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erally far slower than elliptic solvers based on specialized
numerical methods.

NRPyElliptic solves the hyperbolic relaxation PDEs
on a single bispherical-like domain, enabling us to in-
crease the local relaxation wavespeed in proportion to the
local grid spacing without violating the CFL condition.
As grid spacing in our coordinate system grows exponen-
tially away from the two coordinate foci and toward the
outer boundary, the relaxation waves accelerate exponen-
tially toward the outer boundary, increasing the solver’s
overall speed-up over a constant-wavespeed implementa-
tion by many orders of magnitude. In fact the resulting
performance boost enables NRPyElliptic to be useful
for setting up high-quality, full-3D BBH puncture ID,
though it is still ∼12x slower than the widely used pseu-
dospectral TwoPunctures [20] BBH puncture ID solver.

Like TwoPunctures, NRPyElliptic adopts the con-
formal transverse-traceless decomposition [12, 30–32] to
construct puncture ID for two BHs. In this paper we
present both 2D and full 3D validation tests, which
demonstrate that NRPyElliptic yields identical results
to TwoPunctures as numerical resolution is increased in
both codes.

We also embed NRPyElliptic into an Einstein

Toolkit [33–35] module (“thorn”), called
NRPyEllipticET, which enables the generated ID
to be interpolated onto Cartesian AMR grids within the
Einstein Toolkit. To demonstrate that NRPyElliptic
ID are of high fidelity, we first generate 3D BBH puncture
ID with both NRPyEllipticET and the TwoPunctures

Einstein Toolkit thorns at comparable-accuracy;
then evolve the ID forward in time through inspiral,
merger, and ringdown using the Einstein Toolkit

infrastructure; and finally show that the results of these
simulations are virtually indistinguishable.

Moving forward, the key advantage to hyperbolic re-
laxation solvers is their immediate application to solv-
ing other elliptic problems. In fact the generality of the
hyperbolic relaxation method has already been demon-
strated in [26], where it was used to produce ID for
many different scenarios of interest, such as scalar fields,
Tolman-Oppenheimer-Volkoff (TOV) stars, and binary
neutron stars (BNSs). In this work we will focus our
discussion on BBH puncture ID, and further evidence of
the extensibility of NRPyElliptic will be presented in
forthcoming papers to generate e.g., BNS ID.

The remainder of this paper is organized as follows.
Sec. II introduces the puncture ID formalism, the hy-
perbolic relaxation method, and our implementation of
Sommerfeld (radiation) boundary conditions. In Sec. III
we discuss the details of our numerical implementation,
including choice of coordinate system and implementa-
tion of a grid spacing-dependent wavespeed. We present
2D (axisymmetric) and full 3D validation tests, as well as
results from a BBH evolution of our full 3D ID in Sec. IV.
We conclude in Sec. V and discuss future work.

II. BASIC EQUATIONS

Throughout this paper we adopt geometrized units, in
which G = c = 1, and Einstein summation convention
such that repeated Latin (Greek) indices imply a sum
over all 3 spatial (all 4 spacetime) components.
Consider the 3+1 decomposition of the spacetime met-

ric, with line element

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (1)

Here, α is the lapse function, βi is the shift vector, and
γij is the 3-metric.
It is useful to define a conformally related 3-metric γ̃ij

via

γij = ψ4γ̃ij , (2)

where the scalar function ψ is known as the conformal
factor. We adorn geometric quantities associated with
γ̃ij with a tilde diacritic. For instance, the Christoffel
symbols associated with γ̃ij are computed using

Γ̃
k

ij =
1

2
γ̃lk(γ̃li,j + γ̃lj,i − γ̃ij,l) . (3)

Likewise, ∇̃i is the associated conformal covariant deriva-
tive and R̃ij the Ricci tensor. All geometric quantities
compatible with the physical 3-metric γij are written
without tildes.
In the limit of vacuum (e.g., BBH) spacetimes, the

Hamiltonian and momentum constraint equations can be
written as [12]

R+K2 −KijK
ij = 0 , (4)

∇j(K
ij − γijK) = 0 , (5)

where Kij is the extrinsic curvature and K ≡ γijKij is
the mean curvature. Setting up ID for vacuum space-
times in numerical relativity generally involves solving
these constraints, which exist as second-order nonlinear
elliptic PDEs.
For the purposes of this paper, we will focus on the

puncture ID formalism, in which a set of simplifying as-
sumptions is applied to these constraints, known as the
conformal transverse-traceless (CTT) decomposition (see
e.g., [12]). For completeness we next apply the CTT ap-
proach to Eqs. (4, 5) to derive the constraint equations
solved in this paper by NRPyElliptic.

