-Davies et al. (2017); Jiang and Nachum (2020); Yang et al. (2020) have
technical similarities to the approach herein but focus on binary outputs, with 0-1 risk
(Celis et al., 2019; Agarwal et al., 2018) or cost-sensitive risk (Menon and Williamson,
2018; Corbett-Davies et al., 2017; Yang et al., 2020) as the objective function, and/or lead
to in-processing algorithms (Celis et al., 2019; Agarwal et al., 2018; Cotter et al., 2019).
Celis et al. (2019) come closest in also solving a fairness-constrained classification problem
via the dual problem. However, Celis et al. (2019) along with Agarwal et al. (2018) propose
in-processing algorithms that solve multiple instances of a subproblem whereas we solve
only one instance. Celis et al. (2019) also address a larger class of fairness measures that
are linear-fractional in the classifier output. Cotter et al. (2019) propose incorporating rate
constraints when training predictive models in order to meet target fairness, churn, or other
performance requirements. These constraints are cast in terms of indicator functions and
are inherently non-convex and non-di↵erentiable, motivating an oracle-based in-processing
optimization algorithm. Unlike Cotter et al. (2019), the optimized transformation intro-
duced here circumvents non-di↵erentiability issues by formulating fairness constraints in
terms of scores (as opposed to a sum of indicator functions). The resulting optimization is
convex and solvable using standard methods.

Similar to us, Menon and Williamson (2018); Corbett-Davies et al. (2017); Yang et al.
(2020) also characterize optimal fair classifiers in the population limit in which probability
distributions are known; however, Menon and Williamson (2018); Corbett-Davies et al.
(2017) do not propose algorithms for computing the Lagrange multipliers or thresholds
that parametrize the solution. The recent work of Yang et al. (2020) provides such a
characterization in a very general multi-class setting with overlapping protected groups.
They propose two algorithms inspired by the Bayes-optimal fair classifier. The first is an
in-processing approach that generalizes the algorithm of Agarwal et al. (2018). The second
is similar to ours in also taking a plug-in post-processing approach and optimizing Lagrange
multipliers. In their case, the Lagrange multipliers determine thresholds to apply to the
“plugged-in” probabilistic classifier. However, both algorithms of Yang et al. (2020) return
a randomized classifier (similar to Agarwal et al., 2018), i.e., a probability distribution over
a set of classifiers, and they also assume knowledge of the protected attributes.

2. Problem Formulation

We represent one or more protected attributes such as gender and race by a random variable
A and an outcome variable by Y . We make the common assumption that Y 2 {0, 1} is
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binary-valued. It is assumed that A takes a finite number of values in a set A, corresponding
to protected groups. Let X denote features (drawn from domain X ) used to predict Y in
a supervised classification setting. We consider two scenarios in which X either includes
or does not include A, like in other works in fair classification (e.g., Kamiran and Calders,
2012; Agarwal et al., 2018; Donini et al., 2018). While it is recognized that the former
scenario can achieve better trade-o↵s between utility and fairness, the latter is needed in
applications where disparate treatment laws and regulations forbid the explicit use of A.
To develop our approach in this section and Section 3, we work in the population limit
and make use of probability distributions involving A, X, Y . Section 4 discusses how these
distributions are approximated using a training sample. In general, we use capital letters
(e.g., A, X) to refer to random variables, and lowercase letters (a, x) to their realizations.

As stated earlier, we focus more heavily on probabilistic classification in which the
output of interest is the predicted probability of being in the positive class Y = 1 rather
than a binary prediction. The optimal probabilistic classifier is the conditional probability
r(x) ⌘ pY |X(1 |x), which we refer to as the population score because it is only known in the
population limit. Bayes-optimal binary classifiers can be derived from r(x) by thresholding,
specifically at level c 2 [0, 1] if c and 1 � c are the relative costs of false positive and false
negative errors. Score functions will thus play the central role in our development.

We propose a mathematical formulation and method called FairScoreTransformer (FST)
that leads directly to a post-processing solution. The goal is to transform r(x) into a trans-
formed score r

0(x) that satisfies fairness conditions while minimizing the loss in optimality
compared to r(x). The transformed score r

0(x) is taken as the classification output and
can be thresholded to provide a binary prediction. We elaborate on the utility and fairness
measures considered in Sections 2.1 and 2.2.

We also consider a pre-processing extension of FST in which r
0(x) is used to transform

the training data and train a new classifier, which provides the final output. For this case, we
additionally define a transformed outcome variable Y

0 2 {0, 1} and let r0(x) = pY 0 |X(1 | x)
be the conditional probability associated with it. The overall procedure consists of two
steps, performed in general by two di↵erent parties: 1) The data owner transforms the
outcome variable from Y to Y

0; 2) The modeler trains a classifier with Y
0 as target variable

and X as input, without regard for fairness. The transformed score r
0(x) plays two roles in

this procedure. The first is to specify the probabilistic mapping from X to Y
0 in step 1).

As discussed in Section 4.4, we realize this mapping by re-weighting the training data. The
second role stems from the main challenge faced by pre-processing methods, namely that
the predominant fairness metrics depend on the output of the classifier trained in step 2)
but this classifier is not under direct control of the pre-processing in step 1). In recognition
of this challenge, we make the following assumption, also discussed by Madras et al. (2018);
Salimi et al. (2019):

Assumption 1 (pre-processing) The classifier trained by the modeler approximates the
transformed score r

0(x) if it is a probabilistic classifier or a thresholded version of r0(x) if
it is a binary classifier.

This assumption is satisfied for modelers who are “doing their job” in learning to predict
Y

0 from X since the optimal classifier in this case is r0(x) or a function thereof. Given the
assumption, we will use r0(x) as a surrogate for the actual classifier output. The assumption
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is not satisfied if the modeler is not competent or, worse, malicious in trying to discriminate
against certain protected groups.

We note that this pre-processing extension is not specific to FST and could be applied
to other methods that produce a fair output score similar to r

0(x), for example in-processing
methods that work with probabilistic classifiers.

2.1 Utility Measure

We propose to measure the loss in optimality, i.e., utility, between the transformed score
r
0(x) and population score r(x) using the following cross-entropy:

E
⇥
� log pY 0 |X(Y |X)

⇤
= E

⇥
�r(X) log r0(X)� (1� r(X)) log(1� r

0(X))
⇤
, (1)

where the right-hand side results from expanding the expectation over Y conditioned on
X, and pY 0 |X is used only as notational shorthand in the post-processing case since Y

0 is
not generated. For simplicity, we shall also use the following notation for cross-entropy:

Hb(p, q) , �p log q � (1� p) log(1� q). (2)

The utility measure in (1) is equivalent to E [Hb (r(X), r0(X))] .
One way to arrive at (1) is to assume that r

0(x), which is the classifier output in the
post-processing case and a surrogate thereof in the pre-processing extension, is evaluated
against the observed outcomes y1, . . . , yn in a training set using the cross-entropy a.k.a. log
loss. This yields the empirical version of the left-hand side of (1),

� 1

n

nX

i=1

log pY 0 |X(yi | xi).

The use of log loss is well-motivated by the desire for r0(x) to be close to the true conditional
probability r(x).

An equivalent way to motivate (1) in the pre-processing context is to measure the utility
lost in transformation by the Kullback-Leibler (KL) divergence between the original and
transformed joint distributions

DKL
�
pX,Y k pX,Y 0

�
= EpX,Y


log

pX,Y

pX,Y 0

�
= EpX,Y [log pY |X ]� EpX,Y [log pY 0 |X ]. (3)

On the right-hand side, the first term depends on the data distribution but not r
0(x) and

the second term is exactly (1).
Starting from a di↵erent premise, Jiang and Nachum (2020) proposed a similar mathe-

matical formulation in which the arguments of the KL divergence are reversed from those
in (3), i.e., the given distribution is the second argument while the distribution to be de-
termined is the first. The form of the solution of Jiang and Nachum (2020) is therefore
di↵erent from the one presented herein. The order of arguments in (3) is justified by the
connection to log loss in classification discussed above. The order in (3) also agrees with
the common interpretation of the first argument as a given distribution and the second
argument as an approximation or deviation from the given distribution.
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2.2 Fairness Measures

We consider fairness criteria expressible as linear inequalities involving conditional means
of scores,

JX

j=1

bljE
⇥
r
0(X) | Elj

⇤
 cl, l = 1, . . . , L, (4)

where {blj} and {cl} are real-valued coe�cients and the conditioning events Elj are defined
in terms of (A,X, Y ) but do not depend on r

0. Special cases of (4) correspond to the well-
studied notions of statistical parity (SP) and equalized odds (EO). More precisely, we focus
on the following variant of SP:

�✏  E[r0(X) |A = a]� E[r0(X)]  ✏ 8a 2 A, (5)

which we refer to as mean score parity (MSP) following Coston et al. (2019). Condition
(5) corresponds to approximate mean independence of random variable R

0 = r
0(X) with

respect to A. Similar notions can also be put in the form of (4), for example bounds on the
ratio

1� ✏  E[r0(X) |A = a]

E[r0(X)]
 1 + ✏,

referred to as disparate impact by Feldman et al. (2015), as well as conditional statistical
parity (Kamiran et al., 2013; Corbett-Davies et al., 2017).

For EO, we add the condition Y = y to the conditioning events in (5), resulting in

�✏  E[r0(X) |A = a, Y = y]� E[r0(X) | Y = y]  ✏ 8a 2 A, y 2 {0, 1}. (6)

For y = 0 (respectively y = 1), E[r0(X) |Y = y] is the false (true) positive rate (FPR, TPR)
generalized for a probabilistic classifier, and E[r0(X) | A = a, Y = y] is the corresponding
group-specific rate. Following Pleiss et al. (2017), we refer to (6) for y = 0 or y = 1 alone as
approximate equality in generalized FPRs or TPRs, and to (6) for y = 0 and y = 1 together
as generalized EO (GEO). The correspondences between (5), (6) and (4) are detailed in
Appendix A.1.2.

The fairness measures (4) in our formulation are defined in terms of probabilistic scores.
Parallel notions defined for binary predictions, i.e., by replacing r

0(X) with a thresholded
version 1(r0(X) > t), are more common in the literature. For example, the counterpart to
(6) is (non-generalized) EO while the counterpart to (5) is called thresholded score parity by
Coston et al. (2019). While our formulation does not optimize for these binary prediction
measures, we nevertheless use them for evaluation in Section 6.

The form of (4) is inspired by but is less general than the linear conditional moment
constraints of Agarwal et al. (2018), which replace r

0(X) in (4) by an arbitrary bounded
function gj(A,X, Y, r

0(X)). We have restricted ourselves to (4) so that a closed-form optimal
solution can be derived in Section 3. We note however that in both of the examples of
Agarwal et al. (2018) and many fairness measures, gj(A,X, Y, r

0(X)) = r
0(X) and the

additional generality is not required.
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2.3 Optimization Problem

The transformed score r0(x) is obtained by minimizing the cross-entropy in (1) (equivalently
maximizing its negative) subject to fairness constraints (4):

max
r0
�E

⇥
Hb

�
r(X), r0(X)

�⇤
s. t.

JX

j=1

bljE
⇥
r
0(X) | Elj

⇤
 cl, l = 1, . . . , L. (7)

Section 3 characterizes the optimal solution to this problem.

2.4 Su�ciency of Pre-Processing Scores

In the pre-processing extension of FST, the proposed optimization (7) transforms only scores
and uses them to generate a weighted data set, as described further in Section 4.4. Can a
better trade-o↵ between utility and fairness be achieved by also pre-processing features X,
i.e., mapping each pair (X, r(X)) into a new (X 0

, r
0(X))? Note that pre-processing both

scores/labels and input features is suggested by Hajian and Domingo-Ferrer (2013); Feldman
et al. (2015); Calmon et al. (2017). When utility and fairness are measured according to the
objective and constraints in (7), the answer is negative: a transformed feature X 0 would not
impact the constraints in (7), since they only depend on the marginals of r0(X) conditioned
events El,j given in terms of A and Y . Moreover, a transformed feature would also not
change the objective value, which only depends on r(X) and r

0(X). In other words, a
transformed score/label pair would satisfy the Markov relation:

(A, Y ) X {r(X), r0(X)}

X
0

The quantities in formulation (7) only depend on the upper branch of the above graph and,
hence, are invariant to the mapping from X to X

0. Thus, for the metrics considered here,
pre-processing the scores is su�cient.

3. Characterization of Optimal Fairness-Constrained Score

In this section, we consider a slight generalization of problem (7) in which r(X) is replaced
by an arbitrary score function r̂(X):

max
r0
�E

⇥
Hb

�
r̂(X), r0(X)

�⇤
s. t.

JX

j=1

bljE
⇥
r
0(X) | Elj

⇤
 cl, l = 1, . . . , L. (8)

In later sections, r̂(X) will be an estimate of r(X), thus justifying the hat notation.
We derive a closed-form expression for the optimal solution to problem (8) using the

method of Lagrange multipliers. We then state the dual optimization problem that deter-
mines the Lagrange multipliers. These results are specialized to the cases of MSP (5) and
GEO (6).
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Define Lagrange multipliers �l � 0, l = 1, . . . , L for the constraints in (8), and let
� , (�1, . . . ,�L). Then the Lagrangian function is given by

L(r0,�) = �E
⇥
Hb

�
r̂(X), r0(X)

�⇤
�

LX

l=1

JX

j=1

�lbljE
⇥
r
0(X) | Elj

⇤
+

LX

l=1

cl�l. (9)

The dual optimization problem corresponding to (7) is

min
��0

max
r0

L(r0,�).

Note that L(r0,�) is a strictly concave function of r
0 and the fairness constraints in

(8) are a�ne functions of r0. Consequently, as long as the constraints in (8) are feasible,
the optimal transformed score r

⇤ can be found by maximizing L(r0,�) with respect to r
0,

resulting in an optimal solution r
⇤ that is a function of �, and then minimizing L(r⇤,�)

with respect to � (Boyd and Vandenberghe, 2004, Section 5.5.5). Substituting the optimal
�
⇤ into the solution for r⇤ found in the first step then yields the optimal transformed score.

Note that this procedure would not necessarily be correct if a linear objective function were
considered (e.g., 0-1 loss in Celis et al., 2019) due to lack of strict concavity. The next
proposition states the general form of the solution to the inner maximization of L(r0,�)
above. Its proof is in Appendix A.1.1.

Proposition 1 Let L(r0,�) be as given in (9). Then for fixed �, r⇤(�) = argmaxr0 L(r0,�)
is given by

r
⇤�
µ(x); r̂(x)

�
=

8
><

>:

1 + µ(x)�
p
(1 + µ(x))2 � 4r̂(x)µ(x)

2µ(x)
, µ(x) 6= 0

r̂(x), µ(x) = 0,

(10)

where

µ(x) ,
LX

l=1

JX

j=1

�lblj
Pr(Elj |X = x)

Pr(Elj)
. (11)

We can interpret the optimal primal solution (10) as a prescription for score transforma-
tion controlled by µ(x), which is in turn a linear function of �. When µ(x) = 0, the score is
unchanged from the input r̂(x), and as µ(x) increases or decreases away from zero, the score
r
⇤(µ(x); r̂(x)) decreases or increases smoothly from r̂(x), as seen in Figure 1a. Figure 1b
shows that the transformed score r

⇤ has a rank-preserving property stated in Lemma 2.

Lemma 2 The transformed score r
⇤(µ; r̂) is monotonically increasing in r̂ for fixed µ,

i.e., if r1 < r2 then r
⇤(µ; r1) < r

⇤(µ; r2).

Proof This is confirmed analytically by a positive partial derivative:

@r
⇤(µ; r̂)

@r̂
=

1p
(1 + µ)2 � 4r̂µ

> 0.

10
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(a) r⇤ vs. µ for fixed values of r̂. (b) r⇤ vs. r̂ for fixed values of µ.

Figure 1: Optimal transformed score r
⇤(µ; r̂) (Equation 10) as a function of µ and r̂.

It is shown in Appendix A.1.1 that the result of substituting the optimal primal solution
(10) into the first two terms of the Lagrangian (9) is the expectation of the function

g
�
µ(x); r̂(x)

�
, �Hb

⇣
r̂(x), r⇤ (µ(x); r̂(x))

⌘
� µ(x)r⇤

�
µ(x); r̂(x)

�
. (12)

The dual problem is therefore

min
�

E
⇥
g
�
µ(X); r̂(X)

�⇤
+

LX

l=1

cl�l

s. t. µ(X) =
LX

l=1

JX

j=1

�lblj
Pr(Elj |X)

Pr(Elj)
, � � 0.

(13)

The solution to the above minimization provides the values of �⇤ for the optimal transformed
score (10). Like all Lagrangian duals, (13) is a convex optimization (although it is no
longer apparent from Equation 13 that this is the case). Furthermore, (13) is typically
low-dimensional in cases where the number of dual variables L is a small multiple of the
number of protected groups |A|.

We now specialize and simplify (13) to MSP (5) and GEO (6) fairness constraints.
The following proposition follows from the correspondences between (5), (6) and (4) and is
proved in Appendix A.1.2.

Proposition 3 Under the MSP constraint (5), the dual optimization (13) reduces to

min
�

E
⇥
g
�
µ(X); r̂(X)

�⇤
+ ✏k�k1

s. t. µ(X) =
X

a2A
�a

✓
pA |X(a |X)

pA(a)
� 1

◆
.

(14)

11
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For the GEO constraint (6), (13) reduces to

min
�

E
⇥
g
�
µ(X); r̂(X)

�⇤
+ ✏k�k1,

s. t. µ(X) =
X

y2{0,1}

pY |X(y |X)

pY (y)

X

a2A
�a,y

✓
pA |X,Y (a |X, y)

pA | Y (a | y) � 1

◆
.

(15)

In the case r̂(X) = r(X), we refer to (14), (15) as the population dual problem.

In (14), (15), there is no longer a non-negativity constraint on � but instead an `1 norm,
and the problem dimension is only |A| in (14) and 2|A| in (15). Moreover, both dual
formulations are well-suited for decomposition using the alternating direction method of
multipliers (ADMM), as discussed further in Section 4.2.

In the case where the features X include the protected attribute A, we have
pA |X(a |X) = pA |X,Y (a |X, y) = 1(a = A), where A is the component of X that is given.
The constraints in (14) and (15) then simplify to

µ(X) =
�A

pA(A)
�
X

a2A
�a, (16)

µ(X) =
X

y2{0,1}

pY |X(y |X)

pY (y)

 
�A,y

pA | Y (A | y) �
X

a2A
�a,y

!
(17)

respectively. Interestingly, the only di↵erence between the cases of including or excluding
A is that in the latter, the constraints in (14), (15) indicate that A should be inferred from
the available features X and possibly Y , whereas in the former, A can be used directly.

3.1 Comparison to Optimal Fair Binary Classifiers

As discussed in Section 1.1, optimal fair classifiers have been characterized by Menon and
Williamson (2018); Corbett-Davies et al. (2017); Yang et al. (2020) in the case of binary
outputs and cost-sensitive risk. While the score transformation discussed herein is optimized
for di↵erent, score-based measures of utility and fairness, it is still of interest to compare the
result of thresholding the transformed score to these optimal fair binary-output classifiers.

We focus on Menon and Williamson (2018), who give the most concrete expressions for
optimal classifiers compared to Corbett-Davies et al. (2017); Yang et al. (2020). In accor-
dance with Menon and Williamson (2018), we consider the population limit, e.g., r̂(X) =
r(X), use a binary protected attribute, A = {0, 1}, and consider the fairness measures
statistical parity (SP) and equal opportunity (EOpp) with respect to A. To be closer to
fairness constraints (5), (6), we consider the “mean di↵erence” (MD) measure of Menon
and Williamson (2018, Equation 6). In the SP-MD case, Menon and Williamson (2018)
minimize the following cost-sensitive risk (Problem 3.2 therein):

(1�c) Pr(Ŷ = 0|Y = 1)+cPr(Ŷ = 1|Y = 0)��
⇣
Pr(Ŷ = 1 |A = 0)� Pr(Ŷ = 1 |A = 1)

⌘
,

(18)
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fairness A h(X)
criterion known Menon and Williamson from optimal fair score

SP no r(X)� �(⌘̄(X)� 1/2) r(X)� c(1� c) (�0✓0(X) + �1✓1(X)) ,

✓a(X) = (1�⌘̄(X))1�a⌘̄(X)a

pA(a) � 1, a = 0, 1

yes r(X) + (�1)A(1/2)� r(X) + (�1)Ac(1� c)pA(1�A)�̃,
�̃ = �1

pA(1) �
�0

pA(0)

EOpp no
⇣
1� �

pY (1) (⌘̄(X)� 1/2)
⌘
r(X)

⇣
1� c(1�c)

pY (1) (�0✓0(X) + �1✓1(X))
⌘
r(X),

✓a(X) =
⇣

(1�⌘̄(X))1�a⌘̄(X)a

pA | Y (a | 1) � 1
⌘

yes
⇣
1 + (�1)A 1

2pY (1)�

⌘
r(X)

⇣
1 + (�1)A c(1�c)pA | Y (1�A | 1)

pY (1) �̃

⌘
r(X),

�̃ =
⇣

�1
pA | Y (1 | 1) �

�0
pA | Y (0 | 1)

⌘

Table 1: Comparison with optimal fair binary classifiers of Menon and Williamson (2018).
All binary classifiers are of the form 1(h(X) > c) where h(X) is given below.

where the first and second terms are the FNR and FPR, weighted by 1� c and c, and the
last two terms are the di↵erence between positive prediction rates. For EOpp, the last two
terms are additionally conditioned on Y = 1.

Table 1 summarizes the expressions for fair binary classifiers, which are all of the form
1(h(X) > c) where h(X) is given in the table. For the rightmost column, we assume that
the optimal transformed score r⇤(µ(X); r(X)) is thresholded at the cost-sensitive threshold
c to obtain a binary prediction. Derivations of all expressions are given in Appendix A.1.3.
We use the notation ⌘̄(X) of Menon and Williamson (2018) for the conditional probability
of A given X, where ⌘̄(X) = pA |X(1 |X) in the SP case and ⌘̄(X) = pA |X,Y (1 |X, 1) for
EOpp.

Overall, while the expressions from Menon and Williamson (2018) and from thresholding
the optimal transformed score are di↵erent, they do have notable similarities. The four cases
in Table 1 are discussed further below, where “A known” means that A is included in X or
is perfectly predicted by X.

• SP, A not known: The two h(X) expressions are similar in that an a�ne function
of ⌘̄(X) is added to the original score r(X). In the case of Menon and Williamson
(2018), the a�ne function is proportional to the trade-o↵ parameter �, whereas for the
thresholded optimal fair score, the a�ne function is proportional to c(1� c) and also
depends on pA(a). The parameters �0, �1 are chosen to optimize the dual objective
(14).

• SP, A known: In this case, the similarity between the two expressions becomes
more apparent. On the right-hand side, the quantity �̃ = �1/pA(1)� �0/pA(0) plays
the role of � on the left side, and the main di↵erence is the scaling by the factor
pA(1 � A) (pA(1) for A = 0 and pA(0) for A = 1), in addition to the factor c(1 � c).
While these di↵erences are likely due to optimizing for di↵erent criteria, the overall
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similarity between the two formulas is noteworthy. Indeed, if pA(0) = pA(1), then the
expressions coincide after defining �0, �1 appropriately.

• EOpp, A not known: The two expressions again share similarities: now the modifi-
cation to r(X) is multiplicative, the multiplicative factor is a�ne in ⌘̄(X), and pY (1)
appears in the denominator on both sides.

• EOpp, A known: As in the SP, A known case, the quantity �̃ = �1/pA | Y (1 | 1) �
�0/pA | Y (0 | 1) plays the role of � and the scale factors are pA | Y (1 | 1) for A = 0 and
pA | Y (0 | 1) for A = 1. These are the analogues of the quantities in the SP, A known
case, now conditioned on Y = 1. Again if pA | Y (0 | 1) = pA | Y (1 | 1), then the two
expressions are equivalent.

4. Proposed FairScoreTransformer Procedure

We now consider the finite sample setting in which the probability distributions of A,X, Y

are not known and we have instead a training set Dn , {(ai, xi, yi), i = 1, . . . , n}. This
section presents the proposed FairScoreTransformer (FST) procedure that approximates the
optimal fairness-constrained score in Section 3. We focus on the cases of MSP and GEO.
The procedure consists of the following steps:

1. Estimate the population score and other probabilities required to define the dual
problem (14) or (15).

2. Solve the dual problem to obtain dual variables �̂ (the “fit” step).

3. Transform scores using (11) and (10) (“transform” step).

4. For the pre-processing extension of FST, modify the training data.

5. For binary-valued predictions, binarize scores.

The following subsections elaborate on steps 1–4. Step 5 is done simply by selecting a
threshold t 2 [0, 1] to maximize accuracy on the training set.

4.1 Estimation of Original Score and Other Probabilities

In some post-processing applications, estimates r̂(x) of the population scores r(x) may
already be provided by an existing base classifier. If no suitable base classifier exists, any
probabilistic classification algorithm may be used to estimate r(x). We experiment with
logistic regression and gradient boosting machines in Section 6. We naturally recommend
selecting a model and any hyperparameter values to maximize performance in this regard,
i.e., to yield accurate and calibrated probabilities. This can be done through cross-validation
on the training set using an appropriate metric such as Brier score (Hernández-Orallo et al.,
2012).

In the case where A is one of the features in X, the other probabilities required are
pA(a) for MSP (16) and pY (y), pA | Y (a | y) for GEO (17) (pY |X(y | x) is already estimated
by r̂(x) and pA |X , pA |X,Y are delta functions). Since Y is binary and |A| is typically small,
it su�ces to use the empirical estimates of these probabilities. If A is not included in X,
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then it is also necessary to estimate it using pA |X(a |X) for MSP (14) and pA |X,Y (a |X, y)
for GEO (15). Again, any probabilistic classification algorithm can be used, provided that
it can handle more than two classes if |A| > 2.

We highlight that FST translates the e↵ort of ensuring fair classification into train-
ing well-calibrated models for predicting Y and, if necessary, A. This echoes the plug-in
approach advocated by Menon and Williamson (2018); Chzhen et al. (2019).

4.2 ADMM for Optimizing Dual Variables

In the finite sample case, we solve an empirical version of the dual problem in Proposition 3.
We write µ(x) = �

T f(x), where f : X ! RL is defined by the expression for µ(x) in (14) or
(15) (explicit definitions for f are given in Equations 24, 25 for the case where A is known
exactly), and L is the dimension of �. Let r̂(x) denote the estimate of r(x) obtained in
Section 4.1, and f̂(x) be an empirical version of f(x) in which all probabilities (e.g., pA(a) for
MSP in Equations 14, 16) are replaced by their estimates, again as discussed in Section 4.1.
With these definitions, both optimizations in Proposition 3 have the general form

min
�2RL

1

n

nX

i=1

g
�
µ(xi); r̂(xi)

�
+ ✏k�k1 s. t. µ(xi) = �

T f̂(xi), i = 1, . . . , n, (19)

where the expectation in the objective has also been approximated by the average over the
training data set.

Formulation (19) is well-suited for ADMM because the objective function is separable
between µ(x) and �, which are linearly related through the constraint. We present one
ADMM decomposition here and alternatives in Appendix B.2. Under the first decomposi-
tion, application of the scaled ADMM algorithm (Boyd et al., 2011, Section 3.1.1) to (19)
yields the following three steps in each iteration k = 0, 1, . . . :

µ
(k+1)(xi) = argmin

µ

1

n
g
�
µ; r̂(xi)

�
+

⇢

2

⇣
µ� (�(k))T f̂(xi) + c

(k)(xi)
⌘2

8i = 1, . . . , n

(20a)

�
(k+1) = argmin

�
✏k�k1 +

⇢

2

nX

i=1

⇣
µ
(k+1)(xi)� �

T f̂(xi) + c
(k)(xi)

⌘2
(20b)

c
(k+1)(xi) = c

(k)(xi) + µ
(k+1)(xi)�

⇣
�
(k+1)

⌘T
f̂(xi) 8i = 1, . . . , n. (20c)

Here c
(k)(xi) are Lagrange multipliers for the n equality constraints in (19).

The first update (20a) can be computed in parallel for each sample xi in the data set.
Given an xi, finding µ(xi) is a single-parameter optimization where the objective possesses
closed-form expressions for its derivatives. For simplicity of notation, let r̂i , r̂(xi), bi ,
(�(k))T f̂(xi)� c

(k)(xi), and

obj(µ) , 1

n
g
�
µ; r̂i

�
+

⇢

2
(µ� bi)

2
.
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The first two derivatives of obj(µ) are

@obj(µ)

@µ
= �r

⇤(µ; r̂i)

n
+ ⇢(µ� bi),

@
2obj(µ)

@µ2
=

8
<

:

1
2nµ2

✓
1� 1+µ(1�2r̂i)p

(1+µ)2�4r̂iµ

◆
+ ⇢, µ 6= 0,

r(1�r)
n + ⇢, µ = 0,

using (90), (91) in Appendix B.2 for the derivatives of g(µ; r̂i). It can be confirmed from
the second derivative that obj(µ) is convex (expected since the dual problem is convex) so
that the first-order condition @obj(µ)/@µ = 0 is necessary and su�cient for optimality. In
Appendix B.1, we show that this condition leads to a cubic equation with a closed-form
solution.

The second update (20b) reduces to an `1-penalized quadratic minimization over (at
most) 2|A| variables. Specifically,

�
(k+1) = argmin

�
✏k�k1 + �

Tv + �
TF�, (21)

where

v , �⇢
nX

i=1

f̂(xi)
⇣
µ
(k+1)(xi) + c

(k)(xi)
⌘
, F , ⇢

2

nX

i=1

f̂(xi)f̂(xi)
T
.

The ADMM approach thus handles the non-smooth `1 term in the objective (19) by solving
`1-penalized quadratic subproblems (21), for which many solvers exist. Moreover, the values
of v and F above can be pre-computed prior to solving (21). In fact, F can be computed
once at the start of the iterations. The ensuing minimization only involves |A| variables
under the MSP constraint (5), and 2|A| variables under the GEO constraint (6).

From (20a)–(20c), it is seen that the computational complexity of each ADMM iteration
scales linearly with n. We have fixed the ADMM penalty parameter ⇢ = 1 and have not
attempted to tune it for faster convergence.

4.3 Score Transformation

Let �̂ denote an optimal solution to the empirical dual problem (19). We propose using
a plug-in solution for the transformed score r

0(x), obtained by substituting finite-sample
estimates into formula (10) for r⇤, namely r(x) = r̂(x) and µ(x) = �̂

T f̂(x):

r
0(x) = r

⇤�
�̂
T f̂(x); r̂(x)

�
. (22)

Sections 5.4.2 and 5.4.3 discuss the consistency properties of this plug-in solution.

4.4 Additional Steps for Pre-Processing

In the pre-processing extension of FST, the transformed score r
0(x) is used to generate

samples of a transformed outcome Y 0. Since r0(x) = pY 0 |X(1 |x) is a probabilistic mapping,
we propose generating a weighted data set D0 = {(xi, y0i, wi)} with weights wi that reflect
the conditional distribution pY 0 |X . Specifically, D0 = D0

0 [ D0
1 with D0

0 = {(xi, 0, 1 �
r
0(xi)), i = 1, . . . , n} and D0

1 = {(xi, 1, r0(xi)), i = 1, . . . , n}. With these weights, Y 0 follows
the conditional distribution given by r

0(x), and D0 is twice the size of the original data set.
The data owner passes the transformed data set D0 to the modeler, who uses it to train a
classifier for Y 0 given X without fairness constraints. Per Assumption 1, the output of this
new classifier is expected to approximate r

0(x).
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5. Consistency and Finite-Sample Guarantees for FairScoreTransformer

In this section, we present results guaranteeing the consistency of the FST procedure of
Section 4, again focusing on the cases of MSP and GEO. For two of the three theorems
presented, finite-sample bounds are also provided. We consider in particular steps 2 and 3
of the procedure and make the following statements respectively:

1. Optimal solutions to the empirical dual problem (19) become asymptotically optimal
for the population dual problem (Equations 14 or 15 with r̂(X) = r(X)) as the sample
size n!1 and the estimates r̂(x), f̂(x) converge to their respective true quantities.
For finite sample sizes, the optimality gap is bounded with high probability.

2. The finite-sample plug-in solution (22) for the transformed score r0(x) becomes asymp-
totically feasible and optimal for the population primal problem (7), again as n!1
and r̂(x), f̂(x) converge. For finite sample sizes, the degree of infeasibility is bounded
with high probability.

Asymptotic feasibility in statement 2 may also be referred to as fairness consistency, in that
score functions that satisfy the fairness constraints on the training data also asymptotically
satisfy them on the population.

We first summarize the assumptions that are made before formally stating the results.
This is followed by more detailed discussion of the assumptions, their basic implications,
and outlines of the proofs. Proofs of lemmas are deferred to Appendix A.

5.1 Assumptions

To simplify the proofs, we assume in this section that A is available at test time, as stated
below for easy reference:

Assumption 2 The protected attributes A are known at test time.

We make the assumption that the probabilities pA(a) (MSP case) and pA,Y (a, y) (GEO
case) together with their estimates are bounded away from zero.

Assumption 3 For the MSP case, pA(a) and its estimate p̂A(a) are bounded away from
zero, i.e., pA(a) � ⌘ and p̂A(a) � ⌘ for all a 2 A and some ⌘ > 0. For the GEO case,
pA,Y (a, y) � ⌘ and p̂A,Y (a, y) � ⌘ for all a 2 A, y 2 {0, 1}, and some ⌘ > 0.

To ensure consistency of FST, we naturally assume that r̂(X) is a consistent estimator
of the population score r(X). More specifically, we assume for theoretical purposes that
r̂(X) is estimated from a data set of size m that is independent of the data set of size n

used to approximate the expectation in (19) (this might be obtained by splitting a larger
data set into subsets of size m and n.) The finite-sample bounds in the assumptions and
theorems below are thus stated in terms of m. Di↵erent definitions of consistency su�ce to
prove di↵erent results. For the first definition, we view r̂(X) and r(X) as random variables
over [0, 1] induced by X and define DTV(R1, R2) to be the total variation distance between
two such random variables,

DTV(R1, R2) = sup
R⇢[0,1]

|Pr(R1 2 R)� Pr(R2 2 R)|.
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Assumption 4 There exists a bound ETV(m, �) as a function of m and � 2 (0, 1] such that

1. With probability at least 1� �,

X

a2A
pA(a)DTV

�
r̂(X) |A = a, r(X) |A = a

�
 ETV(m, �);

2. ETV(m, �) is decreasing in m for fixed � (and decreases to zero as m!1);

3. ETV(m, �) is increasing in 1/� for fixed m.

The second definition involves convergence of r̂(X) to r(X) in L1 norm:

Assumption 5 There exists a bound EL1(m, �) as a function of m and � 2 (0, 1] such that

1. With probability at least 1� �,

E [|r̂(X)� r(X)|]  EL1(m, �);

2. EL1(m, �) is decreasing in m for fixed � (and decreases to zero as m!1);

3. EL1(m, �) is increasing in 1/� for fixed m.

The third definition requires r̂(X) to converge to r(X) in terms of the expectation of a
Kullback-Leibler (KL) divergence. Define

DKL(p k q) = p log

✓
p

q

◆
+ (1� p) log

✓
1� p

1� q

◆
(23)

to be the KL divergence between Bernoulli random variables with parameters p and q. The
following assumption is stated only in terms of convergence in probability (as m ! 1) as
we do not make use of finite-sample bounds.

Assumption 6 The estimate r̂(X) converges to the population score r(X) such that

E [DKL(r(X) k r̂(X))]
p! 0.

Note that the expectations in Assumptions 5 and 6 are with respect to X.

Lastly, we use the following assumption to show that it is su�cient to consider a bounded
feasible set for the dual problem.

Assumption 7 The fairness constraint parameter ✏ > 0.

We also require a technical assumption to prove one of the lemmas, which we discuss in
Section 5.4.3.
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5.2 Results

Property 2 stated at the beginning of Section 5 is of primary importance as it pertains to the
overall plug-in solution (22) for the primal problem (7). The first theorem below addresses
the degree to which the plug-in solution satisfies the population fairness constraints.