A. Puncture Initial Data Formalism

To arrive at the CTT decomposition, we first rewrite
the extrinsic curvature as

Kij = Aij +
1

3
γijK , (6)

where Aij is the trace-free part of Kij . The conformal
counterpart of Aij is defined through the relation

Aij ≡ ψ−2Ãij . (7)
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The CTT decomposition splits Ãij into a symmetric

trace-free part M̃
ij

and a longitudinal part (L̃V )ij ,

Ã
ij
= (L̃V )ij + M̃

ij
, (8)

where the longitudinal operator L̃ is defined via

(L̃V )ij ≡ ∇̃
i
V j + ∇̃

j
V i −

2

3
γ̃ij∇̃lV

l . (9)

Inserting these CTT quantities into the constraint equa-
tions (Eqs. 4, 5) yields the generic CTT Hamiltonian and
momentum constraint equations

∇̃
2
ψ −

1

8
ψR̃−

1

12
ψ5K2 +

1

8
ψ−7ÃijÃ

ij
= 0 , (10)

∆̃LV
i −

2

3
ψ6∇̃

i
K + ∇̃jM̃

ij
= 0 , (11)

where R̃ is the conformal Ricci scalar and the operator
∆̃L is defined as

∆̃LV
i ≡ ∇̃j(L̃V )ij = ∇̃

2
V i+

1

3
∇̃

i
(∇̃jV

j)+R̃
i

jV
j . (12)

The degrees of freedom in this formulation include

choice of M̃
ij
, K, and γ̃ij . Here we consider puncture

ID, which assume maximal slicing (K = 0), asymptotic
flatness (ψ|r→∞ = 1), and conformal flatness

γ̃ij = γ̂ij , (13)

where γ̂ij is the flat spatial metric. In addition the as-

sumption M̃
ij

= 0 is made, yielding Hamiltonian and
momentum constraint equations of the form

∇̂
2
ψ +

1

8
ψ−7ÃijÃ

ij
= 0 , (14)

∇̂
2
V i +

1

3
∇̂

i
(∇̂jV

j) = 0 , (15)

where ∇̂i is the covariant derivative compatible with γ̂ij .
Bowen and York [36] showed that the momentum con-
straint is solved for a set of Np punctures with a closed-
form expression for the extrinsic curvature. This expres-

sion can be written in terms of ~V as follows

~V =

Np
∑

n=1

(

−
7

4|~xn|
~Pn −

~xn·~Pn

4|~xn|3
~xn +

1

|~xn|3
~xn×~Sn

)

,

(16)

where ~xn = (xn − x, yn − y, zn − z), ~Pn, and ~Sn are
the displacement relative to the origin (i.e., (x, y, z) =
(0, 0, 0)), linear momentum, and spin angular momentum
of puncture n, respectively.
The Hamiltonian constraint equation (Eq. 14) must be

solved numerically, but ψ becoming singular at the loca-
tion of each puncture could spoil the numerical solution.
Early attempts excised the singular terms from the com-
putational domain (see [12] and references therein), but

modern approaches generally follow [37] in splitting the
conformal factor into a singular and a non-singular piece,

ψ = ψsingular + u ≡ 1 +

Np
∑

n=1

mn

2|~xn|
+ u , (17)

where mn is the bare mass of the nth puncture. The
Hamiltonian constraint equation, which can then be
solved for the non-singular part u, reads

∇̂
2
u+

1

8
ÃijÃ

ij
(ψsingular + u)−7 = 0 . (18)

B. Hyperbolic relaxation method

We now describe the basic hyperbolic relaxation
method of [26]. Consider the system of elliptic equations

LE~u− ~ρ = 0 , (19)

where LE is an elliptic operator, ~u is the vector of un-
knowns, and ~ρ is the vector of source terms. The hyper-
bolic relaxation method replaces Eq. (19) with the hyper-
bolic system of equations

∂2t ~u+ η∂t~u = c2
(

LE~u− ~ρ
)

, (20)

where η is an exponential damping parameter (with units
of 1/t [38]) and c is the wavespeed. The variable t be-
haves as a time variable in this hyperbolic system of
equations and is referred to as a relaxation (as opposed
to physical) time. As noted in [26], the damping pa-
rameter η that maximizes dissipation is dictated by the
length scale of the grid domain and is easily determined
when the wavespeed is constant. Through numerical ex-
perimentation, we found that the choice η = 12.5/M
minimizes the required relaxation time when using the
spatially-dependent wavespeed prescription introduced
in Sec. III B and detailed in Appendix B.
If appropriate boundary conditions are chosen, when

Eq. (20) is evolved forward in (pseudo)time, the damping
ensures that a steady state is eventually reached expo-
nentially fast such that ∂tu → 0 and ∂2t u → 0. Thus
u relaxes to a solution to the original elliptic problem.
To this end, we adopt Sommerfeld (outgoing radiation)
boundary conditions (BCs) for spatial boundaries, as de-
scribed in Sec. II C; what remains is a choice of initial
conditions. As this is a relaxation method, any smooth
choice should suffice. For simplicity, in this work we set
trivial initial conditions ~u = ∂t~u = ~0.
To complete our expression of these equations in prepa-

ration for a full numerical implementation, we rewrite
Eq. (20) as a set of two first-order (in time) PDEs

∂t~u = ~v − η~u ,

∂t~v = c2
(

LE~u− ~ρ
)

,
(21)

so that the method of lines (Sec. III) can be immediately
used to propagate the solution forward in (pseudo)time
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until a convergence criterion has been triggered (indicat-
ing numerical errors associated with the solution to the
elliptic equation are satisfactorily small).
As a simple example, consider Poisson’s equation, for

which LE~u = LEu = ∇2u = u,i,i. This PDE can be

easily made covariant (“comma goes to semicolon rule”):

∇̂
2
u = u;i;i = ρ , (22)

where ∇̂i is the covariant derivative compatible with γ̂ij .
In this way, the Laplace operator is expanded as

∇̂
i
∇̂iu = γ̂ij∇̂i∇̂ju = γ̂ij

(

∂i∂ju− Γ̂
k

ij∂ku
)

, (23)

with Γ̂
k

ij the Christoffel symbols associated with γ̂ij .
Poisson’s equation is then written as the system

∂tu = v − ηu

∂tv = c2
(

∇̂
2
u− ρ

)

. (24)

Writing the PDEs covariantly enables the hyperbolic
relaxation method to be applied in coordinate systems
that properly exploit near-symmetries. For this purpose
we adopt a reference metric γ̂ij , which is chosen to be the
flat spatial metric in the given coordinate system we are
using. In this way, single compact object ID can be solved
in spherical or cylindrical coordinates (using spherical or
cylindrical reference metrics respectively), and binary ID
can be solved in bispherical-like coordinates.
Truly the power of the hyperbolic relaxation method is

its easy and immediate extension to complex, nonlinear
elliptic PDEs. Case in point: as derived in Sec. II A, ID
for two punctures are constructed by solving the Hamil-
tonian constraint

∇̂
2
u+

1

8
ÃijÃ

ij
(ψsingular + u)−7 = 0 , (25)

for u. This elliptic PDE is nonlinear, but is trivially
embedded within the hyperbolic relaxation prescription
via1

∂tu = v − ηu

∂tv = c2
[

∇̃
2
u+

1

8
ÃijÃ

ij(
ψsingular + u

)

−7

]

. (26)

Note that just like in the case of Poisson’s equation, ∇̃
2
u

is expanded as in Eq. (23).