Theorem 4 In the MSP case, under Assumptions 2, 3, 7, with probability at least 1��1��2
and m > (2/⌘) log(2L/�1), the finite-sample plug-in solution r

0(x) in (22) satisfies

��E[r0(X) |A = a]� E[r0(X)]
��  ✏+

p
2 log(2L/�1)p

mpA(a)�
p
2 log(2L/�1)

+

✓
1

⌘
� 1

◆ 
4 log 2

✏

✓
1

⌘
� 1

◆r
2 log(2L)

n
+

r
2 log(2L/�2)

n
+

2p
n

!
8 a 2 A,

where the terms after ✏ represent the excess with respect to the population fairness constraint
(5). In the GEO case, under Assumptions 2, 3, 5, 7, with probability at least 1��1��2��3

and m > (2/⌘) log(2(L+ 2)/�1), the plug-in solution satisfies

��E[r0(X) |A = a, Y = y]� E[r0(X) | Y = y]
��

 ✏+

p
2 log(2(L+ 2)/�1)p

mpA,Y (a, y)�
p
2 log(2(L+ 2)/�1)

+

p
2 log(2(L+ 2)/�1)p

mpY (y)�
p
2 log(2(L+ 2)/�1)

+

✓
1

⌘
� 1

◆ 
4 log 2

✏

✓
1

⌘
� 1

◆r
2 log(2L)

n
+

r
2 log(2L/�2)

n
+

2p
n

!

+

✓
1

⌘
� 1

◆
EL1(m, �3) 8 a 2 A, y 2 {0, 1},

where the terms after ✏ are the excess with respect to constraint (6).

The next theorem asserts the asymptotic optimality of the plug-in primal solution.

Theorem 5 Under Assumptions 2, 3, 4, 6, 7, 9 and as n!1,

�E
h
Hb

⇣
r(X), r⇤

�
�̂
T f̂(A, r̂(X)); r̂(X)

�⌘i
+ E

⇥
Hb

�
r(X), r⇤

�
�
⇤T f(A, r(X)); r(X)

��⇤ p! 0.

The first term is the population primal objective evaluated at the plug-in solution while the
second term is the optimal objective value.

Unlike Theorems 4 and 6, Theorem 5 does not provide finite-sample guarantees. We discuss
reasons for not doing so in Section 5.4.3.

Property 1 (beginning of Section 5) pertains to the near optimality of empirical dual
solutions. It is used to prove Theorem 5 and may also be of independent interest. Let J(�)
and Ĵ(�) denote the objective functions in the population dual (14), (15) and empirical
dual (19) respectively.
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Theorem 6 Let �̂ 2 argmin Ĵ(�) and �
⇤ 2 argmin J(�) be optimal solutions to the empir-

ical dual problem (19) and population dual problem (14), (15) respectively. Under Assump-
tions 2, 3, 4, 7, with probability at least 1 � �1 � �2 � �3 and m > (2/⌘) log(2(L + 2)/�3),
we have

J(�̂)� J(�⇤)

 2 log(2)

✓
1 +

1

✏

✓
1

⌘
� 1

◆◆ 
4

r
2 log(2L)

n
+

r
2 log(2/�1)

n
+ ETV(m, �2)

!
+�,

where in the MSP case,

� =
2 log 2

✏

X

a2A

p
2 log(2L/�3)p

mpA(a)�
p
2 log(2L/�3)

,

in the GEO case,

� =
2 log 2

✏

0

@
X

y2{0,1}

X

a2A

p
2 log(2(L+ 2)/�3)p

mpA,Y (a, y)�
p
2 log(2(L+ 2)/�3)

+
X

y2{0,1}

p
2 log(2(L+ 2)/�3)p

mpY (y)�
p
2 log(2(L+ 2)/�3)

1

A ,

and for an upper bound that covers both cases,

� =
2(L+ 2) log 2

✏

p
2 log(2(L+ 2)/�3)

p
⌘m�

p
2 log(2(L+ 2)/�3)

.

We make the following remarks about the form of the bounds in Theorems 4 and 6.

1. The bounds are functions of two sample sizes: n, the number of data points that define
the empirical dual (19), and m, the number of data points used to estimate r(X) and
pA(a) (in the MSP case) or pA,Y (a, y) (GEO case). The bounds have a familiar 1/

p
n

dependence on n, and also on m for the terms that correspond to estimation of pA(a)
or pA,Y (a, y). The performance in estimating r(X) is abstracted away by the error
terms ETV(m, �) and EL1(m, �) defined in Assumptions 4 and 5.

2. The dimension L of the dual variable �, already no more than 2|A| to begin with,
enters mostly in logarithmic form.

3. The fairness tolerance ✏ and probability lower bound ⌘ appear in the denominator
(apart from the leading ✏ in Theorem 4). This agrees with the intuition that the
problem becomes harder for stricter fairness constraints (smaller ✏) and smaller groups
(smaller ⌘). Some of the terms further specify the dependence on individual probabil-
ities pA(a), pA,Y (a, y), pY (y), which could be bounded by ⌘ to simplify expressions.

5.3 Discussion and Basic Implications of Assumptions

We now elaborate upon the assumptions stated in Section 5.1.
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5.3.1 Assumption 2

Under this assumption, µ(X) = �
T f(X) is given by (16) (MSP) or (17) (GEO). In this case,

f depends on X only through A and r(X) and we will often use the notation f(A, r(X))
to make this clear. Below we give expressions for f for future reference. For the MSP case
(16), f has |A| components and the ath component is given by

fa(X) = fa(A) =
1(A = a)

pA(a)
� 1. (24)

For the GEO case (17), f has 2|A| components and the (a, y) component is

fa,y(X) = fa,y(A, r(X)) =

8
<

:

1�r(X)
pY (0)

⇣
1(A=a)

pA | Y (a | 0) � 1
⌘
, y = 0

r(X)
pY (1)

⇣
1(A=a)

pA | Y (a | 1) � 1
⌘
, y = 1.

(25)

For the estimate f̂ of f , pA in (24) is replaced by its estimate p̂A, and pY , pA | Y (equivalently
pA,Y ) in (25) are replaced by their estimates p̂Y , p̂A | Y (p̂A,Y ).

The proofs can be extended to the case in which A is not known by also assuming a
consistent estimator of the conditional probability pA |X in the MSP case or pA |X,Y in the
GEO case and accounting for the error of this estimator.

5.3.2 Assumption 3

This assumption is reasonable in that if a protected group is to be considered, it should
represent a constant fraction of the population (and have non-negligible probabilities of
being in classes 0 and 1). The boundedness of the estimated probabilities can be ensured
by truncating them, i.e., setting p̂A(a) max{p̂A(a), ⌘}. If the minimum probability pA(a)
or pA,Y (a, y) is known or imposed, ⌘ can be set equal to this minimum probability. Note
also that we must have ⌘  1/|A| for MSP and ⌘  1/

�
2|A|

�
for GEO, as otherwise pA,

pA,Y would sum to more than 1.
We further assume that the estimates p̂A(a) and p̂A,Y (a, y) are given by the correspond-

ing empirical probabilities in a data set of size m. Each of these empirical probabilities is a
binomial random variable with sample size parameter m and scaled by 1/m. Among many
possible concentration inequalities, we make use of the following bound on the relative error.
It follows from a Cherno↵ bound, as shown in Appendix A.2.1 for completeness.

Lemma 7 With probability at least 1� �, for any single a 2 A or (a, y) 2 A⇥ {0, 1},
����
pA(a)

p̂A(a)
� 1

���� 
p
2 log(2/�)p

mpA(a)�
p
2 log(2/�)

, mpA(a) > 2 log(2/�),

����
pA,Y (a, y)

p̂A,Y (a, y)
� 1

���� 
p
2 log(2/�)

p
mpA,Y (a, y)�

p
2 log(2/�)

, mpA,Y (a, y) > 2 log(2/�).

Note also that under Assumption 3, truncating the estimated probabilities at ⌘ can only
decrease the error and hence does not a↵ect the bounds above.
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5.3.3 Assumption 4–6

In Assumptions 4 and 5, the properties of ETV(m, �) and EL1(m, �) imply that
DTV

�
r̂(X) | A = a, r(X) | A = a

�
and E [|r̂(X)� r(X)|] converge to zero in probability,

similar to Assumption 6. This is true because for any deviation ETV(m, �) > 0 (sim-
ilarly EL1(m, �)) and keeping ETV(m, �) fixed, increasing m requires increasing 1/� to
compensate. Taking m ! 1 thus drives � (the probability of exceeding ETV(m, �)) to
zero.

In Appendix A.2.2, it is shown that Assumption 6 implies the convergence in probability
version of Assumption 5.

Assumption 8 The estimate r̂(X) converges to the population score r(X) in L1 norm:

E [|r̂(X)� r(X)|] p! 0.

Lemma 8 Assumption 6 implies Assumption 8.

We list Assumption 8 separately as the proof of Lemma 17 below (for Theorem 5) requires
only Assumption 8, not Assumption 6.

5.4 Proof Outlines

We begin with the proof of Theorem 6 as it contains elements that are reused in the proofs
of Theorem 4 and 5.

5.4.1 Asymptotic Dual Optimality (Theorem 6)

Proof We prove the theorem by deriving a uniform convergence bound on the absolute
di↵erence |Ĵ(�) � J(�)|. Then if " is such a bound (that holds with high probability), we
have

J(�̂)  Ĵ(�̂) + "  Ĵ(�⇤) + "  J(�⇤) + 2", (26)

where the second inequality is by definition of �̂.
Toward proving uniform convergence, we first establish that it su�ces to solve the dual

problem over a closed and bounded (and hence compact) feasible set. The same argument
applies to both the population and empirical duals. Indeed, it always su�ces to restrict to
a sub-level set defined by the objective value of an initial solution. We take � = 0 as the
initial solution and consider {� : J(�)  J(0)} and {� : Ĵ(�)  Ĵ(0)}. These sub-level sets
are contained within an `1 ball as proved in Appendix A.3.1.

Lemma 9 Given Assumption 7, define the `1 ball

⇤0 =

⇢
� : k�k1 

log 2

✏

�
.

Then we have {� : J(�)  J(0)} ⇢ ⇤0 and {� : Ĵ(�)  Ĵ(0)} ⇢ ⇤0.

Henceforth we take ⇤0 to be the compact feasible set for the dual problem.
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We then consider the supremum over ⇤0 of the absolute di↵erence |Ĵ(�)� J(�)| as the
quantity of interest for uniform convergence. We use the triangle inequality and separate
suprema to decompose this into three terms:

sup
�2⇤0

��Ĵ(�)� J(�)
��  sup

�2⇤0

�����
1

n

nX

i=1

g
�
�
T f̂(ai, r̂(xi)); r̂(xi)

�
� E

h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
�����

+ sup
�2⇤0

���E
h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
� E

h
g
�
�
T f̂(A, r(X)); r(X)

�i���

+ sup
�2⇤0

���E
h
g
�
�
T f̂(A, r(X)); r(X)

�i
� E

⇥
g
�
�
T f(A, r(X)); r(X)

�⇤���.

(27)

The first right-hand side quantity in (27) is the di↵erence between the empirical average
and expectation of the same quantity. The second di↵erence is due to having r̂(X) instead
of r(X), and the third is due to having f̂ instead of f .

The following three lemmas, proven in Appendix A.3, provide bounds on the three right-
hand side terms in (27). Combining them with probabilities �1, �2, �3 and including the
factor of 2 from (26) completes the proof of the theorem.

Lemma 10 Under Assumptions 2, 3, 7 and with probability at least 1� �,

sup
�2⇤0

�����
1

n

nX

i=1

g
�
�
T f̂(ai, r̂(xi)); r̂(xi)

�
� E

h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
�����


✓
1 +

1

✏

✓
1

⌘
� 1

◆◆
(log 2)

 
4

r
2 log(2L)

n
+

r
2 log(2/�)

n

!
.

Lemma 11 Under Assumptions 2, 3, 4, 7 and with probability 1� �,

sup
�2⇤0

���E
h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
� E

h
g
�
�
T f̂(A, r(X)); r(X)

�i���


✓
1 +

1

✏

✓
1

⌘
� 1

◆◆
(log 2)ETV(m, �).

Lemma 12 Under Assumptions 2, 3, and 7 and with probability at least 1 � � and m >

(2/⌘) log(2(L+ 2)/�), in the MSP case,

sup
�2⇤0

���E
h
g
�
�
T f̂(A, r(X)); r(X)

�i
� E

⇥
g
�
�
T f(A, r(X)); r(X)

�⇤���

 log 2

✏

X

a2A

p
2 log(2L/�)p

mpA(a)�
p
2 log(2L/�)

,
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and in the GEO case,

sup
�2⇤0

���E
h
g
�
�
T f̂(A, r(X)); r(X)

�i
� E

⇥
g
�
�
T f(A, r(X)); r(X)

�⇤���

 log 2

✏

0

@
X

y2{0,1}

X

a2A

p
2 log(2(L+ 2)/�)

p
mpA,Y (a, y)�

p
2 log(2(L+ 2)/�)

+
X

y2{0,1}

p
2 log(2(L+ 2)/�)p

mpY (y)�
p
2 log(2(L+ 2)/�)

1

A ,

where L = dim(�).

5.4.2 Asymptotic Primal Feasibility (Theorem 4)

Proof By retracing the derivation of dual problems (14), (15) from the primal problem
(7), it can be verified that the empirical primal corresponding to the empirical dual (19) is

max
r0

� 1

n

nX

i=1

Hb

�
r̂(xi), r

0(xi)
�

s. t.

�����
1

n

nX

i=1

f̂l(ai, r̂(xi))r
0(xi)

�����  ✏ 8 l, (28)

where l = a ranges over A in the MSP case and l = (a, y) ranges over A ⇥ {0, 1} in the
GEO case. Since �̂ optimizes the empirical dual, it follows from the discussion in Section 3
that the plug-in solution (22) satisfies the primal fairness constraints in (28). The task is to
bound the amount by which the plug-in solution violates the population MSP (5) or GEO
(6) constraints.

Using the definitions of f(A, r(X)) for the MSP (24) and GEO (25) cases, it can be seen
that constraints (5) and (6) are equivalent to

��E
⇥
fl(A, r(X))r0(X)

⇤��  ✏ 8 l, (29)

where l ranges over the same values as in (28). Therefore by the triangle inequality, the
violation of constraint l in (29) is bounded by the di↵erence

�����
1

n

nX

i=1

f̂l(ai, r̂(xi))r
0(xi)� E

⇥
fl(A, r(X))r0(X)

⇤
�����.
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We apply the triangle inequality again to separate this di↵erence into three terms that are
analyzed below:

�����
1

n

nX

i=1

f̂l(ai, r̂(xi))r
0(xi)� E

⇥
fl(A, r(X))r0(X)

⇤
�����



�����
1

n

nX
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f̂l(ai, r̂(xi))r
0(xi)� E

h
f̂l(A, r̂(X))r0(X)

i�����

+
���E

h
f̂l(A, r̂(X))r0(X)

i
� E

h
f̂l(A, r(X))r0(X)

i���

+
���E

h
f̂l(A, r(X))r0(X)

i
� E

⇥
fl(A, r(X))r0(X)

⇤���. (30)

For the first right-hand side term in (30), we substitute in the plug-in solution (22) for
r
0(X). To remove the dependence on �̂ (which is a function of the samples i = 1, . . . , n to
which it is fit), we consider a uniform bound over ⇤0:

�����
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f̂l(ai, r̂(xi))r
⇤�
�̂
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T f̂(A, r̂(X)); r̂(X)

�i
�����.

The following bound is derived in Appendix A.4 using statistical learning theory tools
similar to the proof of Lemma 10.

Lemma 13 Under Assumptions 2, 3, 7, with probability at least 1� �,
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In the case of MSP, the second term in (30) is zero because f does not depend on its
second argument r(X). Using (24), the third term in (30) reduces as follows:

����E
✓

1(A = a)

p̂A(a)
� 1(A = a)

pA(a)

◆
r
0(X)

����� =
����E
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��E
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����


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2 log(2L/�)p
mpA(a)�

p
2 log(2L/�)

, (31)
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where the first inequality is due to |r0(X)|  1, and the second inequality from Lemma 7
holds with probability at least 1 � �/L. By a union bound, (31) is true for all a 2 A with
probability at least 1� � and m large enough for the denominator to be positive.

In the GEO case, we prove in Appendix A.4 that the second and third terms in (30) are
bounded as follows.

Lemma 14 In the GEO case, under Assumptions 2, 3, 5 and with probability at least 1��,

���E
h
f̂a,y(A, r̂(X))r0(X)

i
� E

h
f̂a,y(A, r(X))r0(X)

i��� 
✓
1

⌘
� 1

◆
EL1(m, �) 8 (a, y).

Lemma 15 In the GEO case, under Assumptions 2 and 3 and with probability at least 1��
and m > (2/⌘) log(2(L+ 2)/�),

���E
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f̂a,y(A, r(X))r0(X)

i
� E

⇥
fa,y(A, r(X))r0(X)

⇤���
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p
2 log(2(L+ 2)/�)p

mpY (y)�
p
2 log(2(L+ 2)/�)

8 (a, y).

5.4.3 Asymptotic Primal Optimality (Theorem 5)

Proof We use the triangle inequality to bound the di↵erence by the absolute sum of three
di↵erences:
���E
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�⌘i
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�
r(X), r⇤
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⇤T f(A, r(X)); r(X)

��⇤���.

The first di↵erence is due to having r̂(X) instead of r(X) as the second argument to r
⇤,

i.e., as the input score to the transformation. The second di↵erence is due to having
f̂(A, r̂(X)) versus f(A, r(X)), and the third to �̂ versus �⇤.

The following lemmas, proven in Appendix A.5, ensure that the three di↵erences above
converge to zero.

Lemma 16 Under Assumption 6,
���E
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Hb

⇣
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�⌘i��� p! 0.

Lemma 17 Under Assumptions 2, 3, 7, and 8 (implied by Assumption 6),
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Lemma 18 Under Assumptions 2, 3, 4, 7, 9,

���E
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Hb

⇣
r(X), r⇤

�
�̂
T f(A, r(X)); r(X)

�⌘i
� E

⇥
Hb

�
r(X), r⇤

�
�
⇤T f(A, r(X)); r(X)

��⇤��� p! 0.

The proof of Lemma 18 leverages the asymptotic dual optimality of �̂ as n,m ! 1,
implied by Theorem 6. In addition, we use the following assumption, where we define
s(µ; r) = �@r⇤(µ; r)/@µ.

Assumption 9 For any empirical dual solution �̂ and any �̄ on the line segment between
�̂ and a population dual solution �

⇤ (i.e., �̄ = ↵�̂ + (1 � ↵)�⇤ for ↵ 2 [0, 1]), there exists
⌧ > 0 such that

E

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�
�̄
T f(A, r(X)); r(X)

����
�
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⇤�T f(A, r(X))
���
2
�
� ⌧E
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⇤�T f(A, r(X))
���
2
�
.

Assumption 9 is a form of strong convexity assumption on the first term
E
⇥
g
�
�
T f(A, r(X)); r(X)

�⇤
in the population dual objective function, as will be seen

in the proof of Lemma 18. The right-hand expectation in Assumption 9 is an L2 norm
between µ̂(A, r(X)) = �̂

T f(A, r(X)) and µ
⇤(A, r(X)) = �

⇤T f(A, r(X)), while the left-hand
expectation is an L2 norm weighted by s(µ; r). It can be seen from Figure 1a and
verified using the expression in (91) that s(µ; r) � 0 everywhere and s(µ; r) > 0 for
r 2 (0, 1). Hence, the assumption of a lower bound ⌧ > 0 is reasonable. However, whether
Assumption 9 is satisfied depends on the distribution of the induced random variable r(X)
in a way that does not seem straightforward to characterize. Since s(µ; r) can be zero for
r = 0 or r = 1, one requirement may be that r(X) not have all of its probability mass at 0
and 1. It might also be possible in future work to prove Lemma 18 without Assumption 9.

Due in part to Assumption 9, in this work we do not pursue finite-sample guarantees
or convergence rates to augment Theorem 5. Such bounds or rates would depend on the
parameter ⌧ , which is not easy to interpret (and moreover may not be necessary). In
addition, the proof of Lemma 16 is fairly involved and obtaining a rate for it does not
appear straightforward.

6. Empirical Evaluation

This section discusses experimental evaluation of the proposed FST methods for MSP and
GEO constraints and both the direct post-processing solution as well as the pre-processing
extension.

6.1 Experimental Setup

We begin by describing the experimental setup, covering data sets, fairness methods, base
classifiers, and metrics.
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Adult COMPAS German MEPS

number of instances 45222 6167 1000 15830
number of features 13 10 20 41

after one-hot encoding 98 401 58 138
percentage in positive class 24.8 54.5 70.0 17.2
protected attribute 1 gender gender age race

percentage in majority group 67.5 81.0 85.1 64.3
protected attribute 2 race race

percentage in majority group 86.0 65.9

Table 2: Data set statistics

6.1.1 Data Sets

Four data sets were used, the first three of which are standard in the fairness literature:
1) Adult Income, 2) ProPublica’s COMPAS recidivism, 3) German credit risk, 4) Medical
Expenditure Panel Survey (MEPS). Specifically, we used versions pre-processed by an open-
source library for algorithmic fairness (Bellamy et al., 2018). Each data set was randomly
split 10 times into training (75%) and test (25%) sets and all methods were subject to the
same splits.

To facilitate comparison with other methods in Sections 6.2 and 6.3, we used binary-
valued protected attributes and consider gender and race for both adult and COMPAS, age
for German, and race for MEPS. The resulting data set statistics are shown in Table 2. In
Section 6.4, we also evaluate FST on the Adult Income data set with both gender and race
as protected attributes (i.e., four protected groups corresponding to the combinations).

6.1.2 Methods Compared

Since FST is intended for post- and pre-processing, comparisons to other post- and pre-
processing methods are most natural as they accommodate situations a)–c) in Section 1.
For post-processing, we have chosen the method of Hardt et al. (2016) (HPS) and the
reject option method of Kamiran et al. (2012), both as implemented by Bellamy et al.
(2018), as well as the Wass-1 Post-Process p̂S method (WPP) of Jiang et al. (2019). For
pre-processing, the massaging and reweighing methods of Kamiran and Calders (2012) and
the optimization method of Calmon et al. (2017) (OPP) were chosen. Among in-processing
methods, meta-algorithms that work with essentially any base classifier can handle situation
b). The reductions method of Agarwal et al. (2018) (‘red’) was selected from this class.
We also compared to in-processing methods specific to certain types of classifiers, which
do not allow for any of a)–c): fairness constraints (FC) (Zafar et al., 2017c), disparate
mistreatment (DM) (Zafar et al., 2017a), and fair empirical risk minimization (FERM)
(Donini et al., 2018). Lastly, availability of code was an important criterion.

The methods in the previous paragraph have various limitations, summarized by Table 3,
that a↵ect the design of the experiments. First, the post-processing methods (Hardt et al.,
2016; Kamiran et al., 2012; Jiang et al., 2019, specifically the WPP variant for the last one)
require knowledge of the protected attribute A at test time. Accordingly, the experiments
presented in Section 6.2 include A in the features X to make it available to all methods;
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method pre in post SP EO no A at test time scores approx fair any classifier

massage X X X X X
reweigh X X X X X
OPP X X X X X X
HPS X X X
reject X X ? X X
WPP X X X X
FC X X X X X
DM X X X X X

FERM X X X X
reductions X X X X X X X

FST X X X X X X X X

Table 3: Capabilities of methods in comparison. ? refers to an extension implemented by
Bellamy et al. (2018).

experiments without A at test time (excluding Hardt et al., 2016; Kamiran et al., 2012; Jiang
et al., 2019) are presented in Section 6.3. We also encountered computational problems
with the methods of Calmon et al. (2017); Zafar et al. (2017a) and thus perform separate
comparisons with FST on reduced feature sets, reported in Appendix C.

Three versions of FST were evaluated: direct post-processing (FSTpost), the pre-
processing extension (FSTpre), and a second post-processing version (FSTbatch) that as-
sumes that test instances can be processed in a batch rather than one by one. In this case,
the fitting of the dual variables that parametrize FST (Section 4.2) can actually be done
on test data since it does not depend on labels yi (and uses only predicted probabilities for
A if A is unavailable at test time).

6.1.3 Base Classifiers

We used `1-regularized logistic regression (LR) and gradient boosted classification trees
(GBM) from scikit-learn (Pedregosa et al., 2011) as base classifiers. These are used in
di↵erent ways depending on the method: Post-processing methods operate on the scores
produced by the base classifier, pre-processing methods train the base classifier after mod-
ifying the training data, and the reductions method repeatedly calls the base classification
algorithm with di↵erent instance-specific costs. For FSTpre, the same base classifier is used
both to obtain weights wi as well as to fit the re-weighted data. In Appendix C, we used lin-
ear SVMs (with the scaling of Platt, 1999, to output probabilities) to compare with FERM
(Donini et al., 2018). We found it impractical to train nonlinear SVMs on the larger data
sets for reductions and FERM since reductions needs to do so repeatedly and FERM uses
a slower specialized algorithm. For a similar reason, 5-fold cross-validation to select param-
eters for LR (regularization parameter C from [10�4

, 104]) and GBM (minimum number
of samples per leaf from {5, 10, 15, 20, 30}) was done only once per training set. All other
parameters were set to the scikit-learn defaults. The base classifier was then instantiated
with the best parameter value for use by all methods.
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6.1.4 Metrics

Classification performance and fairness were evaluated using both score-based metrics (log
loss, Brier score, and AUC for performance, di↵erences in mean scores (MSP) and GEO for
fairness) and binary label-based metrics (accuracy, di↵erences in mean binary predictions
(SP) and non-generalized EO). While FST optimizes log loss (recall from Section 2.1), we
find that results for Brier score are highly similar and thus defer the log loss results to
Appendix C.1. We account for the fact that the reductions method (Agarwal et al., 2018)
returns a randomized classifier, i.e., a probability distribution over a set of classifiers. For
the binary label-based metrics, we used the methods provided with the code1 for reductions
to compute the metrics. The score-based metrics were computed by evaluating the metric
for each classifier in the distribution and then averaging, weighted by their probabilities.

6.2 Results with Exact Knowledge of Protected Attributes

Figures 2–6 show trade-o↵s between classification performance and fairness for the case
where the features include the protected attribute A. We defer results on the German
credit data set to Appendix C because its small size makes the results less conclusive.
Appendix C also presents separate comparisons with FERM using linear SVMs, and with
OPP and DM using reduced feature sets, as mentioned above.

Each of Figures 2–6 corresponds to one data set-protected attribute combination. The
left two columns show score-based measures: Brier score in the leftmost column and AUC
in the middle column versus MSP or GEO di↵erences on the x-axis. The rightmost column
shows binary label-based measures, namely accuracy vs. SP or EO di↵erences. The rows
correspond to combinations of base classifier (LR, GBM) and fairness measure targeted (SP,
EO). Markers indicate mean values over the 10 splits, error bars indicate standard errors
in the means, and Pareto-optimal points have been connected with line segments to ease
visualization.

Considering first the score-based plots (left and middle columns), FSTpost and FST-
batch achieve trade-o↵s that are at least as good as all other methods, with a few slight
exceptions involving GBMs (e.g., MEPS in Figure 6, AUC vs. MSP di↵erence in Figure 2).
In all cases, the advantage of FST lies in extending the Pareto frontiers farther to the left,
attaining smaller MSP or GEO di↵erences; this is especially apparent for GEO. FSTpre
sometimes performs less well, e.g., with GBM on Adult (Figures 2 and 3) and MEPS (Fig-
ure 6). This is likely due to the additional step of approximating the transformed score
r
0(x) with the output of a classifier fit to the pre-processed data, which incurs loss.

Turning to the binary label-based plots (right column), the trade-o↵s for FSTpost and
FSTbatch generally coincide with or are close to the trade-o↵s of the best method, and
are even sometimes the best, despite not optimizing for binary metrics beyond tuning the
binarization threshold for accuracy. Again FSTpre with GBM is worse on Adult, but
FSTpre with LR is a top performer on COMPAS (Figures 4 and 5). The main disadvantage
of FST is that its trade-o↵ curves may not extend as far to the left as other methods, in
particular on Adult. This is the converse of its advantage for score-based metrics.

Among the existing methods, reductions is the strongest and also the most versatile,
handling all cases that FST does. However, it is an in-processing method and far more

1. https://github.com/microsoft/fairlearn
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Figure 2: Trade-o↵s between fairness and classification performance on the Adult Income
data set with gender as the protected attribute and the protected attribute in-
cluded in the features. Pareto e�cient points are connected by line segments to
ease visualization. Horizontal and vertical bars represent standard errors in the
means over 10 train-test splits. The point achieved by a classifier without fairness
constraints is marked by a black circle.

computationally expensive, requiring an average of nearly 30 calls to the base classification
algorithm compared to one for FSTpost, FSTbatch and two for FSTpre. Reductions also
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Figure 3: Trade-o↵s between fairness and classification performance on the Adult Income
data set with race as the protected attribute and the protected attribute included
in the features.

returns a randomized classifier, which may not be desirable in some applications. The
other in-processing method shown in Figures 2–6 is FC, which applies only to the LR-SP
rows (it is not compatible with GBM). It was not able to substantially reduce unfairness,
particularly on COMPAS and MEPS and possibly due to the larger dimensionality of those
data sets.
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Figure 4: Trade-o↵s between fairness and classification performance on the COMPAS data
set with gender as the protected attribute and the protected attribute included
in the features.

The post-processing methods of Kamiran et al. (2012); Hardt et al. (2016) are not
designed to output scores and hence are omitted from the score-based plots. Reject option
(Kamiran et al., 2012) performs close to the best in many cases, but not on COMPAS-
gender (Figure 4) and MEPS (Figure 6) and at small unfairness values. HPS is limited to
EO, does not have a parameter to vary the trade-o↵, and is less competitive. WPP and the
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Figure 5: Trade-o↵s between fairness and classification performance on the COMPAS data
set with race as the protected attribute and the protected attribute included in
the features.

pre-processing methods of Kamiran and Calders (2012), massaging and reweighing, likewise
do not have a trade-o↵ parameter and are limited to SP. As also observed by Agarwal et al.
(2018), massaging is often dominated by other methods while reweighing lies on the Pareto
frontier but with substantial disparity. WPP results in low disparity but its classification
performance (Brier score, AUC, or accuracy) is sometimes less competitive.
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Figure 6: Trade-o↵s between fairness and classification performance on the MEPS data set
with race as the protected attribute and the protected attribute included in the
features.

6.3 Results with Inexact Knowledge of Protected Attributes

We now present results for the case where A is excluded from the features and is not available
at test time. We compare a smaller set of methods that can handle this case. For FST, we
use the training data to train a probabilistic classifier for A based on X (for MSP) or X,Y

(for GEO), as discussed in Section 4.1. The same base classifier (LR or GBM) is used for
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Figure 7: Trade-o↵s between fairness and classification performance on the Adult Income
data set with gender as the protected attribute and the protected attribute ex-
cluded from the features.

this purpose. The classifier is used to approximate pA |X(a | x) in (14) or pA |X,Y (a | x, y)
in (15), which are in turn used to compute µ(x) in both the fit and transform steps in
Section 4.

The resulting trade-o↵s between classification performance and fairness are shown in
Figures 7 and 8. Many of the patterns observed in Figures 2–6 reappear in Figure 7 (Adult-
gender): FSTpost and FSTbatch dominate the Brier score column; FSTpre achieves worse
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Figure 8: Trade-o↵s between fairness and classification performance on the COMPAS data
set with race as the protected attribute and the protected attribute excluded from
the features.

Brier scores, AUC, and accuracies with GBMs on Adult; FST achieves smaller score-based
disparities while reductions achieves smaller binary prediction disparities (especially for
GEO/EO); and reductions can obtain slightly better trade-o↵s with AUC and accuracy.
All methods are more similar on COMPAS-race in Figure 8. In particular, FSTpre no
longer lags and may have a slight advantage in the AUC column.
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6.4 Results with More Than Two Protected Groups

The FST problem formulation also applies to non-binary protected groups. We evaluate
this case using the Adult Income data set with both gender and race as protected attributes,
giving rise to four protected groups (White males, Black males, White females, Black fe-
males). Here we do not compare FST with other methods as many of them do not handle
more than two protected groups.

The results are shown in Figure 9 in the same style as Figures 2–8. With four protected
groups, MSP and SP di↵erence are computed as the largest di↵erence in means between
any two of the groups. Similarly, GEO and EO di↵erence are computed as the largest
(generalized) FPR or TPR di↵erence between any two groups.

Figure 9 shows similar behavior to Figures 2 and 3 in particular. First, the pre-processing
extension FSTpre results in worse Brier score, AUC, and accuracy values when applied to
GBMs. Second, in the right-most column, the binary label-based measures of SP and EO
di↵erence are not reduced as much as the score-based MSP and GEO di↵erence. In general,
the SP and EO di↵erence values are higher in Figure 9 than in Figures 2 and 3, due to
having four groups (six possible pairs) instead of two. FSTpre does achieve significantly
lower SP di↵erence with LR than the post-processing versions (top right panel).

One di↵erence compared to Figures 2 and 3 is that there is clearer separation between
FSTpost, which is fit on training data, and FSTbatch, which is fit on test data. Specifically,
for EO (bottom two rows), FSTbatch attains better trade-o↵s than FSTpost. A possible
explanation is the greater di�culty of fairness generalization with e↵ectively eight groups
(four protected groups and two labels), which FSTbatch is able to sidestep to a degree.

7. Conclusion

This paper studied the problem of fair probabilistic classification, and specifically the trans-
formation of predicted probabilities (scores) to satisfy fairness constraints with a linearity
property (4) while minimizing cross-entropy (2) with respect to the input scores. We in-
troduced a flexible solution method called FairScoreTransformer (FST), whose output can
be used directly as post-processing and can also be adapted to pre-process training data.
FairScoreTransformer takes advantage of a closed-form expression for the optimal trans-
formed scores, a low-dimensional convex optimization for the Lagrange multiplier parame-
ters, and an ADMM decomposition of this convex optimization to o↵er a computationally
e�cient solution. Theoretically, we showed in Section 5 that FST has asymptotic and
finite-sample optimality and fairness consistency properties. Via a comprehensive set of ex-
periments (Section 6 and Appendix C), we numerically demonstrated that FST is either as
competitive or outperforms several existing fairness intervention mechanisms over a range
of settings and data sets.

We note some limitations. First, FST inherently depends on well-calibrated classifiers
that approximate pY |X and, if necessary, pA |X or pA |X,Y . This assumption of good cal-
ibration was made precise in Assumptions 4–6. A poorly calibrated model (e.g., due lack
of samples) may lead to transformed scores that do not achieve the target fairness crite-
ria. Second, thresholding the transformed scores may have an adverse impact on fairness
guarantees, as seen in the right-hand columns throughout Figures 2–8. Third, the pre-
processing extension of FST depends on the classifier trained on the original data and how
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Figure 9: Trade-o↵s between fairness and classification performance on the Adult Income
data set with both gender and race as protected attributes and the protected
attributes included in the features.

well it approximates pY |X . The quality of this approximation limits subsequent classifiers
trained on the re-weighted data. Finally, like most pre- and post-processing methods, the
score transformation found by the FST is vulnerable to distribution shifts between training
and deployment.

Future directions include: (1) characterizing the convergence rate of the ADMM itera-
tions; (2) exploring alternative optimization algorithms for the empirical dual problem (19);
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(3) adapting FairScoreTransformer to non-binary outcomes Y ; (4) adapting FST to fairness
criteria that are not based on conditional means of scores (e.g., calibration across groups as
in Pleiss et al., 2017); (5) extending to other modalities such as text and images.
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Appendix A. Proofs

This appendix contains all proofs deferred from the main paper, organized by section and
by theorem.

A.1 Proofs for Section 3

Here we provide proofs of Propositions 1 and 3 and derivations for Table 1.

A.1.1 Proof of Proposition 1

Proof We manipulate the conditional mean scores as follows:

E
⇥
r
0(X) | Elj

⇤
=

E
⇥
r
0(X)1((A,X, Y ) 2 Elj)

⇤

Pr(Elj)

=
E
⇥
E
⇥
r
0(X)1((A,X, Y ) 2 Elj) |X

⇤⇤

Pr(Elj)

=
E
⇥
r
0(X) Pr(Elj |X)

⇤

Pr(Elj)
,

where in the second line we have iterated expectations and then moved r
0(X) outside of

the conditional expectation given X. Defining µ(X) according to (11), the Lagrangian (9)
becomes

L(r0,�) = E
⇥
r̂(X) log r0(X) + (1� r̂(X)) log(1� r

0(X))� µ(X)r0(X)
⇤
+

LX

l=1

cl�l. (32)

It can be seen from (32) that the maximization with respect to the primal variable r0(X)
can be done independently for each X = x. Noting that L(r0,�) is a concave function of r0

(sum of logarithmic and linear terms), a necessary and su�cient condition of optimality is
that the partial derivatives with respect to each r

0(x) are equal to zero:

r̂(x)

r0(x)
� 1� r̂(x)

1� r0(x)
� µ(x) = 0 8x 2 X . (33)

This condition can be rearranged into the quadratic equation

µ(x)r0(x)2 � (1 + µ(x))r0(x) + r̂(x) = 0,

whose solution is

r
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after eliminating the root outside of the interval [0, 1].
Lastly, it can be seen that the substitution of r

⇤ into the expectation in (32) yields
E[g(µ(X); r̂(X)]] where
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A.1.2 Proof of Proposition 3

Proof We first specify the exact correspondences between (5), (6) and (4). The MSP
constraint (5) can be obtained from (4) by setting J = 2, l = (a,±) for a 2 A where
+ corresponds to the  ✏ constraint and � to the � �✏ constraint, L = 2|A|, E(a,±),1 =
{A = a}, E(a,±),2 = ⌦ (the entire sample space), cl = ✏, and b(a,±),j = ⌥(�1)j . For the GEO
constraint (6), set J = 2, l = (a, y,±) for a 2 A, y 2 {0, 1} and the same ± correspondences,
L = 4|A|, E(a,y,±),1 = {A = a, Y = y}, E(a,y,±),2 = {Y = y}, cl = ✏, and b(a,y,±),j = ⌥(�1)j .