1 Recall in the previous section we adopted the tilde instead of the
hat diacritic to denote the flat metric, consistent with the general
convention in the literature. Both can be used interchangeably
here, as γ̃ij = γ̂ij .

C. Boundary conditions

Similar to both the hyperbolic relaxation method im-
plemented in [26] and the Einstein Toolkit BC driver
NewRad [33, 34, 39], spatial BCs are applied to the time
derivatives of the evolved fields instead of the fields di-
rectly. Consequently the desired BC is only satisfied by
the steady state solution.

For example, assume that at ∂Ω, the boundary of our
numerical domain, we wish to impose Dirichlet BCs of
the form

~u
∣

∣

∂Ω
= ~a ,

~v
∣

∣

∂Ω
= ~b ,

(27)

for some constant vectors ~a and ~b. In our implementa-
tion, these would be imposed as

∂t~u
∣

∣

∂Ω
= ~u− ~a ,

∂t~v
∣

∣

∂Ω
= ~v −~b .

(28)

Upon reaching the steady state, ∂tu
∣

∣

∂Ω
= 0 = ∂tv

∣

∣

∂Ω
,

and we recover the desired BCs.

When applying the hyperbolic relaxation method to
solve the Einstein constraint equations, outgoing radia-
tion BCs are most appropriate, as they allow the outgoing
relaxation wave fronts to pass through the boundaries of
the numerical domain with minimal reflection.

Radiation (Sommerfeld) BCs generally assume that
near the boundary each field f behaves as an outgoing
spherical wave, and our implementation follows the im-
plementation within NewRad, building upon the ansatz:

f = f0 +
w(r − ct)

r
+
K

r2
, (29)

where f0 = limr→∞ f , w(r − ct)/r satisfies the spherical
wave equation for an outgoing spherical wave, and K/r2

models higher-order radial corrections.

Just as in the case of Dirichlet BCs, we apply Sommer-
feld BCs to the time derivative of the fields. Appendix A
walks through the full derivation for applying Sommer-
feld BCs to any field ∂tf , as well as its numerical imple-
mentation. Based on Eq. (A10), Sommerfeld BCs for a
generic hyperbolic relaxation of solution vector ~u takes
the form

∂t~u
∣

∣

∂Ω
= −

c

r

[

r∂r~u+(~u− ~u0)

]

+
~ku
r3
,

∂t~v
∣

∣

∂Ω
= −

c

r

[

r∂r~v+(~v − ~v0)

]

+
~kv
r3
,

(30)

where ~ku and ~kv are constant vectors computed at each
boundary point for each field within the ~u and ~v vectors
using Eq. (A15).
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III. NUMERICAL IMPLEMENTATION

NRPyElliptic exists as both a standalone code and an
Einstein Toolkit module (“thorn”), NRPyEllipticET.
NRPyEllipticET incorporates the standalone code into
the Einstein Toolkit, solving the elliptic PDE en-
tirely within NRPyElliptic’s NRPy+-based infrastruc-
ture. Once the solution has been found, NRPyEllipticET
uses the Einstein Toolkit’s built-in (3rd-order Her-
mite) interpolation infrastructure to interpolate the so-
lution from its native, bispherical-like grids to the Carte-
sian AMR grids used by the Einstein Toolkit. From
there, the data can be evolved forward in time using any
of the various BSSN or CCZ4 Einstein Toolkit thorns.
Both standalone and Einstein Toolkit thorn versions
of the NRPyElliptic code are fully documented in peda-
gogical Jupyter notebooks. Henceforth we will describe
our implementation of the standalone version.
Our implementation of Eqs. (26) within NRPyElliptic

leverages the NRPy+ framework [28, 29] to convert these
expressions, written symbolically using NRPy+’s Einstein-
like notation, into highly optimized C-code kernels
(SymPy [27] serves as NRPy+’s computer algebra system
backend). Notably NRPy+ supports the generation of such
kernels with single instruction, multiple data (SIMD) in-
trinsics and common sub-expression elimination (CSE).
Further NRPy+ supports arbitrary-order finite-difference
kernel generation, and we use 10th-order to approximate
all spatial derivatives in this work. The time evolution is
performed using the method of lines (MoL) infrastructure
within NRPy+, choosing its fourth-order (explicit) Runge-
Kutta implementation (RK4).
NRPy+ supports a plethora of different reference met-

rics, enabling us to solve our covariant hyperbolic PDEs
(Eqs. 26) in a large variety of Cartesian-like, spherical-
like, cylindrical-like, or bispherical-like coordinate sys-
tems. This in turn enables the user to fully take advan-
tage of symmetries or near-symmetries of any given prob-
lem. For example, for problems involving near-spherical
symmetry we have used spherical-like coordinates (e.g.,
log-radial spherical coordinates). In this work, we make
use of the prolate spheroidal-like (i.e., “bispherical-like”)
coordinate system in NRPy+ called SinhSymTP, described
in detail in Sec. III A. This allows us to solve the elliptic
problem for two puncture black hole initial data within
a single domain, similar to the TwoPunctures code.

Note that the wavespeed c appearing e.g., in Eqs. (26),
need not be constant. In curvilinear coordinates where
the grid spacing is not constant, the CFL stability cri-
terion remains satisfied if the wavespeed is adjusted in
proportion to the local grid spacing. As the grid spacing
in the SinhSymTP coordinates adopted here grows expo-

nentially with distance from the strong-field region, the
wavespeed grows exponentially as well. As a result, relax-
ation waves accelerate exponentially to the outer bound-
ary, significantly speeding up the convergence to the so-
lution of the elliptic PDE. Our implementation of this
technique is detailed in Sec. III B.

A. Coordinate system

Like TwoPunctures, NRPyElliptic adopts a modified
version of prolate spheroidal (PS) coordinates when set-
ting up two-puncture ID. However, these coordinate sys-
tems are distinct both from each other and from PS co-
ordinates. Here we elucidate the differences and similar-
ities.
Consider first PS coordinates (µ, ν, ϕ), which are re-

lated to Cartesian coordinates (x, y, z) via [40]

x = a sinhµ sin ν cosϕ ,

y = a sinhµ sin ν sinϕ , (31)

z =
(

a2 sinh2 µ+ a2
)1/2

cos ν .

Here, µ ∈ [0,∞), ν ∈ [0, π), ϕ ∈ [0, 2π), and the two foci
of the coordinate system are located at z = ±a.
TwoPunctures [20] adopts a PS-like coordinate sys-

tem, which is written in terms of coordinate variables
A ∈ [0, 1), B ∈ [−1, 1], and ϕ ∈ [0, 2π). TwoPunctures

coordinates are related to Cartesian via2

x = b
2A

1−A2

1−B2

1 +B2
sinϕ ,

y = b
2A

1−A2

1−B2

1 +B2
cosϕ , (32)

z = b
A2 + 1

A2 − 1

2B

1 +B2
.

The two foci of TwoPunctures coordinates are situ-
ated at z = ±b. Of note, the coordinate A is com-
pactified with |x|, |y|, |z| → ∞ as A→ 1. Similar to the
term sin ν (where ν ∈ [0, π)) in PS coordinates, the
(1−B2)/(1 +B2) (where B ∈ [−1, 1]) term is a con-
cave down curve with a maximum of 1 at the midpoint
of the range of B and zeroes at the endpoints B = ±1.
Unlike PS coordinates, however, the coordinate system
is not periodic in the variable B.
NRPyElliptic adopts the NRPy+ PS-like coordinate

system SinhSymTP (x1, x2, x3) with x1 ∈ [0, 1], x2 ∈ [0, π],
and x3 ∈ [−π, π]. These are related to PS coordinates
via

a sinhµ = r̃ ≡ A
sinh(x1/w)

sinh(1/w)
,

ν = x2 , (33)

ϕ = x3 ,

with r̃ ∈ [0,A]. Introducing the parameter b, we obtain

x = r̃ sin(x2) cos(x3) ,

y = r̃ sin(x2) sin(x3) , (34)

z =
(

r̃2 + b2
)1/2

cos(x2) .