Mean score parity constraints. For MSP (5), let �
+
a and �

�
a respectively denote the

Lagrange multipliers for the  ✏ and � �✏ constraints for each a 2 A. With the correspon-
dences identified above, the modifier µ(X,�) becomes

µ(X,�) =
X

a2A

�
�
+
a � �

�
a

�✓pA |X(a |X)

pA(a)
� Pr(⌦ |X)

Pr(⌦)

◆
. (34)

For ✏ > 0, at most one of the constraints can be active for each a in (5), and hence at
optimality at most one of �+

a , �
�
a can be non-zero. We can therefore interpret �

+
a , �

�
a as

the positive and negative parts of a real-valued Lagrange multiplier �a = �
+
a � �

�
a , as done

in linear programming (Bertsimas and Tsitsiklis, 1997). Equation (34) can be rewritten as

µ(X,�) =
X

a2A
�a

pA |X(a |X)

pA(a)
�
X

a2A
�a. (35)

If A is included in the features X, then pA |X(a |X) = 1(a = A), where A is the component
of X that is given, and (35) further simplifies to

µ(X,�) =
�A

pA(A)
�
X

a2A
�a.

Interestingly, the only di↵erence between the cases of including or excluding A is that in the
latter, (35) asks for A to be inferred from the available features X, whereas in the former,
A can be used directly.

In the objective function of (13) we have

LX
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X
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�
+
a + �

�
a

�
= ✏k�k1 (36)

upon recognizing that (�+
a + �

�
a ) = |�a|. Combining this with (35), the dual problem for

MSP is

min
�

E
⇥
g
�
µ(X); r̂(X)
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pA(a)
�
X
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�a.
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Generalized equalized odds constraints. For GEO (6), we similarly define Lagrange mul-
tipliers �+

a,y and �
�
a,y for the  ✏ and � �✏ constraints. The modifier µ(X) is given by

µ(X,�) =
X

a2A

X
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�
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+
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where we have similarly identified �a,y = �
+
a,y � �

�
a,y and factored the joint distribution of

A, Y . If A is included in X, (37) simplifies to
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pY |X(y |X)

pY (y)
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pA | Y (A | y) �
X

a2A
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!
.

Again, the di↵erence between the two cases lies in whether A must be inferred, this time
from X and Y . We also have an analogue to (36) where the summation and `1 norm now
run over all (a, y). The dual problem for GEO is therefore

min
�

E
⇥
g
�
µ(X,�); r̂(X)

�⇤
+ ✏k�k1

s. t. µ(X,�) =
X

y2{0,1}

pY |X(y |X)

pY (y)

X

a2A
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✓
pA |X,Y (a |X, y)

pA | Y (a | y) � 1

◆
.

A.1.3 Derivations for Table 1

As stated in Section 3.1, for the right-hand column of Table 1, we assume that the optimal
transformed score r⇤(µ(X); r(X)) is thresholded at the cost-sensitive threshold c to obtain a
binary prediction, Ŷ (X) = 1(r⇤(µ(X); r(X)) > c). By virtue of the monotonicity of r⇤(µ; r)
in r (Lemma 2 and Figure 1b), this is equivalent to thresholding r(X) at a transformed
threshold, which can be determined by setting r⇤ = c and inverting (10) (see Appendix A.1.1
for the quadratic equation that leads to Equation 10). The result is

Ŷ (X) = 1 (r(X)� c(1� c)µ(X) > c) , (38)

i.e., an additive modification to the threshold that is proportional to µ(X).
We now discuss each row in Table 1 in turn. For the case of SP, Menon and Williamson

(2018, Proposition 4) show that the classifier that minimizes (18) is given by

Ŷ
⇤(X) = 1 (r(X)� �(⌘̄(X)� 1/2) > c) , (39)

which is of the form 1(h(X) > c) with h(X) as given in the corresponding entry of Table 1.
Two notes: (1) the 1/2 in (39) comes from the equivalence of their MD criterion to a second
cost-sensitive risk with weight c̄ = 1/2 (Menon and Williamson, 2018, Lemma 2); (2) the
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case where the threshold is met with equality is ignored for simplicity. On the other hand,
for the thresholded optimal fair score (38) and the case of SP, the constraint in (14) gives

µ(X) = �0

✓
1� ⌘̄(X)

pA(0)
� 1

◆
+ �1

✓
⌘̄(X)

pA(1)
� 1

◆
,

and hence

Ŷ (X) = 1

✓
r(X)� c(1� c)

✓
�0

✓
1� ⌘̄(X)

pA(0)
� 1

◆
+ �1

✓
⌘̄(X)

pA(1)
� 1

◆◆
> c

◆
. (40)

This corresponds to the rightmost entry in the SP, A not known row.
For the case of SP and A known, (39) simplifies to (Menon and Williamson, 2018, Cor. 5)

Ŷ
⇤(X) =

(
1 (r(X) + �/2 > c) , A = 0,

1 (r(X)� �/2 > c) , A = 1,

while (40) becomes

Ŷ (X) =

8
<

:
1
⇣
r(X) + c(1� c)pA(1)

⇣
�1

pA(1) �
�0

pA(0)

⌘
> c

⌘
, A = 0,

1
⇣
r(X)� c(1� c)pA(0)

⇣
�1

pA(1) �
�0

pA(0)

⌘
> c

⌘
, A = 1.

The above two equations yield the SP, A known row in Table 1.
For the case of EOpp, Menon and Williamson (2018, Proposition 6) specify the optimal

classifier as follows:

Ŷ
⇤(X) = 1

✓✓
1� �

pY (1)
(⌘̄(X)� 1/2)

◆
r(X) > c

◆
, (41)

where now ⌘̄(X) = pA |X,Y (1 | X, 1). For the thresholded transformed score in (38), an
expression for µ(X) in the case of EOpp is needed. This is given by the constraint in (15)
restricted to y = 1:

µ(X) =
r(X)

pY (1)

✓
�0

✓
1� ⌘̄(X)

pA | Y (0 | 1)
� 1

◆
+ �1

✓
⌘̄(X)

pA | Y (1 | 1)
� 1

◆◆
,

using the definitions of r(X) and ⌘̄(X) and dropping the second subscript y = 1 from �01,
�11. Substituting into (38) yields

Ŷ (X) = 1

✓✓
1� c(1� c)

pY (1)

✓
�0

✓
1� ⌘̄(X)

pA | Y (0 | 1)
� 1

◆
+ �1

✓
⌘̄(X)

pA | Y (1 | 1)
� 1

◆◆◆
r(X) > c

◆
.

(42)
This establishes the third row in Table 1.

For the last case of EOpp and A known, (41) and (42) simplify respectively to

Ŷ
⇤(X) =

8
<

:
1
⇣⇣

1 + �
2pY (1)

⌘
r(X) > c

⌘
, A = 0,

1
⇣⇣

1� �
2pY (1)

⌘
r(X) > c

⌘
, A = 1,

Ŷ (X) =

8
<

:
1
⇣⇣

1 + c(1�c)
pY (1) pA | Y (1 | 1)

⇣
�1

pA | Y (1 | 1) �
�0

pA | Y (0 | 1)

⌘⌘
r(X) > c

⌘
, A = 0,

1
⇣⇣

1� c(1�c)
pY (1) pA | Y (0 | 1)

⇣
�1

pA | Y (1 | 1) �
�0

pA | Y (0 | 1)

⌘⌘
r(X) > c

⌘
, A = 1.
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A.2 Proofs for Section 5.3

We prove two implications of the assumptions discussed in Section 5.3.

A.2.1 Proof of Lemma 7

Proof We prove the lemma for a generic probability p, which can be either pA(a) or
pA,Y (a, y), and its empirical estimate p̂. First we consider the event

p

p̂
� 1 > " () p̂ <

p

1 + "

for " > 0. A version of the Cherno↵-Hoe↵ding theorem bounds the probability of this event
as

Pr

✓
p̂ <

p

1 + "

◆
 exp

✓
�mDKL

✓
p

1 + "

���� p

◆◆
, (43)

recalling the definition of Bernoulli KL divergence DKL(p k q) in (23). It can be shown by
a second-order Taylor expansion that

DKL(p k q) �
(p� q)2

2max{p, q} .

Applying this to (43) yields

Pr

✓
p̂ <

p

1 + "

◆
 exp

✓
�mp

2(1/(1 + ")� 1)2

2p

◆
= exp

 
�mp

2

✓
"

1 + "

◆2
!
.

Setting the right-hand side equal to �/2 and solving for ",

"

1 + "
=

s
2 log(2/�)

mp
,

" =

p
2 log(2/�)

p
mp�

p
2 log(2/�)

, (44)

which requires mp > 2 log(2/�).
For the other direction

p

p̂
� 1 < �" () p̂ >

p

1� "
,

a similar calculation results in

Pr

✓
p̂ >

p

1� "

◆
 exp

✓
� mp"

2

2(1� ")

◆
< exp

 
�mp

2

✓
"

1 + "

◆2
!
.

Hence by taking " as in (44), we have |(p/p̂)� 1|  " with probability at least 1� �.
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A.2.2 Proof of Lemma 8

Proof Assumption 6 means that for every ✏ > 0, we have

Pr (E [DKL(r(X) k r̂(X)]  ✏)! 1,

where the probability is with respect to the random estimator r̂.
Suppose then that r̂ satisfies E [DKL(r(X) k r̂(X)]  2✏. It can be shown via a second-

order Taylor expansion that DKL(r k r̂) � 2(r� r̂)2 for any r, r̂ 2 [0, 1]. Hence we also have
E
⇥
(r(X)� r̂(X))2

⇤
 ✏. Furthermore, by the law of total expectations,

E [|r(X)� r̂(X)|]
= Pr

�
|r(X)� r̂(X)| 

p
✏
�
E
⇥
|r(X)� r̂(X)|

�� |r(X)� r̂(X)| 
p
✏
⇤

+ Pr
�
|r(X)� r̂(X)| >

p
✏
�
E
⇥
|r(X)� r̂(X)|

�� |r(X)� r̂(X)| >
p
✏
⇤


p
✏+ Pr

�
|r(X)� r̂(X)| >

p
✏
�
E
⇥
|r(X)� r̂(X)|

�� |r(X)� r̂(X)| >
p
✏
⇤


p
✏+ Pr

�
|r(X)� r̂(X)| >

p
✏
�
E

|r(X)� r̂(X)|2p

✏

���� |r(X)� r̂(X)| >
p
✏

�


p
✏+

1p
✏
E
⇥
|r(X)� r̂(X)|2

⇤

 2
p
✏,

where we have used the conditions |r(X)� r̂(X)| 
p
✏ and |r(X)� r̂(X)| >

p
✏ to obtain

the first and second inequalities above, respectively. The third inequality follows from a
similar total expectations decomposition of E

⇥
|r(X)� r̂(X)|2

⇤
and the last inequality from

E
⇥
|r(X)� r̂(X)|2

⇤
 ✏.

We have thus shown for any ✏ > 0 that E [DKL(r(X) k r̂(X)]  2✏ implies
E [|r(X)� r̂(X)|]  2

p
✏. Hence

Pr
�
E [|r(X)� r̂(X)|]  2

p
✏
�
� Pr (E [DKL(r(X) k r̂(X)]  2✏)! 1,

as required for Assumption 5.

A.3 Proofs for Asymptotic Dual Optimality

This section completes the proof of Theorem 6 (asymptotic dual optimality), as was outlined
in Section 5.4.1.

A.3.1 Proof of Lemma 9

Proof We prove the lemma only for the sub-level set of the population dual, {� : J(�) 
J(0)}. The argument for the empirical dual Ĵ(�) is entirely analogous. The inclusion in
the `1 ball ⇤0 is proven by showing that the first term E [g(µ(X); r(X))] in J(�) is bounded
from below by a constant. The expectation E [g(µ(X); r(X))] is in fact the dual objective
function corresponding to a primal problem in which ✏ = 0, i.e., perfect fairness is required
(zero MSP or GEO di↵erence). By weak duality, E [g(µ(X); r(X))] is lower bounded by
the objective value of any primal solution satisfying perfect fairness. The set of constant
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score functions r0(X) = r
0 is a family of such solutions since their conditional means do not

depend on A or Y . The corresponding primal objective value is

�E
⇥
Hb(r(X), r0)

⇤
= log r0E [r(X)]+log(1�r0)E [1� r(X)] = mY log r0+(1�mY ) log(1�r0),

where mY = E [Y ] = E [r(X)] since r(X) = pY |X(1 |X). Maximizing this with respect to
r
0 yields

E
⇥
g
�
µ(X); r(X)

�⇤
� max

r02[0,1]
�E

⇥
Hb(r(X), r0)

⇤
= �Hb(mY ,mY ) � � log 2, (45)

where the last inequality is due to binary entropy being bounded by log 2.
Now for � such that J(�)  J(0), we have

E
⇥
g
�
µ(X); r(X)

�⇤
+ ✏k�k1  E

⇥
g
�
0; r(X)

�⇤
= E [�Hb(r(X), r(X))] ,

using (12) and the fact that r⇤(0; r(x)) = r(x). Since binary entropyHb(r, r) is non-negative,

E
⇥
g
�
µ(X); r(X)

�⇤
+ ✏k�k1  0, � : J(�)  J(0).

Combining this with (45) and dividing by ✏ (allowed by Assumption 7) gives the result.

A.3.2 Auxiliary Lemmas

Here we establish bounds on functions that are used to prove subsequent lemmas.

Lemma 19 The function g(µ; r) is 1-Lipschitz in µ for any fixed r 2 [0, 1].

Proof By the mean value theorem,

|g(µ2; r)� g(µ1; r)| =

�����
@g(µ; r)

@µ

����
µ̄

�����|µ2 � µ1|

for any µ1  µ2 and some µ̄ 2 [µ1, µ2]. From (90), |@g(µ; r)/@µ| = r
⇤(µ; r)  1 and the

result follows.

Lemma 20 Under Assumptions 2, 3, and 7,

��g
�
�
T f(x); r(x)

��� 
✓
1 +

1

✏

✓
1

⌘
� 1

◆◆
log 2 , Ḡ 8� 2 ⇤0, x 2 X .

The same bound holds if f is replaced by f̂ and r(x) by r̂(x).

Proof By the triangle inequality and Lemma 19,
��g
�
�
T f(x); r(x)

��� 
��g
�
0; r(x)

���+
��g
�
�
T f(x); r(x)

�
� g

�
0; r(x)

���


��g
�
0; r(x)

���+
���T f(x)

��.
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As in the proof of Lemma 9, |g(0; r(x))| = Hb(r(x), r(x))  log 2, while |�T f(x)|  k�k1kfk1
from Hölder’s inequality. Thus

��g
�
�
T f(x); r(x)

���  log 2 + k�k1kfk1,

and combining this with Lemmas 9 and 21 yields the result. The same proof holds
if f is replaced by f̂ and r(x) by r̂(x) since Lemma 21 applies equally to f̂ and both
r(x), r̂(x) 2 [0, 1].

Lemma 21 Under Assumptions 2 and 3,

kf(x)k1 
1

⌘
� 1, kf̂(x)k1 

1

⌘
� 1 8x 2 X .

Proof For the MSP case, expression (24) implies that

kf(X)k1  max
a2A

max

⇢
1

pA(a)
� 1, 1

�
= max

⇢
max
a2A

1

pA(a)
� 1, 1

�
 1

⌘
� 1

by Assumption 3. The same is true for f̂ .
For the GEO case, we infer from (25) that

kf(X)k1  max
a2A, r2[0,1]

max

⇢
1� r(X)

pY (0)

✓
1

pA | Y (a | 0) � 1

◆
,
r(X)

pY (1)

✓
1

pA | Y (a | 1) � 1

◆
,

1� r(X)

pY (0)
,
r(X)

pY (1)

�

 max
a2A

max

⇢
1

pY (0)

✓
1

pA | Y (a | 0) � 1

◆
,

1

pY (1)

✓
1

pA | Y (a | 1) � 1

◆
,

1

pY (0)
,

1

pY (1)

�

 max

⇢
1

⌘
� 1

pY (0)
,
1

⌘
� 1

pY (1)

�

 1

⌘
� 1,

where the second line results from four separate maximizations over r, the third line from
applying Assumption 3 to the first two terms and using |A| � 2 to drop the last two terms,
and the last line from pY (y)  1. Again the same is true for f̂ .

A.3.3 Proof of Lemma 10

Proof The quantity of interest is the supremum over a set ⇤0 of the di↵erence between an
empirical average and expectation of the same function g

�
�
T f̂(A, r̂(X)); r̂(X)

�
, which is a

function of parameters � 2 ⇤0 and random variables A, r̂(X). This di↵erence is analogous
to the di↵erence between empirical and expected risks in statistical learning theory, with
g playing the role of the loss function and � the model parameters. The supremum can
therefore be bounded using learning theory tools for establishing uniform convergence.
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We consider in particular the Rademacher complexity of the function class
{g
�
�
T f̂(A, r̂(X)); r̂(X)

�
: � 2 ⇤0}:

Rn(⇤0) = E
"
sup
�2⇤0

�����
1

n

nX

i=1

�ig
�
�
T f̂(Ai, r̂(Xi)); r̂(Xi)

�
�����

#
, (46)

where �i, i = 1, . . . , n are i.i.d. Rademacher random variables and the expectation is with
respect to {�i, Ai, Xi}ni=1. Using the standard learning theory arguments of McDiarmid’s
inequality and symmetrization (see e.g., Liang, 2016; Duchi, and references therein), the
supremum of the one-sided di↵erence satisfies

Pr

 
sup
�2⇤0

1

n

nX

i=1

g
�
�
T f̂(ai, r̂(xi)); r̂(xi)

�
� E

h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
> 2Rn(⇤0) + "

!

 exp

✓
� n"

2

2Ḡ2
,

◆
, (47)

where the only di↵erence is that g is bounded by Ḡ defined in Lemma 20 instead of the
unit interval [0, 1], and hence Ḡ2 appears in the exponent above. A similar bound holds for
the di↵erence in the other direction. Setting the right-hand side of (47) equal to �/2 and
applying the union bound, we therefore have

sup
�2⇤0

�����
1

n

nX

i=1

g
�
�
T f̂(ai, r̂(xi)); r̂(xi)

�
� E

h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
�����  2Rn(⇤0)+Ḡ

r
2 log(2/�)

n

(48)
with probability at least 1� �.

The proof is completed by obtaining an upper bound on the Rademacher complexity
Rn(⇤0). For this, we consider the empirical Rademacher complexity obtained by condition-
ing on Ai = ai, r̂(Xi) = r̂i in (46):

R̂n(⇤0) = E
"
sup
�2⇤0

�����
1

n

nX

i=1

�ig
�
�
T f̂i; r̂i

�
�����

#
,

where f̂i = f̂(ai, r̂i) is also fixed. The Rademacher complexity Rn(⇤0) is then the expectation
of R̂n(⇤0) over {Ai, r̂(Xi)}. First we subtract and add g(0; r̂i),

R̂n(⇤0) = E
"
sup
�2⇤0

�����
1

n

nX

i=1

�i

⇣
g
�
�
T f̂i; r̂i

�
� g

�
0; r̂i

�
+ g

�
0; r̂i

�⌘
�����

#
,

and treat g(0; r̂i) as a �-independent translation of the function class. Recalling from the
proof of Lemma 9 that |g(0; r̂i)| = Hb(r̂i, r̂i)  log 2 and using Bartlett and Mendelson
(2002, Thm. 12.5),

R̂n(⇤0)  E
"
sup
�2⇤0

�����
1

n

nX

i=1

�i

⇣
g
�
�
T f̂i; r̂i

�
� g

�
0; r̂i

�⌘
�����

#
+

log 2p
n
. (49)
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The first term in (49) is the empirical Rademacher complexity of a composition of functions,
f̂i 7! �

T f̂i and µ 7! g(µ; r̂i) � g(0; r̂i). By Lemma 19, the second function satisfies the
conditions of the Lipschitz composition property of Ledoux and Talagrand (1991) (see also
Bartlett and Mendelson, 2002, Thm. 12.4), with Lipschitz constant 1. Applying their lemma
results in

E
"
sup
�2⇤0

�����
1

n

nX

i=1

�i

⇣
g
�
�
T f̂i; r̂i

�
� g

�
0; r̂i

�⌘
�����

#
 2E

"
sup
�2⇤0

�����
1

n

nX

i=1

�i�
T f̂i

�����

#

 2E
"

sup
�2B1((log 2)/✏)

�����
1

n

nX

i=1

�i�
T f̂i

�����

#
,

where the second inequality is due to ⇤0 being contained in the `1 ball of radius (log 2)/✏,
B1((log 2)/✏). Since �

T f̂i is now linear in �, we may use the standard steps of restricting to
the vertices of B1((log 2)/✏) and applying Massart’s finite class lemma to obtain

E
"
sup
�2⇤0

�����
1

n

nX

i=1

�i

⇣
g
�
�
T f̂i; r̂i

�
� g

�
0; r̂i

�⌘
�����

#
 2 sup

�2B1((log 2)/✏)

���T f̂i
��
r

2 log(2L)

n
,

with L = dim(�). Applying Hölder’s inequality
���T f̂i

��  k�k1
��f̂i

��
1 and Lemma 21,

E
"
sup
�2⇤0

�����
1

n

nX

i=1

�i

⇣
g
�
�
T f̂i; r̂i

�
� g

�
0; r̂i

�⌘
�����

#
 2 log 2

✏

✓
1

⌘
� 1

◆r
2 log(2L)

n
. (50)

Substituting (50) into (49) and taking expectations,

Rn(⇤0) 
2 log 2

✏

✓
1

⌘
� 1

◆r
2 log(2L)

n
+

log 2p
n

< 2Ḡ

r
2 log(2L)

n
, (51)

where the last inequality comes from 1 < 2
p
2 log(2L).

Combining (48) and (51) yields the result.

A.3.4 Proof of Lemma 11

Proof We regard E
h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
as the expectation of a function of A

and induced random variable r̂(X), and E
h
g
�
�
T f̂(A, r(X)); r(X)

�i
as the expectation

of the same function of A and induced random variable r(X). Lemma 20 asserts that
g(�T f̂(a, r(x)); r(x)) is a bounded (and continuous) function for all � 2 ⇤0 and x 2 X .
Therefore the convergence in distribution stated in Assumption 4 can be used to bound
the di↵erence in expectations.
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More concretely, we have with probability at least 1� �,

sup
�2⇤0

���E
h
g
�
�
T f̂(A, r̂(X)); r̂(X)

�i
� E

h
g
�
�
T f̂(A, r(X)); r(X)

�i���

= sup
�2⇤0

�����
X

a2A
pA(a)

⇣
E
h
g
�
�
T f̂(a, r̂(X)); r̂(X)

�
|A = a

i
� E

h
g
�
�
T f̂(a, r(X)); r(X)

�
|A = a

i⌘�����

 sup
�2⇤0

X

a2A
pA(a) sup

x2X

��g
�
�
T f̂(a, r(x)); r(x)

���DTV
�
r̂(X) |A = a, r(X) |A = a

�


✓
1 +

1

✏

✓
1

⌘
� 1

◆◆
(log 2)

X

a2A
pA(a)DTV

�
r̂(X) |A = a, r(X) |A = a

�


✓
1 +

1

✏

✓
1

⌘
� 1

◆◆
(log 2)ETV(m, �).

The first inequality bounds the di↵erence in expectations by the product of the total
variation distance and the supremum of the function g. We then apply Lemma 20 to obtain
the second inequality and invoke Assumption 4.

A.3.5 Proof of Lemma 12

Proof Let us first consider a single point x 2 X . Using the Lipschitz property of g in
Lemma 19,

��g
�
�
T f̂(a, r(x)); r(x)

�
� g

�
�
T f(a, r(x)); r(x)

��� 
����T

�
f̂(a, r(x))� f(a, r(x))

����.

Hölder’s inequality then gives

��g
�
�
T f̂(a, r(x)); r(x)

�
� g

�
�
T f(a, r(x)); r(x)

���  k�k1
��f̂(a, r(x))� f(a, r(x))

��
1. (52)

Now for the expectations over X , it follows from the triangle inequality, (52), and Lemma 9
that

sup
�2⇤0

���E
h
g
�
�
T f̂(A, r(X)); r(X)

�i
� E

⇥
g
�
�
T f(A, r(X)); r(X)

�⇤���

 sup
�2⇤0

E
h���g

�
�
T f̂(A, r(X)); r(X)

�
� g

�
�
T f(A, r(X)); r(X)

����
i

 sup
�2⇤0

k�k1E
h��f̂(A, r(X))� f(A, r(X))

��
1

i

 log 2

✏
E
h��f̂(A, r(X))� f(A, r(X))

��
1

i
. (53)

Next we obtain bounds on the expected `1 norm in (53), considering the MSP and
GEO cases separately. In the former case, from (24) we obtain

��f̂(A, r(X))� f(A, r(X))
��
1 = max

a2A
1(A = a)

����
1

p̂A(a)
� 1

pA(a)

���� =
����

1

p̂A(A)
� 1

pA(A)

����.
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Hence

E
h��f̂(A, r(X))� f(A, r(X))

��
1

i
=
X

a2A
pA(a)

����
1

p̂A(a)
� 1

pA(a)

����

=
X

a2A

����
pA(a)

p̂A(a)
� 1

����.

Applying Lemma 7 to each term, together with a union bound over a 2 A, gives

E
h��f̂(A, r(X))� f(A, r(X))

��
1

i

X

a2A

p
2 log(2L/�)p

mpA(a)�
p
2 log(2L/�)

(54)

with probability at least 1� �, noting that |A| = L here.
For the GEO case, we use (25), the definition r(X) = pY |X(1 | X), and the triangle

inequality to obtain
��f̂(A, r(X))� f(A, r(X))

��
1

= max
y2{0,1}

pY |X(y |X)max
a2A

����1(A = a)

✓
1

p̂A,Y (a, y)
� 1

pA,Y (a, y)

◆
�
✓

1

p̂Y (y)
� 1

pY (y)

◆����

 max
y2{0,1}

pY |X(y |X)

✓����
1

p̂A,Y (A, y)
� 1

pA,Y (A, y)

����+
����

1

p̂Y (y)
� 1

pY (y)

����

◆


X

y2{0,1}

pY |X(y |X)

✓����
1

p̂A,Y (A, y)
� 1

pA,Y (A, y)

����+
����

1

p̂Y (y)
� 1

pY (y)

����

◆
.

Taking expectations with respect to X (which includes A),

E
h��f̂(A, r(X))� f(A, r(X))

��
1

i


X

y2{0,1}

X

a2A
pA,Y (a, y)

����
1

p̂A,Y (a, y)
� 1

pA,Y (a, y)

����

+
X

y2{0,1}

pY (y)

����
1

p̂Y (y)
� 1

pY (y)

����

=
X

y2{0,1}

X

a2A

����
pA,Y (a, y)

p̂A,Y (a, y)
� 1

����+
X

y2{0,1}

����
pY (y)

p̂Y (y)
� 1

����.

The final right-hand side is a sum of 2(|A| + 1) = L + 2 terms of the form in Lemma 7.
Applying this lemma and a union bound over the L+2 events, we have with probability at
least 1� �,

E
h��f̂(A, r(X))� f(A, r(X))

��
1

i


X

y2{0,1}

X

a2A

p
2 log(2(L+ 2)/�)

p
mpA,Y (a, y)�

p
2 log(2(L+ 2)/�)

+
X

y2{0,1}

p
2 log(2(L+ 2)/�)p

mpY (y)�
p

2 log(2(L+ 2)/�)
. (55)

The proof is completed by substituting (54) or (55) into (53).
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A.4 Proofs for Asymptotic Primal Feasibility

This section completes the proof of Theorem 4 (asymptotic primal feasibility), following the
outline in Section 5.4.2.

A.4.1 Proof of Lemma 13

Proof We follow the same steps and use the same learning theory tools as in the proof of
Lemma 10. The function class is now

n
f̂l(A, r̂(X))r⇤

�
�
T f̂(A, r̂(X)); r̂(X)

�
: � 2 ⇤0

o

and we consider its Rademacher complexity, again denoted by Rn(⇤0). Below we note the
di↵erences with respect to the proof of Lemma 10.

1. Using Lemma 21 and the fact that |r⇤(·)|  1, the class of functions is uniformly
bounded by (1/⌘) � 1 in absolute value. Thus (1/⌘) � 1 replaces Ḡ in the last term
in (48).

2. Considering the empirical Rademacher complexity fixes the factor f̂l(ai, r̂(xi)). We
again use Lemma 21 to bound this factor by (1/⌘)�1. We then focus on determining
the empirical Rademacher complexity of

�
r
⇤�
�
T f̂(A, r̂(X)); r̂(X)

�
: � 2 ⇤0

 
, scaled

by (1/⌘)� 1.

3. The translating function that is added and subtracted is r
⇤(0; r̂i) instead of g(0; r̂i).

Since |r⇤(0; r̂i)| = |r̂i|  1, the last (log 2)/
p
n term in (49) is replaced by 1/

p
n (which

will be scaled by (1/⌘)� 1).

4. From (91), it can be verified that |@r⇤(µ; r̂)/@µ|  1. Hence, like g(µ; r̂), r⇤(µ; r̂) is
1-Lipschitz in µ.

5. After using the Lipschitz composition property, the resulting class of `1-bounded linear
functions is the same as in the proof of Lemma 10.

In summary, we obtain

Rn(⇤0) 
✓
1

⌘
� 1

◆ 
2 log 2

✏

✓
1

⌘
� 1

◆r
2 log(2L)

n
+

1p
n

!

and with probability at least 1� �,

sup
�2⇤0

�����
1

n

nX

i=1

f̂l(ai, r̂(xi))r
⇤�
�
T f̂(ai, r̂(xi)); r̂(xi)

�
� E

h
f̂l(A, r̂(X))r⇤

�
�
T f̂(A, r̂(X)); r̂(X)

�i
�����


✓
1

⌘
� 1

◆ 
4 log 2

✏

✓
1

⌘
� 1

◆r
2 log(2L)

n
+

2p
n
+

r
2 log(2/�)

n

!
.

The proof is completed by dividing the probability � over l = 1, . . . , L and applying the
union bound.
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A.4.2 Proof of Lemma 14

Proof In the case of GEO, the index l = (a, y) for a 2 A and y 2 {0, 1}. Using (25), the
quantity of interest is given by

���E
h
f̂a,y(A, r̂(X))r0(X)

i
� E

h
f̂a,y(A, r(X))r0(X)

i���

=

����E

(r(X)� r̂(X))

✓
1(A = a)

p̂A,Y (a, y)
� 1

p̂Y (y)

◆
r
0(X)

�����

 E
��r(X)� r̂(X)

��
����
1(A = a)

p̂A,Y (a, y)
� 1

p̂Y (y)

����r
0(X)

�
.

Similar to the proof of Lemma 21, we have
����
1(A = a)

p̂A,Y (a, y)
� 1

p̂Y (y)

����  max
a2A,y2{0,1}

max

⇢
1

p̂A,Y (a, y)
� 1

p̂Y (y)
,

1

p̂Y (y)

�
 1

⌘
� 1,

and |r0(X)|  1. Hence we obtain the further bounds

���E
h
f̂a,y(A, r̂(X))r0(X)

i
� E

h
f̂a,y(A, r(X))r0(X)

i��� 
✓
1

⌘
� 1

◆
E
⇥��r(X)� r̂(X)

��⇤


✓
1

⌘
� 1

◆
EL1(m, �),

where the last bound holds with probability 1� � by Assumption 5.

A.4.3 Proof of Lemma 15

Proof As in Lemma 14, the index l = (a, y) for a 2 A and y 2 {0, 1}. We prove the lemma
for y = 0; the case y = 1 is similar.

Using (25), the quantity of interest is given by

���E
h
f̂a,0(A, r(X))r0(X)

i
� E

⇥
fa,0(A, r(X))r0(X)

⇤���

=

����E

(1� r(X))

✓
1(A = a)

p̂A,Y (a, 0)
� 1(A = a)

pA,Y (a, 0)
� 1

p̂Y (0)
+

1

pY (0)

◆
r
0(X)

�����.

Recalling that 1 � r(x) = pY |X(0 | x) and using Bayes’ rule pY |X(0 | x)pX(x) =
pY (0)pX | Y (x | 0), this can be rewritten as

���E
h
f̂a,0(A, r(X))r0(X)

i
� E

⇥
fa,0(A, r(X))r0(X)

⇤��� (56)

=

����E

pY (0)

✓
1(A = a)

p̂A,Y (a, 0)
� 1(A = a)

pA,Y (a, 0)
� 1

p̂Y (0)
+

1

pY (0)

◆
r
0(X)

���� Y = 0

�����


����E


pY (0)

✓
1(A = a)

p̂A,Y (a, 0)
� 1(A = a)

pA,Y (a, 0)

◆
r
0(X)

���� Y = 0

�����+
����E

✓
1� pY (0)

p̂Y (0)

◆
r
0(X)

���� Y = 0

�����.

(57)

54



Optimized Score Transformation for Consistent Fair Classification

The second term in (57) is bounded similarly as in the proof of Theorem 4 for the MSP
case:

����E
✓

1� pY (0)

p̂Y (0)

◆
r
0(X)

���� Y = 0

����� =
����1�

pY (0)

p̂Y (0)

����
��E

⇥
r
0(X) | Y = 0

⇤��


����1�

pY (0)

p̂Y (0)

����


p
2 log(2/�)p

mpY (0)�
p
2 log(2/�)

, (58)

using |r0(X)|  1 and Lemma 7 (with probability 1 � �). The first term in (57) is also
similar:

����E

pY (0)

✓
1(A = a)

p̂A,Y (a, 0)
� 1(A = a)

pA,Y (a, 0)

◆
r
0(X)

���� Y = 0

�����

=

����E

pY (0)pA | Y (a | 0)

✓
1

p̂A,Y (a, 0)
� 1

pA,Y (a, 0)

◆
r
0(X)

����A = a, Y = 0

�����

=

����
pA,Y (a, 0)

p̂A,Y (a, 0)
� 1

����
��E

⇥
r
0(X) |A = a, Y = 0

⇤��


����
pA,Y (a, 0)

p̂A,Y (a, 0)
� 1

����


p
2 log(2/�)

p
mpA,Y (a, 0)�

p
2 log(2/�)

, (59)

again using |r0(X)|  1 and Lemma 7. Considering all a 2 A and y 2 {0, 1}, there are
2|A|+ 2 = L+ 2 deviations to control in (58), (59), and hence we divide the probability �

by L + 2 and apply the union bound. The result then follows from substituting (58), (59)
into (57).

A.5 Proofs for Asymptotic Primal Optimality

We now complete the proof of Theorem 5 as outlined in Section 5.4.3.

A.5.1 Proof of Lemma 16

Proof Let µ̂(x) = �̂
T f̂(a, r̂(x)). Using the definition of binary cross-entropy in (2), the

di↵erence in question can be written as
�����E

"
r(X) log

r
⇤�
µ̂(X); r(X)

�

r⇤
�
µ̂(X); r̂(X)

� + (1� r(X)) log
1� r

⇤�
µ̂(X); r(X)

�

1� r⇤
�
µ̂(X); r̂(X)

�
#�����. (60)

For µ̂(X) = 0, r⇤ is an identity mapping and (60) reduces to
����E


r(X) log

r(X)

r̂(X)
+ (1� r(X)) log

1� r(X)

1� r̂(X)

����� = E [DKL(r(X) k r̂(X))] .
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Hence Assumption 6 is a necessary condition for (60) to converge to zero in probability. We
will show that Assumption 6 is su�cient as well.