2 We swap the x and z coordinates of [20] to simplify comparison.
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Thus the foci exist at z = ±b and are decoupled from the
grid scaling. As such, SinhSymTP allows one to decrease
or increase the value of the parameter w to increase or de-
crease the grid point sampling near the foci, respectively.
Finally the A parameter specifies the domain size.
As illustrated in Fig. 1, like PS and TwoPunctures

coordinates, SinhSymTP coordinates become spherical in
the region far from the foci. Note also that regular
spherical coordinates (with a non-uniform radial coor-
dinate) are fully recovered by setting b = 0. As with

FIG. 1. Curves of constant x1 (red) and constant x2 (blue)
using a cell-centered grid structure with x3 = 0.

TwoPunctures, NRPyEllipticET possesses the option to
rotate the coordinate system, to situate the punctures on
either the x-axis (x = ±b) or the z-axis (z = ±b).
For all cases considered here, the outer boundary is

set to 106 (i.e., A = 106), and the grid point spacing
parameter w is set to 0.07. We set b so that the foci match
the punctures’ positions and, when interpolating the ID
to the Einstein Toolkit grids, we adjust the origin of
the coordinate system to coincide with the center of mass
of the punctures, as is conventional.

B. Wavespeed

To propagate the hyperbolic system of equations for-
ward in (pseudo)time from the chosen initial conditions,
we make use of NRPy+’s method of lines implementation.
Specifically we choose the explicit fourth-order Runge-
Kutta (RK4) method. As this is an explicit method, and
we use three dimensions in space, the steps in time ∆t
are constrained by the CFL inequality:

c∆t

∆smin

≤ C0 , (35)

where c is the local wavespeed, and C0 is the CFL factor,
which depends on the explicit time stepping method and
the dimensionality of the problem. Empirically we find

that C0 = 0.7 ensures both stability and large time steps
for both 2D and 3D cases presented in this paper, with
one exception: when the 3D case is pushed to very high
resolution. In the single highest-resolution 3D case in this
work, we find C0 must be lowered to 0.55 for stability.
Further, ∆smin is the minimum proper distance be-

tween neighboring points in our curvilinear coordinate
system:

∆smin = min (h1∆x1, h2∆x2, h3∆x3) , (36)

where hi and ∆xi are the i-th scale factor and grid spacing
of the flat space metric, respectively.
The global relaxation time step ∆tglob is given by the

minimum value of C0∆smin/c on our numerical grid. As
we adopt prolate spheroidal-like coordinates, the global
∆smin occurs precisely at the foci of the coordinate sys-
tem. At this point, for simplicity we set the wavespeed
c = 1. As this is merely a relaxation (as opposed to a
physical) wavespeed, we increase c in proportion to the
local ∆smin, which grows exponentially away from the
foci. In this way we maintain satisfaction of the CFL in-
equality while greatly improving the performance of the
relaxation method. Details and implications of our im-
plementation are described in Appendix B.

IV. RESULTS

Validation of NRPyElliptic is performed in two
stages. First we generate initial data (ID) for a given
physical scenario with the widely used TwoPunctures [20]
code, increasing resolution on the TwoPunctures grids
until roundoff error dominates its numerical solution of
Eq. (18), u. We refer to this high-resolution result as
the trusted solution. Second we generate the same ID
with NRPyElliptic, and demonstrate that its results ap-
proach the trusted solution at the expected convergence
rate.
We repeat this procedure twice: first for an axisymmet-

ric case of two equal-mass BHs with spin vectors collinear
with their separation vector, and second for a full 3D
case involving a GW150914-like unequal-mass, quasi-
circular, spinning BBH system. To demonstrate the fi-
delity of the latter case, we first generate NRPyElliptic
and TwoPunctures ID at similar levels of accuracy. Then,
using the Einstein Toolkit [33–35] we evolve the ID
through inspiral, merger, and ringdown, and compare the
results. Finally we note that M = M+ +M− is defined
as the sum of individual ADM masses of the punctures
(Eq. (83) of Ref. [20]).