Toward this end, we apply the triangle inequality to bound (60) as follows:

�����E
"
r(X) log

r
⇤�
µ̂(X); r(X)

�

r⇤
�
µ̂(X); r̂(X)

� + (1� r(X)) log
1� r

⇤�
µ̂(X); r(X)

�

1� r⇤
�
µ̂(X); r̂(X)

�
#�����

 E
"�����r(X) log

r
⇤�
µ̂(X); r(X)

�

r⇤
�
µ̂(X); r̂(X)

� + (1� r(X)) log
1� r

⇤�
µ̂(X); r(X)

�

1� r⇤
�
µ̂(X); r̂(X)

�
�����

#

 E
"
r(X)

�����log
r
⇤�
µ̂(X); r(X)

�

r⇤
�
µ̂(X); r̂(X)

�
�����+ (1� r(X))

�����log
1� r

⇤�
µ̂(X); r(X)

�

1� r⇤
�
µ̂(X); r̂(X)

�
�����

#

 E
"
r(X) sup

µ

�����log
r
⇤�
µ; r(X)

�

r⇤
�
µ; r̂(X)

�
�����+ (1� r(X)) sup

µ

�����log
1� r

⇤�
µ; r(X)

�

1� r⇤
�
µ; r̂(X)

�
�����

#
.

The last inequality results from replacing µ̂(X) with the supremum over µ for a given r(x),
r̂(x). Applying Lemma 22 and defining

D̄(r k r̂) = r

����log
1�
p
1� r

1�
p
1� r̂

����+ (1� r)

����log
1�
p
r

1�
p
r̂

����

results in

�����E
"
r(X) log

r
⇤�
µ̂(X); r(X)

�

r⇤
�
µ̂(X); r̂(X)

� + (1� r(X)) log
1� r

⇤�
µ̂(X); r(X)

�

1� r⇤
�
µ̂(X); r̂(X)

�
#�����  E

⇥
D̄(r(X) k r̂(X))

⇤
.

(61)
We have thus eliminated µ̂(X) from the expectation.

We proceed to bound the right-hand side of (61). Using the law of total expectations,
for any ✏ > 0,

E
⇥
D̄(r(X) k r̂(X))

⇤

= Pr
�
DKL(r(X) k r̂(X))  ✏

�
E
⇥
D̄(r(X) k r̂(X))

��DKL(r(X) k r̂(X))  ✏
⇤

+ Pr
�
DKL(r(X) k r̂(X)) > ✏

�
E
⇥
D̄(r(X) k r̂(X))

��DKL(r(X) k r̂(X)) > ✏
⇤

 sup
r,r̂

�
D̄(r k r̂) : DKL(r k r̂)  ✏

 

+ Pr
�
DKL(r(X) k r̂(X)) > ✏

�
E
⇥
D̄(r(X) k r̂(X))

��DKL(r(X) k r̂(X)) > ✏
⇤
,
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where we have bounded the first expectation by the conditional supremum. Applying
Lemma 24 to the second expectation,

E
⇥
D̄(r(X) k r̂(X))

⇤

 sup
r,r̂

�
D̄(r k r̂) : DKL(r k r̂)  ✏

 
+ 2Pr

�
DKL(r(X) k r̂(X)) > ✏

�

+ Pr
�
DKL(r(X) k r̂(X)) > ✏

�
E [DKL(r(X) k r̂(X)) |DKL(r(X) k r̂(X)) > ✏]

 sup
r,r̂

�
D̄(r k r̂) : DKL(r k r̂)  ✏

 
+ 2Pr

�
DKL(r(X) k r̂(X)) > ✏

�

+ E [DKL(r(X) k r̂(X))]

 sup
r,r̂

�
D̄(r k r̂) : DKL(r k r̂)  ✏

 
+

✓
1 +

2

✏

◆
E [DKL(r(X) k r̂(X))] . (62)

The second inequality above is implied by a similar application of total expectation to
E [DKL(r(X) k r̂(X))], and the third inequality is due to Markov’s inequality. By Assump-
tion 6, the last term in (62) converges to zero in probability for any ✏ > 0.

We now take ✏! 0 and argue that the first right-hand side term in (62) also converges
to zero. This is because the condition DKL(r k r̂)  ✏ excludes the cases r̂ = 0 unless
r = 0, and r̂ = 1 unless r = 1, which would cause D̄(r k r̂) to diverge. D̄(r k r̂) is therefore
bounded and continuous on the set {(r, r̂) : DKL(r k r̂)  ✏}. As ✏ ! 0, this set shrinks
toward the line r = r̂ where D̄(r k r̂) = 0. The lemma is thus proven by combining (61),
(62) and taking ✏! 0.

A.5.2 Auxiliary Lemmas for Lemma 16

Lemma 22 For r
⇤(µ; r) defined in (10),

sup
µ

����log
r
⇤(µ; r)

r⇤(µ; r̂)

���� =
����log

1�
p
1� r

1�
p
1� r̂

����,

sup
µ

����log
1� r

⇤(µ; r)

1� r⇤(µ; r̂)

���� =
����log

1�
p
r

1�
p
r̂

����.

Proof We prove the first identity. From (10) we have

@

@µ
log r⇤(µ; r) =

1

1 + µ�
p
(1 + µ)2 � 4rµ

 
1� 1 + µ� 2rp

(1 + µ)2 � 4rµ

!
� 1

µ

=

p
(1 + µ)2 � 4rµ� (1 + µ) + 2r

1 + µ�
p

(1 + µ)2 � 4rµ

1p
(1 + µ)2 � 4rµ

� 1

µ

=
�4rµ+ 2r

⇣
1 + µ+

p
(1 + µ)2 � 4rµ

⌘

4rµ
p
(1 + µ)2 � 4rµ

� 1

µ

=
1� µ

2µ
p
(1 + µ)2 � 4rµ

� 1

2µ
,
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where the third equality comes from multiplying numerator and denominator by 1 + µ +p
(1 + µ)2 � 4rµ and using the identity (a� b)(a+ b) = a

2 � b
2. Hence

@

@µ
log

r
⇤(µ; r)

r⇤(µ; r̂)
=

1� µ

2µ

 
1p

(1 + µ)2 � 4rµ
� 1p

(1 + µ)2 � 4r̂µ

!

=
1� µ

2µ

 p
(1 + µ)2 � 4r̂µ�

p
(1 + µ)2 � 4rµp

(1 + µ)2 � 4rµ
p
(1 + µ)2 � 4r̂µ

!

=
(1� µ)

�
r
⇤(µ; r)� r

⇤(µ; r̂)
�

p
(1 + µ)2 � 4rµ

p
(1 + µ)2 � 4r̂µ

, (63)

using the definition of r⇤(µ; r) (10) in the last line.
We now consider three cases: (1) r = r̂, (2) r > r̂, and (3) r < r̂. (1) If r = r̂,

then log(r⇤(µ; r)/r⇤(µ; r̂)) = 0 for all µ and the identity is true. (2) For r > r̂, Lemma 2
implies that r⇤(µ; r) > r

⇤(µ; r̂) also. It follows that log(r⇤(µ; r)/r⇤(µ; r̂)) is positive for all
µ. Furthermore from (63), log(r⇤(µ; r)/r⇤(µ; r̂)) increases with µ for µ < 1 and decreases
for µ > 1. The maximum therefore occurs at µ = 1, and the substitution of r⇤(1; r) =
1 �
p
1� r yields the desired identity. (3) For r < r̂, the same arguments show that

log(r⇤(µ; r)/r⇤(µ; r̂)) is negative for all µ, decreases with µ for µ < 1, and increases for
µ > 1. The maximum absolute value occurs therefore at µ = 1 as well.

The proof of the second identity in the lemma statement is analogous by symmetry
and shows that the maximizing value is µ = �1.

Lemma 23 For r, r̂ 2 [0, 1],

�0.6140  r log
1�
p
1� r

1�
p
1� r̂

 r log
r

r̂
+ log 2,

�0.6140  (1� r) log
1�
p
r

1�
p
r̂
 (1� r) log

1� r

1� r̂
+ log 2.

Proof As with the proof of Lemma 22, we prove only the first line of inequalities. The
second line follows by symmetry.

To obtain the lower bound, we observe that the quantity of interest is minimized for any
r 2 [0, 1] by taking r̂ = 1. Numerical minimization of the resulting quantity r log(1�

p
1� r)

over r 2 [0, 1] then yields the lower bound.
To obtain the upper bound, we maximize the quantity

r log
1�
p
1� r

1�
p
1� r̂

� r log
r

r̂
= r log

✓
1�
p
1� r

r

r̂

1�
p
1� r̂

◆
. (64)

It can be verified that
d

dr̂

r̂

1�
p
1� r̂

= � 1

2
p
1� r̂

< 0, (65)

which implies that (64) is monotonically decreasing in r̂ for any r 2 [0, 1] and is maximized
by taking r̂ ! 0. By l’Hôpital’s rule,

lim
r̂!0

r̂

1�
p
1� r̂

= 2, (66)
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and it remains to maximize

r log
2(1�

p
1� r)

r
. (67)

The calculation in (65) also implies that log(2(1 �
p
1� r)/r) is monotonically increasing

in r, and (66) implies that

lim
r!0

log
2(1�

p
1� r)

r
= 0,

so that log(2(1 �
p
1� r)/r) � 0 for r 2 [0, 1]. It follows that the quantity in (67) is

monotonically increasing in r, as the product of two non-negative and monotonically
increasing functions, and is therefore maximized at r = 1, yielding log 2. This proves the
upper bound.

Lemma 24 For r, r̂ 2 [0, 1],

D̄(r k r̂) ⌘ r

����log
1�
p
1� r

1�
p
1� r̂

����+ (1� r)

����log
1�
p
r

1�
p
r̂

����  DKL(r k r̂) + 2.

Proof Again it su�ces to bound the first term of D̄(r k r̂) because the second term is
analogous. From Lemma 23 we have

r

����log
1�
p
1� r

1�
p
1� r̂

���� = max

⇢
r log

1�
p
1� r

1�
p
1� r̂

,�r log 1�
p
1� r

1�
p
1� r̂

�

 max
n
r log

r

r̂
+ log 2, 0.6140

o
,

where we note that r log(r/r̂) + log 2 is always positive since its minimum value is log 2 �
1/e = 0.3253 at (r, r̂) = (1/e, 1). We may further and more simply bound the above by

max
n
r log

r

r̂
+ log 2, 0.6140

o
 r log

r

r̂
+

1

e
+ 0.6140 < log

r

r̂
+ 1,

from which the result follows.

A.5.3 Proof of Lemma 17

Proof Let µ̂ = �̂
T f̂(a, r̂(x)) and µ = �̂

T f(a, r(x)). By the mean value theorem,

|Hb (r(x), r
⇤(µ̂; r(x)))�Hb (r(x), r

⇤(µ; r(x)))| =

������
@Hb

�
r, r

⇤(µ; r)
�

@µ

�����
µ=�̂T f̄

������
|µ̂� µ|,

where f̄ is a convex combination of f̂(a, r̂(x)) and f(a, r(x)). By di↵erentiating (12) with
respect to µ and combining with (90), we find that

�����
@Hb

�
r, r

⇤(µ; r)
�

@µ

����� = |µ|
����
@r

⇤(µ; r)

@µ

����,
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and it can be verified using (91) that |@r⇤(µ; r)/@µ|  1. Hence

|Hb (r(x), r
⇤(µ̂; r(x)))�Hb (r(x), r

⇤(µ; r(x)))| 
���̂T f̄

��
����̂T

�
f̂(a, r̂(x))� f(a, r(x))

����


���̂
��2
1

��f̄
��
1
��f̂(a, r̂(x))� f(a, r(x))

��
1


✓
log 2

✏

◆2 ��f̄
��
1
��f̂(a, r̂(x))� f(a, r(x))

��
1,

(68)

where the second line results from two applications of Hölder’s inequality, and the third line
from Lemma 9 given �̂ 2 ⇤0. Since Lemma 21 applies to both f̂(a, r̂(x)) and f(a, r(x)), we
have ��f̄

��
1 

1

⌘
� 1 (69)

for their convex combination as well. Using the triangle inequality,
��f̂(a, r̂(x))� f(a, r(x))

��
1 

��f̂(a, r̂(x))� f(a, r̂(x))
��
1 +

��f(a, r̂(x))� f(a, r(x))
��
1. (70)

In the case of MSP, the second right-hand side term is zero because f does not depend on
r. For GEO, (25) implies that

��f(a, r̂(x))� f(a, r(x))
��
1

 |r̂(x)� r(x)| max
a2A,y2{0,1}

max

⇢
1

pY (y)

✓
1

pA | Y (a | y) � 1

◆
,

1

pY (y)

�

 |r̂(x)� r(x)|
✓
1

⌘
� 1

◆
, (71)

where the last inequality was derived in the proof of Lemma 21.
We combine (68), (69), (70), and (71) to obtain

|Hb (r(x), r
⇤(µ̂; r(x)))�Hb (r(x), r

⇤(µ; r(x)))|


✓
log 2

✏

◆2✓1

⌘
� 1

◆✓��f̂(a, r̂(x))� f(a, r̂(x))
��
1 +

✓
1

⌘
� 1

◆
|r̂(x)� r(x)|

◆
,

where the |r̂(x)� r(x)| term is absent in the MSP case. Taking expectations over x 2 X ,
���E

h
Hb

⇣
r(X), r⇤

�
�̂
T f̂(A, r̂(X)); r(X)

�⌘i
� E

h
Hb

⇣
r(X), r⇤

�
�̂
T f(A, r(X)); r(X)

�⌘i���

 E
h���Hb

⇣
r(X), r⇤

�
�̂
T f̂(A, r̂(X)); r(X)

�⌘
�Hb

⇣
r(X), r⇤

�
�̂
T f(A, r(X)); r(X)

�⌘���
i


✓
log 2

✏

◆2✓1

⌘
� 1

◆✓
E
h��f̂(A, r̂(X))� f(A, r̂(X))

��
1

i
+

✓
1

⌘
� 1

◆
E [|r̂(X)� r(X)|]

◆
.

The proof of Lemma 12 shows that E
h��f̂(A, r̂(X))� f(A, r̂(X))

��
1

i
converges to zero in

probability as p̂A, p̂A,Y , p̂Y converge to the true probabilities. Assumption 8 ensures that
E [|r̂(X)� r(X)|] converges to zero in probability as well, completing the proof.
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A.5.4 Proof of Lemma 18

Proof We apply the mean value theorem in the same way as in the proof of
Lemma 17, where now µ̂ = �̂

T f(a, r(x)), µ = �
⇤T f(a, r(x)), and the intermediate

value is µ̄ = �̄
T f(a, r(x)) for some convex combination �̄ of �̂ and �

⇤. Following the same
steps as in the earlier proof, we obtain

|Hb (r(x), r
⇤(µ̂; r(x)))�Hb (r(x), r

⇤(µ; r(x)))| 
���̄T f

��
���
�
�̂� �

⇤�T f(a, r(x))
���


���̄
��
1
kfk1

���
�
�̂� �

⇤�T f(a, r(x))
���


✓
log 2

✏

◆✓
1

⌘
� 1

◆ ���
�
�̂� �

⇤�T f(a, r(x))
���,

again using Hölder’s inequality in the second line, and Lemmas 9 and 21 in the third line.
Taking expectations over x 2 X then yields

���E
h
Hb

⇣
r(X), r⇤

�
�̂
T f(A, r(X)); r(X)

�⌘i
� E

⇥
Hb

�
r(X), r⇤

�
�
⇤T f(A, r(X)); r(X)

��⇤���

 E
h���Hb

⇣
r(X), r⇤

�
�̂
T f(A, r(X)); r(X)

�⌘
�Hb

�
r(X), r⇤

�
�
⇤T f(A, r(X)); r(X)

�����
i


✓
log 2

✏

◆✓
1

⌘
� 1

◆
E
h���
�
�̂� �

⇤�T f(A, r(X))
���
i
.

The proof is completed by Lemma 25 below.

Lemma 25 Under Assumptions 2, 3, 4, 7, 9,

E
h���
�
�̂� �

⇤�T f(A, r(X))
���
i

p! 0.

Proof We prove that the quantity in question converges to zero in the L2 norm,

E
���
�
�̂� �

⇤�T f(A, r(X))
���
2
�

p! 0, (72)

As shown in the proof of Lemma 8, this implies convergence in the L1 norm as in the lemma
statement.

To establish (72), we use Theorem 6, which implies that for any " > 0, we have J(�̂) 
J(�⇤)+" with probability converging to 1 as n,m!1. Assume then that J(�̂)  J(�⇤)+".
Define �↵ = ↵�

⇤ + (1� ↵)�̂ for ↵ 2 [0, 1], and

G(�) = E
⇥
g
�
�
T f(A, r(X)); r(X)

�⇤
(73)

to be the first term in the population dual objective function (14), (15). From Bertsekas
(1999, Proposition A.23b), we have the following second-order expansion:

G
�
�̂
�
= G(�↵) +

�
�̂� �↵

�TrG(�↵) +
1

2

�
�̂� �↵

�Tr2
G(�̄)

�
�̂� �↵

�

= G(�↵) + ↵
�
�̂� �

⇤�TrG(�↵) +
1

2
↵
2
�
�̂� �

⇤�Tr2
G(�̄)

�
�̂� �

⇤�
, (74)
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where �̄ is some point on the line segment between �̂ and �↵. By di↵erentiating (73) and
using (90), we find

rG(�) = E
⇥
�r⇤

�
�
T f(A, r(X)); r(X)

�
f(A, r(X))

⇤
,

r2
G(�) = E

⇥
s
�
�
T f(A, r(X)); r(X)

�
f(A, r(X))fT (A, r(X))

⇤
, (75)

where s(µ; r) = �@r⇤(µ; r)/@µ. Substituting (75) into (74) yields

G
�
�̂
�
= G(�↵)+↵

�
�̂��⇤�TrG(�↵)+

1

2
↵
2E


s
�
�̄
T f(A, r(X)); r(X)

����
�
�̂� �

⇤�T f(A, r(X))
���
2
�
.

Since �̄ also lies on the line segment between �̂ and �
⇤, the application of Assumption 9

yields

G
�
�̂
�
� G(�↵) + ↵

�
�̂� �

⇤�TrG(�↵) +
1

2
↵
2
⌧E

���
�
�̂� �

⇤�T f(A, r(X))
���
2
�
. (76)

By repeating the above steps for �⇤ in place of �̂, we also obtain

G
�
�
⇤� � G(�↵)+ (1�↵)

�
�
⇤� �̂

�TrG(�↵)+
1

2
(1�↵)2⌧E

���
�
�̂� �

⇤�T f(A, r(X))
���
2
�
. (77)

Multiplying (76) by 1� ↵, (77) by ↵, and summing,

(1� ↵)G
�
�̂
�
+ ↵G

�
�
⇤� � G(�↵) +

1

2
↵(1� ↵)⌧E

���
�
�̂� �

⇤�T f(A, r(X))
���
2
�
. (78)

Since the `1 norm is convex, we also have

(1� ↵)✏
���̂
��
1
+ ↵✏

���⇤��
1
� ✏

���↵

��
1
. (79)

Adding (78) and (79),

(1� ↵)J
�
�̂
�
+ ↵J

�
�
⇤� � J(�↵) +

1

2
↵(1� ↵)⌧E

���
�
�̂� �

⇤�T f(A, r(X))
���
2
�

� J
�
�
⇤�+ 1

2
↵(1� ↵)⌧E

���
�
�̂� �

⇤�T f(A, r(X))
���
2
�
,

where the last inequality is due to the optimality of �
⇤. Using the assumption J(�̂) 

J(�⇤) + ", we arrive at

1

2
↵⌧E

���
�
�̂� �

⇤�T f(A, r(X))
���
2
�
 ",

and since ↵ 2 [0, 1] was arbitrary, we take ↵! 1 to yield

E
���
�
�̂� �

⇤�T f(A, r(X))
���
2
�
 2"

⌧
. (80)

We have thus shown that the near-optimality condition J(�̂)  J(�⇤) + " implies (80)
for any " > 0. Since the former holds with probability converging to 1, this proves (72).
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Appendix B. ADMM Algorithm Details

In this appendix, we present a closed-form solution for step (20a) in the ADMM algorithm
of Section 4.2. We then describe alternative ADMM algorithms in Appendix B.2.