A. Axisymmetric initial data

In this test, we generate initial data (ID) for a scenario
symmetric about the z-axis: two equal-mass punctures at
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when setting up the full-3D BBH ID in this work. Efforts
in the immediate future will in part focus on improving
this performance. To this end, a couple of ideas come
to mind. First, all ID generated in this work used the
trivial (u = v = 0) initial guess. We plan to explore
whether relaxations at lower-resolutions might be used
to provide a superior initial guess on finer grids, in which
convergence is accelerated.

Second, due to the CFL condition, the speed of
NRPyElliptic is proportional to the smallest grid spac-
ing, which occurs at the foci of our SinhSymTP coordinate
system. Typical grid spacings at the foci are ∼10−4M
due to extreme grid focusing there, which in turn are
∼1/100 those typically used in (near-equal-mass) binary
puncture evolutions, indicating that a significant speed-
up may be possible if superior grid structures are used.

To this end, we plan to adopt the same seven-grid
bispheres grids infrastructure adopted by the NRPy+-
based BlackHoles@Home [52] project. As illustrated
in Fig. 9, seven-grid BiSpheres consists of seven over-
lapping spherical-like and Cartesian-like grids. This ap-
proach places Cartesian-like AMR grid patches over re-
gions where the spherical-like grids would otherwise ex-
perience extreme grid focusing (r → 0), constraining
the smallest grid spacings in the strong-field region to
≈M/200. Thus with such grids, accounting for needed
inter-grid interpolations, we might expect roughly a∼10x
increase in speed—making NRPyElliptic comparable in
performance to TwoPunctures for near-equal-mass-ratio
systems—all while maintaining excellent resolution in the
strong-field region. Further, the Cartesian-like AMR
patches on these grids are centered precisely at the loca-
tions of the compact objects, making them efficiently tun-
able to higher mass ratios, unlike SinhSymTP or other pro-
late spheroidal-like coordinates mentioned in this work.
Extending NRPyElliptic to higher mass ratios in this
way, as well as to other types of NR ID, will be explored
in forthcoming papers.
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FIG. 9. Schematic of seven-grid BiSpheres numerical meshes
used for BlackHoles@Home ∼6:1 mass-ratio BBH simulations
during the long inspiral phase. BHs are represented as black
dots.

Appendix A: Sommerfeld Boundary Conditions

Sommerfeld boundary conditions (BCs)—also referred
to as radiation or transparent boundary conditions—
aim to enable outgoing wave fronts to pass through the
boundaries of a domain with minimal reflection. Som-
merfeld BCs typically assume that for large values of r
any given field f = f(t, r) behaves as an outgoing spheri-
cal wave, with an asymptotic value f0 as r → ∞. Follow-
ing NewRad [39], our ansatz for f(t, r) on the boundary
takes the form

f = f0 +
w(r − ct)

r
+
K

rn
, (A1)

where w(r−ct)/r represents an outgoing wave that solves
the wave equation in spherical symmetry,9 and K is a
constant. The 1/rn correction term encapsulates higher-
order corrections with n > 1 fall-off.
We follow the hyperbolic relaxation method of [26] and

NewRad, and apply Sommerfeld boundary conditions not
to f directly, but to ∂tf :

∂tf = −c
w′(r − ct)

r
. (A2)

To better understand the w′(r − ct) term, we compute
the radial partial derivative of f as well:

∂rf =
w′(r − ct)

r
−
w(r − ct)

r2
− n

K

rn+1
. (A3)

Solving Eq. (A3) for w′(r − ct) and substituting
into Eq. (A2) yields

∂tf = −c

[

∂rf +
w(r − ct)

r2
+ n

K

rn+1

]

. (A4)

9 That is, ∂2
t (rw)− c2∂2

r (rw) = 0.
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To take care of the (as-yet) unknown w(r − ct)/r2 term,
notice that our ansatz Eq. (A1) implies

w(r − ct)

r2
=
f − f0
r

−
K

rn+1
, (A5)

which when inserted into Eq. (A4) yields

∂tf = −c

[

∂rf +
f − f0
r

]

+
k

rn+1
, (A6)

where k = −cK(n−1) is just another constant. Thus we
have derived the desired boundary condition

∂tf = −
c

r

[

r∂rf + (f − f0)
]

+
k

rn+1
. (A7)