B.1 Closed-Form Solution for (20a)

To simplify notation, define ⇢̃ = ⇢n and drop the index i and the hat from r̂. Then the
first-order optimality condition for (20a) can be written as

n
@obj(µ)

@µ
= ⇢̃(µ� b)� r

⇤(µ; r) = 0. (81)

Figure 1a shows that r
⇤(µ; r) decreases monotonically with µ, and this can be proven by

showing that expression (91) for dr
⇤(µ; r)/dµ does not change sign. It follows that the

quantity in (81) strictly increases with µ and the equation has a unique solution.
To solve for the root of (81), we use (10) and rearrange to isolate the square root on

one side:
1 + µ� 2⇢̃µ(µ� b) =

p
(1 + µ)2 � 4rµ.

Upon squaring both sides, it is seen that the zeroth-order terms in µ cancel to give

⇢̃
2
µ
2(µ� b)2 � ⇢̃µ(1 + µ)(µ� b) = �rµ. (82)

One solution to (82) is µ = 0 but it satisfies the original condition (81) only if r = �⇢̃b.
Assuming this is not the case, we divide both sides of (82) by µ and expand to yield the
following cubic equation:

µ
3�(2b+ (1/⇢̃))| {z }

a2

µ
2 + (b2 + (b� 1)/⇢̃)| {z }

a1

µ+ b/⇢̃+ r/⇢̃
2

| {z }
a0

= 0. (83)

Toward obtaining a closed-form expression for the roots of (83), define the coe�cients
of the corresponding depressed cubic equation as

p = 3a1 � a
2
2,

q = a
3
2 �

9

2
a1a2 +

27

2
a0.

We find empirically that cubic equation (83) always has three real roots and that the desired
root corresponding to the solution of (81) is given by the same one of these roots. We do
not however have proofs of these facts. In the case of three real roots, they are given by the
trigonometric formula

µ
⇤ =

1

3

✓
2
p
�p cos

✓
1

3

✓
arccos

✓
q

p
p
�p

◆
� 2k⇡

◆◆
� a2

◆
, k = 0, 1, 2, (84)

and the desired root appears to always correspond to k = 1. In any case, the correct root
can be identified by first noting that since r

⇤(µ; r) 2 [0, 1], the solution to (81) must lie in
the interval [b, b+ (1/⇢̃)]. We may then compute all three roots in (84) and choose the one
lying in [b, b+ (1/⇢̃)].
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B.2 Alternative ADMM Algorithms

This section presents alternative ADMM decompositions for the dual problems correspond-
ing to MSP (14) and GEO (15). To simplify notation, we suppress the hat symbols on r̂(x)
and f̂(x).

B.2.1 Mean Score Parity

Define auxiliary variables �̃a as follows:

�̃a =
�a

pA(a)
�

X

a02A
�a0 , a 2 A, (85)

with �̃ = (�̃a)a2A. Then the empirical version of (14) can be written as

min
�,�̃

1

n

nX

i=1

g
�
µi; ri

�
+ ✏k�k1

s. t. µi =
X

a2A
pA |X(a | xi)�̃a,

(86)

where µi = µ(xi), ri = r(xi), and we regard � and �̃ as two sets of optimization variables that
are linearly related through (85). Let B 2 Rn⇥d be a matrix with entries Bi,a = pA |X(a |xi)
and rows bT

i so that we may write µ = B�̃, µi = bT
i �̃. The objective function in (86) is

therefore separable between � and �̃. With 1 denoting a vector of ones and PA the d ⇥ d

diagonal matrix with diagonal entries pA(a), a scaled ADMM algorithm for (86) consists of
the following three steps in each iteration k = 0, 1, . . . :

�̃
k+1 = argmin

�̃

1

n

nX

i=1

g
�
bT
i �̃; ri

�
+

⇢

2

����̃�
�
P�1

A � 11T
�
�
k + u

k
���
2

2
(87)

�
k+1 = argmin

�
✏k�k1 +

⇢

2

���
�
P�1

A � 11T
�
�� �̃

k+1 � u
k
���
2

2
(88)

u
k+1 = u

k + �̃
k+1 �

�
P�1

A � 11T
�
�
k+1

. (89)

The optimization in (88) is an `1-penalized quadratic minimization and can be handled
by many convex solvers. The optimization in (87) can be solved using Newton’s method.
Below we give the gradient and Hessian of the first term in (87); the second Euclidean norm
term is standard. First, using the definition of g(µ; r) in (12), we find that

dg(µ; r)

dµ
= �r⇤(µ; r) (90)

d
2
g(µ; r)

dµ2
= �dr

⇤(µ; r)

dµ
=

8
><

>:

1

2µ2

 
1� 1 + (1� 2r)µp

(1 + µ)2 � 4rµ

!
, µ 6= 0

r(1� r), µ = 0.

(91)

The simple form in (90) is due to r
⇤(µ; r) satisfying the optimality condition (33) and the

ensuing cancellation of terms. It is also related to Bertsekas (1999, Proposition 6.1.1). The
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gradient and Hessian of the first term in (87) are then given by

r
 
1

n

nX

i=1

g
�
bT
i �̃; ri

�
!

= � 1

n
BT r⇤ (92)

r2

 
1

n

nX

i=1

g
�
bT
i �̃; ri

�
!

= � 1

n
BTHB, (93)

where r⇤ is the n-dimensional vector with components r⇤(µi; ri) and H is the n⇥n diagonal
matrix with entries dr⇤(µi; ri)/dµi. In the case where the features X include the protected
attribute A, pA |X(a | xi) = 1(a = ai), B is a sparse matrix with a single one in each row,
and the Hessian in (93) is diagonal. This implies that optimization (87) is separable over
the components of �̃.

B.2.2 Generalized Equalized Odds

In analogy with (85) we define

�̃a,y =
�a,y

pA | Y (a | y) �
X

a02A
�a0,y, a 2 A, y 2 {0, 1}. (94)

Again let B be a n ⇥ d matrix, recalling that d = 2|A| in the GEO case, with columns
indexed by (a, y) and entries

Bi,(a,y) =

8
>><

>>:

(1� r(xi))pA |X,Y (a | xi, 0)
pY (0)

, y = 0

r(xi)pA |X,Y (a | xi, 1)
pY (1)

, y = 1.
(95)

It can then be seen from the constraint in (15) that µi = bT
i �̃ as before and the empirical

version of (15),

min
�,�̃

1

n

nX

i=1

g
�
bT
i �̃; ri

�
+ ✏k�k1, (96)

is separable between � and �̃ subject to the linear relation (94). With PA | y for y = 0, 1
denoting the |A|⇥ |A| diagonal matrix with diagonal entries pA | Y (a | y), the three steps in
each ADMM iteration for (96) are as follows:

�̃
k+1 = argmin

�̃

1

n

nX

i=1

g
�
bT
i �̃; ri

�
+

⇢

2

1X
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����̃·,y �
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P�1

A | y � 11T
⌘
�
k
·,y + u

k
·,y

���
2

2
(97)

�
k+1
·,y = argmin

�
✏k�k1 +

⇢

2

���
⇣
P�1

A | y � 11T
⌘
�� �̃

k+1
·,y � u

k
·,y

���
2

2
, y = 0, 1 (98)

u
k+1
·,y = u

k
·,y + �̃

k+1
·,y �

⇣
P�1

A | y � 11T
⌘
�
k+1
·,y , y = 0, 1, (99)

where �̃·,y, �·,y, and u·,y are |A|-dimensional subvectors of �̃, � and u consisting only of
components with y = 0 or y = 1. The optimization in (97) is of the same form as (87)
and can also be solved using Newton’s method. The same expressions (92), (93) hold for
the gradient and Hessian of the first term in (97), where B is now given by (95). The
optimization of � in (98) is separable over y = 0, 1 and is the same as step (88) for MSP.
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Figure 10: Trade-o↵s between fairness and log loss on the Adult Income data set with the
protected attributes included in the features.

Appendix C. Additional Experimental Results

This appendix presents results deferred from Section 6, including results with log loss, those
for the German credit risk data set, and comparisons with existing methods excluded from
the main comparison due to their limitations.
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Figure 11: Trade-o↵s between fairness and log loss on the COMPAS and MEPS data sets
with the protected attributes included in the features.

C.1 Log Loss

Figures 10 and 11 show trade-o↵s between log loss and MSP or GEO fairness measures for
the data set-protected attribute combinations considered in Figures 2–6 and 9 (i.e., with
the protected attribute included in the features). The plots are quite similar to those for
Brier score in Figures 2–6 and 9.
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Figure 12: Trade-o↵s between fairness and classification performance on the German credit
data set with age as the protected attribute and the protected attribute included
in the features.

C.2 German Credit Risk Data Set

Figures 12 and 13 depict trade-o↵s between classification performance and fairness for the
German credit data set, where the protected attribute of age is either included in or excluded
from the features. These results are included for completeness as German is a standard data
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Figure 13: Trade-o↵s between fairness and classification performance on the German credit
data set with age as the protected attribute and the protected attribute excluded
from the features.

set in the fairness literature, but the small data set size and consequently large error bars
make it di�cult to draw conclusions.
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Figure 14: Trade-o↵s between statistical parity and classification performance measures for
the Adult data set with a reduced set of features.

C.3 Individual Comparisons with Existing Methods

As mentioned in Section 6, we encountered computational di�culties in running the opti-
mized pre-processing (OPP, Calmon et al., 2017) and disparate mistreatment in-processing
(DM, Zafar et al., 2017a) methods. In the case of OPP, the method does not scale beyond
feature dimensions of ⇠ 5. We have thus conducted separate experiments in which the set
of features has been reduced. Figure 14 shows the resulting trade-o↵s between statistical
parity, which is what OPP addresses, and classification performance for the Adult data set.
This limited comparison suggests that OPP is not competitive with FST. Unfortunately we
were unable to obtain reasonable results for OPP on other data sets so do not show them
here.

In the case of DM, when we ran the code2 on data sets with a full set of features, the
optimization either failed to converge or when it did converge, did not appreciably decrease
the EO di↵erence from that of an unconstrained logistic regression classifier. (The latter
problem was also observed with FC, Zafar et al., 2017c, in Figures 4–6.) We used a constraint
type of 4 to impose both FNR and FPR constraints, in keeping with EO, and default values
for the disciplined convex-concave programming (DCCP) parameters ⌧ and µ. For example
on the Adult-gender combination, DM failed on 4 of the 10 training folds and converged
on the others with little e↵ect, while on the COMPAS-race combination, DM failed on 9 of
10 folds. We noticed that our version of the COMPAS data set has much higher dimension
than the one used by Zafar et al. (2017a), due primarily to including a charge description
feature and after one-hot encoding of categorical variables. Thus we opted to compare with
DM using reduced feature sets, as with OPP. Figure 15 shows the trade-o↵s obtained on

2. https://github.com/mbilalzafar/fair-classification
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Figure 15: Trade-o↵s between equalized odds and classification performance measures for
the Adult and COMPAS data sets with a reduced set of features.

the Adult and COMPAS data sets. On COMPAS, all methods are remarakably similar
while on Adult, DM might be slightly worse. For example on Adult-gender (first row), DM
does not reduce the EO di↵erence below 0.2 (right panel). We reiterate however our lack
of success with DM on full-dimensional data sets.

We also compare FST to the Fair Empirical Risk Minimization (FERM) approach of
Donini et al. (2018). We use the code3 provided by the authors. FERM, although a gen-

3. https://github.com/jmikko/fair_ERM
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Figure 16: Trade-o↵s between fairness and classification performance measures for FERM
(Donini et al., 2018) and our proposed FST approaches.

eral principle, has been specified only for binary classification problems with hinge loss as
the loss function, and equal opportunity as the fairness constraint in Donini et al. (2018).
The code provided by the authors implements linear and kernel support vector classifiers
(SVC) with an equal opportunity constraint between two protected groups. During our ex-
perimentation, we observed that kernel SVC formulations of FERM were computationally
impractical for the data sets we used (Adult, COMPAS, and MEPS). For example, experi-
ments with the Adult data set using the RBF kernel SVC formulation did not finish even
after waiting for 24 hours, whereas the linear formulation took only minutes to complete.4

We suspect that this is because the kernel SVC formulation is implemented using a generic
convex optimization solver5 that does not incorporate any techniques for speedup specific
to the problem. Hence we report results only for the linear SVC formulation. We also note
that we use equalized odds as the fairness constraint in FST, which is stricter than the
equal opportunity constraint used by FERM. These comparisons are illustrated in Figure

4. Experiments were performed on a machine running Ubuntu OS with 32 cores, and 64 GB RAM.

5. http://cvxopt.org/
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16. Clearly, our FST methods that post-process probability outputs from linear SVC (FST-
post, FSTbatch) outperform FERM substantially. We note however that the pre-processing
variant of FST (FSTpre), which trains a second linear SVC model using sample weights
described in Section 4.4, did not provide acceptable results. One possibility is that these
sample weights, which are based on conditional probabilities, do not work well with the
SVC problem formulation which is non-probabilistic. Nevertheless, in general we see that
among all the four in-processing approaches we compared, only the reductions approach
(Agarwal et al., 2018) has performance competitive to ours.
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jsilović, Seema Nagar, Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan
Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI
Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted
algorithmic bias, October 2018. URL https://arxiv.org/abs/1810.01943.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, USA, 2nd
edition, 1999.

Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, Belmont, MA, USA, 2nd edition, 1997.

Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H. Chi. Data decisions and theoretical im-
plications when adversarially learning fair representations. In Workshop on Fairness,
Accountability, and Transparency in Machine Learning (FATML), pages 1–5, August
2017.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R� in Machine Learning, 3(1):1–122, 2011.

Toon Calders and Sicco Verwer. Three naive Bayes approaches for discrimination-free
classification. Data Mining and Knowledge Discovery, 21(2):277–292, September 2010.
doi: 10.1007/s10618-010-0190-x. URL https://doi.org/10.1007/s10618-010-0190-

x.

73

http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v80/agarwal18a.html
https://arxiv.org/abs/1810.01943
https://doi.org/10.1007/s10618-010-0190-x
https://doi.org/10.1007/s10618-010-0190-x


Wei, Natesan Ramamurthy, and Calmon

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy,
and Kush R. Varshney. Optimized pre-processing for discrimination prevention. In Con-
ference on Neural Information Processing Systems (NeurIPS), pages 3992–4001, Decem-
ber 2017. URL http://papers.nips.cc/paper/6988-optimized-pre-processing-

for-discrimination-prevention.pdf.

L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. Classification with
fairness constraints: A meta-algorithm with provable guarantees. In ACM Conference on
Fairness, Accountability, and Transparency (FAccT), pages 319–328, January 2019. doi:
10.1145/3287560.3287586. URL http://doi.acm.org/10.1145/3287560.3287586.

Silvia Chiappa. Path-specific counterfactual fairness. In AAAI Conference on Artificial
Intelligence (AAAI), January 2019.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big Data, 5(2):153–163, 2017. doi: 10.1089/big.2016.0047.

Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pon-
til. Leveraging labeled and unlabeled data for consistent fair binary classification. In
Conference on Neural Information Processing Systems (NeurIPS), December 2019.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic
decision making and the cost of fairness. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 797–806, August 2017. doi: 10.1145/3097983.
3098095. URL http://doi.acm.org/10.1145/3097983.3098095.

Amanda Coston, Karthikeyan Natesan Ramamurthy, Dennis Wei, Kush R. Varshney, Skyler
Speakman, Zairah Mustahsan, and Supriyo Chakraborty. Fair transfer learning with
missing protected attributes. In AAAI/ACM Conference on Artifical Intelligence, Ethics,
and Society (AIES), pages 1–8, January 2019.

Andrew Cotter, Heinrich Jiang, Maya R Gupta, Serena Wang, Taman Narayan, Seungil
You, and Karthik Sridharan. Optimization with non-di↵erentiable constraints with appli-
cations to fairness, recall, churn, and other goals. Journal of Machine Learning Research,
20(172):1–59, 2019.

Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimil-
iano Pontil. Empirical risk minimization under fairness constraints. In Conference
on Neural Information Processing Systems (NeurIPS), pages 2791–2801, December
2018. URL http://papers.nips.cc/paper/7544-empirical-risk-minimization-

under-fairness-constraints.pdf.

John Duchi. Probability bounds. https://stanford.edu/~jduchi/projects/

probability_bounds.pdf.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. In Innovations in Theoretical Computer Science Conference
(ITCS), pages 214–226. ACM, 2012.

74

http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf
http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf
http://doi.acm.org/10.1145/3287560.3287586
http://doi.acm.org/10.1145/3097983.3098095
http://papers.nips.cc/paper/7544-empirical-risk-minimization-under-fairness-constraints.pdf
http://papers.nips.cc/paper/7544-empirical-risk-minimization-under-fairness-constraints.pdf
https://stanford.edu/~jduchi/projects/probability_bounds.pdf
https://stanford.edu/~jduchi/projects/probability_bounds.pdf


Optimized Score Transformation for Consistent Fair Classification

Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Max Leiserson. Decou-
pled classifiers for group-fair and e�cient machine learning. In Conference on Fair-
ness, Accountability and Transparency (FAccT), pages 119–133, February 2018. URL
http://proceedings.mlr.press/v81/dwork18a.html.

Harrison Edwards and Amos Storkey. Censoring representations with an adversary. In
International Conference on Learning Representations (ICLR), pages 1–14, May 2016.

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. Certifying and removing disparate impact. In ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 259–268, August 2015.
doi: 10.1145/2783258.2783311. URL http://doi.acm.org/10.1145/2783258.2783311.
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