To generalize Eq. (A7) to arbitrary curvilinear coordi-
nate systems xiCurv, we make use of the chain rule

∂f
(

xiCurv

)

∂r
=

(

∂xiCurv

∂r

)(

∂f

∂xiCurv

)

, (A8)

which can be plugged into Eq. (A7) to give us Eq. (30)

∂tf = −
c

r

[

r
∂xiCurv

∂r

∂f

∂xiCurv

+ (f − f0)

]

+
k

rn+1
. (A9)

Returning to the original ansatz (Eq.A1), we would
generally expect the lowest-order correction to be one
order higher than the dominant, 1/r falloff. As the cor-
rection term in Eq. (A1) has 1/rn falloff, we therefore set
n = 2 to obtain our final expression for imposing outgo-
ing radiation boundary conditions any given field f :

∂tf = −
c

r

[

r
∂xiCurv

∂r

∂f

∂xiCurv

+ (f − f0)

]

+
k

r3
. (A10)

Regarding numerical implementation of this expression
a couple of subtleties arise. First, note that ∂xiCurv/∂r
may be impossible to compute analytically, as the spher-
ical radius r is generally easy to write in terms of
the curvilinear coordinates xiCurv, but not its inverse
xiCurv(r).
To address this, for all coordinate systems xiCurv im-

plemented in NRPy+, the function

xiSph =

(

r(xiCurv), θ(x
i
Curv), φ(x

i
Curv)

)

, (A11)

is explicitly defined. If we define the Jacobian

Jj
i =

∂xjSph
∂xiCurv

, (A12)

and use NRPy+ functions to invert this matrix, we obtain
exact expressions for the inverse Jacobian matrix, which
encodes ∂xiCurv/∂x

j
Sph:

(

J−1
)i

j
=
∂xiCurv

∂xjSph
. (A13)

From this, we can express ∂xiCurv/∂r exactly for any
curvilinear coordinate system implemented within NRPy+.
The second subtlety lies in formulating a way to ap-

proximate k. If the function f represented only an out-
going spherical wave, then it would exactly satisfy the
advection equation

[

∂f

∂t

]

adv

≡ −
c

r

[

r
∂xiCurv

∂r

∂f

∂xiCurv

+ (f − f0)

]

, (A14)

which is identical to Eq. (A10) but with k = 0.
Next consider an interior point rint directly adjacent

to the outer boundary. Then, f(rint) approximately sat-
isfies both the time evolution equation (e.g. Eq. 26), and
the advection equation Eq. (A14). We compute ∂tf(rint)
for a given field f directly from evaluating the corre-
sponding right-hand side of Eq. (21), and [∂tf ]adv(rint)
from Eq. (A14). The difference of these two equations
yields the departure from the expected purely outgoing
wave behavior at that point k/rn+1

int . From this we can
immediately extract k:

k = r3int

(

∂f

∂t
−

[

∂f

∂t

]

adv

)

int

, (A15)

where again we impose n = 2.
Our numerical implementation of Sommerfeld BCs

evaluates ∂f/∂xiCurv in Eq. (A14) using either centered
or fully upwinded finite-difference derivatives as needed
to ensure finite-difference stencils do not reach out of
bounds. Unlike NewRad, which only implements second-
order finite-difference derivatives for ∂f/∂xiCurv, our im-
plementation supports second, fourth, and sixth-order fi-
nite differences.
We validated this Sommerfeld boundary condition al-

gorithm against NewRad for the case of a scalar wave
propagating across a 3D Cartesian grid, choosing second-
order finite-difference derivatives in our algorithm. We
achieved roundoff-level agreement for the wave propa-
gating toward each of the individual faces.

Appendix B: Spatially-dependent wavespeed and

relaxation-wave-crossing time

At every point in the domain we compute the smallest
proper distance between neighboring points, ∆Smin, and
define a local wavespeed that is proportional to the grid
spacing as

c(~x) = C0
∆Smin(~x)

∆t
, (B1)

where ∆t is the time step used by the time integrator,
and C0 is the CFL factor.
For the sake of readability, we repeat here the rela-

tionship between SinhSymTP coordinates and Cartesian
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